JP2013053367A - Metal strip stabilizer, method for manufacturing hot dipped metal strip - Google Patents

Metal strip stabilizer, method for manufacturing hot dipped metal strip Download PDF

Info

Publication number
JP2013053367A
JP2013053367A JP2012168154A JP2012168154A JP2013053367A JP 2013053367 A JP2013053367 A JP 2013053367A JP 2012168154 A JP2012168154 A JP 2012168154A JP 2012168154 A JP2012168154 A JP 2012168154A JP 2013053367 A JP2013053367 A JP 2013053367A
Authority
JP
Japan
Prior art keywords
coil
metal strip
position correction
vibration suppression
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012168154A
Other languages
Japanese (ja)
Other versions
JP5263433B2 (en
Inventor
Takesuke Ishigaki
雄亮 石垣
Yoshiaki Nishina
慶晃 西名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012168154A priority Critical patent/JP5263433B2/en
Priority to PCT/JP2012/070115 priority patent/WO2013022004A1/en
Priority to KR1020147003123A priority patent/KR101470906B1/en
Priority to EP12821917.7A priority patent/EP2743368B1/en
Priority to CN201280038441.XA priority patent/CN103717778B/en
Publication of JP2013053367A publication Critical patent/JP2013053367A/en
Application granted granted Critical
Publication of JP5263433B2 publication Critical patent/JP5263433B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H23/00Registering, tensioning, smoothing or guiding webs
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0034Details related to elements immersed in bath
    • C23C2/00342Moving elements, e.g. pumps or mixers
    • C23C2/00344Means for moving substrates, e.g. immersed rollers or immersed bearings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes
    • C23C2/51Computer-controlled implementation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes
    • C23C2/52Controlling or regulating the coating processes with means for measuring or sensing
    • C23C2/524Position of the substrate
    • C23C2/5245Position of the substrate for reducing vibrations of the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2557/00Means for control not provided for in groups B65H2551/00 - B65H2555/00
    • B65H2557/20Calculating means; Controlling methods
    • B65H2557/264Calculating means; Controlling methods with key characteristics based on closed loop control
    • B65H2557/2644Calculating means; Controlling methods with key characteristics based on closed loop control characterised by PID control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2557/00Means for control not provided for in groups B65H2551/00 - B65H2555/00
    • B65H2557/50Use of particular electromagnetic waves, e.g. light, radiowaves or microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2601/00Problem to be solved or advantage achieved
    • B65H2601/50Diminishing, minimizing or reducing
    • B65H2601/52Diminishing, minimizing or reducing entities relating to handling machine
    • B65H2601/524Vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/10Handled articles or webs
    • B65H2701/17Nature of material
    • B65H2701/173Metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Coating With Molten Metal (AREA)
  • Registering, Tensioning, Guiding Webs, And Rollers Therefor (AREA)
  • Vibration Prevention Devices (AREA)
  • Controlling Rewinding, Feeding, Winding, Or Abnormalities Of Webs (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a metal strip stabilizer with which loss in vibration suppression performance caused by an induced current between a vibration suppression coil and a position correction coil may be prevented.SOLUTION: The metal strip stabilizer includes: a non-contact displacement sensor which measures displacement of a metal strip 2 during online running; a control unit 5 which outputs a vibration suppression signal and a position correction signal after inputting a signal from the non-contact displacement sensor; a vibration suppression coil 7a which generates a magnetic force according to the vibration suppression signal output from the control unit 5; a position correction coil 7b which generates a magnetic force according to the position correction signal output from the control unit 5, a winding number thereof being larger than a winding number of the vibration suppression coil 7a; a core 6 where the vibration suppression coil 7a and the position correction coil 7b are wound concentrically, the magnetic force generated by the vibration suppression coil 7a and the position correction coil 7b being induced to the metal strip 2; and a counter induced current coil 13a which is disposed in series in an electric circuit supplying electricity to the position correction coil 7b.

Description

本発明は、金属帯の安定装置、これを用いた溶融めっき金属帯の製造方法、およびこれを用いて製造された金属帯に関するものである。   The present invention relates to a metal strip stabilizer, a method of manufacturing a hot-dip metal strip using the same, and a metal strip manufactured using the same.

金属帯を製造するラインにおいて、金属帯の振動や反りを抑制して金属帯のパスラインを安定に保つことは、金属帯の品質を向上させるばかりでなく、その製造ラインの能率を向上させることにも寄与する。   In a metal band production line, keeping the metal band pass line stable by suppressing the vibration and warpage of the metal band not only improves the quality of the metal band, but also improves the efficiency of the production line. Also contributes.

例えば、溶融めっき金属帯の製造ラインにおいては、金属帯を溶融金属浴中に浸漬しながら通板することにより、金属帯の表面に溶融金属を付着する工程がある。この工程では、溶融金属の付着量のムラが発生することを抑制するため、溶融金属浴後に設けられたガスワイパから噴出するワイピングガスにより金属帯に付着した過剰の溶融金属を払拭する調整が行われる。   For example, in a production line for a hot-dip metal strip, there is a step of attaching the hot metal to the surface of the metal strip by passing the metal strip while being immersed in a molten metal bath. In this step, in order to suppress the occurrence of unevenness in the amount of adhesion of the molten metal, adjustment is performed to wipe off the excess molten metal adhering to the metal band by the wiping gas ejected from the gas wiper provided after the molten metal bath. .

この溶融金属の調整では、金属帯の表裏に板幅方向に均一に圧力がかかるようにガスワイパからワイピングガスを噴出することが必要である。したがって、金属帯が振動している場合、金属帯が反っている場合、あるいは金属帯のパスラインが表裏どちらかに偏っている場合など、ガスワイパと金属帯との距離が一定でないときは、ワイピングガスの圧力が板幅方向および通板方向に均一にならない。その結果、金属帯の表裏や板幅方向および通板方向に溶融金属の付着量のムラが発生するという問題が生じる。   In the adjustment of the molten metal, it is necessary to eject the wiping gas from the gas wiper so that pressure is uniformly applied to the front and back of the metal strip in the plate width direction. Therefore, when the distance between the gas wiper and the metal band is not constant, such as when the metal band is vibrating, when the metal band is warped, or when the pass line of the metal band is biased to the front or back, The gas pressure is not uniform in the plate width direction and the plate passing direction. As a result, there arises a problem that uneven adhesion of the molten metal occurs in the front and back of the metal band, the plate width direction, and the sheet passing direction.

このような問題点を解決する方法として、電磁石を用いて金属帯の反りや振動を非接触で抑制し、金属帯のパスラインを安定化する技術が知られている。例えば、金属帯を移動させるべきパスラインに対して一対の電磁石を互いに対向するように配置し、別途設けた位置検出器からの信号に応じて各電磁石の吸引力を相互に切り替えながら金属帯に作用させる方法が知られている(特許文献1参照)。   As a method for solving such a problem, a technique is known that uses an electromagnet to suppress warpage and vibration of a metal band in a non-contact manner and stabilize the pass line of the metal band. For example, a pair of electromagnets are arranged so as to face each other with respect to a path line to which the metal band is to be moved, and the attraction force of each electromagnet is switched to each other according to a signal from a separately provided position detector. A method of making it act is known (see Patent Document 1).

上記のような電磁石を用いた金属帯の振動抑制には電磁石の応答性が要求され、反り矯正およびパスライン矯正には電磁石の吸引力が要求される。なお、以後、反り矯正とパスライン矯正を合わせたものを位置矯正と云う。つまり、金属帯の振動抑制と位置矯正を同時に実現するには、応答性と吸引力という相反した性質が必要となる。電磁石の吸引力を大きくするためにコイルの巻数を増やすと電磁石の応答性は悪くなり、一方、電磁石の応答性を良くするために巻数を少なくすると電磁石の吸引力が小さくなってしまうからである。   Responsiveness of the electromagnet is required to suppress the vibration of the metal band using the electromagnet as described above, and the attractive force of the electromagnet is required for warpage correction and pass line correction. Hereinafter, a combination of warp correction and pass line correction is referred to as position correction. In other words, in order to simultaneously realize vibration suppression and position correction of the metal band, contradictory properties of responsiveness and suction force are required. This is because if the number of turns of the coil is increased in order to increase the attractive force of the electromagnet, the responsiveness of the electromagnet is deteriorated. On the other hand, if the number of turns is decreased in order to improve the responsiveness of the electromagnet, the attractive force of the electromagnet is reduced. .

そこで、この問題を解決するために、振動抑制用と位置矯正用とのそれぞれ独立した2系統のコイルを有する電磁石を用いる金属帯非接触制御技術が提案されている(特許文献2参照)。この技術によれば、巻数の少ない振動抑制用コイルにより振動制御を行うと共に、巻数の多い位置矯正用コイルにより反り矯正およびパスライン矯正を行うことが可能なため、振動抑制能力と位置矯正能力を両立して制御を行うことができる。   In order to solve this problem, a metal band non-contact control technique using an electromagnet having two independent coils for vibration suppression and position correction has been proposed (see Patent Document 2). According to this technology, it is possible to perform vibration control with a vibration suppression coil with a small number of turns and to perform warp correction and pass line correction with a position correction coil with a large number of turns. Control can be performed in a compatible manner.

