JP2013050078A - Exhaust purification device for internal combustion engine - Google Patents

Exhaust purification device for internal combustion engine Download PDF

Info

Publication number
JP2013050078A
JP2013050078A JP2011188464A JP2011188464A JP2013050078A JP 2013050078 A JP2013050078 A JP 2013050078A JP 2011188464 A JP2011188464 A JP 2011188464A JP 2011188464 A JP2011188464 A JP 2011188464A JP 2013050078 A JP2013050078 A JP 2013050078A
Authority
JP
Japan
Prior art keywords
reduction catalyst
catalyst
reducing agent
exhaust
catalytic reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011188464A
Other languages
Japanese (ja)
Inventor
Kazuhiro Ito
和浩 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011188464A priority Critical patent/JP2013050078A/en
Publication of JP2013050078A publication Critical patent/JP2013050078A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively utilize reduction agent for purification of exhaust gas in an exhaust purification device using a selective reduction catalyst.SOLUTION: The exhaust purification device for an internal combustion engine includes: a selective reduction catalyst 31 provided in an exhaust path 2 of an internal combustion engine; a reduction agent supply device for supplying a reduction agent to exhaust flowing into the selective reduction catalyst at a position upstream of the selective reduction catalyst; a heater 32 for heating the selective reduction catalyst; and a control device for purifying the exhaust in the selective reduction catalyst by supplying the reduction agent into the exhaust through the reduction agent supply device with respect to the selective reduction catalyst heated by the heater. The heater 32 heats the selective reduction catalyst in a cross section of the catalyst relative to a flow direction of the exhaust in the selective reduction catalyst 31 so that the amount of heat supply to a coarse particle area in which the reduction agent supplied from the reduction agent supply device is distributed in a coarse particle state becomes greater than that of an area other than the coarse particle area in the cross section of the catalyst.

Description

本発明は、内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

内燃機関からの排気に含まれるNOx等を浄化するために排気通路に排気浄化触媒を配置し、浄化対象となる物質に応じて様々な排気浄化制御が行われる。たとえば、特許文献1には、排気通路に脱硝触媒として選択還元型触媒を配置するとともに排気中に還元剤を供給することで、排気中のNOxを浄化する技術が開示されている。特に、当該技術では、脱硝触媒が活性化されるまでの時間を短縮し、脱硝触媒の稼働率を向上させるために、脱硝触媒を直接加熱するヒータを設け、ヒータの加熱により脱硝触媒を触媒作動温度以上にした後に、排気を流入させるという構成が採用されている。   In order to purify NOx and the like contained in the exhaust from the internal combustion engine, an exhaust purification catalyst is disposed in the exhaust passage, and various exhaust purification control is performed according to the substance to be purified. For example, Patent Document 1 discloses a technique for purifying NOx in exhaust gas by disposing a selective reduction catalyst as a denitration catalyst in an exhaust passage and supplying a reducing agent into the exhaust gas. In particular, in this technology, in order to shorten the time until the denitration catalyst is activated and to improve the operation rate of the denitration catalyst, a heater for directly heating the denitration catalyst is provided, and the denitration catalyst is operated by heating the heater. A configuration is adopted in which exhaust gas is allowed to flow after the temperature is exceeded.

特開2003−269149号公報JP 2003-269149 A

選択還元型触媒を用いて排気中のNOx等を浄化する場合、その還元剤としてアンモニア由来の化合物や内燃機関の燃料等が使用される。一般には、選択還元型触媒の上流側から排気中に還元剤が供給されることで、排気とともに還元剤が選択還元型触媒に供給され、NOxの選択的な浄化に寄与することとなる。しかしながら、排気中に供給された還元剤は、選択還元型触媒に流れ込む際に、排気中に必ずしも均等に分散しているとは限らないため、選択還元型触媒での還元剤の分布が、触媒全体で均一となることは難しい。   When purifying NOx or the like in exhaust gas using a selective reduction catalyst, a compound derived from ammonia, a fuel for an internal combustion engine, or the like is used as the reducing agent. In general, when the reducing agent is supplied into the exhaust gas from the upstream side of the selective catalytic reduction catalyst, the reducing agent is supplied to the selective catalytic reduction catalyst together with the exhaust gas, thereby contributing to the selective purification of NOx. However, when the reducing agent supplied into the exhaust gas flows into the selective catalytic reduction catalyst, the reducing agent is not necessarily evenly dispersed in the exhaust gas. It is difficult to be uniform throughout.

