JP2013051510A - Piezoelectric vibration device encapsulation member manufacturing method and piezoelectric vibration device using encapsulation member manufactured by this method - Google Patents

Piezoelectric vibration device encapsulation member manufacturing method and piezoelectric vibration device using encapsulation member manufactured by this method Download PDF

Info

Publication number
JP2013051510A
JP2013051510A JP2011187623A JP2011187623A JP2013051510A JP 2013051510 A JP2013051510 A JP 2013051510A JP 2011187623 A JP2011187623 A JP 2011187623A JP 2011187623 A JP2011187623 A JP 2011187623A JP 2013051510 A JP2013051510 A JP 2013051510A
Authority
JP
Japan
Prior art keywords
hole
sealing member
piezoelectric vibration
vibration device
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011187623A
Other languages
Japanese (ja)
Inventor
Satoshi Fujii
智 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daishinku Corp
Original Assignee
Daishinku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daishinku Corp filed Critical Daishinku Corp
Priority to JP2011187623A priority Critical patent/JP2013051510A/en
Publication of JP2013051510A publication Critical patent/JP2013051510A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a piezoelectric vibration device encapsulation member manufacturing method which makes it possible to reduce the diameters of through holes and also prevents chipping, etc. at hole boring time, and a piezoelectric vibration device using an encapsulation member manufactured by this method.SOLUTION: The present invention relates to a manufacturing method for a piezoelectric vibration device encapsulation member which hermetically seals the excitation electrode of the piezoelectric vibration device. The manufacturing method includes a through hole formation step of forming a through hole used to electrically connect between two main planes of a base material of the encapsulation member and a conductive member formation step of forming a conductive member in the through hole. The through hole formation step comprises: a first step of forming in the main plane a hole 60 having a tapered inner side face 61 whose opening diameter inside the base material is smaller than its opening diameter at one main plane 200 of the base material; and a second step of forming a through hole by boring from a position on the inner side face 61 which is apart from the vicinity of the main plane.

Description

本発明は、圧電振動デバイスの封止部材の製造方法と当該製造方法によって得られた封止部材を用いた圧電振動デバイスに関する。   The present invention relates to a method for manufacturing a sealing member of a piezoelectric vibration device and a piezoelectric vibration device using a sealing member obtained by the manufacturing method.

圧電振動デバイスは携帯電話等の各種通信機器等に広く使用されている。例えば圧電振動デバイスとして水晶振動子を例に挙げると、一般的な水晶振動子の主要構成部材は、励振電極が表裏主面に対向形成された略直方体状の水晶振動素子と、水晶振動素子を収容するための凹部を有するセラミック製の容器体と、当該容器体との接合により前記励振電極を気密封止する金属製の蓋体となっている。ここで前記励振電極は、引出電極を経由して水晶振動素子の一端部に形成された接続電極へ導出されている。そして前記容器体の凹部底面には前記接続電極と接合材を介して接合される搭載電極が形成されている。前記搭載電極は、容器体の基材を厚み方向に貫く貫通孔の内部に導体が充填された貫通電極(いわゆるビア)を介して、容器体の底面に形成された外部接続端子と電気的に接続されている。このような貫通電極を利用した構成の圧電振動デバイスは例えば特許文献1に開示されている。   Piezoelectric vibration devices are widely used in various communication devices such as mobile phones. For example, taking a crystal resonator as an example of a piezoelectric vibration device, the main components of a general crystal resonator are a substantially rectangular parallelepiped crystal resonator element in which excitation electrodes are formed opposite to the front and back main surfaces, and a crystal resonator element. A ceramic container body having a recess for accommodating and a metal lid body hermetically sealing the excitation electrode by joining the container body. Here, the excitation electrode is led to a connection electrode formed at one end of the crystal resonator element via an extraction electrode. A mounting electrode that is bonded to the connection electrode via a bonding material is formed on the bottom surface of the concave portion of the container body. The mounting electrode is electrically connected to an external connection terminal formed on the bottom surface of the container body through a through electrode (so-called via) filled with a conductor in a through hole penetrating the base material of the container body in the thickness direction. It is connected. A piezoelectric vibration device having a configuration using such a through electrode is disclosed in Patent Document 1, for example.

前述の各種通信機器等の薄型化および高機能化が進むにつれ、前記機器内部基板へ実装される各種電子部品の小型化および高密度化により、圧電振動デバイスにおいても超小型で薄型の製品が求められている。前述の水晶振動子を例に挙げると、直方体状の水晶振動子の平面視外形寸法が2.0mm×1.6mm以下の超小型になってくると、前述の貫通電極が容器体に対して占める面積(貫通電極の両端の径)の割合が相対的に大きくなってしまう。貫通電極の端部周辺には各種電極パターン等が高密度で配されるため、さらなる貫通電極の小径化が必要となってくる。   As the above-mentioned various communication devices are becoming thinner and more advanced, miniaturization and higher density of various electronic components mounted on the internal board of the device demands ultra-small and thin products for piezoelectric vibration devices. It has been. Taking the above-described quartz resonator as an example, when the rectangular shape of the rectangular parallelepiped crystal resonator becomes ultra-small with a size of 2.0 mm × 1.6 mm or less, the aforementioned penetrating electrode is in contact with the container body. The ratio of the occupied area (diameter at both ends of the through electrode) is relatively large. Since various electrode patterns and the like are arranged at high density around the end portion of the through electrode, it is necessary to further reduce the diameter of the through electrode.

特許第3523502号Japanese Patent No. 3523502 特開2010−206322号JP 2010-206322 A

前述のように従来の圧電振動デバイスの容器体の材料にはセラミックが使用されるのが一般的であるが、圧電振動デバイスが超小型になってくるとセラミックでは焼成精度等の点から限界に来つつあるため、水晶やガラス等の結晶性材料を容器体の材料として用いることで超小型化に対応することができる。水晶やガラス等の結晶性材料を基材とする容器体の場合、前記貫通電極の貫通孔を穿孔する方法として湿式エッチング法等の他、ビームやブラスト(サンドブラスト等)を用いることができる。   As described above, ceramic is generally used as the material of the container body of the conventional piezoelectric vibration device. However, when the piezoelectric vibration device becomes ultra-small, ceramic is limited in terms of firing accuracy and the like. Since it is coming, it is possible to cope with the miniaturization by using a crystalline material such as crystal or glass as the material of the container. In the case of a container body made of a crystalline material such as crystal or glass, a beam or blast (sand blast or the like) can be used as a method of drilling the through hole of the through electrode in addition to a wet etching method.

しかしながら湿式エッチング法による穿孔の場合、水晶のような異方性材料では結晶方位による非対称な形状が発生したり、エッチングレート(腐食速度)の差に起因するエッチング時間の適切な管理が困難となる。これにより貫通孔の両端(被加工物の表裏主面)で開口径が大きく異なった形状になってしまう。一方、ガラスのような等方性材料の場合は貫通孔の深さに比例して開口径が拡大するため、開口径の大きな貫通孔が形成されてしまう。これはエッチングマスクの直下にも腐食が進むいわゆるアンダーカットによるものである。つまり、いずれの材料においても化学的手段によって所望形状の貫通孔を高精度で形成することが困難となる。   However, in the case of drilling by a wet etching method, an anisotropic material such as quartz generates an asymmetric shape due to crystal orientation, and it is difficult to appropriately manage etching time due to a difference in etching rate (corrosion rate). . Thereby, it will become a shape from which the opening diameter differed greatly by the both ends (front and back main surface of a to-be-processed object) of a through-hole. On the other hand, in the case of an isotropic material such as glass, the opening diameter is increased in proportion to the depth of the through hole, so that a through hole having a large opening diameter is formed. This is due to the so-called undercut, in which corrosion proceeds directly under the etching mask. That is, in any material, it is difficult to form a through hole having a desired shape with high accuracy by chemical means.

