JP2013053425A - Connection structure of different-diameter steel pipes - Google Patents

Connection structure of different-diameter steel pipes Download PDF

Info

Publication number
JP2013053425A
JP2013053425A JP2011191195A JP2011191195A JP2013053425A JP 2013053425 A JP2013053425 A JP 2013053425A JP 2011191195 A JP2011191195 A JP 2011191195A JP 2011191195 A JP2011191195 A JP 2011191195A JP 2013053425 A JP2013053425 A JP 2013053425A
Authority
JP
Japan
Prior art keywords
pipe
steel
diameter
steel pipe
grout
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011191195A
Other languages
Japanese (ja)
Inventor
Shinji Kato
真志 加藤
Takuya Murakami
琢哉 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011191195A priority Critical patent/JP2013053425A/en
Publication of JP2013053425A publication Critical patent/JP2013053425A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Piles And Underground Anchors (AREA)
  • Joining Of Building Structures In Genera (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a connection structure suitable for the connection of a part turned to a double pipe structure by inserting an inner pipe to an outer pipe for a prescribed length and filling grout in a gap between the outer pipe and the inner pipe.SOLUTION: In order to efficiently transmit weight of an upper structure or the like supported by an outer pipe from grout to an inner pipe without using a shear key, either inner diameter of an outer pipe 1 or outer diameter of an inner pipe 2 in a double pipe area is changed in a pipe axis direction, and a part of shear force acting on the grout is made to act in a radial direction of the inner pipe 2. In the double pipe area where the inner pipe 2 is inserted to the outer pipe 1 for a prescribed length and the outer pipe 1 and the inner pipe 2 are connected through the grout, the inner diameter of the outer pipe 1 is fixed in the pipe axis direction and the outer diameter of the inner pipe 2 is gradually reduced toward the inserted distal end, or the inner diameter of the outer pipe 1 is gradually enlarged toward the end and the outer diameter of the inner pipe 2 is fixed in the pipe axis direction toward the inserted distal end.

Description

本発明は、軸心を一致させて径の異なる鋼管同士をグラウトを介した二重管構造で接合する接合構造に関し、鋼管を塔本体とする塔状構造物基部において塔本体を外管とし、鋼管杭を内管として二重管構造となる部分の接合構造として好適なものに関する。   The present invention relates to a joint structure in which steel pipes with different diameters are joined with a double pipe structure via a grout with the same axis, and the tower body is an outer pipe at the tower-like structure base having the steel pipe as a tower body. The present invention relates to a suitable joining structure for a portion having a double pipe structure with a steel pipe pile as an inner pipe.

鋼管を主な構造部材とする構造物には、石油掘削用リグ、桟橋、風力発電設備があり、鋼管の接合構造には様々なものが用いられている。   Structures mainly composed of steel pipes include oil drilling rigs, piers, and wind power generation facilities, and various steel pipe joint structures are used.

鋼管の接合構造を特許文献1では、従来の技術の説明において、1.突き合わせ溶接、2.ボルト接合、3.二重管構造、4.ねじ方式、5.いんろう方式、6.テーパ方式に分類しているがいずれも径寸法が同じ鋼管同士の接合構造である。   In patent document 1, in the description of the conventional technique, the steel pipe joint structure is as follows. Butt welding, 2. 2. bolt connection; Double tube structure, 4. 4. Screw system, Inro method, 6. Although they are classified as a taper type, both are joint structures of steel pipes having the same diameter.

一方、径寸法の異なる鋼管同士の場合、図8(a)、(b)、(c)に示す接合構造があり、モノパイル式洋上風力発電機(図9に概要構造を示す)などに用いられている。   On the other hand, in the case of steel pipes having different diameters, there is a joining structure shown in FIGS. 8A, 8B, and 8C, which is used for a monopile type offshore wind power generator (shown schematically in FIG. 9). ing.