たとえば、選択還元型触媒において部分的に還元剤の粒子が比較的粗く、また大きい状態で分布し、その他の領域と比べても還元剤の濃度が高い領域(以下、「粗大粒子領域」という)では、いわば還元剤が余剰に供給された状態となり得る。そのため、排気中のNOx濃度や選択還元型触媒の浄化能力にもよるが、粗大粒子領域に分布する還元剤がNOx浄化に十分に寄与することなく、排気の流れに従って触媒下流へと流れ出してしまう可能性が高くなり、還元剤の効果的な活用が妨げられる。   For example, in the selective catalytic reduction catalyst, the particles of the reducing agent are partially coarse and distributed in a large state, and the concentration of the reducing agent is higher than other regions (hereinafter referred to as “coarse particle region”). So, it can be said that the reducing agent is excessively supplied. Therefore, although depending on the NOx concentration in the exhaust gas and the purification capacity of the selective catalytic reduction catalyst, the reducing agent distributed in the coarse particle region flows out downstream of the catalyst according to the exhaust flow without sufficiently contributing to NOx purification. The possibility increases and the effective use of reducing agents is hindered.

本発明は、上記した問題点に鑑みてなされたものであり、選択還元型触媒を用いた排気浄化装置において、排気浄化のための還元剤を効果的に活用することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to effectively utilize a reducing agent for exhaust purification in an exhaust purification apparatus using a selective reduction catalyst.

本発明において、上記課題を解決するために、排気中に供給された還元剤が選択還元型触媒において、どのように分布するかを踏まえて、その分布状態に応じて該選択還元型触媒の加熱を調整する構成を採用した。当該構成により、供給された還元剤の分布状態と加熱による選択還元型触媒の活性状態をマッチングさせることができるため、供給された還元剤を排気浄化のために効果的に活用することができるとともに、選択還元型触媒の加熱を効率的に実行できるようになる。   In the present invention, in order to solve the above-mentioned problem, based on how the reducing agent supplied in the exhaust gas is distributed in the selective catalytic reduction catalyst, the selective catalytic reduction catalyst is heated according to the distribution state. Adopted a configuration to adjust. With this configuration, the distribution state of the supplied reducing agent and the active state of the selective catalytic reduction catalyst by heating can be matched, so that the supplied reducing agent can be effectively used for exhaust purification. Thus, the selective reduction catalyst can be efficiently heated.

そこで、詳細には、本発明は、内燃機関の排気通路に設けられた選択還元型触媒と、前記選択還元型触媒の上流側で、該選択還元型触媒に流れ込む排気に還元剤を供給する還元剤供給手段と、前記選択還元型触媒を加熱する加熱手段と、前記加熱手段によって加熱された前記選択還元型触媒に対して、前記還元剤供給手段を介して排気中に還元剤を供給す
ることで、該選択還元型触媒における排気浄化を行う制御手段と、を備える内燃機関の排気浄化装置である。そして、前記加熱手段は、前記選択還元型触媒における排気の通気方向に対する触媒断面において、前記還元剤供給手段から供給された還元剤が粗大粒子状態で分布する粗大粒子領域に対する供給熱量が、該触媒断面における該粗大粒子領域以外の領域と比べて多くなるように、該選択還元型触媒を加熱する。
Therefore, in detail, the present invention relates to a selective reduction catalyst provided in an exhaust passage of an internal combustion engine, and a reduction agent that supplies a reducing agent to exhaust flowing into the selective reduction catalyst upstream of the selective reduction catalyst. Supplying the reducing agent into the exhaust gas via the reducing agent supplying means to the selective reducing catalyst heated by the heating means and the selective reducing catalyst heated by the heating means. And a control means for purifying exhaust gas in the selective catalytic reduction catalyst. The heating means is configured such that, in the catalyst cross section with respect to the exhaust ventilation direction in the selective reduction catalyst, the amount of heat supplied to the coarse particle region in which the reducing agent supplied from the reducing agent supply means is distributed in a coarse particle state is the catalyst. The selective catalytic reduction catalyst is heated so as to be larger than the region other than the coarse particle region in the cross section.

本発明に係る内燃機関の排気浄化装置においては、排気通路に設けられた選択還元型触媒と、その上流に設けられた還元剤供給手段からの還元剤によって排気中のNOxが選択的に浄化されることになる。また、加熱手段により選択還元型触媒が加熱されることで、当該触媒を排気浄化に適した活性状態に速やかに至らせることができ、またその活性状態を内燃機関の運転状態にかかわらず維持することができるため、制御手段によって、効率的な排気浄化が可能となる。   In the exhaust gas purification apparatus for an internal combustion engine according to the present invention, NOx in the exhaust gas is selectively purified by the selective reduction catalyst provided in the exhaust passage and the reducing agent from the reducing agent supply means provided upstream thereof. Will be. Further, the selective reduction type catalyst is heated by the heating means, so that the catalyst can be quickly brought into an active state suitable for exhaust purification, and the active state is maintained regardless of the operating state of the internal combustion engine. Therefore, the exhaust gas can be efficiently purified by the control means.

