JP2018048388A - Alloying method of molten zinc plated layer - Google Patents

Alloying method of molten zinc plated layer Download PDF

Info

Publication number
JP2018048388A
JP2018048388A JP2016186092A JP2016186092A JP2018048388A JP 2018048388 A JP2018048388 A JP 2018048388A JP 2016186092 A JP2016186092 A JP 2016186092A JP 2016186092 A JP2016186092 A JP 2016186092A JP 2018048388 A JP2018048388 A JP 2018048388A
Authority
JP
Japan
Prior art keywords
steel
alloying
steel plate
heating
hot dip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016186092A
Other languages
Japanese (ja)
Other versions
JP6790660B2 (en
Inventor
橋本 茂
Shigeru Hashimoto
茂 橋本
芳明 廣田
Yoshiaki Hirota
芳明 廣田
将人 平
Masato Taira
将人 平
智史 内田
Tomohito Uchida
智史 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016186092A priority Critical patent/JP6790660B2/en
Publication of JP2018048388A publication Critical patent/JP2018048388A/en
Application granted granted Critical
Publication of JP6790660B2 publication Critical patent/JP6790660B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an alloying method of a molten zinc plated layer that can alloy a molten zinc plated layer of a steel plate of a plurality of steel types and/or a steel plate of a different thickness in the same apparatus without lowering productivity and can alloy that of a steel plate of a steel type having a high nonmagnetic material ratio.SOLUTION: In an alloying method of a molten zinc plated layer, a steel plate H is galvanized with molten zinc and heated in an alloying furnace 7 to alloy a molten zinc plated layer. The steel plate H galvanized with molten zinc is heated in a vertical magnetic flux method (TF method) of induction heating to alloy the molten zinc plated layer of the steel plate of a steel type having a nonmagnetic material index of 40 or higher.SELECTED DRAWING: Figure 1

Description

本発明は、鋼板の溶融亜鉛めっき層の合金化方法に関する。   The present invention relates to a method for alloying a hot dip galvanized layer of a steel sheet.

鋼板に亜鉛めっきするためのラインである溶融亜鉛めっきラインでは、鋼板を溶融亜鉛浴に通した後に加熱して溶融亜鉛めっき層の表層に亜鉛と鉄の合金化層を形成する。合金化の際の鋼板の加熱は、高周波電流で加熱する誘導加熱で行われ、誘導加熱としては一般的にLF(Longitudinal Flux:平行磁束)方式が採用されている(特許文献1参照)。なお、LF方式では、鋼板の周囲を囲んだ誘導コイルに高周波電流(一次電流とする)を流すことで、磁束が鋼板の進行方向と平行に発生し、この磁束を打ち消す方向に鋼板表面で発生する渦電流が集積して一次電流と逆方向に誘導電流が発生し、これにより、非接触で鋼板を加熱する。
また、LF方式以外の加熱方式としては、高温ガスによるものが知られている。
In a hot dip galvanizing line, which is a line for galvanizing a steel plate, the steel plate is passed through a hot dip galvanizing bath and heated to form an alloyed layer of zinc and iron on the surface layer of the hot dip galvanized layer. Heating of the steel sheet during alloying is performed by induction heating that is heated by a high-frequency current. Generally, an LF (Longitudinal Flux: parallel magnetic flux) system is adopted as induction heating (see Patent Document 1). In the LF method, a high-frequency current (primary current) is passed through an induction coil that surrounds the periphery of the steel plate, so that a magnetic flux is generated in parallel with the direction of travel of the steel plate and is generated on the surface of the steel plate in a direction that cancels this magnetic flux. As the eddy currents accumulate, an induced current is generated in a direction opposite to the primary current, thereby heating the steel sheet in a non-contact manner.
Further, as a heating method other than the LF method, a method using a high temperature gas is known.

特開平6−330276号公報JP-A-6-330276

しかし、特許文献1に開示のように溶融亜鉛めっき後の合金化時にLF方式の誘導加熱で加熱する場合、非磁性体の比率が高い鋼種(例えば、高張力鋼や超高張力鋼)ほど加熱効率が低下する。なぜならば、非磁性体が鋼板内に均一に存在すると仮定した場合、非磁性体比率が高いと誘導電流の電流浸透深さが大きくなり、該浸透深さが鋼板の厚みの1/2より大きいと、鋼板の表裏で発生する誘導電流が干渉しあい、鋼板断面には誘導電流が発生しないからである。   However, when heating by LF induction heating at the time of alloying after hot dip galvanizing as disclosed in Patent Document 1, a steel type (for example, high-strength steel or ultra-high-strength steel) having a higher ratio of non-magnetic material is heated. Efficiency is reduced. This is because, when it is assumed that the nonmagnetic material is uniformly present in the steel sheet, if the nonmagnetic material ratio is high, the current penetration depth of the induced current becomes large, and the penetration depth is larger than ½ of the thickness of the steel plate. This is because the induced currents generated on the front and back of the steel plate interfere with each other and no induced current is generated on the cross section of the steel plate.

