JP2013050416A - Road surface friction coefficient measurement device - Google Patents

Road surface friction coefficient measurement device Download PDF

Info

Publication number
JP2013050416A
JP2013050416A JP2011189451A JP2011189451A JP2013050416A JP 2013050416 A JP2013050416 A JP 2013050416A JP 2011189451 A JP2011189451 A JP 2011189451A JP 2011189451 A JP2011189451 A JP 2011189451A JP 2013050416 A JP2013050416 A JP 2013050416A
Authority
JP
Japan
Prior art keywords
road surface
friction coefficient
test wheel
measuring device
surface friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011189451A
Other languages
Japanese (ja)
Inventor
Atsushi Kanda
神田  淳
Hirotaka Igawa
寛隆 井川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2011189451A priority Critical patent/JP2013050416A/en
Publication of JP2013050416A publication Critical patent/JP2013050416A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a road surface friction coefficient measurement device which has a small and inexpensive configuration and is capable of accurately controlling a slip ratio while varying it in a wide range and accurately measuring a state of a road surface friction coefficient which varies depending on the slip ratio.SOLUTION: The road surface friction coefficient measurement device 100 includes driving means for rotationally driving a test wheel 120 whose outer circumference surface comes into contact with the road surface; and control means 180 which measures the friction coefficient between the test wheel 120 and the road surface. The test wheel 120, the driving means, and the control means 180 are supported by a dolly 110 that has a travelling wheel 130 and travels by towing or driving. The control means 180 optionally sets the slip ratio between the outer circumference surface of the test wheel 120 and the road surface.

Description

本発明は、試験輪を駆動しながら路面と接触させ、その回転負荷を測定して試験輪と路面との摩擦係数を計測する路面摩擦係数計測装置に関する。   The present invention relates to a road surface friction coefficient measuring device for measuring a friction coefficient between a test wheel and a road surface by contacting a road surface while driving a test wheel and measuring a rotational load thereof.

道路や滑走路がどのくらい滑りやすい状態であるかを管理することは、自動車や航空機にとって、安全性上重要な問題である。滑りやすさは、路面とタイヤの間にどのくらいの摩擦があるかで評価され、路面摩擦係数がその尺度となる。
一般に、道路や空港の滑走路の路面摩擦係数の測定は、測定装置を備えた計測車両を走行させて行っているが、このとき、路面とタイヤの間の摩擦は、路面に対してタイヤがどれだけスリップしているかに大きく関係してくる。このスリップの度合いは、スリップ比と称されており、
スリップ比=(前進速度−タイヤ外周面の周速度)/前進速度
で表され、0〜1の値をとる。
スリップ比が0のときは、タイヤは路面に対して滑ることなく転がっている状態であり、路面摩擦係数は非常に小さくなり、スリップ比が1のときは、タイヤがロックしている状態であり路面摩擦係数は大きくなる。
このようにスリップ比によって路面摩擦係数は変化するが、最大の路面摩擦係数となるスリップ比は一定ではなく、路面の状態に左右される。
Managing how slippery a road or runway is is an important safety issue for cars and aircraft. The slipperiness is evaluated by how much friction there is between the road surface and the tire, and the road surface friction coefficient is a scale.
In general, the road friction coefficient of roads and airport runways is measured by running a measuring vehicle equipped with a measuring device. At this time, the friction between the road surface and the tire is caused by the tire against the road surface. It depends greatly on how much you slip. This degree of slip is called slip ratio,
Slip ratio = (forward speed−circumferential speed of tire outer peripheral surface) / forward speed, and takes a value of 0 to 1.
When the slip ratio is 0, the tire is rolling without slipping on the road surface, the road surface friction coefficient is very small, and when the slip ratio is 1, the tire is in a locked state. The road friction coefficient becomes large.
Thus, although the road surface friction coefficient changes depending on the slip ratio, the slip ratio that provides the maximum road surface friction coefficient is not constant and depends on the state of the road surface.

従来、路面摩擦係数の計測のために、車両の後部中央に計測用タイヤ(試験輪)を設置する改造を行い、走行輪に対して一定のスリップ比で回転させた試験輪を路面に押しつけ、その回転負荷から摩擦係数を計測する方法(非特許文献)、より簡便な機構として車両の後輪に支持アームを介して試験輪を取り付けて、やはり走行輪に対して一定のスリップ比で試験輪を回転させ、その回転負荷から摩擦係数を計測する方法(特許文献1)等が公知である。   Conventionally, in order to measure the coefficient of friction of the road surface, a modification was made to install a measurement tire (test wheel) in the center of the rear of the vehicle, and the test wheel rotated at a constant slip ratio against the running wheel was pressed against the road surface. A method of measuring the friction coefficient from the rotational load (non-patent document), and as a simpler mechanism, a test wheel is attached to the rear wheel of the vehicle via a support arm, and the test wheel is also at a constant slip ratio with respect to the traveling wheel. A method of measuring the friction coefficient from the rotational load (Patent Document 1) is known.

また、スリップ比を可変とした装置として、計測車両もしくは車両に牽引される第2の車両にブレーキ装置を搭載した試験輪を取り付ける方法が公知である(特許文献2)。
さらに、スリップ比を可変とし、かつ、そのスリップ比を制御できる装置としては、計測車両に搭載した試験輪をモータで駆動させる方法が公知である(特許文献3)。
Further, as a device having a variable slip ratio, a method of attaching a test wheel equipped with a brake device to a measuring vehicle or a second vehicle pulled by the vehicle is known (Patent Document 2).
Furthermore, as a device that can change the slip ratio and control the slip ratio, a method of driving a test wheel mounted on a measurement vehicle with a motor is known (Patent Document 3).