一方、ビーム(レーザービーム等)やブラスト(サンドブラスト等)を穿孔に用いた場合はウエットエッチング等の化学的手段に比べ、貫通孔の両端における開口径の差が小さく、略同一径の貫通孔を形成することができる利点がある。しかしながら、これらの加工手段の場合、次のような問題が存在する。ビームを使用する場合は微細な貫通孔を形成することが可能であるものの、被加工物に対して垂直にビームが照射されるためチッピングやチッピングに起因するクラック等(以下チッピング等と略)が発生することがある。また、ブラスト(例えばサンドブラスト)であれば略同一径の貫通孔を形成することが可能であるものの、加工速度の点から実用的ではないという問題が存在する。つまり、加工時間を短縮するために粗い研磨剤を使用するとチッピング等が発生しやすくなり、チッピング等を抑制するために微細な研磨材を使用すると加工時間が長くなり生産効率の低下をもたらすという問題が存在する。   On the other hand, when a beam (laser beam or the like) or blast (sand blast or the like) is used for drilling, compared to chemical means such as wet etching, the difference in the opening diameters at both ends of the through hole is small. There are advantages that can be formed. However, these processing means have the following problems. When using a beam, it is possible to form fine through holes, but since the beam is irradiated perpendicularly to the workpiece, chipping and chipping caused cracks (hereinafter abbreviated as chipping etc.) May occur. In addition, although blasting (for example, sandblasting) can form through holes having substantially the same diameter, there is a problem that it is not practical in terms of processing speed. In other words, if a rough abrasive is used to shorten the processing time, chipping or the like is likely to occur, and if a fine abrasive is used to suppress chipping or the like, the processing time becomes long and production efficiency is reduced. Exists.

本発明は、かかる点に鑑みてなされたものであり、貫通孔の小径化を図ることができるとともに穿孔時のチッピング等を防止した圧電振動デバイスの封止部材の製造方法と当該製造方法によって得られた封止部材を用いた圧電振動デバイスを提供することを目的とするものである。   The present invention has been made in view of the above points, and is obtained by a method for manufacturing a sealing member of a piezoelectric vibration device that can reduce the diameter of a through-hole and prevent chipping during drilling, and the manufacturing method. An object of the present invention is to provide a piezoelectric vibration device using the sealing member formed.

上記目的を達成するために請求項1の発明は、圧電振動素子の励振電極を気密に封止する圧電振動デバイスの封止部材の製造方法であって、前記封止部材の基材の両主面間を電気的に接続するための貫通孔を形成する貫通孔形成工程と、前記貫通孔に導電性部材を形成する導電性部材形成工程とを有し、前記貫通孔形成工程は、前記基材の両主面における開口径より当該基材内部における開口径が小さく、かつテーパー状の内側面を備えた孔を前記両主面に各々形成する第1工程と、前記内側面のうち、前記両主面近傍から離間した位置から穿孔することによって貫通孔を形成する第2工程と、からなる圧電振動デバイスの封止部材の製造方法となっている。   In order to achieve the above object, the invention of claim 1 is a method for manufacturing a sealing member of a piezoelectric vibration device in which the excitation electrode of the piezoelectric vibration element is hermetically sealed. A through-hole forming step for forming a through-hole for electrically connecting the surfaces, and a conductive member forming step for forming a conductive member in the through-hole. A first step of forming holes on both main surfaces, each having an opening diameter smaller than the opening diameters on both main surfaces of the material and having tapered inner side surfaces, and among the inner side surfaces, This is a method for manufacturing a sealing member for a piezoelectric vibration device, comprising: a second step of forming a through hole by drilling from a position separated from the vicinity of both main surfaces.

上記製造方法によれば、貫通孔の穿孔時のチッピング等の発生を抑制することができる。これは前記第1工程において前記基材の両主面における開口径より当該基材内部における開口径が小さく、かつテーパー状の内側面を備えた孔が前記両主面に各々形成され、前記第2工程において前記内側面のうち、前記両主面近傍から離間した位置から穿孔することによる。つまり、表面が平坦な封止部材に対して垂直にビームや研磨剤(ブラスト加工に用いられる)を照射または噴射して穿孔する場合、貫通孔の端部にチッピング等が発生することがある。これに対し、本発明の封止部材の製造方法であれば、前記内側面の途中から加工を開始するため、加工に寄与しない前記両主面近傍の領域のチッピング等の発生を防止することができる。さらに前記内側面の途中から加工を開始するため、封止部材の主面への穿孔の影響を緩和することがきる。これにより貫通孔端部周辺の封止部材の主面を良好な状態に維持できるため、圧電振動素子と接合部材を介して接合するための搭載電極や、内部配線および封止部材底面に形成される外部接続端子等の各種導体の成膜を確実に行うことができる。なお、前記第2工程の穿孔は、封止部材の一主面側からだけでなく、封止部材の他主面側からも行ってもよい。   According to the said manufacturing method, generation | occurrence | production of the chipping etc. at the time of drilling a through-hole can be suppressed. This is because, in the first step, the opening diameter in the base material is smaller than the opening diameter in the both main surfaces of the base material, and holes having tapered inner side surfaces are formed in both the main surfaces, respectively. In the two steps, by punching from the position apart from the vicinity of both main surfaces of the inner surface. That is, in the case of drilling by irradiating or spraying a beam or abrasive (used for blasting) perpendicularly to the sealing member having a flat surface, chipping or the like may occur at the end of the through hole. On the other hand, in the manufacturing method of the sealing member of the present invention, since processing is started from the middle of the inner side surface, it is possible to prevent the occurrence of chipping or the like in the regions near the two main surfaces that do not contribute to processing. it can. Furthermore, since processing is started from the middle of the inner side surface, the influence of perforation on the main surface of the sealing member can be reduced. As a result, the main surface of the sealing member around the end portion of the through hole can be maintained in a good state. Thus, various conductors such as external connection terminals can be reliably formed. The perforation in the second step may be performed not only from one main surface side of the sealing member but also from the other main surface side of the sealing member.

上記目的を達成するために、前記第1工程における孔を湿式エッチング法によって形成してもよい。例えば封止部材の基材に結晶性材料(水晶やガラス等)を用いることによって前記第1工程における孔のテーパー状の内側面を容易に成形することができる。この場合、基材一主面に対する前記内側面の傾斜角は、水晶の場合(軸方向によって異なる)、20〜70度に、ガラスであれば約45度となる。   In order to achieve the above object, the holes in the first step may be formed by a wet etching method. For example, by using a crystalline material (such as crystal or glass) for the base material of the sealing member, the tapered inner surface of the hole in the first step can be easily formed. In this case, the inclination angle of the inner surface with respect to the main surface of the base material is 20 to 70 degrees in the case of quartz (depending on the axial direction), and about 45 degrees in the case of glass.

封止部材の基材に結晶性材料を用い、湿式エッチング法によって封止部材に貫通孔を形成する場合、貫通孔の深さに比例して貫通孔の開口径が拡大するため、開口径の大きな貫通孔が形成されてしまうが、本発明の前記第1工程において形成する孔が有底孔の場合、封止部材を貫通するまで湿式エッチングを行わないため、封止部材の主面における開口径の拡大を抑制することができ、貫通孔の小径化に効果的である。なお、本発明において第1工程で形成される孔は有底孔に限定されものではなく、基材の両主面における開口径より当該基材内部における開口径が小さく、かつテーパー状の内側面を備えた貫通孔であってもよい。また、湿式エッチング法によって、封止部材の両主面から当該封止部材の途中の深さまで基材を溶解させることにより、第2工程において穿孔する封止部材の残りの厚みが少なくなるため、穿孔に要する時間を短縮することができる。   When a crystalline material is used for the base material of the sealing member and a through hole is formed in the sealing member by a wet etching method, the opening diameter of the through hole increases in proportion to the depth of the through hole. Although a large through hole is formed, when the hole formed in the first step of the present invention is a bottomed hole, wet etching is not performed until the sealing member is penetrated. The expansion of the diameter can be suppressed, which is effective for reducing the diameter of the through hole. In the present invention, the hole formed in the first step is not limited to the bottomed hole, and the opening diameter in the base material is smaller than the opening diameters in both main surfaces of the base material, and the tapered inner surface is formed. May be a through-hole. In addition, by dissolving the base material from both main surfaces of the sealing member to a depth in the middle of the sealing member by a wet etching method, the remaining thickness of the sealing member to be perforated in the second step is reduced. The time required for drilling can be shortened.