また、元々高張力鋼や超高張力鋼は、鉄と亜鉛の相互拡散速度が低いため、軟鋼より高温で合金化または低温で合金化せざるを得ない。
したがって、LF方式の誘導加熱による高張力鋼や超高張力鋼の合金化は、より高コスト、低生産の操業条件となる。
さらに、近年強度が増した超超高張力鋼では非磁性体比率が非常に高いため、LF方式では合金化に適した所望の温度まで加熱することができない。
In addition, high-strength steel and ultra-high-strength steel originally have a low interdiffusion rate of iron and zinc, and therefore must be alloyed at a higher temperature or at a lower temperature than mild steel.
Therefore, the alloying of high-strength steel or ultra-high-strength steel by LF induction heating is an operating condition of higher cost and lower production.
Furthermore, since the ultra-high strength steel having increased strength in recent years has a very high non-magnetic ratio, the LF method cannot be heated to a desired temperature suitable for alloying.

さらにまた、現在の鉄鋼業では、多くのニーズがあるため販売している鋼種は多く、ある程度受注をまとめて生産するものの、1つのライン/装置で複数の鋼種の鋼板を生産するのが一般的である。非磁性体比率が異なる鋼種の鋼板を連続して溶融亜鉛めっきし合金化する場合、LF方式で加熱を行うと、最適な操業条件、特に通板速度の変化が生じるため、生産性の大きなロスとなる。
また、同一鋼種であっても鋼板の厚みが異なる場合、LF方式で加熱を行うときには通板速度を変化させる必要がある。
Furthermore, in the current steel industry, because there are many needs, there are many steel types that are sold, and it is common to produce steel sheets of multiple steel types with one line / equipment, although some orders are produced together. It is. When steel sheets of different steel types with different non-magnetic ratios are continuously galvanized and alloyed, heating with the LF method results in changes in optimum operating conditions, especially the plate feed speed, resulting in a significant loss of productivity. It becomes.
Moreover, even if it is the same steel type, when the thickness of a steel plate differs, when heating by LF system, it is necessary to change a plate passing speed.

LF方式の誘導加熱以外の加熱方式として既知の、高温ガスによる加熱方式では、非磁性体比率とは関係なく加熱が可能であるが、誘導加熱に比べ加熱効率が低く、非常に距離の長い加熱帯または非常に遅い通板速度が必要になるため、現実的ではない。   A heating method using a high-temperature gas known as a heating method other than the induction heating of the LF method can be heated regardless of the ratio of the non-magnetic material. However, the heating efficiency is lower than that of induction heating, and the heating method is very long. It is not realistic because it requires tropical or very slow plate speeds.

本発明は、かかる点に鑑みてなされたものであり、同一の装置で複数の鋼種の鋼板及び/または種々の厚みの鋼板に対し、生産性を落とさずに溶融亜鉛めっき層の合金化をすることができ、且つ、非磁性体比率が高い鋼種の鋼板に対し上記合金化をすることができる溶融亜鉛めっき層の合金化方法を提供することを目的とする。   This invention is made | formed in view of this point, and does the alloying of the hot dip galvanizing layer, without reducing productivity with respect to the steel plate of several steel types and / or various thickness steel plate with the same apparatus. An object of the present invention is to provide a method for alloying a hot dip galvanized layer, which can be alloyed with a steel sheet of a steel type having a high nonmagnetic ratio.

前記の目的を達成するため、本発明は、鋼板に溶融亜鉛めっきし、該溶融亜鉛めっきされた鋼板を加熱し溶融亜鉛めっき層を合金化する溶融亜鉛めっき層の合金化方法であって、前記溶融亜鉛めっきされた鋼板の加熱を、垂直磁束方式の誘導加熱で行い、非磁性体指数が40以上である鋼種の鋼板の溶融亜鉛めっき層を合金化する、ことを特徴としている。   In order to achieve the above object, the present invention is a method for alloying a hot dip galvanized layer, which comprises hot dip galvanizing a steel plate, heating the hot dip galvanized steel plate, and alloying the hot dip galvanized layer. The hot-dip galvanized steel sheet is heated by vertical magnetic flux induction heating, and the hot-dip galvanized layer of the steel sheet having a nonmagnetic index of 40 or more is alloyed.

前記垂直磁束方式で誘導加熱を行う誘導加熱装置を通過する鋼板の振動を抑制することが好ましい。   It is preferable to suppress the vibration of the steel sheet passing through the induction heating device that performs induction heating by the vertical magnetic flux method.

本発明の溶融亜鉛めっき層の合金化方法によれば、同一の装置で複数の鋼種の鋼板及び/または種々の厚みの鋼板に対し、生産性を落とさずに溶融亜鉛めっき層の合金化をすることができる。また、非磁性体比率が高い鋼種すなわち非磁性体指数が高い鋼種の鋼板に対し上記合金化をすることができる。   According to the alloying method of the hot dip galvanized layer of the present invention, the hot dip galvanized layer is alloyed on the steel plate of a plurality of steel types and / or steel plates of various thicknesses with the same apparatus without reducing the productivity. be able to. Further, the above alloying can be performed on a steel sheet having a high nonmagnetic ratio, that is, a steel sheet having a high nonmagnetic index.