特開2001−183250号公報JP 2001-183250 A 特開平4−83147号公報JP-A-4-83147 特開平4−157341号公報JP-A-4-157341

航空宇宙技術研究所報告1443号「雪氷滑走路面摩擦係数測定装置の開発」National Aerospace Research Institute Report No. 1443 “Development of a Snow and Ice Runway Friction Coefficient Measuring Device”

しかしながら、上記非特許文献や特許文献1等で公知のスリップ比が機構上固定された計測装置では、常に一定のスリップ比での路面摩擦係数しか計測できず、スリップ比によって異なる路面摩擦係数の状態を正確に計測することが出来ないという問題があった。
また、走行輪とリンクさせることで試験輪を駆動させ、走行輪との関係で試験輪のスリップ比を設定しているが、走行輪自体にも必ず所定のスリップが発生し、その走行輪のスリップが走行状況、路面状況に応じて必ずしも一定の値ではないため、精度の高い試験輪のスリップ比を得ることがそもそもできないという問題があった。
However, in the measuring device in which the known slip ratio is fixed in the mechanism in the above-mentioned non-patent document, patent document 1, etc., only the road surface friction coefficient at a constant slip ratio can always be measured. There was a problem that it was not possible to measure accurately.
In addition, the test wheel is driven by linking with the traveling wheel, and the slip ratio of the test wheel is set in relation to the traveling wheel. However, the traveling wheel itself always generates a predetermined slip, and the traveling wheel Since the slip is not necessarily a constant value depending on the traveling condition and road surface condition, there is a problem that it is impossible to obtain a highly accurate slip ratio of the test wheel in the first place.

一方、上記特許文献2等で公知のブレーキ装置によりスリップ比を可変にする計測装置では、走行輪自体が試験輪であり、ロックアップさせることなく制動することでスリップさせて任意の値とするものであるため、スリップ比が大きい範囲の設定ができないとともに、スリップ比を変動させつつその瞬時値から路面摩擦係数を算出するため、瞬間的な変動やノイズによって計測の精度が低下し、高精度で計測することが出来ないという問題があった。
また、走行輪自体にも必ず所定のスリップが発生するため、スリップ比が0近辺の設定もできないという問題があった。
On the other hand, in the measuring device that makes the slip ratio variable by a known brake device in Patent Document 2 or the like, the traveling wheel itself is a test wheel, and slips by braking without locking up to an arbitrary value. Therefore, it is impossible to set a range where the slip ratio is large, and since the road surface friction coefficient is calculated from the instantaneous value while changing the slip ratio, the measurement accuracy decreases due to instantaneous fluctuations and noise. There was a problem that it could not be measured.
In addition, since a predetermined slip always occurs on the traveling wheel itself, there is a problem that the slip ratio cannot be set near zero.

さらに、上記特許文献3等で公知の、計測車両に搭載した試験輪をモータで駆動してスリップ比を可変にする計測装置では、計測車両の中央部に、試験輪、試験輪の載荷装置、モータ、トルクシャフト等を組み込むために車両構造や電気回路の大幅な改造が必要となる。
そして、これらの装置は、小型車両では搭載が困難なため、バスのような大型の車両を専用の計測装置とすることが必要となり、計測装置として非常に大型で高価なものとなるという問題があった。
Furthermore, in a measuring device that drives a test wheel mounted on a measurement vehicle with a motor to change the slip ratio, which is known in Patent Document 3 and the like, a test wheel, a loading device for the test wheel, In order to incorporate a motor, a torque shaft, etc., the vehicle structure and electric circuit must be significantly modified.
Since these devices are difficult to mount in a small vehicle, it is necessary to use a large vehicle such as a bus as a dedicated measuring device, and there is a problem that the measuring device is very large and expensive. there were.

そこで、本発明は、小型で安価な構成で、スリップ比を広範囲に可変とし高い精度で制御可能で、スリップ比によって異なる路面摩擦係数の状態を高精度で正確に計測することが可能な路面摩擦係数計測装置を提供することを目的とするものである。   Therefore, the present invention is a road surface friction that is small and inexpensive, can be controlled with high accuracy by making the slip ratio variable over a wide range, and can accurately and accurately measure the state of the road surface friction coefficient that varies depending on the slip ratio. The object is to provide a coefficient measuring device.

本請求項1に係る発明は、外周面が路面に接触する試験輪と、該試験輪を回転駆動する駆動手段と、前記試験輪の回転負荷を測定して試験輪と路面との摩擦係数を計測する制御手段とを有する路面摩擦係数計測装置であって、前記試験輪、駆動手段および制御手段が、走行輪を備え牽引あるいは推進によって走行する台車に支持され、前記制御手段が、前記駆動手段を制御して前記試験輪の外周面と路面とのスリップ比を任意に設定可能に構成されていることにより、前記課題を解決するものである。   According to the first aspect of the present invention, the test wheel whose outer peripheral surface is in contact with the road surface, the driving means for rotationally driving the test wheel, the rotational load of the test wheel is measured, and the friction coefficient between the test wheel and the road surface is determined. A road surface friction coefficient measuring device having a control means for measuring, wherein the test wheel, the drive means, and the control means are supported by a carriage that has running wheels and travels by traction or propulsion, and the control means is the drive means. The problem is solved by controlling the slip ratio so that the slip ratio between the outer peripheral surface of the test wheel and the road surface can be arbitrarily set.

本請求項2に係る発明は、請求項1に係る路面摩擦係数計測装置の構成に加え、前記駆動手段が、前記走行輪の回転によって前記試験輪の回転駆動力を得ることにより、前記課題を解決するものである。   In the invention according to claim 2, in addition to the configuration of the road surface friction coefficient measuring device according to claim 1, the driving means obtains the rotational driving force of the test wheel by the rotation of the traveling wheel. It is a solution.