特開平2−62355号公報Japanese Patent Laid-Open No. 2-62355 特開2004−124191号公報JP 2004-124191 A

しかしながら、上記の独立した2系統のコイルを有する電磁石を用いる金属帯非接触制御技術では、振動抑制用コイルと位置矯正用コイルとの間の相互誘導によって、振動抑制用コイルの電流変化が位置矯正用コイルの電流に影響を与え、逆に、位置矯正用コイルの電流変化が振動抑制用コイルの電流に影響を与えてしまう。この結果、上記制御技術には、制御信号が要求する吸引力とは異なる吸引力を発生してしまうという問題があった。すなわち、振動抑制用と位置矯正用とのそれぞれ独立した2系統のコイルを有する電磁石を用いる金属帯の安定装置は、振動抑制能力と位置矯正能力とを両立して制御を行うことができるが、振動抑制用コイルと位置矯正用コイルとの間の相互誘導によって、振動抑制能力が低下するという問題点があった。   However, in the metal band non-contact control technology using the electromagnet having two independent coils, the current change of the vibration suppression coil is corrected by the mutual induction between the vibration suppression coil and the position correction coil. On the contrary, a current change in the position correcting coil affects the current in the vibration suppressing coil. As a result, the control technique has a problem that it generates a suction force different from the suction force required by the control signal. In other words, the metal band stabilizer using the electromagnet having two independent coils for vibration suppression and position correction can control both vibration suppression capability and position correction capability, Due to the mutual induction between the vibration suppressing coil and the position correcting coil, there is a problem that the vibration suppressing ability is lowered.

本発明は、上記問題に鑑みてなされたものであって、その目的は、振動抑制用コイルと位置矯正用コイルとの間の誘導電流による振動抑制能力の低下を回避することができる金属帯の安定装置、およびこれを用いた溶融めっき金属帯の製造方法を提供することである。   The present invention has been made in view of the above problems, and the object of the present invention is to provide a metal strip that can avoid a decrease in vibration suppression capability due to an induced current between the vibration suppression coil and the position correction coil. It is to provide a stabilizer and a method for producing a hot-dip metal strip using the same.

上記課題を解決し、目的を達成するために、本発明に係る金属帯の安定装置は、オンライン走行中の金属帯の変位を測定する非接触変位センサと、前記非接触変位センサからの信号を入力して、前記金属帯の振動を抑制するための振動抑制信号と前記金属帯の位置を矯正するための位置矯正信号とを出力する制御部と、前記制御部から出力される振動抑制信号に従い磁力を発生する第1のコイルと、前記制御部から出力される位置矯正信号に従い磁力を発生する、前記第1のコイルよりも巻数の多い第2のコイルと、前記第1のコイルと前記第2のコイルとが同心に巻かれ、前記第1のコイルおよび前記第2のコイルが発生する磁力を前記金属帯へ導くコアと、前記第2のコイルに給電する電気回路に直列に設けられた第3のコイルとを備えることを特徴とする。   In order to solve the above-described problems and achieve the object, a metal strip stabilizer according to the present invention includes a non-contact displacement sensor that measures the displacement of a metal strip during online travel, and a signal from the non-contact displacement sensor. A controller that inputs and outputs a vibration suppression signal for suppressing the vibration of the metal band and a position correction signal for correcting the position of the metal band; and according to the vibration suppression signal output from the controller A first coil that generates a magnetic force, a second coil that generates a magnetic force in accordance with a position correction signal output from the control unit, and has a greater number of turns than the first coil, the first coil, and the first coil The two coils are concentrically wound, and are provided in series with a core that guides the magnetic force generated by the first coil and the second coil to the metal strip, and an electric circuit that feeds the second coil. With a third coil It is characterized in.

本発明に係る金属帯の安定装置および溶融めっき金属帯の製造方法によれば、振動抑制用コイルと位置矯正用コイルとの間の誘導電流による振動抑制能力の低下を回避することができる。   According to the metal strip stabilizer and the hot-dip metal strip manufacturing method according to the present invention, it is possible to avoid a reduction in vibration suppression capability due to an induced current between the vibration suppression coil and the position correction coil.

図1は、本発明の実施形態に係る金属帯の安定装置の構成を示す概略図である。FIG. 1 is a schematic diagram showing a configuration of a metal strip stabilizer according to an embodiment of the present invention. 図2は、本発明の実施形態に係る金属帯の安定装置に用いる電磁石の例を示す概略図である。FIG. 2 is a schematic view showing an example of an electromagnet used in the metal strip stabilizer according to the embodiment of the present invention. 図3は、本発明の実施形態に係る金属帯の安定装置における制御部の構成を示すブロック図である。FIG. 3 is a block diagram showing a configuration of a control unit in the metal strip stabilizer according to the embodiment of the present invention. 図4は、操作量演算装置の構成例を説明するブロック図である。FIG. 4 is a block diagram illustrating a configuration example of the operation amount calculation device. 図5は、本発明の実施形態に係る金属帯の安定装置における電磁石の電気回路を示す概略図である。FIG. 5 is a schematic diagram showing an electric circuit of an electromagnet in the metal strip stabilizer according to the embodiment of the present invention. 図6は、一般的な溶融めっき金属帯の製造ラインの一部を示す概略図である。FIG. 6 is a schematic diagram showing a part of a general hot-dip metal strip production line. 図7は、溶融めっき金属帯の製造ラインのガスワイパ近傍の拡大図である。FIG. 7 is an enlarged view of the vicinity of a gas wiper in a hot-dip metal strip production line. 図8は、比較例の金属帯の安定装置による測定データを示すグラフである。FIG. 8 is a graph showing measurement data obtained by the metal strip stabilizer of the comparative example. 図9は、本発明の実施形態に係る金属帯の安定装置による測定データを示すグラフである。FIG. 9 is a graph showing data measured by the metal strip stabilizer according to the embodiment of the present invention. 図10は、図8に示される測定データと図9に示される測定データとに含まれるノイズの大きさを比較するグラフである。FIG. 10 is a graph comparing the magnitudes of noise included in the measurement data shown in FIG. 8 and the measurement data shown in FIG.

以下、図面を参照して、本発明の実施形態に係る金属帯の安定装置について説明する。   A metal strip stabilizer according to an embodiment of the present invention will be described below with reference to the drawings.

図1は、本発明の実施形態に係る金属帯の安定装置1の構成を示す概略図である。図1に示されるように、本発明の実施形態に係る金属帯の安定装置1は、図中の矢印A方向に走行する金属帯2を挟むように対向して設置される一対の電磁石3a,3bと、電磁石3a,3bの近傍に配置される非接触変位センサ4と、非接触変位センサ4からの入力に基づいて電磁石3a,3bを制御する制御部5とを備える。   FIG. 1 is a schematic diagram showing the configuration of a metal strip stabilizer 1 according to an embodiment of the present invention. As shown in FIG. 1, a metal band stabilizer 1 according to an embodiment of the present invention includes a pair of electromagnets 3a, which are installed facing each other so as to sandwich a metal band 2 traveling in the direction of arrow A in the figure. 3b, a non-contact displacement sensor 4 disposed in the vicinity of the electromagnets 3a and 3b, and a controller 5 that controls the electromagnets 3a and 3b based on an input from the non-contact displacement sensor 4.

図2は、本発明の実施形態に係る金属帯の安定装置1に用いる電磁石3aの例を示す概略図である。なお、ここでは金属帯2の表面用の電磁石3aのみに対する説明を行うが、以下の説明は、金属帯2の裏面用の電磁石3bについても成立する。図2に示される電磁石3aは、一つのコア6に2つの巻き線を同心に巻いて構成したコイル7aとコイル7bとからなる同心コイルにより構成されている。2つのコイル7a,7bは、巻き数を変えて構成され、2つのコイル7a,7bのうち巻き数の少ない方のコイルが振動抑制用コイル7aであり、巻き数の多い方のコイルが位置矯正用コイル7bである。   FIG. 2 is a schematic view showing an example of an electromagnet 3a used in the metal strip stabilizer 1 according to the embodiment of the present invention. Here, only the electromagnet 3a for the surface of the metal band 2 will be described. However, the following description also applies to the electromagnet 3b for the back surface of the metal band 2. The electromagnet 3a shown in FIG. 2 is configured by a concentric coil including a coil 7a and a coil 7b configured by concentrically winding two windings around one core 6. The two coils 7a and 7b are configured by changing the number of turns, and the coil with the smaller number of turns of the two coils 7a and 7b is the vibration suppressing coil 7a, and the coil with the larger number of turns is the position correction. Coil 7b.

振動抑制用コイル7aは、対象とする金属帯2の振動周波数(通常は金属帯の曲げや捩れなどの固有振動数)に十分追従できるだけの高い応答性が要求されるが、金属帯の固有周波数の振動を抑えるためには、大きな吸引力を必要としない。したがって、振動抑制用コイル7aの巻き数は、位置矯正用コイル7bよりも少なく構成されている。   The vibration suppression coil 7a is required to have a high response enough to sufficiently follow the vibration frequency of the target metal band 2 (usually the natural frequency such as bending or twisting of the metal band). A large suction force is not required to suppress the vibration. Therefore, the number of turns of the vibration suppressing coil 7a is smaller than that of the position correcting coil 7b.

これに対し、位置矯正用コイル7bは、高い応答性は不要であるが、小さな電流で大きな吸引力を発生できる方が望ましい。したがって、位置矯正用コイル7bの巻き数は、電磁石3aのサイズおよび電気抵抗の値が大きくなり過ぎない範囲で多い方が好ましい。   On the other hand, the position correction coil 7b does not require high responsiveness, but it is desirable that it can generate a large suction force with a small current. Therefore, it is preferable that the number of turns of the position correcting coil 7b is large as long as the size of the electromagnet 3a and the value of the electric resistance do not become too large.

以下に、コイルの巻き数と、電磁石の応答性および吸引力との関係について説明する。   Below, the relationship between the number of turns of a coil, the responsiveness of an electromagnet, and attractive force is demonstrated.

電磁石の動作は式(1)の方程式で表現される。
e = Ldi/dt + Ri ・・・(1)
ここで、eは印加電圧であり、iはコイルを流れる電流であり、Lはコイルのインダクタンスであり、Rはコイルの抵抗である。
The operation of the electromagnet is expressed by the equation (1).
e = Ldi / dt + Ri (1)
Here, e is an applied voltage, i is a current flowing through the coil, L is an inductance of the coil, and R is a resistance of the coil.