本発明の実施の形態に係る連続溶融亜鉛めっき装置の概略を示す図である。It is a figure which shows the outline of the continuous hot dip galvanizing apparatus which concerns on embodiment of this invention. 図1の合金化加熱炉の概略を示す図である。It is a figure which shows the outline of the alloying heating furnace of FIG.

以下、本発明の実施の形態について図面を参照して説明する。図1は、本発明の実施の形態に係る連続溶融亜鉛めっき装置の概略を示す図である。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an outline of a continuous hot dip galvanizing apparatus according to an embodiment of the present invention. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

図1の連続溶融亜鉛めっき装置1では、鋼板Hは、不図示の焼鈍炉で焼鈍された後、溶融亜鉛めっき浴2に導入される。
溶融亜鉛めっき浴2に導入された鋼板Hは、該浴2内に設けられたシンクロール3により、上向きに方向転換され、サポートロール4で反りが矯正された後、溶融亜鉛めっき浴2から引き出される。
そして、溶融亜鉛めっきされた鋼板Hは、その両面に向けてガスワイピングノズル5からワイピングガスが吹き付けられ、めっき付着量が調整される。
In the continuous hot dip galvanizing apparatus 1 of FIG. 1, the steel plate H is introduced into the hot dip galvanizing bath 2 after being annealed in an unillustrated annealing furnace.
The steel sheet H introduced into the hot dip galvanizing bath 2 is turned upward by the sink roll 3 provided in the bath 2 and the warp is corrected by the support roll 4, and then drawn out from the hot dip galvanizing bath 2. It is.
The hot dip galvanized steel sheet H is sprayed with a wiping gas from the gas wiping nozzle 5 toward both surfaces thereof to adjust the plating adhesion amount.

めっき付着量が調整された鋼板Hは、該鋼板Hの振動を抑制する制振装置6を通過される。制振装置6は、鋼板Hの振動を抑制する機能の他に、合金化加熱炉7に対する鋼板Hの角度を規定する機能を有していてもよい。
制振装置6による振動の抑制や角度の規定のための方式としては、高温ガス(例えば450℃以上)を鋼板Hの端部に吹き付ける方式が考えられる。また、電磁力による方式であってもよい。
さらに、例えば450℃以上に加熱したローラが鋼板Hの端部に当接することにより、鋼板Hの振動を抑制し鋼板Hの角度を規定する方式であってもよい。なお、ローラなどが当接することにより鋼板Hの溶融亜鉛めっき層は変形するが、鋼板Hが合金化加熱炉7を通板されている間において、溶融亜鉛めっき層の粘度が低くなるため、溶融亜鉛めっき層の変形部分は変形前の状態に戻る。上記ローラの幅は例えば5〜10mmである。
The steel plate H whose plating adhesion amount is adjusted is passed through a vibration damping device 6 that suppresses vibration of the steel plate H. The damping device 6 may have a function of defining the angle of the steel sheet H with respect to the alloying heating furnace 7 in addition to the function of suppressing the vibration of the steel sheet H.
As a method for suppressing vibrations and regulating the angle by the vibration damping device 6, a method in which a high-temperature gas (for example, 450 ° C. or more) is sprayed on the end of the steel sheet H can be considered. Moreover, the system by electromagnetic force may be used.
Furthermore, for example, the roller heated to 450 ° C. or more may be in contact with the end of the steel plate H to suppress the vibration of the steel plate H and define the angle of the steel plate H. In addition, although the hot dip galvanized layer of the steel plate H is deformed by contact with a roller or the like, since the viscosity of the hot dip galvanized layer is lowered while the steel plate H is being passed through the alloying heating furnace 7, The deformed portion of the galvanized layer returns to the state before deformation. The width of the roller is, for example, 5 to 10 mm.

なお、上述の制振装置6を設けずに、ガスワイピングノズル5からのワイピングガスにより鋼板Hの振動の抑制や角度の規定を行ってもよい。
また、制振装置6を設けずに、サポートロール4のインターメッシュ量(ロール押し込み量)を調整して、鋼板Hの振動の抑制や角度の規制を行ってもよい。
In addition, without providing the above-described vibration damping device 6, the vibration of the steel sheet H may be suppressed or the angle may be defined by the wiping gas from the gas wiping nozzle 5.
Further, without providing the vibration damping device 6, the intermesh amount (roll pushing amount) of the support roll 4 may be adjusted to suppress the vibration of the steel sheet H and to regulate the angle.