本請求項3に係る発明は、請求項1または請求項2に係る路面摩擦係数計測装置の構成に加え、前記制御手段が、路面に対する台車の対地速度を検出する速度センサーを備えていることにより、前記課題を解決するものである。   In the invention according to claim 3, in addition to the configuration of the road surface friction coefficient measuring apparatus according to claim 1 or 2, the control means includes a speed sensor that detects a ground speed of the carriage with respect to the road surface. The above-mentioned problem is solved.

本請求項4に係る発明は、請求項1乃至請求項3のいずれかに係る路面摩擦係数計測装置の構成に加え、前記駆動手段が、前記走行輪と試験輪との間で変速機構を介して回転を伝達する伝達機構と、前記試験輪を制動する制動機構とを備えていることにより、前記課題を解決するものである。   According to the fourth aspect of the present invention, in addition to the configuration of the road surface friction coefficient measuring device according to any one of the first to third aspects, the driving means is provided between the traveling wheel and the test wheel via a speed change mechanism. The problem is solved by providing a transmission mechanism for transmitting rotation and a braking mechanism for braking the test wheel.

本請求項5に係る発明は、請求項4に係る路面摩擦係数計測装置の構成に加え、前記伝達機構が、クラッチおよび無段階変速機構を備えていることにより、前記課題を解決するものである。   In addition to the configuration of the road surface friction coefficient measuring device according to claim 4, the invention according to claim 5 solves the above problem by the fact that the transmission mechanism includes a clutch and a continuously variable transmission mechanism. .

本請求項6に係る発明は、請求項5に係る路面摩擦係数計測装置の構成に加え、前記無段階変速機構が、回転数可変の油圧伝動機構であることにより、前記課題を解決するものである。   In addition to the configuration of the road surface friction coefficient measuring device according to claim 5, the invention according to claim 6 solves the above problem by the stepless speed change mechanism being a hydraulic transmission mechanism having a variable rotation speed. is there.

本請求項7に係る発明は、請求項5に係る路面摩擦係数計測装置の構成に加え、前記無段階変速機構が、電動モータ、発電機および電動モータの駆動制御手段からなることにより、前記課題を解決するものである。   According to the seventh aspect of the present invention, in addition to the configuration of the road surface friction coefficient measuring device according to the fifth aspect, the continuously variable transmission mechanism includes an electric motor, a generator, and drive control means for the electric motor. Is a solution.

本請求項8に係る発明は、請求項1乃至請求項7のいずれかに係る路面摩擦係数計測装置の構成に加え、前記台車には電力供給手段が備えられ、前記計測制御手段が、該電力供給手段の電力により動作することにより、前記課題を解決するものである。   According to an eighth aspect of the present invention, in addition to the configuration of the road surface friction coefficient measuring device according to any one of the first to seventh aspects, the carriage is provided with power supply means, and the measurement control means The problem is solved by operating with the power of the supply means.

本請求項9に係る発明は、請求項7に係る路面摩擦係数計測装置の構成に加え、前記台車には電力供給手段が備えられ、前記制御手段が、該電力供給手段の電力により動作し、該電力供給手段が、前記発電機の電力を利用することにより、前記課題を解決するものである。   In the invention according to claim 9, in addition to the configuration of the road surface friction coefficient measuring device according to claim 7, the carriage is provided with power supply means, and the control means is operated by the power of the power supply means, The power supply means uses the power of the generator to solve the problem.

本請求項1に係る路面摩擦係数計測装置によれば、試験輪、駆動手段および制御手段が、走行輪を備え牽引あるいは推進によって走行する台車に支持されることで、全体を小型化し簡単で安価な構成とすることができる。
また、駆動手段および制御手段によって試験輪を独立して制御し、スリップ比を任意に設定することで、スリップ比を広範囲に可変とし高い精度で制御可能で、スリップ比によって異なる路面摩擦係数の状態を高精度で正確に計測することが可能となる。
According to the road surface friction coefficient measuring apparatus according to the first aspect of the present invention, the test wheels, the drive means, and the control means are supported by a carriage that has traveling wheels and travels by traction or propulsion, thereby making the whole size small and simple and inexpensive. It can be set as a simple structure.
In addition, by independently controlling the test wheels by the drive means and the control means, and arbitrarily setting the slip ratio, the slip ratio can be varied over a wide range and can be controlled with high accuracy, and the state of the road surface friction coefficient that varies depending on the slip ratio Can be accurately measured with high accuracy.

本請求項2に記載の構成によれば、駆動手段が、走行輪の回転によって試験輪の回転駆動力を得ることで、牽引あるいは推進するための車両等から動力を供給したり、台車上に試験輪の駆動のための動力源を別途搭載する必要がないため、より簡単で安価な構成とすることができる。
本請求項3に記載の構成によれば、路面に対する台車の対地速度を正確に計測することができるため、走行輪のスリップの影響をうけることなく試験輪のスリップ比をより正確に設定することが可能となり、スリップ比を広範囲に可変とし高い精度で制御可能で、スリップ比によって異なる路面摩擦係数の状態を高精度で正確に計測することが可能となる。
本請求項4に記載の構成によれば、変速機構の変速比を変更してスリップ比を1に近い大きな状態を設定する際に、制動機構によって試験輪の回転速度を素早く小さくすることが可能となるため、スリップ比をより円滑に広範囲に可変とし高い精度で制御可能となる。
According to the configuration of the second aspect of the present invention, the driving means obtains the rotational driving force of the test wheel by rotating the traveling wheel, thereby supplying power from a vehicle or the like for towing or propelling, or on the carriage. Since it is not necessary to separately install a power source for driving the test wheels, a simpler and cheaper configuration can be achieved.
According to the configuration of the third aspect of the present invention, since the ground speed of the carriage with respect to the road surface can be accurately measured, the slip ratio of the test wheel can be set more accurately without being affected by the slip of the traveling wheel. The slip ratio can be varied over a wide range and controlled with high accuracy, and the state of the road surface friction coefficient that varies depending on the slip ratio can be accurately measured with high accuracy.
According to the configuration of the fourth aspect of the present invention, when changing the speed ratio of the speed change mechanism and setting the slip ratio to a large state close to 1, the rotation speed of the test wheel can be quickly reduced by the braking mechanism. Therefore, the slip ratio can be varied more smoothly over a wide range and can be controlled with high accuracy.