式(1)で示されるように、コイルを流れる電流iは印加電圧eに対して一次遅れ系となっており、その時定数Tは式(2)で表わされる。
T = L/R ・・・(2)
ここで、コイルのインダクタンスLはコイルの巻き数Nの2乗に比例し、コイルの抵抗Rはコイルの巻き数Nに比例する。従って、式(2)により時定数Tはコイルの巻き数Nに比例することになる。これは、コイルの巻き数を増やせば増やすほど時定数が大きくなり、即応性が低くなることを意味している。
As shown in Expression (1), the current i flowing through the coil is a first-order lag system with respect to the applied voltage e, and its time constant T is expressed by Expression (2).
T = L / R (2)
Here, the inductance L of the coil is proportional to the square of the number of turns N of the coil, and the resistance R of the coil is proportional to the number N of turns of the coil. Therefore, the time constant T is proportional to the number of turns N of the coil according to the equation (2). This means that as the number of turns of the coil increases, the time constant increases and the quick response decreases.

一方、電磁石の吸引力Fは式(3)で表わされるように、コイルの巻き数Nの2乗及びコイルを流れる電流iの2乗に比例する。
F ∝ N ・・・(3)
従って、同じ電流で大きな吸引力を得るには、コイルの巻き数Nを増やす方が有利である。
On the other hand, the attractive force F of the electromagnet is proportional to the square of the number of turns N of the coil and the square of the current i flowing through the coil, as represented by the equation (3).
F N N 2 i 2 (3)
Therefore, in order to obtain a large attractive force with the same current, it is advantageous to increase the number of turns N of the coil.

以上を整理すると、コイルの巻き数Nは応答性を高めるには少ない方が良いが、吸引力を強めるためには多い方が良いことがわかる。したがって、本発明の実施形態に係る電磁石3aでは、大きな吸引力は不要であるが高い応答性を必要とする振動抑制用コイル7aの巻き数を位置矯正用コイル7bの巻き数よりも小さく構成する。一方、高い応答性は不要であるが大きな吸引力を必要とする位置矯正用コイル7bの巻き数を振動抑制用コイル7aの巻き数よりも大きく構成する。   In summary, it can be seen that the number of turns N of the coil is preferably small in order to increase the response, but is large in order to increase the attractive force. Therefore, in the electromagnet 3a according to the embodiment of the present invention, the number of turns of the vibration suppressing coil 7a that does not require a large attractive force but requires high responsiveness is configured to be smaller than the number of turns of the position correcting coil 7b. . On the other hand, the number of turns of the position correcting coil 7b which requires high responsiveness but does not require high responsiveness is configured to be larger than the number of turns of the vibration suppressing coil 7a.

図3は、本発明の実施形態に係る金属帯の安定装置1における制御部5の構成を示すブロック図である。図3に示されるように本発明の実施形態に係る金属帯の安定装置1の制御部5は、操作量演算装置8と、表裏分配装置9a,9bと、アンプ10a,10b,10c,10dと、インダクタ11a,11bと、を備える。   FIG. 3 is a block diagram showing a configuration of the control unit 5 in the metal strip stabilizer 1 according to the embodiment of the present invention. As shown in FIG. 3, the control unit 5 of the metal band stabilizer 1 according to the embodiment of the present invention includes an operation amount calculation device 8, front and back distribution devices 9a and 9b, amplifiers 10a, 10b, 10c, and 10d. And inductors 11a and 11b.

操作量演算装置8は、非接触変位センサ4による金属帯の変位の測定値と入力手段12により設定した目標値との偏差信号に対して、比例、微分、および積分などのいわゆるPID制御を行い、振動抑制信号と位置矯正信号とを出力する。図4は、操作量演算装置8の構成例を説明するブロック図である。   The operation amount calculation device 8 performs so-called PID control such as proportionality, differentiation, and integration on the deviation signal between the measured value of the displacement of the metal strip by the non-contact displacement sensor 4 and the target value set by the input means 12. The vibration suppression signal and the position correction signal are output. FIG. 4 is a block diagram illustrating a configuration example of the operation amount calculation device 8.

図4に示されるように、操作量演算装置8は、振動抑制用のPID制御部8aと位置矯正用のPID制御部8bとを備える。振動抑制用のPID制御部8aは、金属帯の変位の測定値と目標値との偏差信号を入力し、振動抑制信号を出力する演算手段であり、位置矯正用のPID制御部8bは、金属帯の変位の測定値と目標値との偏差信号を入力し、位置矯正信号を出力する演算手段である。   As shown in FIG. 4, the operation amount calculation device 8 includes a PID control unit 8 a for suppressing vibration and a PID control unit 8 b for position correction. The vibration suppression PID control unit 8a is a calculation unit that inputs a deviation signal between the measured value of the displacement of the metal band and the target value and outputs a vibration suppression signal. The position correction PID control unit 8b is a metal This is a calculation means for inputting a deviation signal between the measured value of the band displacement and the target value and outputting a position correction signal.

ここで、振動抑制用のPID制御部8aの演算は、応答性を重視した演算とし、位置矯正用のPID制御部8bの演算は、静的な吸引力を重視した演算とする。すなわち、振動抑制用のPID制御部8aの演算は、入力信号に含まれる高周波成分の利得が大きくなるように設定され、位置矯正用のPID制御部8bの演算は、入力信号に含まれる低周波成分の利得が大きくなるように設定される。例えば、振動抑制用のPID制御部8aでは微分ゲインの設定を大きくし、位置矯正用のPID制御部8bでは積分ゲインの設定を大きくすることにより、上記設定が実現される。   Here, the calculation of the PID control unit 8a for suppressing vibration is a calculation that places importance on responsiveness, and the calculation of the PID control unit 8b for position correction is a calculation that puts importance on static suction force. That is, the calculation of the vibration suppression PID control unit 8a is set so that the gain of the high frequency component included in the input signal is increased, and the calculation of the position correction PID control unit 8b is the low frequency component included in the input signal. The gain of the component is set to be large. For example, the setting is realized by increasing the setting of the differential gain in the PID control unit 8a for vibration suppression and increasing the setting of the integral gain in the PID control unit 8b for position correction.

なお、ここで云う高周波および低周波とは、振動抑制用のPID制御部8aと位置矯正用のPID制御部8bとの比較においての高低を意味する。また、上記構成によれば、振動抑制信号は高周波成分を多く含んだ信号となり、位置矯正信号は低周波成分を多く含んだ信号となるが、これは振動抑制信号の周波数成分の平均値は位置矯正信号の周波数成分の平均値よりも高いということを意味し、振動抑制信号の周波数分布と位置矯正信号の周波数分布との間に重複部分が存在することを許容する。   Here, the high frequency and the low frequency mean the height in comparison between the PID control unit 8a for vibration suppression and the PID control unit 8b for position correction. Further, according to the above configuration, the vibration suppression signal is a signal including a lot of high frequency components, and the position correction signal is a signal including a lot of low frequency components. This is because the average value of the frequency components of the vibration suppression signal is the position. This means that it is higher than the average value of the frequency components of the correction signal, and it is allowed that an overlapping portion exists between the frequency distribution of the vibration suppression signal and the frequency distribution of the position correction signal.

以上のように操作量演算装置8を構成することにより、操作量演算装置8は、非接触変位センサ4による金属帯の変位の測定値から振動抑制に使用する成分と位置矯正に使用する成分とが分離し、振動抑制信号と位置矯正信号とをそれぞれ振動抑制用の表裏分配装置9aと位置矯正用の表裏分配装置9bとに送信する。   By configuring the operation amount calculation device 8 as described above, the operation amount calculation device 8 includes a component used for vibration suppression and a component used for position correction from the measured value of the displacement of the metal strip by the non-contact displacement sensor 4. Are separated, and the vibration suppression signal and the position correction signal are transmitted to the vibration suppression front / back distribution device 9a and the position correction front / back distribution device 9b, respectively.

図3の参照に戻る。表裏分配装置9a,9bは、操作量演算装置8により演算された振動抑制信号と位置矯正信号とを、金属帯2の表面用の電磁石3aおよび裏面用の電磁石3bに用いるために分配する。アンプ10aは、表裏分配装置9aにより分配された表面用の振動抑制信号に従い、電磁石3aの振動抑制用コイルに給電し、アンプ10bは、表裏分配装置9bにより分配された表面用の位置矯正信号に従い、電磁石3aの位置矯正用コイルに給電する。一方、アンプ10cは、表裏分配装置9aにより分配された裏面用の振動抑制信号に従い、電磁石3bの振動抑制用コイルに給電し、アンプ10dは、表裏分配装置9bにより分配された裏面用の位置矯正信号に従い、電磁石3bの位置矯正用コイルに給電する。   Returning to FIG. The front / back distribution devices 9a and 9b distribute the vibration suppression signal and the position correction signal calculated by the operation amount calculation device 8 for use in the electromagnet 3a for the surface of the metal band 2 and the electromagnet 3b for the back surface. The amplifier 10a supplies power to the vibration suppression coil of the electromagnet 3a according to the surface vibration suppression signal distributed by the front / back distribution device 9a, and the amplifier 10b follows the surface position correction signal distributed by the front / back distribution device 9b. The power is supplied to the position correcting coil of the electromagnet 3a. On the other hand, the amplifier 10c supplies power to the vibration suppression coil of the electromagnet 3b in accordance with the vibration suppression signal for the back surface distributed by the front / back distribution device 9a, and the amplifier 10d corrects the position for the back surface distributed by the front / back distribution device 9b. In accordance with the signal, power is supplied to the position correction coil of the electromagnet 3b.