モノパイル式洋上風力発電機の場合、接合部11は上部構造9側を外管1、下部構造10側を内管2とする、グラウト3(コンクリート等)を介した図8(b)に示す二重管構造とするのが一般的で、図8(a)、(c)のように、鉄筋などを内管2や、内管2と外管1の両方に溶接したシアキー4(せん断力伝達部材)を設けることも多い。   In the case of a monopile type offshore wind power generator, the joint portion 11 is shown in FIG. 8 (b) through a grout 3 (concrete or the like) with the upper structure 9 side being the outer tube 1 and the lower structure 10 side being the inner tube 2. As shown in FIGS. 8 (a) and 8 (c), a shear key 4 (shear force transmission) in which a reinforcing bar is welded to the inner tube 2 or both the inner tube 2 and the outer tube 1 is used. Member) is often provided.

シアキー4(せん断力伝達部材)により、外管1と内管2の間のせん断力はグラウト3に効率良く伝達され、上部構造9の総重量は確実に内管2で支えられる。   By the shear key 4 (shearing force transmission member), the shearing force between the outer tube 1 and the inner tube 2 is efficiently transmitted to the grout 3, and the total weight of the upper structure 9 is reliably supported by the inner tube 2.

図8(b)に示す接合部の場合は、図8(a)、(c)のように、シアキー(せん断力伝達部材)4が無いため、グラウト3と鋼管の表面との付着が切れるとグラウト3にはせん断力が有効に作用せず、上部構造9の総重量を支える外管1は重力で落下する。   In the case of the joint shown in FIG. 8B, since there is no shear key (shearing force transmission member) 4 as shown in FIGS. 8A and 8C, the adhesion between the grout 3 and the surface of the steel pipe is cut off. The shear force does not act effectively on the grout 3, and the outer tube 1 that supports the total weight of the upper structure 9 falls due to gravity.

また、特許文献1では管の内側を向く内向きフランジを形成した第1の中空管の端部に、第1の中空管より小径で、管の外側を向く外向きフランジを形成した第2の中空管を挿入し、両フランジ間に硬化剤を充填する中空管の接合構造を提案している。   Further, in Patent Document 1, the end of the first hollow tube having an inward flange facing the inside of the tube has a smaller diameter than the first hollow tube and an outward flange facing the outside of the tube is formed. A hollow tube joining structure is proposed in which two hollow tubes are inserted and a curing agent is filled between both flanges.

特開平5−339937号公報JP-A-5-339937

しかしながら、図8(a)(c)に示すシアキー4を取り付けた構造では、シアキー4の近傍の応力集中により作用応力が高くなるため、シアキー近傍でグラウト3が破壊する可能性がある。   However, in the structure in which the shear key 4 shown in FIGS. 8A and 8C is attached, the acting stress becomes high due to the stress concentration in the vicinity of the shear key 4, so that the grout 3 may break near the shear key.

グラウト3がシアキー近傍で破壊すると、局所的な破壊であっても応力が再分配されるため、局所的な破壊にとどまらず全体的な破壊へと進展し、最終的に、シアキー4があっても外管1が上部構造の総重量を支えられず、下方に落下する。   If the grout 3 breaks near the shear key, the stress is redistributed even if it is a local break, so that it progresses not only to a local break but also to an overall break. However, the outer tube 1 does not support the total weight of the superstructure and falls downward.

特許文献1記載の中空管の接合構造の場合は、第1の中空管に取り付けた内向きフランジの内側に、第2の中空管に取り付けた外向きフランジが挿入されるようにフランジの寸法を管理して製作したり、取り付ける作業が必要で、現地において接合部を組み立てる際の施工管理も容易でない。   In the case of the hollow tube joining structure described in Patent Document 1, the flange is so that the outward flange attached to the second hollow tube is inserted inside the inward flange attached to the first hollow tube. Therefore, it is necessary to manage and manufacture the dimensions and to attach them, and it is not easy to manage the construction when assembling the joints in the field.

そこで本発明は、シアキーを用いない簡単な構造で、外管の重力による落下防止が可能で、モノパイル式洋上風力発電機などの基部構造に好適な接合構造を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a joining structure suitable for a base structure such as a monopile type offshore wind power generator that can prevent the outer pipe from dropping due to gravity with a simple structure that does not use a shear key.