ここで、上記のとおり、還元剤供給手段から排気中に供給される還元剤が、排気の流れに従って選択還元型触媒に到達した際に、当該触媒で必ずしも均一に分布するとは限らない。たとえば、還元剤供給手段が排気中に還元剤を供給した時点で、排気において還元剤分布に一定の濃淡がある場合には、その濃淡が選択還元型触媒においても、より具体的には、選択還元型触媒における排気の通気方向に対する触媒断面においても反映される可能性がある。そこで、当該触媒断面において還元剤が粗大粒子状態で分布する領域を粗大粒子領域と称し、加熱手段による触媒の加熱に関し、この粗大粒子領域に対しては、それ以外の領域とは異なる熱量供給を行うこととした。   Here, as described above, when the reducing agent supplied into the exhaust gas from the reducing agent supply means reaches the selective catalytic reduction catalyst according to the flow of the exhaust gas, the catalyst is not necessarily distributed uniformly. For example, when the reducing agent supply means supplies the reducing agent into the exhaust, if there is a certain concentration in the reducing agent distribution in the exhaust, the concentration is more specifically selected even in the selective reduction catalyst. This may also be reflected in the cross section of the catalyst with respect to the exhaust ventilation direction in the reduction catalyst. Therefore, a region where the reducing agent is distributed in a coarse particle state in the cross section of the catalyst is referred to as a coarse particle region, and regarding the heating of the catalyst by the heating means, a heat amount supply different from the other regions is supplied to the coarse particle region. I decided to do it.

粗大粒子領域では、還元剤が比較的高い濃度で分布することから、その還元剤を排気浄化に効果的に活用するには、粗大粒子領域における選択還元型触媒の浄化能を、それ以外の領域における選択還元型触媒の浄化能よりも高くするのが好ましい。そこで、加熱手段は、粗大粒子領域に対する供給熱量が該粗大粒子領域以外の領域と比べて多くなるように、選択還元型触媒の部分に応じた加熱処理を行う。これにより、還元剤の分布に応じた効果的な排気浄化が実現できるとともに、触媒加熱に要するエネルギー消費を可及的に抑制することができる。なお、選択還元型触媒における粗大粒子領域は、内燃機関の運転状態や排気通路を流れる排気の流量等に応じて変動し得る。そこで、加熱手段による熱量供給が行われる粗大粒子領域は、変動し得る範囲の粗大粒子領域を全て包含するように選択還元型触媒上に設定してもよく、別法として、触媒加熱に要するエネルギー抑制の観点から変動し得る範囲のうち、特に出現頻度の高い一部の領域を粗大粒子領域として選択還元型触媒上に設定してもよい。   In the coarse particle region, since the reducing agent is distributed at a relatively high concentration, in order to effectively use the reducing agent for exhaust gas purification, the purifying ability of the selective catalytic reduction catalyst in the coarse particle region is used in other regions. It is preferable to make it higher than the purifying ability of the selective catalytic reduction catalyst. Therefore, the heating means performs heat treatment according to the portion of the selective catalytic reduction catalyst so that the amount of heat supplied to the coarse particle region is larger than that in the region other than the coarse particle region. Thereby, effective exhaust purification according to the distribution of the reducing agent can be realized, and energy consumption required for catalyst heating can be suppressed as much as possible. Note that the coarse particle region in the selective catalytic reduction catalyst can vary depending on the operating state of the internal combustion engine, the flow rate of exhaust gas flowing through the exhaust passage, and the like. Therefore, the coarse particle region to which the amount of heat is supplied by the heating means may be set on the selective catalytic reduction catalyst so as to include all the coarse particle regions in a variable range. Of the range that can vary from the viewpoint of suppression, a part of the region having a particularly high appearance frequency may be set on the selective catalytic reduction catalyst as a coarse particle region.