図5は、本発明の実施形態に係る金属帯の安定装置1における電磁石3aの電気回路を示す概略図である。ここでは、紙面の都合上、金属帯2の表面用の電磁石3aに対する電気回路のみを概略的に示している。   FIG. 5 is a schematic diagram showing an electric circuit of the electromagnet 3a in the metal strip stabilizer 1 according to the embodiment of the present invention. Here, for the sake of space, only the electric circuit for the electromagnet 3a for the surface of the metal band 2 is schematically shown.

図5に示されるように、振動抑制用コイル7aおよび位置矯正用コイル7bには、それぞれ振動抑制用のアンプ10aおよび位置矯正用のアンプ10bが接続されている。振動抑制用のアンプ10aは、入力された振動抑制信号に従い、電気回路を介して振動抑制用コイル7aに給電する。位置矯正用のアンプ10bは、入力された位置矯正信号に従い、電気回路を介して位置矯正用コイル7bに給電する。   As shown in FIG. 5, a vibration suppression amplifier 10a and a position correction amplifier 10b are connected to the vibration suppression coil 7a and the position correction coil 7b, respectively. The vibration suppression amplifier 10a supplies power to the vibration suppression coil 7a through an electric circuit in accordance with the input vibration suppression signal. The position correction amplifier 10b supplies power to the position correction coil 7b through an electric circuit in accordance with the input position correction signal.

さらに、位置矯正用コイル7bと位置矯正用のアンプ10bを含む電気回路は、インダクタ11aとして、コイル13aを直列に備える。以下、これを誘導電流対策用コイル13aと云う。図5に示される誘導電流対策用コイル13aの例では、磁気回路13bを閉回路で構成したコイルの例を図示している。なお、磁気回路13bが閉回路で構成されたコイルはトロイダルコイルとも呼ばれる。誘導電流対策用コイル13aの磁気回路13bは開回路でも効果を得ることはできるが、磁束の漏れなどによる環境変化の影響を受けにくいように、誘導電流対策用コイル13aの磁気回路13bを閉回路として構成することが望ましい。   Further, the electric circuit including the position correcting coil 7b and the position correcting amplifier 10b includes a coil 13a in series as the inductor 11a. Hereinafter, this is referred to as an induction current countermeasure coil 13a. In the example of the induced current countermeasure coil 13a shown in FIG. 5, an example of a coil in which the magnetic circuit 13b is configured as a closed circuit is illustrated. A coil in which the magnetic circuit 13b is a closed circuit is also called a toroidal coil. Although the magnetic circuit 13b of the induction current countermeasure coil 13a can obtain an effect even when the circuit is open, the magnetic circuit 13b of the induction current countermeasure coil 13a is closed so as not to be affected by environmental changes due to magnetic flux leakage or the like. It is desirable to configure as

上記のように構成した誘導電流対策用コイル13aは、本発明の実施形態に係る金属帯の安定装置1において以下のように作用する。   The induction current countermeasure coil 13a configured as described above operates as follows in the metal strip stabilizer 1 according to the embodiment of the present invention.

振動抑制用コイル7aには、金属帯2の振動周波数に応じて高い周波数の電流が流れることになる。そして、振動抑制用コイル7aと位置矯正用コイル7bが同心コイルとして構成されているため、相互誘導により位置矯正用コイル7bに高い周波数の起電力が発生する。   A high frequency current flows through the vibration suppressing coil 7a in accordance with the vibration frequency of the metal band 2. Since the vibration suppressing coil 7a and the position correcting coil 7b are configured as concentric coils, a high frequency electromotive force is generated in the position correcting coil 7b by mutual induction.

従来技術の金属帯の安定装置では、相互誘導の起電力により位置矯正用コイル7bの電流が変動して、位置矯正用コイル7bの吸引力が変動して振動制御に悪影響を及ぼしていた。しかし、本発明の実施形態に係る金属帯の安定装置1では、位置矯正用コイル7bの電気回路に誘導電流対策用コイル13aを接続しているため、誘導電流対策用コイル13aのインダクタンスによって位置矯正用コイル7bの電気回路の電流変化を抑制することができる。以下、誘導電流対策用コイル13aにより位置矯正用コイル7bの電気回路の電流変動を抑制する仕組みについて説明する。   In the metal band stabilizer of the prior art, the current of the position correcting coil 7b fluctuates due to the electromotive force of mutual induction, and the attraction force of the position correcting coil 7b fluctuates, adversely affecting vibration control. However, in the metal band stabilizer 1 according to the embodiment of the present invention, since the induction current countermeasure coil 13a is connected to the electric circuit of the position correction coil 7b, the position correction is performed by the inductance of the induction current countermeasure coil 13a. The current change of the electric circuit of the coil 7b can be suppressed. Hereinafter, a mechanism for suppressing the current fluctuation of the electric circuit of the position correction coil 7b by the induced current countermeasure coil 13a will be described.

振動抑制用コイル7aに流れる電流をiとし、位置矯正用コイル7bに流れる電流をiとしたとき、振動抑制用コイル7aに発生する誘導起電力e、および位置矯正用コイル7bに発生する誘導起電力eは、次式で表現される。 When the current flowing through the vibration suppression coil 7a is i 1 and the current flowing through the position correction coil 7b is i 2 , the induced electromotive force e 1 generated in the vibration suppression coil 7a and the position correction coil 7b are generated. induced electromotive force e 2 which is expressed by the following equation.

= −Mdi/dt ・・・(4)
= −Mdi/dt ・・・(5)
ここで、Mは振動抑制用コイル7aと位置矯正用コイル7bとの相互インダクタンスであり、次式で表現される。
M = k × √(L×L) ・・・(6)
ここで、kはコイルの形状や相互位置で決まる係数であり、Lは振動抑制用コイル7aのインダクタンス、Lは位置矯正用コイル7bのインダクタンスである。
e 1 = −Mdi 2 / dt (4)
e 2 = −Mdi 1 / dt (5)
Here, M is a mutual inductance between the vibration suppressing coil 7a and the position correcting coil 7b, and is expressed by the following equation.
M = k × √ (L 1 × L 2 ) (6)
Here, k is a coefficient determined by the shape and mutual position of the coil, L 1 is the inductance of the vibration suppression coil 7a, L 2 is the inductance of the position correction coil 7b.

位置矯正用コイル7bには、位置矯正を行うための静的な電流が流れることになり、電流の時間変化di/dtがほぼゼロとなる。したがって、上記式(4)から解るように、振動抑制用コイル7aにはほとんど誘導起電力eが発生しない。すなわち、位置矯正用コイル7bに流れる位置矯正用の電流は、振動抑制用コイル7aによる振動抑制制御にほとんど影響を与えない。 A static current for performing position correction flows through the position correction coil 7b, and the time change di 2 / dt of the current becomes substantially zero. Therefore, as can be seen from the above equation (4), the induced electromotive force e 1 is hardly generated in the vibration suppressing coil 7a. That is, the current for position correction flowing through the position correction coil 7b hardly affects the vibration suppression control by the vibration suppression coil 7a.

一方、振動抑制用コイル7aは、振動抑制を行うための動的な電流が流れることになり、電流の時間変化di/dtが大きい。したがって、上記式(5)から解るように、位置矯正用コイル7bには大きな誘導起電力eが発生する。 On the other hand, a dynamic current for suppressing vibration flows through the vibration suppressing coil 7a, and the time change di 1 / dt of the current is large. Therefore, as can be seen from the above equation (5), a large induced electromotive force e 2 is generated in the position correcting coil 7b.

しかしながら、本発明の実施形態に係る金属帯の安定装置1では、位置矯正用コイル7bの電気回路に誘導電流対策用コイル13aが接続されているので、誘導起電力により発生する電流は、位置矯正用コイル7bと誘導電流対策用コイル13aとの合成インダクタンスにより抑制される。   However, in the metal band stabilizer 1 according to the embodiment of the present invention, since the induction current countermeasure coil 13a is connected to the electric circuit of the position correction coil 7b, the current generated by the induced electromotive force is not corrected. This is suppressed by the combined inductance of the coil 7b and the induction current countermeasure coil 13a.

図5を参照して説明したように、位置矯正用コイル7bと誘導電流対策用コイル13aとが直列に接続されているので、位置矯正用コイル7bと誘導電流対策用コイル13aとの合成インダクタンスLは次式で表現される。
L = L + L ・・・(7)
ここで、L2,は、それぞれ位置矯正用コイル7bおよび誘導電流対策用コイル13aのインダクタンスである。
As described with reference to FIG. 5, since the position correcting coil 7b and the induced current countermeasure coil 13a are connected in series, the combined inductance L of the position correcting coil 7b and the induced current countermeasure coil 13a. Is expressed by the following equation.
L = L 2 + L 3 (7)
Here, L 2 and L 3 are the inductances of the position correction coil 7b and the induction current countermeasure coil 13a, respectively.

ところで、コイルを流れる交流電流のリアクタンスは、交流電流の周波数とインダクタンスに比例する。一方、先述したように、振動抑制信号は高周波成分を多く含んだ信号であり、位置矯正信号は低周波成分を多く含んだ信号である。したがって、振動抑制用コイル7aから位置矯正用コイル7bへ誘導された電流は、高周波成分を多く含んだ電流であり、合成インダクタンスLの大きさの影響を大きく受けて抑制される。一方、位置矯正用コイル7bに流れる電流は、合成インダクタンスLの大きさの影響を大きく受けることがない。しかも、式(7)から解るように、誘導電流対策用コイル13aが接続されて合成インダクタンスLが大きくなったとしても、位置矯正用コイル7bのインダクタンスLの大きさは変わらないので、位置矯正用コイル7bによる電磁石としての特性は変わらない。 By the way, the reactance of the alternating current flowing through the coil is proportional to the frequency and inductance of the alternating current. On the other hand, as described above, the vibration suppression signal is a signal containing a lot of high frequency components, and the position correction signal is a signal containing a lot of low frequency components. Therefore, the current induced from the vibration suppressing coil 7a to the position correcting coil 7b is a current containing a large amount of high frequency components, and is greatly affected by the magnitude of the combined inductance L and suppressed. On the other hand, the current flowing through the position correcting coil 7b is not greatly affected by the magnitude of the combined inductance L. Moreover, as can be seen from equation (7), the counter induced current coil 13a is also connected as a combined inductance L is increased, so it does not change the magnitude of the inductance L 2 of the position correction coil 7b, the position correction The characteristics as an electromagnet by the coil 7b for use are not changed.