制振装置6を通過後、鋼板Hは、合金化加熱炉7にて加熱され、例えば550±10℃まで昇温され、鋼板Hが上部ロール8に至るまでの間に鋼板Hの溶融亜鉛めっき層が合金化される。
合金化された鋼板Hは、不図示の冷却装置により冷却され、上部ロール8により通板方向が変換される。
After passing through the vibration damping device 6, the steel plate H is heated in the alloying heating furnace 7, and is heated to, for example, 550 ± 10 ° C. until the steel plate H reaches the upper roll 8. The layer is alloyed.
The alloyed steel sheet H is cooled by a cooling device (not shown), and the sheet passing direction is changed by the upper roll 8.

このように溶融亜鉛めっき層を合金化することにより、鋼板Hの溶接性、耐食性、プレス性等を良好にすることができる。   By alloying the hot-dip galvanized layer in this way, the weldability, corrosion resistance, pressability and the like of the steel sheet H can be improved.

図2は、合金化加熱炉7の概略を示す図であり、図2(A)は合金化加熱炉7の模式側面図、図2(B)は合金化加熱炉7の鋼板Hの板幅方向中央部分における模式断面図である。   FIG. 2 is a diagram showing an outline of the alloying heating furnace 7, FIG. 2 (A) is a schematic side view of the alloying heating furnace 7, and FIG. 2 (B) is a sheet width of the steel plate H of the alloying heating furnace 7. It is a schematic cross section in the direction center part.

合金化加熱炉7は、例えば図2に示すように、側面視及び断面視でE字型のE字型コア71、72が鋼板Hを挟んで対向するように設けられている。
E字型コア71、72は、フェライト、積層した電磁鋼板、アモルファス合金等の強磁性体コアで構成されている。また、E字型コア71、72には、その中央の凸部71a、72aに誘導コイル73、74が巻き回されている。
For example, as shown in FIG. 2, the alloying heating furnace 7 is provided such that E-shaped cores 71 and 72 are opposed to each other with the steel plate H interposed therebetween in a side view and a cross-sectional view.
The E-shaped cores 71 and 72 are made of a ferromagnetic core such as ferrite, laminated electromagnetic steel sheets, and amorphous alloys. In addition, the E-shaped cores 71 and 72 have induction coils 73 and 74 wound around the central convex portions 71a and 72a.

誘導コイル73、74は、銅などの導体で構成されており、不図示の電源に接続されている。誘導コイル73、74によって発生する磁束Mは、鋼板Hを厚さ方向に貫通する。合金化加熱炉7では、この磁束Mに垂直な誘導電流が鋼板Hの板面内に発生し、該誘導電流により鋼板Hを加熱する。つまり、合金化加熱炉7は、TF(Transverse Flux:垂直磁束)方式の誘導加熱で鋼板Hを加熱する。なお、図2に示す方式以外でも、鋼板Hを厚さ方向に貫通させる磁束を生じさせる方法であれば、同様の加熱効果を得ることができる。   The induction coils 73 and 74 are made of a conductor such as copper, and are connected to a power source (not shown). The magnetic flux M generated by the induction coils 73 and 74 penetrates the steel plate H in the thickness direction. In the alloying heating furnace 7, an induction current perpendicular to the magnetic flux M is generated in the plate surface of the steel plate H, and the steel plate H is heated by the induction current. That is, the alloying heating furnace 7 heats the steel sheet H by induction heating using a TF (Transverse Flux) method. In addition to the method shown in FIG. 2, the same heating effect can be obtained as long as the method generates a magnetic flux that penetrates the steel plate H in the thickness direction.

従来は、合金化の際、あらゆる鋼種の鋼板についてLF方式の誘導加熱で加熱することができたため、TF方式の誘導加熱は合金化技術に導入されていなかったが、連続溶融亜鉛めっき装置1では、上述のように、合金化の際、合金化加熱炉7によるTF方式の誘導加熱で鋼板Hを加熱している。したがって、LF方式の誘導加熱で加熱する場合と異なり、鋼板Hの表裏で発生する誘導電流が干渉しあうことがない。より具体的には、TF方式の誘導加熱で加熱する場合、鋼板Hの平面方向に循環する誘導電流が発生するため、該誘導電流は、LF方式の誘導加熱で特徴的な、鋼板Hの端部をまたいで表面から裏面に回って一周する誘導電流とは異なり、干渉・相殺は生じない。そのため、LF方式の誘導加熱では加熱することができない、非磁性体比率が高い鋼種であっても、高効率で鋼板Hを加熱し合金化をすることができる。   Conventionally, since all steel types of steel sheets could be heated by LF induction heating during alloying, TF induction heating was not introduced into the alloying technology. As described above, the steel plate H is heated by TF induction heating in the alloying heating furnace 7 during alloying. Therefore, unlike the case of heating by LF induction heating, induced currents generated on the front and back of the steel sheet H do not interfere with each other. More specifically, in the case of heating by TF type induction heating, an induction current circulating in the plane direction of the steel sheet H is generated, so the induction current is the end of the steel sheet H, which is characteristic of the LF type induction heating. Unlike the induced current that goes around the part from the front surface to the back surface, no interference or cancellation occurs. Therefore, even if it is a steel type that cannot be heated by LF induction heating and has a high nonmagnetic ratio, the steel sheet H can be heated and alloyed with high efficiency.