本発明の課題は以下の手段で達成可能である。
1.鋼管径の異なる鋼管同士を軸心を一致させて接合する異径鋼管の接合構造であって、第1の鋼管内に第2の鋼管が所定の長さだけ挿入され、第1の鋼管と第2の鋼管がグラウトを介して接合された二重管領域において、前記グラウトの管軸方向の断面が略楔状となるように前記第1の鋼管の内径または前記第2の鋼管の外径を管軸方向に漸次変化させたことを特徴とする異径鋼管の接合構造。
2.鋼管径の異なる鋼管同士を軸心を一致させて接合する異径鋼管の接合構造であって、第1の鋼管内に第2の鋼管が所定の長さだけ挿入され、第1の鋼管と第2の鋼管がグラウトを介して接合された二重管領域において、前記第1の鋼管の内径は管軸方向に一定で、前記第2の鋼管の外径は挿入した先端部に向かって漸次縮径していることを特徴とする異径鋼管の接合構造。
3.前記二重管領域における、第2の鋼管の内径が外径に沿って漸次縮径していることを特徴とする2記載の異径鋼管の接合構造。
4.前記二重管領域における、第2の鋼管の内径は管軸方向に一定であることを特徴とする2記載の異径鋼管の接合構造。
5.鋼管径の異なる鋼管同士を軸心を一致させて接合する異径鋼管の接合構造であって、第1の鋼管内に第2の鋼管が所定の長さだけ挿入され、第1の鋼管と第2の鋼管がグラウトを介して接合された二重管領域において、前記第1の鋼管の内径は端部に向かって漸次拡径し、前記第2の鋼管の外径は挿入した先端部に向かって管軸方向に一定であることを特徴とする異径鋼管の接合構造。
The object of the present invention can be achieved by the following means.
1. A joint structure of different diameter steel pipes in which steel pipes having different diameters are joined to each other with their axes aligned, and a second steel pipe is inserted into the first steel pipe by a predetermined length, and the first steel pipe and the first steel pipe In the double pipe region where the two steel pipes are joined via the grout, the inner diameter of the first steel pipe or the outer diameter of the second steel pipe is set so that the cross section in the pipe axis direction of the grout is substantially wedge-shaped. A joint structure for steel pipes with different diameters characterized by being gradually changed in the axial direction.
2. A joint structure of different diameter steel pipes in which steel pipes having different diameters are joined to each other with their axes aligned, and a second steel pipe is inserted into the first steel pipe by a predetermined length, and the first steel pipe and the first steel pipe In a double pipe region in which two steel pipes are joined via a grout, the inner diameter of the first steel pipe is constant in the pipe axis direction, and the outer diameter of the second steel pipe is gradually reduced toward the inserted tip. A joint structure of different diameter steel pipes characterized by having a diameter.
3. 3. The joint structure of different diameter steel pipes according to 2, wherein the inner diameter of the second steel pipe is gradually reduced along the outer diameter in the double pipe region.
4). The joint structure of different diameter steel pipes according to claim 2, wherein the inner diameter of the second steel pipe in the double pipe region is constant in the pipe axis direction.
5. A joint structure of different diameter steel pipes in which steel pipes having different diameters are joined to each other with their axes aligned, and a second steel pipe is inserted into the first steel pipe by a predetermined length, and the first steel pipe and the first steel pipe In the double pipe region where the two steel pipes are joined via a grout, the inner diameter of the first steel pipe gradually increases toward the end, and the outer diameter of the second steel pipe faces the inserted tip. A joint structure of different diameter steel pipes characterized by being constant in the pipe axis direction.