電磁石の動作は先述の通り一次遅れ系となり、その時定数は、式(2)によって与えられる。したがって、合成インダクタンスLが大きいほど時定数が大きくなり、電流変動を抑制することが可能となる。一方、誘導電流対策用コイル13aの巻数を大きくすることにより、合成インダクタンスLを大きくすることができるが、巻数が多い場合、誘導電流対策用コイル13aの寸法が大きくなり設置スペースが多く必要となるとともに、回路全体の抵抗が大きくなるため、アンプの負荷が大きくなるというデメリットがある。   The operation of the electromagnet is a first-order lag system as described above, and its time constant is given by equation (2). Therefore, the larger the combined inductance L, the larger the time constant, and the current fluctuation can be suppressed. On the other hand, the combined inductance L can be increased by increasing the number of turns of the induction current countermeasure coil 13a. However, when the number of turns is large, the size of the induction current countermeasure coil 13a is increased and a large installation space is required. At the same time, since the resistance of the entire circuit is increased, there is a demerit that the load on the amplifier is increased.

そこで、振動制御性能と上記デメリットを考慮して誘導電流対策用コイルのインダクタンスを決める必要がある。後述する本発明の実施形態の効果の実証実験にしたがえば、位置矯正用コイル7bと誘導電流対策用コイル13aとの直列合成の時定数を、位置矯正用コイル7bの4倍から10倍の範囲内にすること好ましい。式(2)の関係より本条件を表現しなおすと、本発明の実施形態に係る金属帯の安定装置1は、振動抑制用コイル7a、位置矯正用コイル7b、および電流対策用コイル13aが下式の範囲となるよう設計されることが好ましい。
4L/R < (L+L)/(R+R) < 10L/R ・・・(8)
ここで、L,Lは、それぞれ位置矯正用コイル7bおよび誘導電流対策用コイル13aのインダクタンスであり、R,Rは、それぞれ位置矯正用コイル7bおよび誘導電流対策用コイル13aの抵抗である。
Therefore, it is necessary to determine the inductance of the coil for countermeasure against induced current in consideration of the vibration control performance and the above disadvantages. According to the verification experiment of the effect of the embodiment of the present invention to be described later, the time constant of the serial combination of the position correction coil 7b and the induction current countermeasure coil 13a is 4 to 10 times that of the position correction coil 7b. It is preferable to be within the range. If this condition is re-expressed from the relationship of the expression (2), the metal strip stabilizer 1 according to the embodiment of the present invention includes the vibration suppression coil 7a, the position correction coil 7b, and the current countermeasure coil 13a. It is preferably designed to be in the range of the formula.
4L 2 / R 2 <(L 2 + L 3) / (R 2 + R 3) <10L 2 / R 2 ··· (8)
Here, L 2 and L 3 are inductances of the position correction coil 7b and the induction current countermeasure coil 13a, respectively, and R 2 and R 3 are resistances of the position correction coil 7b and the induction current countermeasure coil 13a, respectively. It is.

なお、誘導電流対策用コイル13aを設けることは、位置矯正用コイル7bの応答性を故意に悪化させることになる。しかし、先述のように、位置矯正用コイル7bには応答性が要求されないので、金属帯の位置矯正に影響はない。結果として、振動抑制用コイル7aと位置矯正用コイル7bとの相互誘導電流を抑制して振動制御への悪影響を回避し、振動抑制用コイル7aの応答性、位置矯正用コイル7bの吸引力を両立することが可能となる。   The provision of the induction current countermeasure coil 13a intentionally deteriorates the responsiveness of the position correcting coil 7b. However, as described above, since the responsiveness is not required for the position correction coil 7b, the position correction of the metal strip is not affected. As a result, the mutual induction current between the vibration suppressing coil 7a and the position correcting coil 7b is suppressed to avoid an adverse effect on vibration control, and the response of the vibration suppressing coil 7a and the attractive force of the position correcting coil 7b are increased. It is possible to achieve both.

次に、本発明の実施形態に係る金属帯の安定装置1を、溶融めっき金属帯の製造ラインに配置する構成例について説明する。   Next, the structural example which arrange | positions the metal strip stabilizer 1 which concerns on embodiment of this invention in the production line of a hot dipped metal strip is demonstrated.

図6は、一般的な溶融めっき金属帯の製造ラインの一部を示す概略図である。図6に示される溶融めっき金属帯の製造ラインにおいて、金属帯2は、冷間圧延プロセスなどの前工程から運搬され、無酸化性あるいは還元性の雰囲気に保たれた焼鈍炉14において焼鈍処理をされた後、溶融金属の温度とほぼ同程度まで冷却されて溶融金属浴15内に導かれる。   FIG. 6 is a schematic diagram showing a part of a general hot-dip metal strip production line. In the production line for the hot-dip metal strip shown in FIG. 6, the metal strip 2 is transported from a previous process such as a cold rolling process, and is subjected to annealing treatment in an annealing furnace 14 maintained in a non-oxidizing or reducing atmosphere. Then, the molten metal is cooled to approximately the same temperature as the molten metal and guided into the molten metal bath 15.

溶融金属浴15内において、金属帯2は、溶融金属中を浸漬しながら通板し、その表面に溶融金属が付着する。その後、溶融金属浴15から引き出された金属帯2は、ガスワイパ16から噴出されるガスにより過剰な溶融金属が払拭され、溶融金属の付着量の調整が行われる。   In the molten metal bath 15, the metal strip 2 is passed through while being immersed in the molten metal, and the molten metal adheres to the surface thereof. Thereafter, the metal strip 2 drawn out from the molten metal bath 15 is wiped with excess molten metal by the gas ejected from the gas wiper 16, and the amount of adhesion of the molten metal is adjusted.

続くプロセスでは、用途に応じて、例えばその金属帯2が自動車用外板として使用される場合には、合金化炉17を使用して金属帯を再加熱し均質な合金層を作り出す合金化処理を施す場合がある。金属帯2は冷却帯18を通過した後、化成処理部19で特殊の防錆、耐食処理が施され、コイルに巻き取られて出荷される。   In the subsequent process, depending on the application, for example, when the metal strip 2 is used as an automobile outer plate, the alloying treatment is performed using the alloying furnace 17 to reheat the metal strip to produce a homogeneous alloy layer. May be applied. After passing through the cooling zone 18, the metal strip 2 is subjected to special rust prevention and corrosion resistance treatment in the chemical conversion treatment section 19, wound around a coil and shipped.

図7は、溶融めっき金属帯の製造ラインのガスワイパの近傍(図6中の破線領域)の拡大図である。図7に示されるように、溶融めっき金属帯の製造ラインのガスワイパ16の近傍では、引き込みローラー20が金属帯2を溶融金属浴15中に引き込み、溶融金属浴15中で金属帯2に溶融金属を付着させ、引き上げローラー21が金属帯2を溶融金属浴15外に引き上げる。ガスワイパ16は、引き上げローラー21が金属帯2を引き上げる途中のパスラインに配置され、金属帯2に付着した過剰の溶融金属を払拭することによって溶融金属の付着量を調整する。   FIG. 7 is an enlarged view of the vicinity of the gas wiper (dashed line region in FIG. 6) in the hot-dip metal strip production line. As shown in FIG. 7, in the vicinity of the gas wiper 16 in the production line of the hot dip metal strip, the drawing roller 20 pulls the metal strip 2 into the molten metal bath 15, and the molten metal into the metal strip 2 in the molten metal bath 15. The pulling roller 21 pulls the metal strip 2 out of the molten metal bath 15. The gas wiper 16 is disposed on a pass line in the middle of the pulling roller 21 pulling up the metal band 2, and adjusts the amount of molten metal attached by wiping off excess molten metal adhering to the metal band 2.

本発明の実施形態に係る金属帯の安定装置1の電磁石3a,3bおよび非接触変位センサ4は、ガスワイパ16の直上のパスラインに配置され、金属帯の振動および位置を制御する。当該配置により、ガスワイパ16と金属帯2との距離が一定となる結果、ワイピングガスの圧力が均一になり、金属帯2に対する溶融金属の付着量のムラを抑えることができる。   The electromagnets 3a and 3b and the non-contact displacement sensor 4 of the metal band stabilizer 1 according to the embodiment of the present invention are arranged in a pass line immediately above the gas wiper 16 to control the vibration and position of the metal band. With this arrangement, the distance between the gas wiper 16 and the metal strip 2 becomes constant, so that the pressure of the wiping gas becomes uniform and unevenness in the amount of molten metal attached to the metal strip 2 can be suppressed.

最後に、本発明の実施形態に係る金属帯の安定装置1の効果の検証実験について説明する。図8は、比較例の金属帯の安定装置による測定データを示すグラフであり、図9は、本発明の実施形態に係る金属帯の安定装置1による測定データを示すグラフである。また、図10は、図8に示される測定データと図9に示される測定データとに含まれるノイズの大きさを比較するグラフである。   Finally, a verification experiment of the effect of the metal strip stabilizer 1 according to the embodiment of the present invention will be described. FIG. 8 is a graph showing measurement data obtained by the metal strip stabilizer of the comparative example, and FIG. 9 is a graph showing measurement data obtained by the metal strip stabilizer 1 according to the embodiment of the present invention. FIG. 10 is a graph comparing the magnitudes of noise included in the measurement data shown in FIG. 8 and the measurement data shown in FIG.