また、連続溶融亜鉛めっき装置1では、非磁性体比率が高い鋼種だけでなく低い鋼種についても、高効率で加熱し溶融亜鉛めっきを合金化することができる。そして、その加熱効率は非磁性体比率によらない。したがって、連続溶融亜鉛めっき装置1では、鋼板Hの非磁性体比率に応じて通板速度を変化させる必要がない。
よって、連続溶融亜鉛めっき装置1では、同一の装置で複数の鋼種の鋼板に対し、生産性を落とさずに溶融亜鉛めっき層の合金化をすることができる。
Moreover, in the continuous hot dip galvanizing apparatus 1, not only a steel type with a high nonmagnetic material ratio but also a low steel type can be heated with high efficiency to alloy hot dip galvanizing. And the heating efficiency does not depend on the nonmagnetic material ratio. Therefore, in the continuous hot dip galvanizing apparatus 1, it is not necessary to change the sheet passing speed in accordance with the nonmagnetic material ratio of the steel plate H.
Therefore, in the continuous hot dip galvanizing apparatus 1, the hot dip galvanized layer can be alloyed with a single apparatus without reducing the productivity of steel sheets of a plurality of steel types.

さらにまた、連続溶融亜鉛めっき装置1では、合金化加熱炉7によりTF方式の誘導加熱で鋼板Hを加熱しているため、板厚が変化しても、鋼板Hの板厚に応じて高周波電力を変化させたり、放射温度計等で測定した合金化加熱炉7の出口温度に応じて高周波電力を変化させたりすれば、上記板厚に応じて通板速度を変化させる必要がない。
したがって、連続溶融亜鉛めっき装置1では、同一の装置で複数の厚さの鋼板に対し、生産性を落とさずに溶融亜鉛めっき層の合金化をすることができる。
Furthermore, in the continuous hot dip galvanizing apparatus 1, the steel plate H is heated by the TF induction heating in the alloying heating furnace 7, so even if the plate thickness changes, the high frequency power depends on the plate thickness of the steel plate H. If the high frequency power is changed according to the outlet temperature of the alloying heating furnace 7 measured with a radiation thermometer or the like, it is not necessary to change the plate passing speed according to the plate thickness.
Therefore, in the continuous hot dip galvanizing apparatus 1, the hot dip galvanized layer can be alloyed to a plurality of thickness steel sheets with the same apparatus without reducing the productivity.

なお、合金化加熱炉7におけるTF方式の誘導加熱の形態は上述の例に限られず、例えば、誘導コイルから発生した磁束を集中させる磁性体コアであって鋼板の板幅方向に自在に設けられたコアを利用してTF方式の誘導加熱を行ってもよい。この場合、磁性体コアの板幅方向の位置を調整することにより、板幅方向の加熱分布を調整することができる。したがって、鋼板の板幅に応じて通板速度を変化させる必要がないため、板幅を変更しても生産性を落とさずに溶融亜鉛めっき層の合金化を適切に行うことができる。   In addition, the form of induction heating of the TF method in the alloying heating furnace 7 is not limited to the above-described example. For example, it is a magnetic core that concentrates the magnetic flux generated from the induction coil and is provided freely in the plate width direction of the steel plate. Alternatively, TF induction heating may be performed using the core. In this case, the heating distribution in the plate width direction can be adjusted by adjusting the position of the magnetic core in the plate width direction. Therefore, since it is not necessary to change the plate passing speed according to the plate width of the steel plate, the hot dip galvanized layer can be appropriately alloyed without reducing productivity even if the plate width is changed.

また、連続溶融亜鉛めっき装置1は、制振装置6が設けられているため、合金化加熱炉7における鋼板HとE字型コア71、72との距離を、一定にかつ近接化できるため、より確実に高効率に合金化に適した所望の温度まで加熱することができる。   Moreover, since the continuous hot dip galvanizing apparatus 1 is provided with the vibration damping device 6, the distance between the steel sheet H and the E-shaped cores 71 and 72 in the alloying heating furnace 7 can be made constant and close, Heating to a desired temperature suitable for alloying can be performed more reliably and efficiently.