本発明によれば、異径の鋼管同士を接合する際、二重管領域における外管の内径または内管の外径のいずれかを管軸方向に変化させるので、シアキーを取り付けたり、外管や内管にフランジを取り付けることなく簡単な構造で外管と内管の隙間に充填されたグラウトが拘束されて安全性が格段に向上し、産業上極めて有用である。   According to the present invention, when joining steel pipes having different diameters, either the inner diameter of the outer pipe or the outer diameter of the inner pipe in the double pipe region is changed in the pipe axis direction. In addition, the grout filled in the gap between the outer pipe and the inner pipe is restrained with a simple structure without attaching a flange to the inner pipe and the safety is remarkably improved, which is extremely useful industrially.

本発明の一実施例に係る異径鋼管の接合構造を説明する図で軸方向に軸心で切断した軸方向断面図。The axial sectional view cut | disconnected by the axial center in the figure by the figure explaining the joining structure of the different diameter steel pipe which concerns on one Example of this invention. 図1に示した異径鋼管の接合構造における、内管の円錐台状の先端部の外観図。The external view of the truncated cone-shaped front-end | tip part of an inner pipe in the joining structure of the different diameter steel pipe shown in FIG. 本発明に係る外管と内管の接合構造の原理を説明する図で、(a)は外管が内管の鉛直方向の上方にある接合構造、(b)は(a)のA部におけるグラウトの楔効果を説明する図。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure explaining the principle of the joining structure of the outer tube | pipe and inner tube | pipe which concerns on this invention, (a) is a joining structure with an outer tube | pipe upper direction of the inner tube | pipe, (b) The figure explaining the wedge effect of a grout. 本発明の他の実施例に係る異径鋼管の接合構造を説明する図。The figure explaining the joining structure of the different diameter steel pipe which concerns on the other Example of this invention. 内管の円錐台状の先端部をLP鋼板で製造した場合の外観図。The external view at the time of manufacturing the truncated cone-shaped tip part of an inner pipe with LP steel plate. 本発明の他の実施例に係る異径鋼管の接合構造を説明する図。The figure explaining the joining structure of the different diameter steel pipe which concerns on the other Example of this invention. (a)は二重管領域における外管の内径と内管の外径が一定で、グラウトが充填される空隙が管軸方向に変化しない場合の接合構造を示し(従来例)、(b)は(a)の場合のせん断力によるグラウトの変形を説明する図。(A) shows the joint structure in the case where the inner diameter of the outer tube and the outer diameter of the inner tube in the double tube region are constant and the gap filled with grout does not change in the tube axis direction (conventional example), (b) FIG. 6 is a diagram for explaining the deformation of the grout due to the shearing force in the case of (a). 径寸法の異なる鋼管同士をグラウトを介して接合する接合構造の例を示し、(a)はシアキーを内管に取り付けた場合、(b)はシアキーを取り付けない場合、(c)はシアキーを内管と外管に取り付けた場合を示す図。An example of a joining structure in which steel pipes having different diameters are joined together through a grout is shown. (A) shows a case where a shear key is attached to the inner pipe, (b) shows a case where no shear key is attached, and (c) shows a case where the shear key is inside. The figure which shows the case where it attaches to a pipe | tube and an outer pipe | tube. モノパイル式洋上風力発電機の概要構造を示す図。The figure which shows the general | schematic structure of a monopile type offshore wind power generator.

本発明はシアキーを用いずに外管が支えている上部構造物などの重量をグラウトから内管に効率良く伝達させるため、グラウトの管軸方向断面が略楔状になるように二重管領域における外管の内径または内管の外径のいずれかを管軸方向に変化させることを特徴とする。以下、図面を用いて詳細に説明する。   In the present invention, in order to efficiently transmit the weight of the upper structure supported by the outer pipe without using a shear key from the grout to the inner pipe, the cross section in the pipe axial direction of the grout is substantially wedge-shaped. Either the inner diameter of the outer tube or the outer diameter of the inner tube is changed in the tube axis direction. Hereinafter, it explains in detail using a drawing.