図8に示されるグラフは、誘導電流対策用コイル13aを用いない金属帯の安定装置において、振動抑制用コイル7aに電流3Aかつ周波数10Hzの振動制御指令を与え、位置矯正用コイル7bに電流0Aとなる一定電流の制御指令を与えた場合の電流実績値をプロットしたものである。なお、図8に示されるグラフには、振動制御指令の電流値も併せて記載されている。   The graph shown in FIG. 8 shows that in a metal band stabilizer that does not use the induction current countermeasure coil 13a, a vibration control command with a current of 3A and a frequency of 10Hz is given to the vibration suppression coil 7a, and a current of 0A is supplied to the position correction coil 7b. The current actual value when a constant current control command is given is plotted. Note that the current value of the vibration control command is also described in the graph shown in FIG.

図8に示されるグラフから理解されるように、比較例においては、位置矯正用コイル7bにて電流0Aの一定電流が流れるはずだが、実績値としては電流が検出されてしまっている。この位置矯正用コイル7bに流れる電流は、振動抑制用コイル7aに流れる振動制御用の電流の変動が電磁誘導により位置矯正用コイル7b側に発生してしまった誘導電流である。さらに、図8に示されるグラフによれば、位置矯正用コイル7bに流れた誘導電流が変動することにより、振動抑制用コイル7a側にも誘導電流が流れ、振動制御の電流実績にも外乱が発生してしまっている。   As can be understood from the graph shown in FIG. 8, in the comparative example, a constant current of 0 A should flow through the position correction coil 7b, but the current has been detected as the actual value. The current flowing through the position correction coil 7b is an induced current in which fluctuations in the vibration control current flowing through the vibration suppression coil 7a are generated on the position correction coil 7b side due to electromagnetic induction. Furthermore, according to the graph shown in FIG. 8, when the induced current flowing through the position correcting coil 7b fluctuates, the induced current also flows through the vibration suppressing coil 7a, and there is a disturbance in the current results of vibration control. It has occurred.

図9に示されるグラフは、本発明の実施形態に係る金属帯の安定装置1において、振動抑制用コイル7aに電流3Aかつ周波数10Hzの振動制御指令を与え、位置矯正用コイル7bに電流0Aとなる一定電流の制御指令を与えた場合の電流実績値をプロットしたものである。なお、この検証実験における誘導電流対策用コイル13aのインダクタンスは、位置矯正用コイル7bと誘導電流対策用コイル13aとの直列合成の時定数が、位置矯正用コイル7bの5倍となるように設計されている。   The graph shown in FIG. 9 shows that in the metal band stabilizer 1 according to the embodiment of the present invention, a vibration control command having a current of 3 A and a frequency of 10 Hz is given to the vibration suppression coil 7 a and a current 0 A is supplied to the position correction coil 7 b. This is a plot of actual current values when a constant current control command is given. The inductance of the induction current countermeasure coil 13a in this verification experiment is designed so that the time constant of the series combination of the position correction coil 7b and the induction current countermeasure coil 13a is five times that of the position correction coil 7b. Has been.

図9に示されるグラフから理解されるように、本発明の実施形態に係る振動抑制用コイル7aおよび位置矯正用コイル7bでは、誘導電流による影響がほとんどなく、制御指令に正確に追従した制御が実現されている。また、図8と図9に示されるグラフを比較すると解るように、比較例における振動抑制用コイル7aおよび位置矯正用コイル7bでは、位置矯正用コイル7bに誘導された誘導電流の変動がさらに振動抑制用コイル7aにまで影響するという悪循環が発生していたが、本発明の実施形態に係る振動抑制用コイル7aおよび位置矯正用コイル7bでは、この悪循環が発生していない。また、図10に示されるグラフから理解されるように、本発明の実施形態に係る金属帯の安定装置1によれば、振動制御を妨げる誘導電流を1/11倍に小さくすることが可能である。すなわち、本発明の実施形態に係る金属帯の安定装置1は、振動抑制用コイルと位置矯正用コイルとの間の誘導電流による振動抑制能力の低下を回避することができる。   As can be understood from the graph shown in FIG. 9, the vibration suppressing coil 7 a and the position correcting coil 7 b according to the embodiment of the present invention are hardly affected by the induced current, and control that accurately follows the control command is performed. It has been realized. Further, as can be seen by comparing the graphs shown in FIG. 8 and FIG. 9, in the vibration suppressing coil 7a and the position correcting coil 7b in the comparative example, fluctuations in the induced current induced in the position correcting coil 7b further vibrate. Although a vicious circle that affects the suppression coil 7a has occurred, the vicious circle does not occur in the vibration suppression coil 7a and the position correction coil 7b according to the embodiment of the present invention. Further, as can be understood from the graph shown in FIG. 10, according to the metal strip stabilizer 1 according to the embodiment of the present invention, the induced current that hinders vibration control can be reduced to 1/11 times. is there. That is, the metal strip stabilizer 1 according to the embodiment of the present invention can avoid a decrease in vibration suppression capability due to an induced current between the vibration suppression coil and the position correction coil.

以上より、本発明の実施形態に係る金属帯の安定装置1は、オンライン走行中の金属帯2の変位を測定する非接触変位センサ4と、非接触変位センサ4からの信号を入力して、金属帯2の振動を抑制するための振動抑制信号と金属帯2の位置を矯正するための位置矯正信号とを出力する制御部5と、制御部5から出力される振動抑制信号に従い磁力を発生する振動抑制用コイル7aと、制御部5から出力される位置矯正信号に従い磁力を発生する、振動抑制用コイル7aよりも巻数の多い位置矯正用コイル7bと、振動抑制用コイル7aと位置矯正用コイル7bとが同心に巻かれ、振動抑制用コイル7aおよび位置矯正用コイル7bが発生する磁力を金属帯2へ導くコア6と、位置矯正用コイル7bに給電する電気回路に直列に設けられた誘導電流対策用コイル13aとを備えるので、振動抑制用コイル7aと位置矯正用コイル7bとの間の誘導電流による振動抑制能力の低下を回避することができる。   As described above, the metal strip stabilizer 1 according to the embodiment of the present invention inputs the non-contact displacement sensor 4 that measures the displacement of the metal strip 2 during online travel, and the signal from the non-contact displacement sensor 4, A control unit 5 that outputs a vibration suppression signal for suppressing the vibration of the metal band 2 and a position correction signal for correcting the position of the metal band 2, and generates a magnetic force according to the vibration suppression signal output from the control unit 5 The vibration suppression coil 7a, the position correction coil 7b having a larger number of turns than the vibration suppression coil 7a, which generates a magnetic force in accordance with the position correction signal output from the control unit 5, and the vibration suppression coil 7a and the position correction coil The coil 7b is concentrically wound, and is provided in series with a core 6 that guides the magnetic force generated by the vibration suppressing coil 7a and the position correcting coil 7b to the metal band 2, and an electric circuit that supplies power to the position correcting coil 7b. Invitation Because and a current protection coils 13a, it is possible to avoid a decrease in the vibration suppression ability by induced current between the position correction coil 7b and the vibration suppression coil 7a.

ここで、本発明の実施形態に係る金属帯の安定装置1の制御部5は、非接触変位センサ4から入力された信号と目標値との偏差信号に対して、位置矯正信号よりも高周波成分の利得が大きくなるような演算をすることにより振動抑制信号を出力し、かつ、振動抑制信号よりも低周波成分の利得が大きくなるような演算をすることにより位置矯正信号を出力するので、測定された変位量から振動抑制に用いる適切な信号と位置矯正に用いる適切な信号とを分配することができる。また、本発明の実施形態に係る金属帯の安定装置1の制御部5は、非接触変位センサ4から入力された信号と目標値との偏差信号に対して、位置矯正信号よりも微分ゲインの設定を大きくしたPID制御演算をすることにより振動抑制信号を出力し、振動抑制信号よりも積分ゲインの設定を大きくしたPID制御演算をすることにより位置矯正信号を出力することが好ましい。   Here, the control unit 5 of the metal band stabilizer 1 according to the embodiment of the present invention has a higher frequency component than the position correction signal with respect to the deviation signal between the signal input from the non-contact displacement sensor 4 and the target value. Since the vibration suppression signal is output by calculating to increase the gain of the position, and the position correction signal is output by calculating to increase the gain of the low frequency component than the vibration suppression signal. An appropriate signal used for vibration suppression and an appropriate signal used for position correction can be distributed from the displacement amount thus determined. In addition, the control unit 5 of the metal strip stabilizer 1 according to the embodiment of the present invention has a differential gain that is higher than that of the position correction signal with respect to the deviation signal between the signal input from the non-contact displacement sensor 4 and the target value. It is preferable to output a vibration suppression signal by performing a PID control calculation with a larger setting, and to output a position correction signal by performing a PID control calculation with a larger integral gain setting than the vibration suppression signal.

また、本発明の実施形態に係る金属帯の安定装置1の位置矯正用コイル7bと誘導電流対策用コイル13aとの直列合成の時定数は、位置矯正用コイル7bの4倍から10倍の範囲内となるよう設計されていることが好ましい。あるいは、本発明の実施形態に係る金属帯の安定装置1の位置矯正用コイル7b、および誘導電流対策用コイル13aは、下式を満たすことがこのましい。
4L/R < (L+L)/(R+R) < 10L/R
ここで、L,Lは、それぞれ位置矯正用コイル7bおよび誘導電流対策用コイル13aのインダクタンスであり、R,Rは、それぞれ位置矯正用コイル7bおよび誘導電流対策用コイル13aの抵抗である。
In addition, the time constant of serial combination of the position correction coil 7b and the induced current countermeasure coil 13a of the metal strip stabilizer 1 according to the embodiment of the present invention is in the range of 4 to 10 times that of the position correction coil 7b. It is preferably designed to be within. Alternatively, the position correcting coil 7b and the induced current countermeasure coil 13a of the metal strip stabilizer 1 according to the embodiment of the present invention preferably satisfy the following formula.
4L 2 / R 2 <(L 2 + L 3 ) / (R 2 + R 3 ) <10L 2 / R 2
Here, L 2 and L 3 are inductances of the position correction coil 7b and the induction current countermeasure coil 13a, respectively, and R 2 and R 3 are resistances of the position correction coil 7b and the induction current countermeasure coil 13a, respectively. It is.