また、前記第1工程における孔を湿式エッチング法によって形成することにより、エッチング後の孔の内壁面を、機械的加工によって形成された孔の内壁面よりも平滑にすることができる。そして第2工程では、第1工程で形成された孔の内側面の途中から加工を開始するため、加工に寄与しない封止部材の両主面近傍の領域を平滑面とすることができる。このように前記両主面近傍の領域が平滑面であるため、被加工物(封止部材)の表面(主面)へのチッピング発生領域の拡大を防止することができる。また、前記内側面の表面が湿式エッチングによって平滑な状態で形成されるため、第2工程における穿孔時のチッピング等の抑制にも効果的である。   Moreover, by forming the hole in the first step by a wet etching method, the inner wall surface of the hole after etching can be made smoother than the inner wall surface of the hole formed by mechanical processing. And in a 2nd process, since a process is started from the middle of the inner surface of the hole formed at the 1st process, the area | region of both the main surfaces of the sealing member which does not contribute to a process can be made into a smooth surface. Thus, since the area | region of both the said main surfaces is a smooth surface, the expansion of the chipping generation | occurrence | production area | region to the surface (main surface) of a to-be-processed object (sealing member) can be prevented. Further, since the surface of the inner side surface is formed in a smooth state by wet etching, it is effective for suppressing chipping during drilling in the second step.

また、上記目的を達成するために、前記第2工程において、前記穿孔をビームまたはブラストによって行ってもよい。これらの穿孔手段を用いて穿孔することにより、第1工程の孔の形成で残った基材部分を略同一径で穿孔することができる。なお前記ビームとしてはレーザービームや電子ビーム等のエネルギービームを用いることができる。また、ブラストとしては機械式ブラスト(ショットブラスト等)や空気式ブラスト(サンドブラスト等のエアーブラスト)あるいは、湿式ブラストが適用可能である。ブラストの場合、第1工程で形成された孔の内側面がテーパー状であるので、研磨剤が斜めに当接することによる研磨剤の整流効果が期待できる。つまり断面視長方形の孔の場合、研磨剤が孔底面の隅部に滞留して研磨剤の流れが不均一になりやすいが、内側面がテーパー状の孔であれば滞留領域が形成されにくくなるため研磨剤の入替が促進されやすくなる。これにより加工効率が向上する。   In order to achieve the above object, the perforation may be performed by a beam or blast in the second step. By drilling using these punching means, it is possible to punch the base material portion remaining in the formation of the hole in the first step with substantially the same diameter. As the beam, an energy beam such as a laser beam or an electron beam can be used. Further, as the blasting, mechanical blasting (shot blasting or the like), pneumatic blasting (air blasting such as sand blasting), or wet blasting can be applied. In the case of blasting, since the inner surface of the hole formed in the first step is tapered, a rectifying effect of the polishing agent due to the contact of the polishing agent obliquely can be expected. In other words, in the case of a rectangular hole in cross-section, the abrasive stays in the corner of the bottom of the hole and the flow of the abrasive tends to be non-uniform, but if the inner surface is a tapered hole, the stay region is difficult to form. Therefore, it becomes easy to promote replacement of the abrasive. This improves the processing efficiency.

ブラストによって前記穿孔を行う場合、前記基材の両主面の所定パターンと前記孔の両主面近傍の領域を被覆するようにレジスト膜等でマスクした後、ブラスト加工を行ってもよい。この場合、ブラスト加工に寄与しない前記両主面近傍の領域は、前記レジスト膜等によって研磨剤から保護されるため、研磨剤の投射径を絞ることなく加工ができるのでバッチ処理に好適である。   When the perforation is performed by blasting, blasting may be performed after masking with a resist film or the like so as to cover a predetermined pattern on both main surfaces of the base material and regions near both main surfaces of the holes. In this case, since the regions in the vicinity of both main surfaces that do not contribute to blasting are protected from the abrasive by the resist film or the like, processing can be performed without reducing the projection diameter of the abrasive, which is suitable for batch processing.

また、請求項1乃至3のいずれか一つに記載の圧電振動デバイスの封止部材の製造方法によって得られた封止部材に、励振電極が形成された圧電振動素子を搭載し、前記励振電極を他の封止部材で気密に封止した圧電振動デバイスであれば、封止部材への貫通孔の穿孔時のチッピング等の発生を抑制することができる。また封止部材の主面への穿孔の影響を緩和することがきる。これにより貫通孔端部周辺の封止部材の主面を良好な状態に維持できるため、圧電振動素子と接合部材を介して接合するための搭載電極や、内部配線および封止部材底面に形成される外部接続端子等の各種導体の成膜を確実に行うことができる。   A piezoelectric vibration element in which an excitation electrode is formed is mounted on a sealing member obtained by the method for manufacturing a sealing member for a piezoelectric vibration device according to any one of claims 1 to 3, and the excitation electrode If the piezoelectric vibration device is hermetically sealed with another sealing member, it is possible to suppress the occurrence of chipping or the like when the through hole is drilled in the sealing member. Moreover, the influence of perforation on the main surface of the sealing member can be reduced. As a result, the main surface of the sealing member around the end portion of the through hole can be maintained in a good state. Thus, various conductors such as external connection terminals can be reliably formed.

以上のように、本発明によれば、貫通孔の小径化を図ることができるとともに穿孔時のチッピング等を防止した圧電振動デバイスの封止部材の製造方法と当該製造方法によって得られた封止部材を用いた圧電振動デバイスを提供することができる。   As described above, according to the present invention, a method for manufacturing a sealing member of a piezoelectric vibration device that can reduce the diameter of a through-hole and prevent chipping during drilling and the sealing obtained by the manufacturing method A piezoelectric vibration device using the member can be provided.

本発明の実施形態を示す水晶振動子の断面模式図。1 is a schematic cross-sectional view of a crystal resonator showing an embodiment of the present invention. 本発明の封止部材の製造方法を示す断面模式図。The cross-sectional schematic diagram which shows the manufacturing method of the sealing member of this invention. 本発明の封止部材の製造方法を示す断面模式図。The cross-sectional schematic diagram which shows the manufacturing method of the sealing member of this invention. 本発明の封止部材の製造方法を示す断面模式図。The cross-sectional schematic diagram which shows the manufacturing method of the sealing member of this invention. 本発明の封止部材の製造方法を示す断面模式図。The cross-sectional schematic diagram which shows the manufacturing method of the sealing member of this invention. 本発明の封止部材の製造方法を示す断面模式図。The cross-sectional schematic diagram which shows the manufacturing method of the sealing member of this invention. 本発明の封止部材の製造方法を示す断面模式図。The cross-sectional schematic diagram which shows the manufacturing method of the sealing member of this invention. 図7におけるA部拡大図。The A section enlarged view in FIG. 本発明の封止部材の製造方法を示す断面模式図。The cross-sectional schematic diagram which shows the manufacturing method of the sealing member of this invention. 図9におけるB部拡大図。The B section enlarged view in FIG. 本発明の封止部材の製造方法を示す断面模式図。The cross-sectional schematic diagram which shows the manufacturing method of the sealing member of this invention. 本発明の封止部材の製造方法を示す断面模式図。The cross-sectional schematic diagram which shows the manufacturing method of the sealing member of this invention. 本発明の封止部材の製造方法を示す断面模式図。The cross-sectional schematic diagram which shows the manufacturing method of the sealing member of this invention. 本発明の他の実施形態を示す貫通電極の拡大断面図。The expanded sectional view of the penetration electrode which shows other embodiments of the present invention. 本発明の他の実施形態を示す貫通電極の拡大断面図。The expanded sectional view of the penetration electrode which shows other embodiments of the present invention.

以下、圧電振動デバイスとして水晶振動子に本発明を適用した例を説明する。まず本発明における水晶振動子について説明した後、当該水晶振動子を構成する封止部材の製造方法について説明する。   Hereinafter, an example in which the present invention is applied to a crystal resonator as a piezoelectric vibration device will be described. First, after describing the crystal resonator in the present invention, a method for manufacturing a sealing member constituting the crystal resonator will be described.