図1は、本発明の一実施例に係る異径鋼管の接合構造を説明する図で軸方向に軸心で切断した軸方向断面図を示す。図において1は外管、2は内管、2aは内管2の先端部、3はグラウト、5は外管1の内部に内管2が挿入され、外管と内管の間にはグラウト3が充填されて二重管となっている領域を示す。   FIG. 1 is a view for explaining a joint structure of different diameter steel pipes according to an embodiment of the present invention, and shows an axial sectional view cut along an axial center in an axial direction. In the figure, 1 is the outer tube, 2 is the inner tube, 2a is the tip of the inner tube 2, 3 is the grout, 5 is the inner tube 2 inserted into the outer tube 1, and the grout is between the outer tube and the inner tube. 3 shows a region filled with a double pipe.

外管1と内管2は、外管1の中に軸心を揃えて内管2が所定の長さだけ挿入されている。外管1の中に内管2が挿入されて二重管となっている領域5で、外管1と内管2はグラウト3を介して接合されている。グラウト3は、所望する接合強度が得られるように、領域5内の充填量を適宜調整する。   The outer tube 1 and the inner tube 2 have the inner tube 2 inserted into the outer tube 1 by a predetermined length with the axial center aligned. In the region 5 in which the inner tube 2 is inserted into the outer tube 1 to form a double tube, the outer tube 1 and the inner tube 2 are joined via a grout 3. The grout 3 appropriately adjusts the filling amount in the region 5 so that a desired bonding strength can be obtained.

図示した接合構造の場合、領域5における外管1の内径は管軸方向に一定で、内管2の外径は挿入した部分の先端に向かって漸次縮径し、グラウト3は管軸方向の断面形状が略楔状になって充填している。図2に、内管2の外径が先端に向かって漸次縮径する、円錐台状の先端部2aの一例を外観図で示す。内管2の内径は外径に沿って漸次縮径している。   In the case of the illustrated joining structure, the inner diameter of the outer tube 1 in the region 5 is constant in the tube axis direction, the outer diameter of the inner tube 2 is gradually reduced toward the tip of the inserted portion, and the grout 3 extends in the tube axis direction. The cross-sectional shape is substantially wedge-shaped and filled. FIG. 2 is an external view showing an example of a truncated cone-shaped tip portion 2a in which the outer diameter of the inner tube 2 is gradually reduced toward the tip. The inner diameter of the inner tube 2 is gradually reduced along the outer diameter.

図3は、本発明に係る外管1と内管2の接合構造の原理を説明する図で、(a)は外管1が内管2の鉛直方向の上方にある接合構造、(b)は(a)のA部におけるグラウト3の楔効果を説明する図を示す。   3A and 3B are views for explaining the principle of the joining structure of the outer tube 1 and the inner tube 2 according to the present invention. FIG. 3A is a joining structure in which the outer tube 1 is above the inner tube 2 in the vertical direction. FIG. 4A is a diagram illustrating the wedge effect of the grout 3 in the A part of FIG.

外管1の自重及び外管1が支持する荷重によるせん断力(矢印aで方向を示す)によりグラウト3にはせん断ひずみγ(矢印b間)が発生する。せん断力(矢印aで方向を示す)によるグラウト3の変形は弾性変形なので、せん断ひずみγ(矢印b間)による体積変形分Cが発生しようとするが外管1により阻止され、楔効果が発生する。   A shear strain γ (between arrows b) is generated in the grout 3 due to the self-weight of the outer tube 1 and the shearing force (indicated by the arrow a) due to the load supported by the outer tube 1. Since the deformation of the grout 3 due to the shearing force (indicated by the arrow a) is an elastic deformation, the volume deformation C due to the shear strain γ (between the arrows b) is generated but is blocked by the outer tube 1 and the wedge effect is generated. To do.