また、本発明の実施形態に係る金属帯の安定装置1は、振動抑制用コイル7a、位置矯正用コイル7b、およびコア6を、金属帯2の表面および裏面に、表面用の振動抑制用コイル7a、位置矯正用コイル7b、およびコア6、ならびに、裏面用の振動抑制用コイル7a、位置矯正用コイル7b、およびコア6としてそれぞれに設けているので、金属帯2の表面側および裏面側への振動および変位を抑制することができる。   In addition, the metal band stabilizer 1 according to the embodiment of the present invention includes a vibration suppression coil 7a, a position correction coil 7b, and a core 6 on the front and back surfaces of the metal band 2 and a vibration suppression coil for the surface. 7a, the position correcting coil 7b, and the core 6, and the back surface vibration suppressing coil 7a, the position correcting coil 7b, and the core 6 are provided to the front side and the back side of the metal strip 2, respectively. Vibration and displacement can be suppressed.

本発明の実施形態に係る金属帯の安定装置1の制御部5は、非接触変位センサ4からの信号を入力して、金属帯2の振動を抑制するための振動抑制信号と金属帯2の位置を矯正するための位置矯正信号とを出力する操作量演算装置8と、操作量演算装置8から出力される振動抑制信号を表面用の振動抑制用コイル7aと裏面用の振動抑制用コイル7aとへ分配する表裏分配装置9aと、操作量演算装置8から出力される位置矯正信号を表面用の位置矯正用コイル7bと裏面用の位置矯正用コイル7bとへ分配する表裏分配装置9bと、表裏分配装置9aにより分配された表面用の振動抑制信号に従い、表面用の振動抑制用コイル7aに給電するアンプ10aと、表裏分配装置9bにより分配された表面用の位置矯正信号に従い、表面用の位置矯正用コイル7bに給電するアンプ10bと、表裏分配装置9aにより分配された裏面用の振動抑制信号に従い、裏面用の振動抑制用コイル7aに給電するアンプ10cと、表裏分配装置9bにより分配された裏面用の位置矯正信号に従い、裏面用の位置矯正用コイル7bに給電するアンプ10dとを備え、誘導電流対策用コイル13aが、アンプ10bと表面用の位置矯正用コイル7bとの間、および、アンプ10dと裏面用の位置矯正用コイル7bとの間の電気回路のそれぞれに設けられているので、金属帯2の表面側および裏面側への振動および変位のそれぞれを抑制することができる。   The control unit 5 of the metal band stabilizer 1 according to the embodiment of the present invention inputs a signal from the non-contact displacement sensor 4 and controls the vibration suppression signal for suppressing the vibration of the metal band 2 and the metal band 2. An operation amount calculation device 8 that outputs a position correction signal for correcting the position, and a vibration suppression signal that is output from the operation amount calculation device 8 includes a vibration suppression coil 7a for the front surface and a vibration suppression coil 7a for the rear surface. A front / back distribution device 9b that distributes the position correction signal output from the manipulated variable calculation device 8 to the front-side position correction coil 7b and the back-side position correction coil 7b; According to the vibration suppression signal for the surface distributed by the front / back distribution device 9a, the amplifier 10a for supplying power to the vibration suppression coil 7a for the surface and the position correction signal for the surface distributed by the front / back distribution device 9b position In accordance with the back side vibration suppression signal distributed by the front / back distribution device 9a, the amplifier 10c for supplying power to the back side vibration suppression coil 7a, and the front / back distribution device 9b An amplifier 10d for supplying power to the back surface position correction coil 7b according to the back surface position correction signal, and the induced current countermeasure coil 13a is provided between the amplifier 10b and the front surface position correction coil 7b; and Since it is provided in each of the electric circuits between the amplifier 10d and the position correcting coil 7b for the back surface, it is possible to suppress the vibration and displacement of the metal band 2 toward the front surface side and the back surface side.

また、本発明の実施形態に係る金属帯の安定装置1は、誘導電流対策用コイル13aの磁気回路13bが閉回路として構成されるので、磁束の漏れなどによる環境変化の影響を受けにくい。   Further, in the metal band stabilizer 1 according to the embodiment of the present invention, the magnetic circuit 13b of the induction current countermeasure coil 13a is configured as a closed circuit, so that it is less susceptible to environmental changes due to magnetic flux leakage or the like.

さらに、本発明の実施形態に係る溶融めっき金属帯の製造方法は、製造ライン通板中の金属帯2に溶融金属を付着させる付着工程と、金属帯2に付着した過剰の溶融金属を払拭するガスワイパ16によって溶融金属の付着量を調整する調整工程と、上記金属帯の安定装置1により、金属帯2の振動および位置を非接触で制御する制御工程とを有するので、ワイピングガスの圧力が均一になり、金属帯2に対する溶融金属の付着量のムラを抑えることができる。   Furthermore, the manufacturing method of the hot dip metal strip which concerns on embodiment of this invention wipes off the excess molten metal adhering to the adhesion process which makes a molten metal adhere to the metal strip 2 in a production line through-plate, and the metal strip 2 Since there is an adjustment process for adjusting the amount of molten metal deposited by the gas wiper 16 and a control process for controlling the vibration and position of the metal band 2 in a non-contact manner by the metal band stabilizer 1, the pressure of the wiping gas is uniform. Thus, unevenness in the amount of molten metal attached to the metal strip 2 can be suppressed.

また、本発明の実施形態に係る金属帯は、上記製造方法により製造するので、溶融金属の付着量のムラを抑えることができる。   Moreover, since the metal strip which concerns on embodiment of this invention is manufactured with the said manufacturing method, it can suppress the nonuniformity of the adhesion amount of a molten metal.

以上、本発明を実施形態に基づいて説明したが、本発明の実施においては、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。   As mentioned above, although this invention was demonstrated based on embodiment, in implementation of this invention, this invention is not limited with the description and drawing which make a part of indication of this invention by this embodiment.

本発明は、金属帯を製造するラインに有用であり、特に溶融めっき金属帯の製造ラインに適している。   The present invention is useful for a line for producing a metal strip, and is particularly suitable for a production line for a hot dipped metal strip.

1 金属帯の安定装置
2 金属帯
3a,3b 電磁石
4 非接触変位センサ
5 制御部
6 コア
7a 振動抑制用コイル
7b 位置矯正用コイル
8 操作量演算装置
9a,9b 表裏分配装置
10a〜d アンプ
11a,11b インダクタ
12 入力手段
13a 誘導電流対策用コイル
13b 磁気回路
14 焼鈍炉
15 溶融金属浴
16 ガスワイパ
17 合金化炉
18 冷却帯
19 化成処理部
20 引き込みローラー
21 引き上げローラー
DESCRIPTION OF SYMBOLS 1 Metal band stabilizer 2 Metal band 3a, 3b Electromagnet 4 Non-contact displacement sensor 5 Control part 6 Core 7a Vibration suppression coil 7b Position correction coil 8 Manipulation unit 9a, 9b Front / back distribution apparatus 10a-d Amplifier 11a, DESCRIPTION OF SYMBOLS 11b Inductor 12 Input means 13a Inductive current countermeasure coil 13b Magnetic circuit 14 Annealing furnace 15 Molten metal bath 16 Gas wiper 17 Alloying furnace 18 Cooling zone 19 Chemical conversion part 20 Pull-in roller 21 Pull-up roller

本発明は、金属帯の安定装置、およびこれを用いた溶融めっき金属帯の製造方法に関するものである。 The present invention relates to a stabilizer, and a manufacturing how the molten plating metal strip using the same metal strip.

Claims (8)