非磁性体比率の異なる複数の鋼種について誘導加熱を行ったときの鋼板の温度を実機での操業結果に基づいて計算した結果を以下の表1に示す。なお、非磁性体比率については、該比率を表す後述の非磁性体指数で示し、加熱後の鋼板の温度については、高強度材の合金化時に設定される温度の一つである550℃であるときを100%、溶融亜鉛めっき浴から引き出され合金化加熱炉に到達したときの鋼板の温度である400℃を0%としたときの割合(%)で示す。板幅は1500mm、板厚は0.8mm、誘導加熱能力は最大2000kWであり、実施例は、上述の連続溶融亜鉛めっき装置1のようにTF方式で誘導加熱した場合の計算結果を示し、比較例は、LF方式で誘導加熱した場合の計算結果を示す。
ここで、非磁性体指数とは、(1−透磁率)×100で与えられる。また、透磁率の取得方法は、以下の通りである。すなわち、JIS C 2550−1:2011「電磁鋼帯試験方法」の規格に準じ、当該規格で使用されているエプスタイン測定等で磁界強さ(H)と磁束密度(B)を測定し、その測定結果とμ(透磁率)=B(磁束密度)/H(磁界強さ)の式とから透磁率を算出する。
Table 1 below shows the results of calculating the temperature of the steel sheet when induction heating was performed on a plurality of steel types having different nonmagnetic ratios based on the operation results of the actual machine. The nonmagnetic material ratio is indicated by a nonmagnetic material index, which will be described later, representing the ratio, and the temperature of the steel sheet after heating is 550 ° C., which is one of the temperatures set when alloying the high-strength material. This is expressed as a ratio (%) when 100% is taken from the hot dip galvanizing bath and the temperature of the steel sheet when reaching the alloying heating furnace is 400%. The plate width is 1500 mm, the plate thickness is 0.8 mm, and the induction heating capacity is a maximum of 2000 kW. The examples show the calculation results when induction heating is performed by the TF method as in the above-described continuous hot dip galvanizing apparatus 1 and compared. The example shows the calculation result when induction heating is performed by the LF method.
Here, the non-magnetic index is given by (1−magnetic permeability) × 100. Moreover, the acquisition method of the magnetic permeability is as follows. That is, according to the standard of JIS C 2550-1: 2011 “Electromagnetic steel strip test method”, the magnetic field strength (H) and magnetic flux density (B) are measured by Epstein measurement used in the standard, and the measurement is performed. The magnetic permeability is calculated from the result and the formula of μ (magnetic permeability) = B (magnetic flux density) / H (magnetic field strength).

Figure 2018048388
Figure 2018048388

比較例1では、非磁性体比率が非常に低い、すなわち非磁性体指数が0である鋼種の鋼板を、150m/分の通板速度且つLF方式の誘導加熱で加熱した。この比較例1では、合金化加熱炉を通過後の鋼板の温度すなわち加熱後の鋼板の温度が100%であった。
比較例2、3、4ではそれぞれ、非磁性体指数が20、40、80である鋼種の鋼板をLF方式の誘導加熱で加熱し、その際、誘導加熱に用いる電源からの出力及び通板速度を比較例1と同様とした。これら比較例2、3、4では、合金化加熱炉での加熱後の鋼板の温度が80%、50%、18%であり、十分に加熱できていなかった。
In Comparative Example 1, a steel sheet of a steel type having a very low nonmagnetic material ratio, that is, a nonmagnetic material index of 0, was heated by a plate feed speed of 150 m / min and LF induction heating. In Comparative Example 1, the temperature of the steel plate after passing through the alloying heating furnace, that is, the temperature of the steel plate after heating was 100%.
In Comparative Examples 2, 3, and 4, steel sheets of non-magnetic material index of 20, 40, and 80 are heated by LF induction heating, and at that time, the output from the power source used for induction heating and the plate passing speed Was the same as in Comparative Example 1. In these Comparative Examples 2, 3, and 4, the temperature of the steel sheet after heating in the alloying heating furnace was 80%, 50%, and 18%, and was not sufficiently heated.

比較例5、6、7では、非磁性体指数が20、40、80である鋼種の鋼板をLF方式の誘導加熱で加熱し、その際、誘導加熱に用いる電源からの出力を調整し比較例1より大きくし、また、通板速度を比較例1と同様とした。比較例5、6では、合金化加熱炉での加熱後の鋼板の温度が100%、99%となったが、比較例7では、出力を比較例1の場合の1.5倍としたが同加熱後の鋼板の温度が25%までしか得られなかった。   In Comparative Examples 5, 6, and 7, a steel sheet of a steel type having a nonmagnetic index of 20, 40, and 80 is heated by LF induction heating, and the output from the power source used for induction heating is adjusted at that time. 1 and the plate passing speed was the same as in Comparative Example 1. In Comparative Examples 5 and 6, the temperature of the steel sheet after heating in the alloying heating furnace was 100% and 99%, but in Comparative Example 7, the output was 1.5 times that in Comparative Example 1. The temperature of the steel plate after the heating was only obtained up to 25%.

比較例8では、非磁性体指数が80である鋼種の鋼板をLF方式誘導加熱で加熱し、その際、誘導加熱に用いる電源からの出力を比較例1の場合の1.5倍とし、通板速度を合金化時に不具合が発生しない最低の速度である50m/分とした。それでも、比較例8では合金化加熱炉での加熱後の鋼板の温度が70%までしか得られなかった。   In Comparative Example 8, a steel sheet having a nonmagnetic index of 80 is heated by LF induction heating, and the output from the power source used for induction heating is 1.5 times that in Comparative Example 1, and The plate speed was set to 50 m / min, which is the lowest speed at which no problems occur during alloying. Nevertheless, in Comparative Example 8, the temperature of the steel sheet after heating in the alloying heating furnace was only obtained up to 70%.