グラウト3は内管2の先端部2aと外管1との間で管軸方向の断面形状が略楔状となって拘束されているため、外管1と内管2の空隙が狭くなる鉛直方向の下方において、体積変形分cに応じた力で外管1が外に向かって押される、押し込み力に対する抵抗力、即ち楔効果としての抵抗力が得られ、外管1の落下が防止される。グラウト3が充填される空隙の傾斜により、楔効果が発生し、シアキーを用いた場合のような局所的な応力集中を生ずることなく確実に力を伝達できる接合構造が得られる。   The grout 3 is constrained between the distal end portion 2a of the inner tube 2 and the outer tube 1 so that the cross-sectional shape in the tube axis direction is substantially wedge-shaped, so that the gap between the outer tube 1 and the inner tube 2 becomes narrower in the vertical direction. , The outer tube 1 is pushed outward with a force corresponding to the volume deformation c, so that a resistance force against the pushing force, that is, a resistance force as a wedge effect is obtained, and the outer tube 1 is prevented from falling. . Due to the inclination of the gap filled with the grout 3, a wedge effect is generated, and a joining structure that can transmit force reliably without causing local stress concentration as in the case of using a shear key is obtained.

尚、二重管領域における外管1の内径と内管2の外径が一定で、グラウト3が充填される空隙が管軸方向に変化しない場合(図7(a))、せん断力aによりグラウト3にはせん断ひずみγが発生するが、グラウト3は内管2、外管1の距離を変えることなく変形する(図7(b))。この場合、内管2、外管1とグラウト3の接合は鋼とコンクリート間の付着力にのみ依存する。   When the inner diameter of the outer tube 1 and the outer diameter of the inner tube 2 in the double tube region are constant and the gap filled with the grout 3 does not change in the tube axis direction (FIG. 7A), the shear force a Although the shear strain γ is generated in the grout 3, the grout 3 is deformed without changing the distance between the inner tube 2 and the outer tube 1 (FIG. 7B). In this case, the joining of the inner tube 2, the outer tube 1 and the grout 3 depends only on the adhesion between steel and concrete.

図4は本発明の他の実施例に係る異径鋼管の接合構造を説明する、軸方向に軸心で切断した軸方向断面図を示す。二重管領域における、内管2の外径は挿入した部分の先端に向かって漸次縮径し、内管2の内径は管軸方向に一定である場合を示す。   FIG. 4 is an axial sectional view cut along an axial center in the axial direction, illustrating a joint structure of different diameter steel pipes according to another embodiment of the present invention. In the double tube region, the outer diameter of the inner tube 2 gradually decreases toward the tip of the inserted portion, and the inner diameter of the inner tube 2 is constant in the tube axis direction.

図5に図4に示した内管2の先端部2aの外観図を示す。板厚が圧延方向に変化するLP鋼板(Longitudinally Profiled Plate、テーパ鋼板とも言う)6を用いて製造可能である。   FIG. 5 shows an external view of the tip 2a of the inner tube 2 shown in FIG. It can be manufactured using LP steel plate (also referred to as Longitudinally Profiled Plate, also called tapered steel plate) 6 whose thickness changes in the rolling direction.

以上の説明では、グラウト3の管軸方向の断面形状を二重管領域の内管側が先細となる略楔状としたが、図6に示すように、二重管領域の外管側を先細とする略楔状としても良い。二重管領域の内管2の外径を一定とし、外管1の内径を端部に向かって漸次拡径する場合で、外管1の二重管領域をLP鋼板(Longitudinally Profiled Plate、テーパ鋼板とも言う)6とすることで製造可能である。   In the above description, the cross-sectional shape of the grout 3 in the tube axis direction is a substantially wedge shape in which the inner tube side of the double tube region is tapered, but the outer tube side of the double tube region is tapered as shown in FIG. It is good also as a substantially wedge shape. In the case where the outer diameter of the inner tube 2 in the double tube region is constant and the inner diameter of the outer tube 1 is gradually increased toward the end, the double tube region of the outer tube 1 is made of LP steel plate (Longitudinally Profiled Plate, taper (It is also called a steel plate).

本発明に係る異径鋼管の接合構造をモノパイル式洋上風力発電機の塔状構造物基部における上部構造(外管に相当)と鋼管杭(内管に相当)からなる下部構造の接合構造に適用すると、上部構造が重量により落下することが防止でき、安全性が格段に向上する。   The joint structure of different diameter steel pipes according to the present invention is applied to the joint structure of the lower structure consisting of the upper structure (corresponding to the outer pipe) and the steel pipe pile (corresponding to the inner pipe) at the base of the tower structure of the monopile offshore wind power generator. Then, it is possible to prevent the superstructure from falling due to weight, and the safety is remarkably improved.