オンライン走行中の金属帯の変位を測定する非接触変位センサと、
前記非接触変位センサからの信号を入力して、前記金属帯の振動を抑制するための振動抑制信号と前記金属帯の位置を矯正するための位置矯正信号とを出力する制御部と、
前記制御部から出力される振動抑制信号に従い磁力を発生する第1のコイルと、
前記制御部から出力される位置矯正信号に従い磁力を発生する、前記第1のコイルよりも巻数の多い第2のコイルと、
前記第1のコイルと前記第2のコイルとが同心に巻かれ、前記第1のコイルおよび前記第2のコイルが発生する磁力を前記金属帯へ導くコアと、
前記第2のコイルに給電する電気回路に直列に設けられた第3のコイルと、
を備えることを特徴とする金属帯の安定装置。
A non-contact displacement sensor that measures the displacement of the metal strip running online;
A controller that inputs a signal from the non-contact displacement sensor and outputs a vibration suppression signal for suppressing vibration of the metal strip and a position correction signal for correcting the position of the metal strip;
A first coil that generates a magnetic force in accordance with a vibration suppression signal output from the control unit;
A second coil having a larger number of turns than the first coil, which generates a magnetic force in accordance with a position correction signal output from the control unit;
A core for concentrically winding the first coil and the second coil, and guiding the magnetic force generated by the first coil and the second coil to the metal strip;
A third coil provided in series with an electric circuit for supplying power to the second coil;
A metal strip stabilizer characterized by comprising:
前記制御部は、前記非接触変位センサから入力された信号と目標値との偏差信号に対して、前記位置矯正信号よりも高周波成分の利得が大きくなるような演算をすることにより前記振動抑制信号を出力し、かつ、前記振動抑制信号よりも低周波成分の利得が大きくなるような演算をすることにより前記位置矯正信号を出力することを特徴とする請求項1に記載の金属帯の安定装置。   The control unit performs an operation such that a gain of a high frequency component is larger than that of the position correction signal, with respect to a deviation signal between a signal input from the non-contact displacement sensor and a target value, and thereby the vibration suppression signal. The metal band stabilizer according to claim 1, wherein the position correction signal is output by performing an operation such that a gain of a low frequency component is larger than that of the vibration suppression signal. . 前記制御部は、前記非接触変位センサから入力された信号と目標値との偏差信号に対して、前記位置矯正信号よりも微分ゲインの設定を大きくしたPID制御演算をすることにより前記振動抑制信号を出力し、かつ、前記振動抑制信号よりも積分ゲインの設定を大きくしたPID制御演算をすることにより前記位置矯正信号を出力することを特徴とする請求項1または2に記載の金属帯の安定装置。   The control unit performs a PID control calculation in which a differential gain is set larger than the position correction signal with respect to a deviation signal between a signal input from the non-contact displacement sensor and a target value, thereby the vibration suppression signal. The position correction signal is output by performing a PID control calculation in which an integral gain is set larger than that of the vibration suppression signal, and the metal band stability according to claim 1 or 2, apparatus. 前記第2のコイルと前記第3のコイルとの直列合成の時定数は、前記第2のコイルの時定数の4倍から10倍の範囲内となるよう設計されていることを特徴とする請求項1〜3の何れか1項に記載の金属帯の安定装置。   The time constant of serial combination of the second coil and the third coil is designed to be within a range of 4 to 10 times the time constant of the second coil. Item 4. The metal band stabilizer according to any one of Items 1 to 3. 前記第2のコイル、および前記第3のコイルが、下式を満たすことを特徴とする請求項1〜4の何れか1項に記載の金属帯の安定装置。
4L/R < (L+L)/(R+R) < 10L/R
ここで、L,Lは、それぞれ前記第2のコイルおよび前記第3のコイルのインダクタンスであり、R,Rは、それぞれ前記第2のコイルおよび前記第3のコイルの抵抗である。
The metal strip stabilizer according to any one of claims 1 to 4, wherein the second coil and the third coil satisfy the following expression.
4L 2 / R 2 <(L 2 + L 3 ) / (R 2 + R 3 ) <10L 2 / R 2
Here, L 2 and L 3 are inductances of the second coil and the third coil, respectively, and R 2 and R 3 are resistances of the second coil and the third coil, respectively. .
前記第3のコイルの磁気回路が、閉回路として構成されることを特徴とする請求項1〜5の何れか1項に記載の金属帯の安定装置。   The metal strip stabilizer according to any one of claims 1 to 5, wherein the magnetic circuit of the third coil is configured as a closed circuit. 製造ライン通板中の金属帯に溶融金属を付着させる付着工程と、
前記金属帯に付着した過剰の溶融金属を払拭するガスワイパによって溶融金属の付着量を調整する調整工程と、
請求項1〜6の何れか1項に記載の金属帯の安定装置により、前記金属帯の振動および位置を非接触で制御する制御工程と、
を有することを特徴とする溶融めっき金属帯の製造方法。
An adhesion process for adhering molten metal to a metal strip in the production line through plate,
An adjustment step of adjusting the amount of adhesion of the molten metal by a gas wiper that wipes off the excess molten metal adhering to the metal band;
A control process for controlling the vibration and position of the metal band in a non-contact manner by the metal band stabilizer according to any one of claims 1 to 6,
A method for producing a hot dipped metal strip, comprising:
請求項7に記載の製造方法により製造することを特徴とする金属帯。   A metal strip manufactured by the manufacturing method according to claim 7.
JP2012168154A 2011-08-09 2012-07-30 Metal strip stabilizer and hot-plated metal strip manufacturing method Active JP5263433B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012168154A JP5263433B2 (en) 2011-08-09 2012-07-30 Metal strip stabilizer and hot-plated metal strip manufacturing method
PCT/JP2012/070115 WO2013022004A1 (en) 2011-08-09 2012-08-07 Metal strip stabilizer, method for manufacturing hot dipped metal strip, and metal strip
KR1020147003123A KR101470906B1 (en) 2011-08-09 2012-08-07 Metal strip stabilizer and method for manufacturing hot-dip coated metal strip
EP12821917.7A EP2743368B1 (en) 2011-08-09 2012-08-07 Metal strip stabilizer
CN201280038441.XA CN103717778B (en) 2011-08-09 2012-08-07 Metal strip stabilizer, method for manufacturing hot dipped metal strip, and metal strip

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011174204 2011-08-09
JP2011174204 2011-08-09
JP2012168154A JP5263433B2 (en) 2011-08-09 2012-07-30 Metal strip stabilizer and hot-plated metal strip manufacturing method

Publications (2)

Publication Number Publication Date
JP2013053367A true JP2013053367A (en) 2013-03-21
JP5263433B2 JP5263433B2 (en) 2013-08-14

Family

ID=47668511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012168154A Active JP5263433B2 (en) 2011-08-09 2012-07-30 Metal strip stabilizer and hot-plated metal strip manufacturing method

Country Status (5)

Country Link
EP (1) EP2743368B1 (en)
JP (1) JP5263433B2 (en)
KR (1) KR101470906B1 (en)
CN (1) CN103717778B (en)
WO (1) WO2013022004A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015160959A (en) * 2014-02-26 2015-09-07 Jfeスチール株式会社 Non-contact control device for metal strip and production method for hot-dip galvanized metal strip
JP2017115213A (en) * 2015-12-25 2017-06-29 Jfeスチール株式会社 Stabilizer for metallic strip and method of manufacturing hot-dip metal coated metallic strip

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016079841A1 (en) * 2014-11-20 2016-05-26 Jfeスチール株式会社 Metal band stabilizer and method for manufacturing hot-dip metal band using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001071051A1 (en) * 2000-03-24 2001-09-27 Sms Demag Aktiengesellschaft Method and device for hot dip-coating metal strands, especially steel strip
JP2004124191A (en) * 2002-10-03 2004-04-22 Jfe Steel Kk Device for damping vibration of metal strip, and method for manufacturing metal strip
JP2009141255A (en) * 2007-12-10 2009-06-25 Kobe Steel Ltd Superconductive electromagnet

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2629029B2 (en) * 1988-08-26 1997-07-09 川崎製鉄株式会社 Steel plate vibration suppression and position control device
DE10255994A1 (en) * 2002-11-30 2004-06-09 Sms Demag Ag Method and device for hot-dip coating a metal strand
DE102004060425B3 (en) * 2004-08-24 2006-04-27 Betriebsforschungsinstitut VDEh - Institut für angewandte Forschung GmbH Process for coil coating
JP5223451B2 (en) * 2008-05-17 2013-06-26 Jfeスチール株式会社 Method for producing hot-dip metal strip

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001071051A1 (en) * 2000-03-24 2001-09-27 Sms Demag Aktiengesellschaft Method and device for hot dip-coating metal strands, especially steel strip
JP2004124191A (en) * 2002-10-03 2004-04-22 Jfe Steel Kk Device for damping vibration of metal strip, and method for manufacturing metal strip
JP2009141255A (en) * 2007-12-10 2009-06-25 Kobe Steel Ltd Superconductive electromagnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015160959A (en) * 2014-02-26 2015-09-07 Jfeスチール株式会社 Non-contact control device for metal strip and production method for hot-dip galvanized metal strip
JP2017115213A (en) * 2015-12-25 2017-06-29 Jfeスチール株式会社 Stabilizer for metallic strip and method of manufacturing hot-dip metal coated metallic strip
WO2017110667A1 (en) * 2015-12-25 2017-06-29 Jfeスチール株式会社 Metal band stabilizing device and hot-dip metal band manufacturing method

Also Published As

Publication number Publication date
CN103717778A (en) 2014-04-09
EP2743368B1 (en) 2016-06-01
KR101470906B1 (en) 2014-12-09
CN103717778B (en) 2015-04-29
KR20140035516A (en) 2014-03-21
EP2743368A1 (en) 2014-06-18
JP5263433B2 (en) 2013-08-14
EP2743368A4 (en) 2015-04-08
WO2013022004A1 (en) 2013-02-14

Similar Documents

Publication Publication Date Title
JP5979323B1 (en) Metal strip stabilizer and method of manufacturing hot-dip metal strip using the same
JP5263433B2 (en) Metal strip stabilizer and hot-plated metal strip manufacturing method
JP2017508864A (en) A continuous processing line for processing a non-magnetic metal strip with a galvanic ring section, and a method for inductively heating the strip in the galvanic ring section
JP6187577B2 (en) Metal strip stabilizer and hot-plated metal strip manufacturing method
JP5644141B2 (en) Metal band damping and position correcting apparatus, and hot-dip plated metal band manufacturing method using the apparatus
JP3876810B2 (en) Metal band damping device and metal band manufacturing method
JP6648650B2 (en) Metal strip stabilizer and method for manufacturing hot-dip coated metal strip
JP5223451B2 (en) Method for producing hot-dip metal strip
JP2018048387A (en) Continuous molten zinc plating method, and continuous molten zinc plating apparatus
JP6274279B2 (en) Steel plate threading position control device and method
WO2020121646A1 (en) Method for manufacturing hot-dip metal-plated steel sheet, and apparatus for manufacturing hot-dip metal-plated steel sheet
JP2018048388A (en) Alloying method of molten zinc plated layer
JP2015160959A (en) Non-contact control device for metal strip and production method for hot-dip galvanized metal strip
WO2016092601A1 (en) Metal strip stabilizer, and method of manufacturing hot-dip plated metal strip
JP2002294348A (en) Vibration damping device for steel plate

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130115

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130115

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R150 Certificate of patent or registration of utility model

Ref document number: 5263433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250