本発明における水晶振動子は略長方体形状であり、外部基板と接続される外部接続端子24が筐体の底面に設けられた表面実装型の水晶振動子である。水晶振動子1は、水晶振動素子を収容するための凹部20を備えた水晶からなる封止部材2(容器体)と、凹部20内に接合部材8を介して接合されるATカット水晶振動素子3と、凹部20を気密に封止するホウケイ酸ガラスからなる平板状の蓋体4が主な構成部材となっている。なお本発明の実施形態では封止部材2に水晶を使用しているが水晶に限定されるものではなく、水晶以外にホウケイ酸ガラス等の結晶性材料を使用してもよい。   The crystal resonator in the present invention is a substantially rectangular parallelepiped shape, and is a surface-mount type crystal resonator in which an external connection terminal 24 connected to an external substrate is provided on the bottom surface of the housing. The crystal unit 1 includes a sealing member 2 (container) made of crystal having a recess 20 for accommodating a crystal resonator, and an AT-cut crystal resonator that is bonded to the recess 20 via a bonding member 8. 3 and a flat lid 4 made of borosilicate glass that hermetically seals the recess 20 is a main constituent member. In the embodiment of the present invention, crystal is used for the sealing member 2, but is not limited to crystal, and a crystalline material such as borosilicate glass may be used in addition to the crystal.

図1において封止部材2はZ板と呼ばれる水晶で構成されている。封止部材2には平面視略矩形状の堤部22が形成されており、堤部22の上面には金属ロウ材(図示省略)が周状に形成されている。堤部22の内側の領域は凹部20となっている。そして凹部20の内底面21のうち、一短辺寄りの領域には段部23が形成されている。段部23の上面には水晶振動素子3と接合部材8を介して片持ち接合される一対の搭載電極7,7が並列に形成されている。そして前記搭載電極7は貫通電極6および凹部20の内底面21に形成される図示しない内部配線等を経由して封止部材2の底面に形成された外部接続端子24と各々電気的に接続されている。なお前述の段部23の上方に水晶振動素子を接合部材8を介して片持ち支持することにより、内底面21の上部に直接水晶振動素子を配する場合に比べ、水晶振動素子の自由端と内底面21との距離をより大きく確保することができる。これにより、水晶振動子1が外部衝撃等を受けて前記自由端側が撓んだ場合であっても、当該自由端と内底面21側との接触を防止することができる。なお、本発明の適用は前記段部を有する構造の封止部材に限定されるものではなく、段部を有しない構造の封止部材にも適用可能である。   In FIG. 1, the sealing member 2 is made of quartz called a Z plate. The sealing member 2 is formed with a bank portion 22 having a substantially rectangular shape in plan view, and a metal brazing material (not shown) is formed on the top surface of the bank portion 22 in a circumferential shape. A region inside the bank portion 22 is a recess 20. A step portion 23 is formed in a region near the short side of the inner bottom surface 21 of the recess 20. A pair of mounting electrodes 7, 7 that are cantilever-bonded via the crystal resonator element 3 and the bonding member 8 are formed in parallel on the upper surface of the stepped portion 23. The mounting electrode 7 is electrically connected to an external connection terminal 24 formed on the bottom surface of the sealing member 2 via an internal wiring (not shown) formed on the inner bottom surface 21 of the through electrode 6 and the recess 20. ing. In addition, by supporting the crystal resonator element above the step portion 23 via the bonding member 8, the free end of the crystal resonator element can be compared with the case where the crystal resonator element is directly disposed on the upper portion of the inner bottom surface 21. A larger distance from the inner bottom surface 21 can be secured. Thereby, even when the crystal unit 1 receives an external impact or the like and the free end side is bent, the contact between the free end and the inner bottom surface 21 side can be prevented. In addition, application of this invention is not limited to the sealing member of the structure which has the said step part, It is applicable also to the sealing member of a structure which does not have a step part.

本実施形態では前記貫通電極6はフォトリソグラフィ技術を利用してパターン形成し、湿式エッチングおよびレーザー加工を組み合わせて貫通孔を穿孔した後、シード層となる金属膜をスパッタリングによって前記貫通孔の内壁面に被着させ、電解メッキ法によって導電性部材を前記金属膜上に析出させて貫通孔内を充填している(貫通電極の形成方法の詳細は後述)。   In the present embodiment, the through electrode 6 is patterned using a photolithographic technique, and a through hole is drilled by a combination of wet etching and laser processing, and then a metal film serving as a seed layer is sputtered to form the inner wall surface of the through hole. The conductive member is deposited on the metal film by electrolytic plating to fill the inside of the through hole (details of the method of forming the through electrode will be described later).

水晶振動素子3は所定の角度で切断された平面視矩形のATカット水晶振動板である。水晶振動素子3の表裏主面には一対の励振電極(図示省略)が対向形成されており、各励振電極からは引出電極によって水晶振動素子の一短辺端部へそれぞれ導出されている。前記水晶振動素子の一短辺端部へそれぞれ導出された終端は接続電極(図示省略)となっており、前述の搭載電極7と接合部材8を介して接合される。なお本実施形態では前記接合部材8として金からなるスタッドバンプが使用されているが、これに限定されるものではなく金以外の金属からなるスタッドバンプや、金属メッキバンプ、または導電性の接着材を用いてもよい。   The crystal resonator element 3 is an AT-cut crystal resonator plate having a rectangular shape in plan view and cut at a predetermined angle. A pair of excitation electrodes (not shown) are formed on the front and back main surfaces of the crystal resonator element 3 so as to face each other, and are led out from the respective excitation electrodes to one short side end portion of the crystal resonator element by an extraction electrode. Terminations led out to one short side end of the crystal resonator element are connection electrodes (not shown), which are joined to the mounting electrode 7 via the joining member 8. In the present embodiment, a stud bump made of gold is used as the bonding member 8. However, the present invention is not limited to this, and a stud bump made of a metal other than gold, a metal plating bump, or a conductive adhesive is used. May be used.

図1において蓋体4はガラスからなる平板である。蓋体4の一主面側には、封止部材2の堤部22の上面の金属ロウ材と対応する位置に金属膜が周状に形成されている(図示省略)。蓋体4は、搭載電極7の上に接合された水晶振動素子3の周波数調整等の所定の工程を経た後、蓋体4の一主面側の金属膜が、堤部22の上面の金属ロウ材と当接するように蓋体4を封止部材2に位置決め載置した後、加熱雰囲気下でこれらの金属(蓋体の前記金属膜と封止部材の前記金属ロウ材)を溶融一体化させることによって封止部材2と気密に接合される。なお溶融一体化された状態が図1における金属ロウ材5となっている。以上が本発明における水晶振動子についての説明である。   In FIG. 1, the lid 4 is a flat plate made of glass. On one main surface side of the lid 4, a metal film is formed in a circumferential shape at a position corresponding to the metal brazing material on the upper surface of the bank portion 22 of the sealing member 2 (not shown). After the lid body 4 has undergone a predetermined process such as frequency adjustment of the crystal resonator element 3 bonded on the mounting electrode 7, the metal film on the one main surface side of the lid body 4 is the metal on the upper surface of the bank portion 22. After the lid 4 is positioned and placed on the sealing member 2 so as to come into contact with the brazing material, these metals (the metal film of the lid and the metal brazing material of the sealing member) are fused and integrated in a heated atmosphere. By doing so, the sealing member 2 is joined in an airtight manner. The molten and integrated state is the metal brazing material 5 in FIG. The above is the description of the crystal resonator in the present invention.