1 外管
2 内管
3 グラウト
4 シアキー
5 領域
6 LP鋼板部
7 せん断力
C 体積変形分
9 上部構造
10 下部構造
11 接合部
DESCRIPTION OF SYMBOLS 1 Outer tube 2 Inner tube 3 Grout 4 Shea key 5 Area | region 6 LP steel plate part 7 Shear force C Volume deformation part 9 Upper structure 10 Lower structure 11 Joint part

Claims (5)

鋼管径の異なる鋼管同士を軸心を一致させて接合する異径鋼管の接合構造であって、第1の鋼管内に第2の鋼管が所定の長さだけ挿入され、第1の鋼管と第2の鋼管がグラウトを介して接合された二重管領域において、前記グラウトの管軸方向の断面が略楔状となるように前記第1の鋼管の内径または前記第2の鋼管の外径を管軸方向に漸次変化させたことを特徴とする異径鋼管の接合構造。   A joint structure of different diameter steel pipes in which steel pipes having different diameters are joined to each other with their axes aligned, and a second steel pipe is inserted into the first steel pipe by a predetermined length, and the first steel pipe and the first steel pipe In the double pipe region where the two steel pipes are joined via the grout, the inner diameter of the first steel pipe or the outer diameter of the second steel pipe is set so that the cross section in the pipe axis direction of the grout is substantially wedge-shaped. A joint structure for steel pipes with different diameters characterized by being gradually changed in the axial direction. 鋼管径の異なる鋼管同士を軸心を一致させて接合する異径鋼管の接合構造であって、第1の鋼管内に第2の鋼管が所定の長さだけ挿入され、第1の鋼管と第2の鋼管がグラウトを介して接合された二重管領域において、前記第1の鋼管の内径は管軸方向に一定で、前記第2の鋼管の外径は挿入した先端部に向かって漸次縮径していることを特徴とする異径鋼管の接合構造。   A joint structure of different diameter steel pipes in which steel pipes having different diameters are joined to each other with their axes aligned, and a second steel pipe is inserted into the first steel pipe by a predetermined length, and the first steel pipe and the first steel pipe In a double pipe region in which two steel pipes are joined via a grout, the inner diameter of the first steel pipe is constant in the pipe axis direction, and the outer diameter of the second steel pipe is gradually reduced toward the inserted tip. A joint structure of different diameter steel pipes characterized by having a diameter. 前記二重管領域における、第2の鋼管の内径が外径に沿って漸次縮径していることを特徴とする請求項2記載の異径鋼管の接合構造。   The joint structure of different diameter steel pipes according to claim 2, wherein the inner diameter of the second steel pipe in the double pipe region is gradually reduced along the outer diameter. 前記二重管領域における、第2の鋼管の内径は管軸方向に一定であることを特徴とする請求項2記載の異径鋼管の接合構造。   The joint structure of different diameter steel pipes according to claim 2, wherein the inner diameter of the second steel pipe in the double pipe region is constant in the pipe axis direction. 鋼管径の異なる鋼管同士を軸心を一致させて接合する異径鋼管の接合構造であって、第1の鋼管内に第2の鋼管が所定の長さだけ挿入され、第1の鋼管と第2の鋼管がグラウトを介して接合された二重管領域において、前記第1の鋼管の内径は端部に向かって漸次拡径し、前記第2の鋼管の外径は挿入した先端部に向かって管軸方向に一定であることを特徴とする異径鋼管の接合構造。   A joint structure of different diameter steel pipes in which steel pipes having different diameters are joined to each other with their axes aligned, and a second steel pipe is inserted into the first steel pipe by a predetermined length, and the first steel pipe and the first steel pipe In the double pipe region where the two steel pipes are joined via a grout, the inner diameter of the first steel pipe gradually increases toward the end, and the outer diameter of the second steel pipe faces the inserted tip. A joint structure of different diameter steel pipes characterized by being constant in the pipe axis direction.
JP2011191195A 2011-09-02 2011-09-02 Connection structure of different-diameter steel pipes Withdrawn JP2013053425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011191195A JP2013053425A (en) 2011-09-02 2011-09-02 Connection structure of different-diameter steel pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011191195A JP2013053425A (en) 2011-09-02 2011-09-02 Connection structure of different-diameter steel pipes