また、比較例6では、計算上、加熱後の鋼板の温度がほぼ100%となっているが、比較例6と非磁性体比率が同じ鋼種について実機でLF方式の誘導加熱で加熱すると、共振が不十分となり、板幅方向に大きな温度ムラが発生した。通常はその鋼種の非磁性体比率に合わせた最適化(マッチング操作)が必要になるが、鋼種ごとにコイルの内部空間(ギャップや幅)を変更させたり、周波数等を変更させたりすることは非現実的であり、比較例6は単独鋼種あるいは限定鋼種を製造するラインで達成できる加熱後温度の目安になる。   In Comparative Example 6, the temperature of the steel sheet after heating is almost 100% in the calculation. However, when the steel type having the same non-magnetic material ratio as Comparative Example 6 is heated by LF induction heating with an actual machine, resonance occurs. Became insufficient, and large temperature unevenness occurred in the plate width direction. Normally, optimization (matching operation) according to the non-magnetic ratio of the steel type is required, but changing the internal space (gap and width) of the coil and changing the frequency etc. for each steel type It is unrealistic and Comparative Example 6 is a measure of the post-heating temperature that can be achieved in a line that produces a single steel grade or a limited steel grade.

実施例1、2、3では、非磁性体指数が40、60、80である鋼種すなわち非磁性体比率が高い鋼種の鋼板をTF方式の誘導加熱で加熱した。また、誘導加熱に用いる電源からの出力及び通板速度は実施例間で共通とした。なお、通板速度は150m/分とした。これら実施例1、2、3では、合金化加熱炉での加熱後の鋼板の温度がともに100%であった。このように、誘導加熱にTF方式を採用すると、非磁性体比率が高くても、また、非磁性体比率に応じて出力や通板速度を変化させなくても、溶融亜鉛めっきされた鋼板を合金化に適した温度まで合金化加熱炉で加熱することができる。   In Examples 1, 2, and 3, a steel type having a nonmagnetic index of 40, 60, and 80, that is, a steel type having a high nonmagnetic ratio, was heated by TF induction heating. Further, the output from the power source used for induction heating and the plate passing speed were common among the examples. The plate passing speed was 150 m / min. In Examples 1, 2, and 3, the temperature of the steel sheet after heating in the alloying heating furnace was 100%. As described above, when the TF method is adopted for induction heating, a hot dip galvanized steel sheet can be used even if the nonmagnetic material ratio is high or the output and the plate feed speed are not changed according to the nonmagnetic material ratio. It can be heated in an alloying heating furnace to a temperature suitable for alloying.

また、比較例6と非磁性体指数が同じ鋼種について実機でLF方式の誘導加熱で加熱した場合と異なり、実施例1〜3と非磁性体指数が同じ鋼種について実機でTF方式の誘導加熱で加熱した場合、非磁性体指数すなわち非磁性体比率によらず適切な共振が起こるため、板幅方向に温度ムラが発生しない。非磁性体比率によらず適切な共振が起こるのは、LF方式では、誘導電流の流れ方が鋼板の表と裏とで反対方向であるため、非磁性体比率が高くなり電流深さが深くなると誘導電流のキャンセルが発生するのに対し、TF方式では、誘導電流が鋼板の板面と平行に鋼板の板厚全体を流れるため、LF方式のような誘導電流のキャンセルが発生しないからである。   Moreover, unlike the case where the steel type having the same nonmagnetic index as in Comparative Example 6 is heated by LF induction heating with an actual machine, the steel type having the same nonmagnetic index as in Examples 1 to 3 is heated by TF induction with an actual machine. When heated, an appropriate resonance occurs regardless of the nonmagnetic index, that is, the nonmagnetic ratio, so that temperature unevenness does not occur in the plate width direction. Appropriate resonance occurs regardless of the non-magnetic ratio. In the LF method, the induced current flows in opposite directions on the front and back of the steel sheet, so the non-magnetic ratio increases and the current depth increases. In the TF method, the induced current flows through the entire thickness of the steel plate in parallel with the plate surface of the steel plate, so that the induced current is not canceled as in the LF method. .

本発明は、鋼板の溶融亜鉛めっき層をTF方式の誘導加熱で合金化する技術に有用である。   The present invention is useful for a technique for alloying a hot-dip galvanized layer of a steel sheet by TF induction heating.