次に前述の水晶振動子を構成する封止部材の製造方法のうち、主要工程について説明する。
(凹部形成工程)
まず図2に示すように所定の大きさの水晶ウエハWを用意する。なお本実施形態における説明において図面中では単体の封止部材についてその製造方法を示しているが、実際には多数個の封止部材が格子状に整列した状態で一括で製造される。水晶ウエハWはその表裏主面(一主面200、他主面201)は平滑面となっており、これら表裏主面上に金属膜(本実施形態では金)がスパッタリングによって成膜される(図示省略)。そしてスパッタリングによって成膜された前記金属膜の上にレジスト膜(ポジ型)を塗布し、所定パターンにて露光・現像を行う。図3は上記方法によって凹部20の形成領域が開口した状態で湿式エッチングを行って凹部20を形成し、レジスト膜および金属膜を除去した状態を表している。その後さらに段部23を形成するために、金属膜をスパッタリングによって成膜した後、前記金属膜の上にレジスト膜を塗布して所定パターンにて露光・現像を行う。そして湿式エッチングによって図4に示すように凹部20内に段部23を形成する。なお図4はレジスト膜および金属膜を除去した状態を表している。
Next, the main steps in the method for manufacturing the sealing member constituting the above-described crystal resonator will be described.
(Recess formation process)
First, as shown in FIG. 2, a quartz wafer W having a predetermined size is prepared. In the description of the present embodiment, the manufacturing method is shown for a single sealing member in the drawings, but in actuality, a large number of sealing members are manufactured in a lump in a state of being arranged in a lattice shape. The crystal wafer W has front and back main surfaces (one main surface 200 and another main surface 201) which are smooth surfaces, and a metal film (gold in this embodiment) is formed on these front and back main surfaces by sputtering ( (Not shown). Then, a resist film (positive type) is applied on the metal film formed by sputtering, and exposure and development are performed in a predetermined pattern. FIG. 3 shows a state in which the recess 20 is formed by wet etching with the formation region of the recess 20 opened by the above method, and the resist film and the metal film are removed. Thereafter, in order to further form the stepped portion 23, after forming a metal film by sputtering, a resist film is applied on the metal film, and exposure and development are performed in a predetermined pattern. And the step part 23 is formed in the recessed part 20 as shown in FIG. 4 by wet etching. FIG. 4 shows a state where the resist film and the metal film are removed.

(貫通孔形成工程)
以下、封止部材の基材の両主面間を電気的に接続するための貫通孔を形成する貫通孔形成工程について第1工程と第2工程に分けて説明する。
−第1工程−
ウエハWの表裏主面上に前述の金属膜をスパッタリングによって再形成した後、フォトリソグラフィ技術を用いて有底孔を形成する領域のレジスト膜を露光・現像処理によって除去する(図6参照)。なお図5乃至10において前述のスパッタリングによって形成された金属膜の表示は省略している。
(Through hole forming process)
Hereinafter, the through-hole forming process for forming the through-hole for electrically connecting the two main surfaces of the base material of the sealing member will be described separately for the first process and the second process.
-First step-
After re-forming the above-described metal film on the front and back main surfaces of the wafer W by sputtering, the resist film in the region where the bottomed hole is to be formed is removed by exposure / development processing using a photolithography technique (see FIG. 6). 5 to 10, the display of the metal film formed by the above-described sputtering is omitted.

そして図6において矢印で示すように有底孔を形成する領域が開口した状態で、湿式エッチングを行う。当該湿式エッチングによって図7に示すように孔60が形成される。ここで図8に示すように孔60は、基材(W)の両主面における開口径より当該基材内部における開口径が小さく、かつテーパー状の内側面61と、内側面61と連続した孔底面62とを有する形状となっている。孔60は封止部材の両主面(段部23の上面および他主面201)に対向して形成されている。内側面61は封止部材2の基材が異方性結晶材料である水晶で構成されているため湿式エッチング時には水晶の結晶方位固有の角度で化学的溶解が進行し、前記形状の孔60を容易に成形できる点から好適である。なお封止部材2の基材として水晶以外にガラスを用いてもよい。また孔60の成形はフォトリソグラフィ技術を用いた湿式エッチング以外に、フォトリソグラフィ技術を用いた乾式エッチングによって行ってもよい。また、内側面の断面形状は直線状に傾斜したものだけに限定されるものではなく、円弧状に傾斜した状態であってもよい。   Then, wet etching is performed in a state where a region for forming a bottomed hole is opened as indicated by an arrow in FIG. As shown in FIG. 7, a hole 60 is formed by the wet etching. Here, as shown in FIG. 8, the hole 60 has a smaller opening diameter inside the base material than the opening diameters on both main surfaces of the base material (W), and is continuous with the tapered inner side surface 61 and the inner side surface 61. The shape has a hole bottom surface 62. The hole 60 is formed to face both main surfaces of the sealing member (the upper surface of the step portion 23 and the other main surface 201). Since the inner surface 61 is made of quartz, which is an anisotropic crystal material, as the base material of the sealing member 2, during the wet etching, chemical dissolution proceeds at an angle specific to the crystal orientation of the quartz, and the hole 60 having the shape described above is formed. This is preferable because it can be easily molded. Glass may be used as the base material of the sealing member 2 other than quartz. The hole 60 may be formed by dry etching using a photolithography technique, in addition to wet etching using a photolithography technique. Further, the cross-sectional shape of the inner surface is not limited to a linearly inclined shape, and may be in a state of being inclined in an arc shape.

本発明の封止部材の製造方法であれば、封止部材の基材に結晶性材料を用い、前記第1工程における孔の形成に湿式エッチング法を用いることで、テーパー状の内側面を容易に成形することができる。なお、本発明の前記第1工程において形成する孔60が有底孔の場合、封止部材を貫通するまで湿式エッチングを行わないため、封止部材の主面における開口径の拡大を抑制することができ、貫通孔の小径化に効果的である。また、湿式エッチング法によって、封止部材の両主面から当該封止部材の途中の深さまで基材を溶解させることにより、第2工程において穿孔する封止部材の残りの厚みが少なくなるため、穿孔に要する時間を短縮することができる。   If it is the manufacturing method of the sealing member of this invention, a taper-shaped inner surface is easy by using a crystalline material for the base material of a sealing member, and using a wet etching method for formation of the hole in the said 1st process. Can be molded. In addition, when the hole 60 formed in the said 1st process of this invention is a bottomed hole, since wet etching is not performed until it penetrates a sealing member, expansion of the opening diameter in the main surface of a sealing member is suppressed. This is effective in reducing the diameter of the through hole. In addition, by dissolving the base material from both main surfaces of the sealing member to a depth in the middle of the sealing member by a wet etching method, the remaining thickness of the sealing member to be perforated in the second step is reduced. The time required for drilling can be shortened.

また、前記第1工程における孔60を湿式エッチング法によって形成することにより、エッチング後の孔60の内壁面を、機械的加工によって形成された孔の内壁面よりも平滑にすることができる。そして第2工程では、第1工程で形成された孔60の内側面61の途中から加工を開始するため、加工に寄与しない封止部材の両主面近傍の領域を平滑面とすることができる。このように前記両主面近傍の領域が平滑面であるため、被加工物(封止部材)の表面(主面)へのチッピング発生領域の拡大を防止することができる。また、内側面61の表面が湿式エッチングによって平滑な状態で形成されるため、第2工程における穿孔時のチッピング等の抑制にも効果的である。   Further, by forming the hole 60 in the first step by a wet etching method, the inner wall surface of the hole 60 after etching can be made smoother than the inner wall surface of the hole formed by mechanical processing. In the second step, since the processing is started from the middle of the inner side surface 61 of the hole 60 formed in the first step, regions near both main surfaces of the sealing member that do not contribute to the processing can be made smooth. . Thus, since the area | region of both the said main surfaces is a smooth surface, the expansion of the chipping generation | occurrence | production area | region to the surface (main surface) of a to-be-processed object (sealing member) can be prevented. Moreover, since the surface of the inner surface 61 is formed in a smooth state by wet etching, it is also effective in suppressing chipping during drilling in the second step.