本請求項5に記載の構成によれば、無段階変速機構によってスリップ比を連続的に任意の値の制御可能となり、また、クラッチにより駆動を断ち制動機構により試験輪を停止させることでスリップ比を1に設定することも可能となるため、スリップ比をより円滑に広範囲に可変とし高い精度で制御可能となる。
本請求項6および請求項7に記載の構成によれば、無段変速機機構を小型化可能でかつ配置の自由度が向上し、全体をより小型化することができる。
本請求項8および請求項9に記載の構成によれば、牽引あるいは推進するための車両等から電力を供給する必要がないため、より簡単で安価な構成とすることができる。
According to the fifth aspect of the present invention, the slip ratio can be continuously controlled to an arbitrary value by the continuously variable transmission mechanism, and the slip ratio can be controlled by stopping the test wheel by the braking mechanism after stopping the driving by the clutch. Can be set to 1, so that the slip ratio can be varied more smoothly over a wide range and can be controlled with high accuracy.
According to the configurations described in claims 6 and 7, the continuously variable transmission mechanism can be reduced in size, the degree of freedom in arrangement can be improved, and the overall size can be further reduced.
According to the configurations of claims 8 and 9, since it is not necessary to supply power from a vehicle or the like for towing or propelling, a simpler and less expensive configuration can be achieved.

本発明の1実施例である路面摩擦係数計測装置の側面図。The side view of the road surface friction coefficient measuring device which is one Example of this invention. 本発明の1実施例である路面摩擦係数計測装置の平面図。The top view of the road surface friction coefficient measuring device which is one Example of this invention. 本発明の1実施例である路面摩擦係数計測装置の駆動手段の概略説明図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic explanatory drawing of the drive means of the road surface friction coefficient measuring device which is one Example of this invention. 本発明の他の実施例である路面摩擦係数計測装置の駆動手段の概略説明図。The schematic explanatory drawing of the drive means of the road surface friction coefficient measuring apparatus which is the other Example of this invention. 本発明のさらに他の実施例である路面摩擦係数計測装置の駆動手段の概略説明図。The schematic explanatory drawing of the drive means of the road surface friction coefficient measuring device which is further another Example of this invention.

本発明の路面摩擦係数計測装置は、外周面が路面に接触する試験輪と、該試験輪を回転駆動する駆動手段と、試験輪の回転負荷を測定して試験輪と路面との摩擦係数を計測する制御手段とを有し、試験輪、駆動手段および制御手段が、走行輪を備え牽引あるいは推進によって走行する台車に支持され、制御手段が駆動手段を制御して試験輪の外周面と路面とのスリップ比を任意に設定するものであり、全体を小型化し簡単で安価な構成とすることができ、また、試験輪を独立して制御しスリップ比を任意に設定可能に構成されていることで、スリップ比を広範囲に可変とし高い精度で制御可能で、スリップ比によって異なる路面摩擦係数の状態を高精度で正確に計測することが可能となるものである。   The road surface friction coefficient measuring device of the present invention includes a test wheel whose outer peripheral surface is in contact with the road surface, a driving means for rotationally driving the test wheel, a rotational load of the test wheel, and a friction coefficient between the test wheel and the road surface. A test wheel, a driving means, and a control means, which are supported by a carriage that has traveling wheels and travels by towing or propulsion, and the control means controls the driving means to control the outer peripheral surface and the road surface of the test wheels. The slip ratio can be arbitrarily set, and the whole can be made small and simple and inexpensive, and the test wheel can be controlled independently and the slip ratio can be set arbitrarily. Thus, the slip ratio can be varied over a wide range and can be controlled with high accuracy, and the state of the road surface friction coefficient that varies depending on the slip ratio can be accurately measured with high accuracy.

本発明の一実施例である路面摩擦係数計測装置100は、図1、図2に概略的に示すように、走行輪130を備え連結部111を介して自動車等に牽引される台車110に、試験輪120、駆動手段および制御手段180が支持されて構成されている。
駆動手段は、走行輪130の回転によって駆動される油圧ポンプ141と、該油圧ポンプ141から供給される圧油によって駆動される油圧モータ142を有し、試験輪120は該油圧モータ142により回転駆動される。
油圧ポンプ141は例えば可変容量ポンプで構成されており、変速機構160を制御することによって供給する圧油の量が調節され、油圧モータ142の回転数が制御される。
油圧モータ142の出力軸には制動機構170が設けられており、油圧モータ142の駆動力を解除して試験輪120を停止させた状態とすることを可能としている。
試験輪120は昇降機構121により所定の押圧力で路面に押し付けるとともに、路面との接地を解除することも可能に構成されている。
As shown schematically in FIGS. 1 and 2, a road surface friction coefficient measuring apparatus 100 according to an embodiment of the present invention includes a traveling wheel 130 and a cart 110 that is pulled by an automobile or the like via a connecting portion 111. The test wheel 120, the drive means, and the control means 180 are supported and configured.
The driving means includes a hydraulic pump 141 driven by the rotation of the traveling wheel 130 and a hydraulic motor 142 driven by pressure oil supplied from the hydraulic pump 141, and the test wheel 120 is driven to rotate by the hydraulic motor 142. Is done.
The hydraulic pump 141 is composed of, for example, a variable displacement pump, and the amount of pressure oil to be supplied is adjusted by controlling the transmission mechanism 160, and the rotational speed of the hydraulic motor 142 is controlled.
A brake mechanism 170 is provided on the output shaft of the hydraulic motor 142, and the driving force of the hydraulic motor 142 is released so that the test wheel 120 can be stopped.
The test wheel 120 is configured to be pressed against the road surface with a predetermined pressing force by the elevating mechanism 121 and to be able to release the ground contact with the road surface.