Publications (1)

Publication Number Publication Date
JP2013053425A true JP2013053425A (en) 2013-03-21

Family

ID=48130670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011191195A Withdrawn JP2013053425A (en) 2011-09-02 2011-09-02 Connection structure of different-diameter steel pipes

Country Status (1)

Country Link
JP (1) JP2013053425A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016223251A (en) * 2015-06-03 2016-12-28 Jfeスチール株式会社 Steel pipe joining structure
JP2020002561A (en) * 2018-06-26 2020-01-09 日本製鉄株式会社 Column beam joint structure
CN111183259A (en) * 2017-10-10 2020-05-19 Spt设备有限公司 Offshore wind energy plant foundation system
WO2023001879A1 (en) 2021-07-23 2023-01-26 Vallourec Deutschland Gmbh Assembly for installing an above-surface structure in water-covered ground, in particular for the monopile-installation of an offshore wind turbine, and method for mounting same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016223251A (en) * 2015-06-03 2016-12-28 Jfeスチール株式会社 Steel pipe joining structure
CN111183259A (en) * 2017-10-10 2020-05-19 Spt设备有限公司 Offshore wind energy plant foundation system
JP2020002561A (en) * 2018-06-26 2020-01-09 日本製鉄株式会社 Column beam joint structure
JP7126386B2 (en) 2018-06-26 2022-08-26 日本製鉄株式会社 Column-beam connection structure
WO2023001879A1 (en) 2021-07-23 2023-01-26 Vallourec Deutschland Gmbh Assembly for installing an above-surface structure in water-covered ground, in particular for the monopile-installation of an offshore wind turbine, and method for mounting same

Similar Documents

Publication Publication Date Title
US10167623B2 (en) Prefabricated reinforced concrete-filled steel pipe sleeve joint
JP5071916B2 (en) Casting structure connector
CN108560716A (en) A kind of concrete filled steel tube node of column and beam structure and its construction method
JP2013053425A (en) Connection structure of different-diameter steel pipes
JP2008303598A (en) Column base structure in multi-column bridge pier
CN107227795A (en) Girder with rolled steel section en cased in concrete and steel core concrete column rigid joint
JP2010059717A (en) Joint structure of structural body and anchoring member for shear force transmission used in the same
CN105507426A (en) Half-through bracket haunching type compound steel pipe concrete column-steel beam joint
EP2256251B1 (en) Pile and pile joint
JP6639895B2 (en) Steel tube column joint structure
JP2020037774A (en) Column-beam joining structure and building having column-beam joining structure
KR20140111792A (en) Column Integrated Footing
CN111188462A (en) Splicing type grouting sleeve for connecting reinforcing steel bars and manufacturing method
JP3162264U (en) Support pile structure
JP4386804B2 (en) Seismic reinforcement structure for existing steel towers
CN105297895A (en) Compound steel pipe concrete column-steel beam semi-through haunch type node
JP5741852B2 (en) Double tube structure
KR20100041991A (en) Fixed structure of stud-bolt in steel sturcture as shear conncetor
JP2016089549A (en) Structure and method for joining reinforced concrete beam and steel column or column comprising steel column
JP2009114696A (en) Knotted pile
JP2007154536A (en) Column and beam frame using steel pipe column filled with concrete
JP2009097261A (en) Foundation pile structure, prefabricated concrete pile, and joint hardware for prefabricated concrete pile and steel pipe pile
CN209457160U (en) A kind of splicing node of assembled steel tubular truss lower edge crossbeam and lower edge chord member
JP5176381B2 (en) Steel pipe pile and footing joint structure
JP3169245U (en) Fitting device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104