−第2工程−
次に前述の第1工程でウエハWの表裏主面に形成された孔60,60のうち、一主面側(凹部20側)の孔60に対して凹部20の上方からレーザービームL(本実施形態ではCO2レーザーを使用。波長10600nm)を照射する(図9参照)。これにより、第1工程での湿式エッチングで残存した有底孔下方の基材部分が加工され、他主面201側の孔60まで貫通する貫通孔Hが穿孔される(図11参照)。なお第2工程で穿孔される領域は断面視では略直管状となっている(図11における符号63)。ここで貫通孔Hの形成の詳細について図10を用いて説明する。図10は図9のB部を拡大したものである。図10に示すようにレーザービームLは、孔60の内側面61のうち、一主面200(段部23の上面)近傍から離間した位置に照射される。そしてレーザービーム径をD1、孔60の一主面における開口径をD2とすると、D1<D2の関係となっている。レーザービーム径よりも大きい開口径の孔60を形成することにより、図中にSで示す内側面61の領域(一主面200の近傍の領域)は穿孔に寄与しない領域となる。つまり、孔60の内側面61の途中から加工を開始することにより、加工に寄与しない封止部材の両主面近傍の領域を平滑面とすることができる。このように前記両主面近傍の領域が平滑面であるため、被加工物(封止部材)の表面(主面)へのチッピング発生領域の拡大を防止することができる。
-Second step-
Next, of the holes 60, 60 formed on the front and back main surfaces of the wafer W in the first step described above, the laser beam L (main) from above the recess 20 with respect to the hole 60 on one main surface side (recess 20 side). In the embodiment, a CO2 laser is used (wavelength 10600 nm) is irradiated (see FIG. 9). Thereby, the base material part below the bottomed hole remaining by the wet etching in the first step is processed, and a through hole H penetrating to the hole 60 on the other main surface 201 side is drilled (see FIG. 11). In addition, the area | region drilled by a 2nd process becomes a substantially straight tube shape in sectional view (code | symbol 63 in FIG. 11). Details of the formation of the through hole H will be described with reference to FIG. FIG. 10 is an enlarged view of portion B in FIG. As shown in FIG. 10, the laser beam L is irradiated to a position separated from the vicinity of one main surface 200 (the upper surface of the step portion 23) in the inner surface 61 of the hole 60. When the laser beam diameter is D1 and the opening diameter of one main surface of the hole 60 is D2, the relationship is D1 <D2. By forming the hole 60 having an opening diameter larger than the laser beam diameter, the region of the inner side surface 61 (the region in the vicinity of the one main surface 200) indicated by S in the drawing becomes a region that does not contribute to drilling. That is, by starting the processing from the middle of the inner side surface 61 of the hole 60, the regions in the vicinity of both main surfaces of the sealing member that do not contribute to the processing can be made smooth. Thus, since the area | region of both the said main surfaces is a smooth surface, the expansion of the chipping generation | occurrence | production area | region to the surface (main surface) of a to-be-processed object (sealing member) can be prevented.

本実施形態において孔60は、レーザービーム径D1よりも大きい開口径D2(本実施形態では0.10〜0.15mm)を有している。なお図10で示すSは0.005〜0.01mm程度であり、これは孔60の開口部分に対してレーザービームLが略中央に位置するように照射された場合の状態を表している。なお第1工程で形成される孔60は、レーザービーム径よりも大きい開口径(D2)を有しているが、孔60の開口径の寸法は前記寸法に限定されるものではない。またD1の寸法は上記寸法に限定されるものではなく、D1はD2よりも小さく設定されていればよい。なおレーザーを使用する場合、レーザーの種類は本実施形態のレーザーに限定されるものではなく他の種類(波長)のレーザーを用いてもよい。例えばYAGレーザーやYVO4レーザー、グリーンレーザー等も使用可能である。   In the present embodiment, the hole 60 has an opening diameter D2 (0.10 to 0.15 mm in the present embodiment) that is larger than the laser beam diameter D1. In addition, S shown in FIG. 10 is about 0.005 to 0.01 mm, and this represents a state in which the laser beam L is irradiated to the opening portion of the hole 60 so as to be positioned substantially at the center. Although the hole 60 formed in the first step has an opening diameter (D2) larger than the laser beam diameter, the dimension of the opening diameter of the hole 60 is not limited to the above dimension. Moreover, the dimension of D1 is not limited to the said dimension, D1 should just be set smaller than D2. In addition, when using a laser, the kind of laser is not limited to the laser of this embodiment, You may use the laser of another kind (wavelength). For example, a YAG laser, a YVO4 laser, a green laser, or the like can be used.

本発明の封止部材の製造方法によれば、貫通孔Hの穿孔時のチッピング等の発生を抑制することができる。これは前記第1工程において封止部材の基材の両主面における開口径より当該基材内部における開口径が小さく、かつテーパー状の内側面61を備えた孔60が前記両主面に各々形成され、前記第2工程において内側面61のうち、前記両主面近傍から離間した位置から穿孔することによる。表面が平坦な封止部材に対して垂直にビームや研磨剤(ブラスト加工に用いられる)を照射または噴射して穿孔する場合、貫通孔の端部にチッピング等が発生することがある。これに対し、本発明の封止部材の製造方法であれば、内側面61の途中から加工を開始するため、加工に寄与しない前記両主面近傍の領域のチッピング等の発生を防止することができる。さらに内側面61の途中から加工を開始するため、封止部材の主面への穿孔の影響を緩和することがきる。これにより貫通孔端部周辺の封止部材の主面を良好な状態に維持できるため、搭載電極7や内部配線および外部接続端子24等の各種導体の成膜を確実に行うことができる。   According to the manufacturing method of the sealing member of the present invention, it is possible to suppress the occurrence of chipping or the like when the through hole H is drilled. This is because, in the first step, the opening diameters in the base material are smaller than the opening diameters in the two main surfaces of the base material of the sealing member, and the holes 60 having the tapered inner side surfaces 61 are formed in the two main surfaces, respectively. In the second step, the inner surface 61 is formed and drilled from a position away from the vicinity of both main surfaces. When drilling by irradiating or spraying a beam or an abrasive (used for blasting) perpendicularly to a sealing member having a flat surface, chipping or the like may occur at the end of the through hole. On the other hand, in the manufacturing method of the sealing member of the present invention, since processing is started from the middle of the inner side surface 61, it is possible to prevent the occurrence of chipping or the like in the regions near the two main surfaces that do not contribute to processing. it can. Furthermore, since the machining is started from the middle of the inner surface 61, the influence of perforation on the main surface of the sealing member can be reduced. As a result, the main surface of the sealing member around the end of the through hole can be maintained in a good state, so that various conductors such as the mounting electrode 7, the internal wiring, and the external connection terminal 24 can be reliably formed.

なお前記第2工程において、前記穿孔をブラストによって行ってもよい。具体的にブラストとして、ショットブラスト等の機械式ブラストやサンドブラスト等の空気式ブラストあるいは、研磨剤溶液をノズルから高圧で噴射させて加工を行う湿式ブラストが適用可能である。前記穿孔をブラストによって行うことにより、高精度で微細な加工を行うことができる。これはブラスト加工であれば、各種レジスト膜を用いた露光によってパターン形成を行うので、開口部分の位置決めを高精度でできるためである。また露光によってパターン形成されたレジスト膜を保護膜としてブラスト加工を行うため、このような保護膜を形成しないビームによる加工よりも投射(照射)位置制御の点において、ビームよりも優れる。この場合、基材の両主面の所定パターンと前記孔の両主面近傍の領域を被覆するように電着レジストでレジスト膜を形成した後、ブラスト加工を行ってもよい。この場合、ブラスト加工に寄与しない前記両主面近傍の領域は、レジスト膜によって研磨剤から保護されるため、研磨剤の投射径を絞ることなく加工ができるのでバッチ処理が可能となり、生産効率に優れる。なお、超小型で微小領域への高精度な各種加工が施される圧電振動デバイスにおいては研磨剤の飛散を防止できる湿式ブラストが好適である。   In the second step, the perforation may be performed by blasting. Specifically, mechanical blasting such as shot blasting, pneumatic blasting such as sand blasting, or wet blasting in which an abrasive solution is sprayed from a nozzle at a high pressure can be applied. By performing the perforation by blasting, fine processing can be performed with high accuracy. This is because in the case of blasting, the pattern is formed by exposure using various resist films, so that the opening can be positioned with high accuracy. Further, since blast processing is performed using a resist film patterned by exposure as a protective film, it is superior to the beam in terms of projection (irradiation) position control compared to processing using a beam that does not form such a protective film. In this case, blasting may be performed after forming a resist film with an electrodeposition resist so as to cover a predetermined pattern on both main surfaces of the substrate and a region in the vicinity of both main surfaces of the hole. In this case, the regions in the vicinity of the two main surfaces that do not contribute to the blasting process are protected from the abrasive by the resist film. Excellent. It should be noted that wet blasting that can prevent abrasives from scattering is suitable for a piezoelectric vibration device that is ultra-compact and that is subjected to various highly accurate processes in a minute region.