また、走行輪130が台車110に対してサスペンション131を介して支持され、試験輪120が昇降機構121により所定の力で路面に押し付けられることで、路面の凹凸や振動に対しても台車110が円滑に走行するとともに、試験輪120が常に所定の押圧力で接地して正確な計測が可能となるように構成されている。
なお、台車110には補助輪112が路面に対して出没可能に設けられている。このことで、自動車等に連結されていない路面摩擦係数計測装置100を単独で容易に移動させることができ、非使用時や、使用開始・終了時の取り扱いを迅速に行うことができる。
In addition, the traveling wheel 130 is supported by the carriage 110 via the suspension 131, and the test wheel 120 is pressed against the road surface with a predetermined force by the lifting mechanism 121. While running smoothly, the test wheel 120 is always grounded with a predetermined pressing force so that accurate measurement is possible.
In addition, auxiliary wheels 112 are provided on the carriage 110 so as to be able to appear and disappear with respect to the road surface. As a result, the road surface friction coefficient measuring apparatus 100 that is not connected to an automobile or the like can be easily moved independently, and can be quickly handled when not in use or at the start / end of use.

図3に、本発明の一実施例である路面摩擦係数計測装置100の計測動作に関連する概略説明図を示す。
台車110が自動車等で牽引されることによって走行輪130が回転し、その回転により油圧ポンプ141が駆動される。
油圧ポンプ141は変速機構160が備えられており供給する圧油の量を調節可能に構成されている。
油圧ポンプ141から供給される圧油は、伝達機構を構成する油圧配管150を介して油圧モータ142を駆動し、油圧モータ142により試験輪120が回転駆動される。
試験輪120の回転軸には制動機構170が備えられている。
また、任意の位置に台車110の対地速度を測定する対地速度センサー181が備えられ、試験輪120の回転軸には負荷センサー182が備えられている。
In FIG. 3, the schematic explanatory drawing relevant to the measurement operation | movement of the road surface friction coefficient measuring apparatus 100 which is one Example of this invention is shown.
When the carriage 110 is pulled by an automobile or the like, the traveling wheel 130 is rotated, and the hydraulic pump 141 is driven by the rotation.
The hydraulic pump 141 is provided with a speed change mechanism 160 so that the amount of pressure oil to be supplied can be adjusted.
The pressure oil supplied from the hydraulic pump 141 drives the hydraulic motor 142 via the hydraulic piping 150 that constitutes the transmission mechanism, and the test wheel 120 is rotationally driven by the hydraulic motor 142.
A brake mechanism 170 is provided on the rotating shaft of the test wheel 120.
Further, a ground speed sensor 181 for measuring the ground speed of the carriage 110 is provided at an arbitrary position, and a load sensor 182 is provided on the rotating shaft of the test wheel 120.

制御手段180は、試験輪120の外周面と路面とのスリップ比を任意に設定可能で、対地速度センサー181、負荷センサー182、変速機構160、油圧モータ142、および制動機構170を監視あるいは制御可能に構成されている。
このことで、制御手段180によって、対地速度センサー181により検出された台車110の速度と、油圧モータ142の回転数から計算される試験輪120の外周面の周速度とを任意の比となるように変速機構160を制御することで、試験輪120の外周面と路面とのスリップ比を正確に設定することが可能となる。
なお、スリップ比を1とする、すなわち試験輪120を完全に停止させる場合は、制御手段180によって制動機構170を作動させれば良い。
試験輪120の直径および昇降機構121による路面に対する押圧力は既知であるため、制御手段180によって、既知の値と負荷センサー182で検出した回転負荷から任意のスリップ比における路面と試験輪120の間の摩擦係数を演算することができる。
なお、路面に対する押圧力は、昇降機構121に設定された所定値を既知のものとして用いず、別途のセンサーを設けてリアルタイムに検出しても良い。
また、個々の構成部材、センサー等の具体的な構成は、上記の動作を行えるものであればいかなるものであっても良く、それぞれ、公知の安価な構成部材を使用することが可能である。
The control unit 180 can arbitrarily set the slip ratio between the outer peripheral surface of the test wheel 120 and the road surface, and can monitor or control the ground speed sensor 181, the load sensor 182, the speed change mechanism 160, the hydraulic motor 142, and the braking mechanism 170. It is configured.
As a result, the control means 180 makes an arbitrary ratio between the speed of the carriage 110 detected by the ground speed sensor 181 and the peripheral speed of the outer peripheral surface of the test wheel 120 calculated from the rotational speed of the hydraulic motor 142. In addition, by controlling the speed change mechanism 160, the slip ratio between the outer peripheral surface of the test wheel 120 and the road surface can be set accurately.
When the slip ratio is set to 1, that is, when the test wheel 120 is completely stopped, the braking mechanism 170 may be operated by the control means 180.
Since the diameter of the test wheel 120 and the pressing force against the road surface by the elevating mechanism 121 are known, the control means 180 determines the distance between the road surface and the test wheel 120 at an arbitrary slip ratio from the known value and the rotational load detected by the load sensor 182. The friction coefficient can be calculated.
The pressing force on the road surface may be detected in real time by providing a separate sensor without using a predetermined value set in the lifting mechanism 121 as a known value.
In addition, the specific configuration of each component member, sensor, and the like may be any as long as it can perform the above-described operation, and a known inexpensive component member can be used for each.