1…連続溶融亜鉛めっき装置
2…溶融亜鉛めっき浴
3…シンクロール
4…サポートロール
5…ガスワイピングノズル
6…制振装置
7…合金化加熱炉
71、72…E字型コア
73、74…誘導コイル
8…上部ロール
DESCRIPTION OF SYMBOLS 1 ... Continuous hot dip galvanizing apparatus 2 ... Hot dip galvanizing bath 3 ... Sink roll 4 ... Support roll 5 ... Gas wiping nozzle 6 ... Damping device 7 ... Alloying furnace 71, 72 ... E-shaped core 73, 74 ... Induction Coil 8 ... Upper roll

Claims (2)

鋼板に溶融亜鉛めっきし、該溶融亜鉛めっきされた鋼板を加熱し溶融亜鉛めっき層を合金化する溶融亜鉛めっき層の合金化方法であって、
前記溶融亜鉛めっきされた鋼板の加熱を、垂直磁束方式の誘導加熱で行い、
非磁性体指数が40以上である鋼種の鋼板の溶融亜鉛めっき層を合金化する、ことを特徴とする溶融亜鉛めっき層の合金化方法。
A method of alloying a hot dip galvanized layer by hot dip galvanizing a steel plate and heating the hot dip galvanized steel plate to alloy the hot dip galvanized layer,
The heating of the hot dip galvanized steel sheet is performed by induction heating of a vertical magnetic flux system,
A method of alloying a hot-dip galvanized layer, comprising alloying a hot-dip galvanized layer of a steel sheet having a nonmagnetic index of 40 or more.
前記垂直磁束方式で誘導加熱を行う誘導加熱装置を通過する鋼板の振動を抑制することを特徴とする請求項1に記載の溶融亜鉛めっき層の合金化方法。
The method for alloying a hot-dip galvanized layer according to claim 1, wherein vibrations of the steel sheet passing through an induction heating device that performs induction heating by the vertical magnetic flux method are suppressed.
JP2016186092A 2016-09-23 2016-09-23 Alloying method of hot-dip galvanized layer Active JP6790660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016186092A JP6790660B2 (en) 2016-09-23 2016-09-23 Alloying method of hot-dip galvanized layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016186092A JP6790660B2 (en) 2016-09-23 2016-09-23 Alloying method of hot-dip galvanized layer

Publications (2)

Publication Number Publication Date
JP2018048388A true JP2018048388A (en) 2018-03-29
JP6790660B2 JP6790660B2 (en) 2020-11-25

Family

ID=61767314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016186092A Active JP6790660B2 (en) 2016-09-23 2016-09-23 Alloying method of hot-dip galvanized layer

Country Status (1)

Country Link
JP (1) JP6790660B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019177030A1 (en) 2018-03-15 2019-09-19 国立大学法人東京大学 Electronic functional member and electronic component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019177030A1 (en) 2018-03-15 2019-09-19 国立大学法人東京大学 Electronic functional member and electronic component

Also Published As

Publication number Publication date
JP6790660B2 (en) 2020-11-25

Similar Documents

Publication Publication Date Title
US8502122B2 (en) Induction heating system and induction heating method of metal plate
JP5909562B2 (en) Heating apparatus and heating method
US9462641B2 (en) Transverse flux strip heating with DC edge saturation
CN110323044B (en) Heat-resistant magnetic domain refining type oriented silicon steel and manufacturing method thereof
KR20090100459A (en) Induction heating device
JP6323564B2 (en) Induction heating device for metal strip
JP4153895B2 (en) Induction heating apparatus and induction heating method for metal strip
JP6525339B2 (en) Continuous processing line processing a nonmagnetic metal strip comprising a galvanic ring section, and a method of inductively heating the strip in the galvanic ring section
JP5042909B2 (en) Induction heating apparatus and induction heating method for metal plate
US10005116B2 (en) High frequency induction heating apparatus and processing apparatus
JP6790660B2 (en) Alloying method of hot-dip galvanized layer
KR101558088B1 (en) Induction heating apparatus
KR101252640B1 (en) Induction heating apparatus and method
JP2012503101A (en) Method and apparatus for draining coated liquid metal at the outlet of an immersion metal coating bath
JP3045007B2 (en) Method and apparatus for induction heating of metal plate
JP2010182594A (en) Induction heating apparatus of metal plate
JP6763261B2 (en) Continuous hot-dip galvanized steel sheet and manufacturing method of alloyed hot-dip galvanized steel sheet
JP6812999B2 (en) Induction heating device for metal strips, manufacturing method for metal strips, and manufacturing method for alloyed hot-dip galvanized steel sheets
JP6528712B2 (en) Iron core for induction heating coil, induction heating coil, and heating apparatus
JP4890278B2 (en) Metal plate induction heating device
JP6881384B2 (en) Induction heating device for steel sheet, induction heating method, manufacturing method for alloyed hot-dip galvanized steel sheet and manufacturing method for steel sheet
JP2005122984A (en) Induction heating device
JP2556217B2 (en) Method for preventing vibration and plate warpage of continuously passing steel plates
JP7124515B2 (en) Induction heating equipment for metal strips
JP6880980B2 (en) Induction heating device and induction heating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200901

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200901

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200908

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201019

R151 Written notification of patent or utility model registration

Ref document number: 6790660

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151