(導電性部材形成工程)
図11に示す貫通孔Hの内壁面に導電性部材(金属膜)をスパッタリングによって形成するとともに、同時にその他領域(凹部20の内底面等)にも金属膜を形成する。そしてこれらの金属膜をフォトリソグラフィ技術によって露光・現像して所定形状に内部配線を形成する(図示省略)。本実施形態では貫通孔Hの内壁面に形成する導電性部材(シード層)は、TiまたはMoのスパッタ膜の上にCuのスパッタ膜が積層された多層膜となっている。また前記内部配線には、とし、その上にCuメッキ層が積層された多層膜が用いられている。そして電解メッキ法によって貫通孔Hの前記シード層上に導電性部材M(本実施形態ではCu)を析出させることにより貫通電極6が形成される(図12参照。図12では内部配線の記載は省略)。貫通電極6を形成後、図13に示すように段部23の上面側の貫通電極6の一端部に一対の搭載電極7,7(本実施形態ではCu)を形成する。なお本発明の実施形態において導電性部材Mおよび内部配線や搭載電極に使用される金属は前記種類および膜構成に限定されるものではない。前記種類および膜構成以外の種類または膜構成であってもよい。
(Conductive member forming process)
A conductive member (metal film) is formed on the inner wall surface of the through hole H shown in FIG. 11 by sputtering, and at the same time, a metal film is also formed in other regions (such as the inner bottom surface of the recess 20). These metal films are exposed and developed by a photolithography technique to form internal wiring in a predetermined shape (not shown). In this embodiment, the conductive member (seed layer) formed on the inner wall surface of the through hole H is a multilayer film in which a sputtering film of Cu is laminated on a sputtering film of Ti or Mo. For the internal wiring, a multilayer film in which a Cu plating layer is laminated thereon is used. Then, a through electrode 6 is formed by depositing a conductive member M (Cu in this embodiment) on the seed layer of the through hole H by an electrolytic plating method (see FIG. 12. In FIG. 12, the description of the internal wiring is shown). (Omitted). After the through electrode 6 is formed, a pair of mounting electrodes 7 and 7 (Cu in this embodiment) is formed at one end of the through electrode 6 on the upper surface side of the step portion 23 as shown in FIG. In the embodiment of the present invention, the metal used for the conductive member M, the internal wiring, and the mounting electrode is not limited to the type and the film configuration. Types or film configurations other than the above types and film configurations may be used.

(外部端子形成工程)
導電性部材形成工程の後、所定の工程を経て外部接続端子24を形成する(図13参照)。外部接続端子24は貫通電極6の封止部材の他主面201側の一端部を覆うように形成されており、これにより搭載電極7が貫通電極6(または図示しない内部配線)を経由して外部接続端子24と電気的に接続されることになる。
(External terminal formation process)
After the conductive member forming step, the external connection terminal 24 is formed through a predetermined step (see FIG. 13). The external connection terminal 24 is formed so as to cover one end portion on the other main surface 201 side of the sealing member of the through electrode 6, whereby the mounting electrode 7 passes through the through electrode 6 (or internal wiring (not shown)). It is electrically connected to the external connection terminal 24.

なお、貫通孔Hの内部へは必ずしも導電性部材を充填する必要は無く、例えば図14に示すように貫通孔の内壁面に導電性部材(金属膜M)を被着させることで基材の表裏主面の導通を確保し、空隙部分に樹脂材Pを充填することによって貫通孔を封止した構造であってもよい。あるいはまた、図15に示すように貫通孔の内壁面に導電性部材(金属膜M)を被着させるとともに、貫通孔のうち凹部20側の一端領域にも導電性部材(金属膜M)を部分的に充填し、貫通孔の残りの領域に樹脂材Pを部分的に充填した構造であってもよい。また、本発明の実施形態では平面視で外部接続端子24に貫通電極6が重なる位置に形成されているが本発明の適用は本構成に限定されるものではなく、平面視で外部接続端子に重ならない位置、例えば外部接続端子を水晶振動子の底面周縁に配置し、その内側の領域に貫通電極6が位置するように貫通電極を形成してもよい。この場合、前記樹脂材PにはPBO(ポリベンズオキサゾール)等の感光性を有する樹脂材が用いられる。なお樹脂材PはPBOに限定されず、封止部材を構成する材料との密着性が良好な樹脂材を使用することができる。
以上が本発明における水晶振動子を構成する封止部材の製造方法の主要工程に関する説明である。
Note that the inside of the through hole H does not necessarily need to be filled with a conductive member. For example, as shown in FIG. 14, the conductive member (metal film M) is attached to the inner wall surface of the through hole. The structure which sealed the through-hole by ensuring conduction | electrical_connection of the front and back main surfaces, and filling the resin material P in the space | gap part may be sufficient. Alternatively, as shown in FIG. 15, the conductive member (metal film M) is attached to the inner wall surface of the through hole, and the conductive member (metal film M) is also applied to one end region of the through hole on the recess 20 side. A structure in which the resin material P is partially filled and the remaining region of the through hole is partially filled may be used. In the embodiment of the present invention, the through electrode 6 is formed at a position where the external connection terminal 24 overlaps the external connection terminal 24 in a plan view. However, the application of the present invention is not limited to this configuration. A position where they do not overlap, for example, an external connection terminal may be disposed on the periphery of the bottom surface of the crystal resonator, and the through electrode may be formed so that the through electrode 6 is positioned in the inner region. In this case, a photosensitive resin material such as PBO (polybenzoxazole) is used for the resin material P. The resin material P is not limited to PBO, and a resin material having good adhesion to the material constituting the sealing member can be used.
The above is the description regarding the main process of the manufacturing method of the sealing member which comprises the crystal oscillator in this invention.

なお、本発明の実施形態では第1工程において封止部材2の両主面(具体的には段部23と他主面201)にそれぞれ有低孔60を形成しているが、必ずしも封止部材の両主面に有低孔を形成する必要は無く、一主面側のみに有低孔を形成してもよい。この場合、水晶振動素子が搭載され水晶振動子の内部空間となる凹部20側に有低孔を形成するのが好ましい。また、本発明において第1工程で形成される孔は有底孔に限定されものではなく、基材の両主面における開口径より当該基材内部における開口径が小さく、かつテーパー状の内側面を備えた貫通孔であってもよい。   In the embodiment of the present invention, the hole 60 is formed in each of the main surfaces (specifically, the step portion 23 and the other main surface 201) of the sealing member 2 in the first step. It is not necessary to form low holes on both main surfaces of the member, and low holes may be formed only on one main surface side. In this case, it is preferable to form a low hole on the concave portion 20 side on which the crystal resonator element is mounted and which is the internal space of the crystal resonator. Further, the hole formed in the first step in the present invention is not limited to the bottomed hole, and the opening diameter inside the base material is smaller than the opening diameters on both main surfaces of the base material, and the tapered inner side surface May be a through-hole.

本発明の実施形態では表面実装型の水晶振動子の封止部材の製造方法を例に挙げているが、水晶振動子以外に水晶フィルタ、水晶発振器などの電子機器等に用いられる他の圧電振動デバイスの封止部材の製造方法にも適用可能である。   In the embodiment of the present invention, a method for manufacturing a sealing member for a surface-mounted crystal resonator is taken as an example, but in addition to the crystal resonator, other piezoelectric vibrations used for electronic devices such as a crystal filter and a crystal oscillator It is applicable also to the manufacturing method of the sealing member of a device.

本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施の形態はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。   The present invention can be implemented in various other forms without departing from the spirit or main features thereof. Therefore, the above-described embodiment is merely an example in all respects and should not be interpreted in a limited manner. The scope of the present invention is indicated by the claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

圧電振動デバイスの量産に適用できる。   It can be applied to mass production of piezoelectric vibration devices.