ここで、上記内燃機関の排気浄化装置において、前記選択還元型触媒の上流側の排気通路と下流側の排気通路とを結ぶ貫通路が、該選択還元型触媒における触媒担持部分もしくは該選択還元型触媒を該排気通路に保持固定する保持部分に設けられてもよい。排気通路における選択還元型触媒の設置について、排気通路を流れる排気が全て選択還元型触媒に流れ込むことで効果的な排気浄化を行うのが好ましいが、排気中に供給された還元剤の一部が触媒での排気浄化に適さない固体状の物質に変化し、触媒近傍に付着する場合がある。このような固体状の物質が触媒近傍に付着すると、触媒の排気浄化能が低下するおそれや、付着物質の酸化による周辺の熱劣化のおそれもあり好ましくない。そこで、上記のとおり、選択還元型触媒の近傍である触媒担持部分や保持部分に貫通路を設けることで、固体状物質の付着を抑制し、選択還元型触媒の機能劣化等を可及的に回避することができる。   Here, in the exhaust gas purification apparatus for an internal combustion engine, the through-passage connecting the upstream exhaust passage and the downstream exhaust passage of the selective catalytic reduction catalyst is a catalyst supporting portion in the selective catalytic reduction catalyst or the selective catalytic reduction type. The catalyst may be provided in a holding portion that holds and fixes the catalyst in the exhaust passage. Regarding the selective reduction type catalyst installed in the exhaust passage, it is preferable that exhaust gas flowing through the exhaust passage flows into the selective reduction type catalyst to perform effective exhaust purification, but a part of the reducing agent supplied into the exhaust is It may change to a solid substance that is not suitable for exhaust purification with a catalyst and may adhere to the vicinity of the catalyst. If such a solid substance adheres to the vicinity of the catalyst, there is a possibility that the exhaust gas purifying ability of the catalyst may be reduced, and there is a risk of thermal deterioration of the surroundings due to oxidation of the attached substance, which is not preferable. Therefore, as described above, by providing a through-passage in the catalyst supporting part or holding part in the vicinity of the selective catalytic reduction catalyst, it is possible to suppress the adhesion of solid substances and to reduce the functional degradation of the selective catalytic reduction catalyst as much as possible. It can be avoided.

また、上述までの内燃機関の排気浄化装置において、前記加熱手段が、前記排気通路において前記選択還元型触媒の下流側に配置されてもよい。加熱手段を選択還元型触媒の下流側に配置することで、還元剤の選択還元型触媒への流れ込みを阻害することなく、該触
媒の加熱を効率的に実現することができる。また、このような構成により、加熱手段が還元剤に直接さらされることがないため、還元剤を急激に昇温させることで排気浄化に適さない固体状の物質に変化させてしまうことを抑制し、また、加熱手段自身を急激な温度上昇にさらすことを回避することができる。
Further, in the exhaust gas purification apparatus for an internal combustion engine up to the above, the heating means may be arranged downstream of the selective reduction catalyst in the exhaust passage. By disposing the heating means on the downstream side of the selective catalytic reduction catalyst, heating of the catalyst can be efficiently realized without inhibiting the flow of the reducing agent into the selective catalytic reduction catalyst. In addition, with such a configuration, the heating means is not directly exposed to the reducing agent, so that it is possible to prevent the reducing agent from being changed to a solid substance that is not suitable for exhaust purification by rapidly raising the temperature of the reducing agent. In addition, it is possible to avoid exposing the heating means itself to a rapid temperature rise.

また、上述までの内燃機関の排気浄化装置において、前記還元剤は、アンモニア由来の化合物であって、前記加熱手段は、前記還元剤の加水分解が生じる所定温度以上となるように前記選択還元型触媒を加熱してもよい。このように加熱手段による加熱が行われることで、特に粗大粒子領域に供給された還元剤よりアンモニアを効率的に生成し、それを選択還元型触媒の他の領域に供給することで、選択還元型触媒全体として、効果的な排気浄化を実現することができる。   Moreover, in the exhaust gas purification apparatus for an internal combustion engine up to the above, the reducing agent is a compound derived from ammonia, and the heating means is the selective reduction type so as to be at a predetermined temperature or higher at which hydrolysis of the reducing agent occurs. The catalyst may be heated. By performing heating by the heating means in this way, ammonia is efficiently generated particularly from the reducing agent supplied to the coarse particle region, and it is selectively reduced by supplying it to other regions of the selective catalytic reduction catalyst. As a whole type catalyst, effective exhaust purification can be realized.