図4に、上記実施例における油圧を用いた駆動手段を、機械的な構成に置き換えた他の実施例を示す。
台車110が自動車等で牽引されることによって走行輪130が回転し、その回転は入力クラッチ143、ギアユニット152を介して無段変速機161に伝達される。
無段変速機161の回転出力は、出力クラッチ144、制動機構170を介して試験輪120に伝達される。
また、任意の位置に台車110の対地速度を測定する対地速度センサー181が備えられ、試験輪120の回転軸には負荷センサー182が備えられている。
FIG. 4 shows another embodiment in which the driving means using the hydraulic pressure in the above embodiment is replaced with a mechanical configuration.
When the carriage 110 is pulled by an automobile or the like, the traveling wheel 130 rotates, and the rotation is transmitted to the continuously variable transmission 161 via the input clutch 143 and the gear unit 152.
The rotational output of the continuously variable transmission 161 is transmitted to the test wheel 120 via the output clutch 144 and the braking mechanism 170.
Further, a ground speed sensor 181 for measuring the ground speed of the carriage 110 is provided at an arbitrary position, and a load sensor 182 is provided on the rotating shaft of the test wheel 120.

制御手段180は、試験輪120の外周面と路面とのスリップ比を任意に設定可能で、対地速度センサー181、負荷センサー182、入力クラッチ143、無段変速機161、出力クラッチ144、および制動機構170を監視あるいは制御可能に構成されている。
このことで、制御手段180によって、対地速度センサー181により検出された台車110の速度と、無段変速機161の出力回転数から計算される試験輪120の外周面の周速度とを任意の比となるように無段変速機161を制御することで、試験輪120の外周面と路面とのスリップ比を正確に設定することが可能となる。
なお、スリップ比を1とする、すなわち試験輪120を完全に停止させる場合は、制御手段180によって入力クラッチ143および出力クラッチ144を開放し、制動機構170を作動させれば良い。
The control means 180 can arbitrarily set the slip ratio between the outer peripheral surface of the test wheel 120 and the road surface, and the ground speed sensor 181, the load sensor 182, the input clutch 143, the continuously variable transmission 161, the output clutch 144, and the braking mechanism 170 can be monitored or controlled.
Thus, the speed of the carriage 110 detected by the ground speed sensor 181 by the control means 180 and the peripheral speed of the outer peripheral surface of the test wheel 120 calculated from the output rotational speed of the continuously variable transmission 161 are arbitrarily set. By controlling the continuously variable transmission 161 such that the slip ratio between the outer peripheral surface of the test wheel 120 and the road surface can be accurately set.
When the slip ratio is set to 1, that is, when the test wheel 120 is completely stopped, the input clutch 143 and the output clutch 144 may be released by the control means 180 and the braking mechanism 170 may be operated.

図5に、上記実施例における油圧、あるいは機械的な構成を用いた駆動手段を、電気的な構成に置き換えたさらに他の実施例を示す。
台車110が自動車等で牽引されることによって走行輪130が回転し、その回転により発電機145が駆動される。
発電機145で発電した電力は、電力ライン153を介してバッテリー154および電動モータ146に供給される。
電動モータ146は任意に回転数を調節可能に構成されている。
電動モータ146の回転出力は、制動機構170を介して試験輪120に伝達される。
また、任意の位置に台車110の対地速度を測定する対地速度センサー181が備えられ、試験輪120の回転軸には負荷センサー182が備えられている。
FIG. 5 shows still another embodiment in which the driving means using the hydraulic pressure or mechanical configuration in the above embodiment is replaced with an electrical configuration.
When the carriage 110 is pulled by an automobile or the like, the traveling wheel 130 is rotated, and the generator 145 is driven by the rotation.
The power generated by the generator 145 is supplied to the battery 154 and the electric motor 146 through the power line 153.
The electric motor 146 is configured to be able to arbitrarily adjust the rotation speed.
The rotation output of the electric motor 146 is transmitted to the test wheel 120 via the braking mechanism 170.
Further, a ground speed sensor 181 for measuring the ground speed of the carriage 110 is provided at an arbitrary position, and a load sensor 182 is provided on the rotating shaft of the test wheel 120.

制御手段180は、試験輪120の外周面と路面とのスリップ比を任意に設定可能で、対地速度センサー181、負荷センサー182、電動モータ146、および制動機構170を監視あるいは制御可能に構成されている。
このことで、制御手段180によって、対地速度センサー181により検出された台車110の速度と、電動モータ146の出力回転数から計算される試験輪120の外周面の周速度とを任意の比となるように無段変速機161を制御することで、試験輪120の外周面と路面とのスリップ比を正確に設定することが可能となる。
なお、スリップ比を1とする、すなわち試験輪120を完全に停止させる場合は、制動機構170を作動させれば良い。
また、バッテリー154は、発電機145の供給電力が電動モータ146を駆動するために常に充分である場合は省略されても良く、また、制御手段180を動作させる電力をまかなうバッテリーと共用しても良い。
The control means 180 can arbitrarily set the slip ratio between the outer peripheral surface of the test wheel 120 and the road surface, and is configured to be able to monitor or control the ground speed sensor 181, the load sensor 182, the electric motor 146, and the braking mechanism 170. Yes.
As a result, the speed of the carriage 110 detected by the ground speed sensor 181 by the control means 180 and the peripheral speed of the outer peripheral surface of the test wheel 120 calculated from the output rotational speed of the electric motor 146 become an arbitrary ratio. By controlling the continuously variable transmission 161 as described above, it is possible to accurately set the slip ratio between the outer peripheral surface of the test wheel 120 and the road surface.
When the slip ratio is set to 1, that is, when the test wheel 120 is completely stopped, the braking mechanism 170 may be operated.
The battery 154 may be omitted when the power supplied from the generator 145 is always sufficient to drive the electric motor 146, or may be shared with a battery that provides power for operating the control means 180. good.