1 水晶振動子
2 封止部材
20 凹部
21 内底面(凹部)
200 一主面
201 他主面
3 水晶振動素子
4 蓋体
6 貫通電極
60 孔
61 内側面
62 孔底面
63 直管部
H 貫通孔
M 導電性部材
R レジスト膜
D1 レーザービーム径
D2 有底孔開口径
S 一主面近傍の領域
DESCRIPTION OF SYMBOLS 1 Crystal resonator 2 Sealing member 20 Recessed part 21 Inner bottom face (recessed part)
200 One main surface 201 Other main surface 3 Crystal vibrating element 4 Lid 6 Through electrode 60 Hole 61 Inner side surface 62 Hole bottom surface 63 Straight pipe portion H Through hole M Conductive member R Resist film D1 Laser beam diameter D2 Bottomed hole opening diameter S Area near one main surface

Claims (4)

圧電振動素子の励振電極を気密に封止する圧電振動デバイスの封止部材の製造方法であって、
前記封止部材の基材の両主面間を電気的に接続するための貫通孔を形成する貫通孔形成工程と、前記貫通孔に導電性部材を形成する導電性部材形成工程とを有し、
前記貫通孔形成工程は、前記基材の両主面における開口径より当該基材内部における開口径が小さく、かつテーパー状の内側面を備えた孔を前記両主面に各々形成する第1工程と、
前記内側面のうち、前記両主面近傍から離間した位置から穿孔することによって貫通孔を形成する第2工程と、
からなることを特徴とする圧電振動デバイスの封止部材の製造方法。
A method of manufacturing a sealing member of a piezoelectric vibration device that hermetically seals an excitation electrode of a piezoelectric vibration element,
A through hole forming step of forming a through hole for electrically connecting the two main surfaces of the base material of the sealing member; and a conductive member forming step of forming a conductive member in the through hole. ,
The through-hole forming step is a first step of forming holes on the two main surfaces each having an opening diameter smaller than the opening diameters on the two main surfaces of the base material and having tapered inner surfaces. When,
A second step of forming a through hole by drilling from a position apart from the vicinity of both main surfaces of the inner surface;
A method for manufacturing a sealing member for a piezoelectric vibration device, comprising:
前記第1工程における前記孔を湿式エッチング法によって形成することを特徴とする請求項1に記載の圧電振動デバイスの封止部材の製造方法。   The method for manufacturing a sealing member of a piezoelectric vibration device according to claim 1, wherein the hole in the first step is formed by a wet etching method. 前記第2工程において、前記穿孔をビームまたはブラストによって行うことを特徴とする請求項1乃至2に記載の圧電振動デバイスの封止部材の製造方法。   The method for manufacturing a sealing member for a piezoelectric vibration device according to claim 1, wherein, in the second step, the perforation is performed by a beam or blast. 請求項1乃至3のいずれか一つに記載の圧電振動デバイスの封止部材の製造方法によって得られた封止部材に、励振電極が形成された圧電振動素子を搭載し、前記励振電極を他の封止部材で気密に封止した圧電振動デバイス。   A piezoelectric vibration element on which an excitation electrode is formed is mounted on a sealing member obtained by the method for manufacturing a sealing member for a piezoelectric vibration device according to any one of claims 1 to 3, and the excitation electrode is mounted on the sealing member. Piezoelectric vibration device hermetically sealed with a sealing member.
JP2011187623A 2011-08-30 2011-08-30 Piezoelectric vibration device encapsulation member manufacturing method and piezoelectric vibration device using encapsulation member manufactured by this method Pending JP2013051510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011187623A JP2013051510A (en) 2011-08-30 2011-08-30 Piezoelectric vibration device encapsulation member manufacturing method and piezoelectric vibration device using encapsulation member manufactured by this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011187623A JP2013051510A (en) 2011-08-30 2011-08-30 Piezoelectric vibration device encapsulation member manufacturing method and piezoelectric vibration device using encapsulation member manufactured by this method

Publications (1)

Publication Number Publication Date
JP2013051510A true JP2013051510A (en) 2013-03-14

Family

ID=48013268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011187623A Pending JP2013051510A (en) 2011-08-30 2011-08-30 Piezoelectric vibration device encapsulation member manufacturing method and piezoelectric vibration device using encapsulation member manufactured by this method

Country Status (1)

Country Link
JP (1) JP2013051510A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020137830A1 (en) * 2018-12-27 2020-07-02 株式会社大真空 Piezoelectric vibration device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06343017A (en) * 1993-04-09 1994-12-13 Citizen Watch Co Ltd Piezoelectric vibrator and production thereof
JP2004248113A (en) * 2003-02-14 2004-09-02 Seiko Epson Corp Package structure of piezoelectric device and method for manufacturing piezoelectric device
JP2007294751A (en) * 2006-04-26 2007-11-08 Kyocera Kinseki Corp Piezoelectric element forming method
WO2010016487A1 (en) * 2008-08-05 2010-02-11 株式会社大真空 Sealing member for piezoelectric oscillation device, and method for manufacturing the sealing member
JP2010206322A (en) * 2009-02-27 2010-09-16 Daishinku Corp Package member, method of manufacturing the package member, and piezoelectric vibration device using the package member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06343017A (en) * 1993-04-09 1994-12-13 Citizen Watch Co Ltd Piezoelectric vibrator and production thereof
JP2004248113A (en) * 2003-02-14 2004-09-02 Seiko Epson Corp Package structure of piezoelectric device and method for manufacturing piezoelectric device
JP2007294751A (en) * 2006-04-26 2007-11-08 Kyocera Kinseki Corp Piezoelectric element forming method
WO2010016487A1 (en) * 2008-08-05 2010-02-11 株式会社大真空 Sealing member for piezoelectric oscillation device, and method for manufacturing the sealing member
JP2010206322A (en) * 2009-02-27 2010-09-16 Daishinku Corp Package member, method of manufacturing the package member, and piezoelectric vibration device using the package member

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020137830A1 (en) * 2018-12-27 2020-07-02 株式会社大真空 Piezoelectric vibration device
CN113228256A (en) * 2018-12-27 2021-08-06 株式会社大真空 Piezoelectric vibration device
JPWO2020137830A1 (en) * 2018-12-27 2021-11-04 株式会社大真空 Piezoelectric vibration device
JP7188454B2 (en) 2018-12-27 2022-12-13 株式会社大真空 piezoelectric vibration device
CN113228256B (en) * 2018-12-27 2024-03-22 株式会社大真空 Piezoelectric vibration device

Similar Documents

Publication Publication Date Title
US7615406B2 (en) Electronic device package manufacturing method and electronic device package
US8227958B2 (en) Piezoelectric devices and methods for manufacturing same
TW201503434A (en) Piezoelectric device and method for fabricating the same
JP2009182924A (en) Piezoelectric device and method of manufacturing the same
KR20100045909A (en) Package for electronic component, piezoelectric device and manufacturing method thereof
TW201330186A (en) Electronic component package, sealing member for electronic component package, and method for manufacturing sealing member for electronic component package
JP2007214941A (en) Piezoelectric vibration chip and piezoelectric device
KR20170136967A (en) One type of quartz crystal resonator with round blank structure and its processing technology
JP4292825B2 (en) Method for manufacturing quartz vibrating piece
JP5278044B2 (en) Package member, method for manufacturing the package member, and piezoelectric vibration device using the package member
JP6516399B2 (en) Electronic device
JP2014143289A (en) Method of manufacturing electronic device, electronic device, and oscillator
JP2016032195A (en) Piezoelectric vibration piece, manufacturing method of the same, and piezoelectric device
JP6449557B2 (en) Quartz device manufacturing method
JP2013051510A (en) Piezoelectric vibration device encapsulation member manufacturing method and piezoelectric vibration device using encapsulation member manufactured by this method
JP4636170B2 (en) Quartz vibrating piece, manufacturing method thereof, quartz crystal device using quartz crystal vibrating piece, mobile phone device using quartz crystal device, and electronic equipment using quartz crystal device
JP6383138B2 (en) Electronic devices
JP2015211362A (en) Quarts device and manufacturing method for quarts device
JPWO2018079181A1 (en) Method for adjusting frequency of piezoelectric vibration device
JP2007184810A (en) Method for manufacturing piezoelectric vibrator
KR100878395B1 (en) Method for fabricating crystal device
JP6624803B2 (en) AT-cut crystal blank and crystal oscillator
JP5166015B2 (en) Frequency adjustment device
WO2024027734A1 (en) Quartz resonator with electrode lead-out portions on same side and manufacturing method therefor, and electronic device
JP2015088987A (en) Method for manufacturing package and package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150519