上記実施例では、制御手段180による路面摩擦係数の算出結果の出力、表示、記録等についての説明は省略したが、制御手段180は、汎用の計測装置、入出力装置、演算装置、プログラミング装置等を組み合わせて構成することが可能であり、適宜の手段で行えば良い。
また、スリップ比の設定や、多点の測定の際のスリップ比の変更動作についても、汎用の計測装置、入出力装置、演算装置、プログラミング装置等を用いて最適なシーケンスで行えば良い。
In the above embodiment, description of output, display, recording, etc. of the calculation result of the road surface friction coefficient by the control means 180 is omitted, but the control means 180 is a general-purpose measuring device, input / output device, arithmetic device, programming device, etc. Can be combined, and may be performed by an appropriate means.
Further, the setting of the slip ratio and the changing operation of the slip ratio at the time of multipoint measurement may be performed in an optimum sequence using a general-purpose measuring device, input / output device, arithmetic device, programming device, or the like.

本発明の路面摩擦係数計測装置は、特に使用中の道路や空港の滑走路において、天候の急変等によって路面摩擦係数が変化したことを迅速に計測、管理する必要がある用途に好適である。   The road surface friction coefficient measuring device of the present invention is suitable for applications that need to quickly measure and manage that the road surface friction coefficient has changed due to sudden changes in weather, etc., particularly on roads and airport runways in use.

100 ・・・ 路面摩擦係数計測装置
110 ・・・ 台車
111 ・・・ 連結部
112 ・・・ 補助輪
120 ・・・ 試験輪
121 ・・・ 昇降機構
130 ・・・ 走行輪
131 ・・・ サスペンション
141 ・・・ 油圧ポンプ
142 ・・・ 油圧モータ
143 ・・・ 入力クラッチ
144 ・・・ 出力クラッチ
145 ・・・ 発電機
146 ・・・ 電動モータ
150 ・・・ 油圧配管
152 ・・・ ギアユニット
153 ・・・ 電力ライン
154 ・・・ バッテリー
160 ・・・ 変速機構
161 ・・・ 無段変速機
170 ・・・ 制動機構
180 ・・・ 制御手段
181 ・・・ 対地速度センサー
182 ・・・ 負荷センサー
DESCRIPTION OF SYMBOLS 100 ... Road surface friction coefficient measuring device 110 ... Carriage 111 ... Connecting part 112 ... Auxiliary wheel 120 ... Test wheel 121 ... Lifting mechanism 130 ... Running wheel 131 ... Suspension 141 ... Hydraulic pump 142 ... Hydraulic motor 143 ... Input clutch 144 ... Output clutch 145 ... Generator 146 ... Electric motor 150 ... Hydraulic pipe 152 ... Gear unit 153 ... Power line 154 Battery 160 Transmission mechanism 161 Continuously variable transmission 170 Braking mechanism 180 Control means 181 Ground speed sensor 182 Load sensor

Claims (9)

外周面が路面に接触する試験輪と、該試験輪を回転駆動する駆動手段と、前記試験輪の回転負荷を測定して試験輪と路面との摩擦係数を計測する制御手段とを有する路面摩擦係数計測装置であって、
前記試験輪、駆動手段および制御手段が、走行輪を備え牽引あるいは推進によって走行する台車に支持され、
前記制御手段が、前記駆動手段を制御して前記試験輪の外周面と路面とのスリップ比を任意に設定可能に構成されていることを特徴とする路面摩擦係数計測装置。
Road surface friction having a test wheel whose outer peripheral surface is in contact with the road surface, a drive means for rotationally driving the test wheel, and a control means for measuring a rotational load of the test wheel and measuring a friction coefficient between the test wheel and the road surface A coefficient measuring device,
The test wheel, the driving means and the control means are supported by a carriage that has traveling wheels and travels by towing or propulsion,
The road surface friction coefficient measuring device, wherein the control means is configured to be able to arbitrarily set a slip ratio between an outer peripheral surface of the test wheel and a road surface by controlling the driving means.
前記駆動手段が、前記走行輪の回転によって前記試験輪の回転駆動力を得ることを特徴とする路面摩擦係数計測装置。   The road friction coefficient measuring device characterized in that the driving means obtains a rotational driving force of the test wheel by rotation of the traveling wheel. 前記制御手段が、路面に対する台車の対地速度を検出する速度センサーを備えていることを特徴とする請求項1または請求項2に記載の路面摩擦係数計測装置。   The road surface friction coefficient measuring device according to claim 1, wherein the control means includes a speed sensor that detects a ground speed of the carriage with respect to the road surface. 前記駆動手段が、前記走行輪と試験輪との間で変速機構を介して回転を伝達する伝達機構と、前記試験輪を制動する制動機構とを備えていることを特徴とする請求項1乃至請求項3のいずれかに記載の路面摩擦係数計測装置。   The drive means includes a transmission mechanism for transmitting rotation between the traveling wheel and the test wheel via a speed change mechanism, and a braking mechanism for braking the test wheel. The road surface friction coefficient measuring device according to claim 3. 前記伝達機構が、クラッチおよび無段階変速機構を備えていることを特徴とする請求項4に記載の路面摩擦係数計測装置。   5. The road surface friction coefficient measuring device according to claim 4, wherein the transmission mechanism includes a clutch and a continuously variable transmission mechanism. 前記無段階変速機構が、回転数可変の油圧伝動機構であることを特徴とする請求項5に記載の路面摩擦係数計測装置。   6. The road surface friction coefficient measuring apparatus according to claim 5, wherein the continuously variable transmission mechanism is a hydraulic transmission mechanism with variable rotation speed. 前記無段階変速機構が、電動モータ、発電機および電動モータの駆動制御手段からなることを特徴とする請求項5に記載の路面摩擦係数計測装置。   6. The road surface friction coefficient measuring device according to claim 5, wherein the continuously variable transmission mechanism comprises an electric motor, a generator, and drive control means for the electric motor. 前記台車には電力供給手段が備えられ、
前記計測制御手段が、該電力供給手段の電力により動作することを特徴とする請求項1乃至請求項7のいずれかに記載の路面摩擦係数計測装置。
The carriage is provided with power supply means,
The road friction coefficient measuring device according to any one of claims 1 to 7, wherein the measurement control unit is operated by electric power of the power supply unit.
前記台車には電力供給手段が備えられ、
前記制御手段が、該電力供給手段の電力により動作し、
該電力供給手段が、前記発電機の電力を利用することを特徴とする請求項7に記載の路面摩擦係数計測装置。
The carriage is provided with power supply means,
The control means is operated by the power of the power supply means;
The road surface friction coefficient measuring device according to claim 7, wherein the power supply means uses the power of the generator.
JP2011189451A 2011-08-31 2011-08-31 Road surface friction coefficient measurement device Withdrawn JP2013050416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011189451A JP2013050416A (en) 2011-08-31 2011-08-31 Road surface friction coefficient measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011189451A JP2013050416A (en) 2011-08-31 2011-08-31 Road surface friction coefficient measurement device

Publications (1)

Publication Number Publication Date
JP2013050416A true JP2013050416A (en) 2013-03-14

Family

ID=48012556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011189451A Withdrawn JP2013050416A (en) 2011-08-31 2011-08-31 Road surface friction coefficient measurement device

Country Status (1)

Country Link
JP (1) JP2013050416A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3012614A1 (en) * 2014-10-22 2016-04-27 W.D.M. Limited Friction tester
CN109459382A (en) * 2018-12-29 2019-03-12 西安凯德液压机电有限责任公司 A kind of portable type ground friction coefficient tester device
JP2021043108A (en) * 2019-09-12 2021-03-18 国立大学法人 熊本大学 System and method for estimating frictional state
CN112730219A (en) * 2019-10-14 2021-04-30 中路高科交通检测检验认证有限公司 Transverse force testing system and comparison testing device thereof
CN112964632A (en) * 2021-02-18 2021-06-15 无锡友鹏航空装备科技有限公司 Device for improving ground clearance of road friction coefficient test vehicle
CN112986129A (en) * 2021-02-08 2021-06-18 无锡友鹏航空装备科技有限公司 Double-wheel driving friction coefficient testing device of road friction coefficient testing vehicle
CN115676273A (en) * 2022-09-14 2023-02-03 安徽农业大学 Movable tire soil tank test bed

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3012614A1 (en) * 2014-10-22 2016-04-27 W.D.M. Limited Friction tester
US10113950B2 (en) 2014-10-22 2018-10-30 W.D.M. Limited Friction tester for a travel surface
CN109459382A (en) * 2018-12-29 2019-03-12 西安凯德液压机电有限责任公司 A kind of portable type ground friction coefficient tester device
JP2021043108A (en) * 2019-09-12 2021-03-18 国立大学法人 熊本大学 System and method for estimating frictional state
JP7356680B2 (en) 2019-09-12 2023-10-05 国立大学法人 熊本大学 Friction state estimation system and friction state estimation method
CN112730219A (en) * 2019-10-14 2021-04-30 中路高科交通检测检验认证有限公司 Transverse force testing system and comparison testing device thereof
CN112730219B (en) * 2019-10-14 2023-08-29 中路高科交通检测检验认证有限公司 Transverse force test system and comparison test device thereof
CN112986129A (en) * 2021-02-08 2021-06-18 无锡友鹏航空装备科技有限公司 Double-wheel driving friction coefficient testing device of road friction coefficient testing vehicle
CN112964632A (en) * 2021-02-18 2021-06-15 无锡友鹏航空装备科技有限公司 Device for improving ground clearance of road friction coefficient test vehicle
CN115676273A (en) * 2022-09-14 2023-02-03 安徽农业大学 Movable tire soil tank test bed

Similar Documents

Publication Publication Date Title
JP2013050416A (en) Road surface friction coefficient measurement device
JP3357893B2 (en) Road surface friction measuring method and device
CN109415041A (en) Wheel controller for vehicle
JP6068353B2 (en) System and method for controlling wheel motor torque in an electric drive system
CN108613920B (en) Simulation test device and method for researching friction process between tire and road surface
JP6310828B2 (en) Automotive test equipment
CN106945460A (en) Antiskid system and antiskid device for automobile tire
KR101509988B1 (en) Method for controlling four wheel driving of vehicle
JP2020520457A (en) Methods and systems used in automotive dynamometer testing
JP2013156087A (en) Tire testing apparatus
EP3012614B1 (en) Friction tester
CN103707872B (en) Bonding station storage device and use its brakes
US10029664B2 (en) Braking system and method for a vehicle
JP2013543368A (en) System and method for controlling traction force
RU2390003C1 (en) Method to determine wheel grip of airstrip surface
JP5848569B2 (en) Brake device
US20140202230A1 (en) A friction testing positioning device
CN109682517A (en) Flame-proof rubber-tired cart chassis power detection device and its detection method
JP6575953B2 (en) System and method for brake system verification
RU2369856C1 (en) Device measuring coefficient of friction of wheel with airfield pavement and traffic-bearing surfaces
RU2434093C1 (en) Device for electromechanical measurement of friction coefficient of wheel with surface of aerodrome pavement
CN104477807A (en) Brake clutch device of lever block
CN204417005U (en) A kind of brake clutch device of Lever Blocks
CN212903922U (en) Device for detecting ground holding force and service life of driving wheel
AU2015251069A1 (en) Anti-slip method and anti-slip system for an electric loader used particularly in mines and excavations and a mining loader

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104