また、還元剤に関し別の側面から捉えると、上述までの内燃機関の排気浄化装置において、前記還元剤は、アンモニア由来の化合物であって、前記加熱手段は、前記還元剤の固体堆積物が除去可能となる所定温度以上となるように前記選択還元型触媒を加熱するようにしてもよい。このように加熱手段による加熱が行われることで、還元剤から生成された固体堆積物を気体等の除去可能な状態とし、選択還元型触媒における還元剤からの生成物の堆積を回避でき、以て、触媒性能の低下や触媒の熱劣化等を回避することができる。   Further, regarding another aspect of the reducing agent, in the exhaust gas purification apparatus for an internal combustion engine described above, the reducing agent is a compound derived from ammonia, and the heating means removes the solid deposit of the reducing agent. The selective catalytic reduction catalyst may be heated so as to have a predetermined temperature or higher. By performing heating by the heating means in this way, the solid deposit generated from the reducing agent can be removed, such as gas, and deposition of the product from the reducing agent in the selective catalytic reduction catalyst can be avoided. Thus, it is possible to avoid a decrease in catalyst performance and thermal deterioration of the catalyst.

本発明によれば、選択還元型触媒を用いた排気浄化装置において、排気浄化のための還元剤を効果的に活用することができる。   ADVANTAGE OF THE INVENTION According to this invention, the reducing agent for exhaust gas purification can be effectively utilized in the exhaust gas purification apparatus using the selective reduction catalyst.

本発明の実施例に係る内燃機関の排気系の概略構成を示す図である。It is a figure which shows schematic structure of the exhaust system of the internal combustion engine which concerns on the Example of this invention. 図1に示す排気浄化装置の具体的な構造を示す第一の図である。It is a 1st figure which shows the specific structure of the exhaust gas purification apparatus shown in FIG. 図2に示す排気浄化装置に形成される粗大粒子領域への熱量供給に関する図である。It is a figure regarding the heat supply to the coarse particle area | region formed in the exhaust gas purification apparatus shown in FIG. 図2に示す排気浄化装置に含まれる選択還元型触媒における、触媒温度とアンモニア吸着率の相関を示す図である。FIG. 3 is a diagram showing a correlation between catalyst temperature and ammonia adsorption rate in a selective reduction catalyst included in the exhaust purification device shown in FIG. 2. 図1に示す排気浄化装置の具体的な構造を示す第二の図である。It is a 2nd figure which shows the specific structure of the exhaust gas purification apparatus shown in FIG. 図1に示す排気浄化装置において供給される還元剤としての尿素に関し、その温度による形態の変化を説明する図である。It is a figure explaining the change of the form by the temperature regarding the urea as a reducing agent supplied in the exhaust gas purification apparatus shown in FIG.

以下、本発明の具体的な実施形態について図面に基づいて説明する。本実施例に記載されている構成部品の寸法、材質、形状、その相対配置等は、特に記載がない限りは発明の技術的範囲をそれらのみに限定する趣旨のものではない。   Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. The dimensions, materials, shapes, relative arrangements, and the like of the components described in the present embodiment are not intended to limit the technical scope of the invention to those unless otherwise specified.

本発明に係る内燃機関の排気浄化装置の実施例について、本願明細書に添付された図に基づいて説明する。図1は、本実施例に係る内燃機関の排気系の概略構成を示す図である。内燃機関1は車両駆動用のディーゼルエンジンである。内燃機関1には排気通路2が接続されている。なお、図1においては、内燃機関1の吸気系の記載は省略している。排気通路2には、排気中のPMを捕集するパティキュレートフィルタ4(以下、単に「フィルタ」という。)が設けられている。さらに、フィルタ4の上流側には、選択還元型触媒と該触媒を加熱可能な電気加熱式触媒からなる排気浄化装置3が設けられている。当該排気浄化装置3の詳細については後述する。   An embodiment of an exhaust gas purification apparatus for an internal combustion engine according to the present invention will be described with reference to the drawings attached to the present specification. FIG. 1 is a diagram showing a schematic configuration of an exhaust system of an internal combustion engine according to the present embodiment. The internal combustion engine 1 is a diesel engine for driving a vehicle. An exhaust passage 2 is connected to the internal combustion engine 1. In FIG. 1, the description of the intake system of the internal combustion engine 1 is omitted. The exhaust passage 2 is provided with a particulate filter 4 (hereinafter simply referred to as “filter”) that collects PM in the exhaust. Further, on the upstream side of the filter 4, an exhaust purification device 3 including a selective reduction catalyst and an electrically heated catalyst capable of heating the catalyst is provided. Details of the exhaust purification device 3 will be described later.

また、排気浄化装置3の上流側に、該排気浄化装置3に含まれる選択還元型触媒におけ
るNOx浄化に寄与する還元剤としての尿素水を排気中に供給する還元剤供給弁5が設けられている。さらに、排気浄化装置3に含まれる選択還元型触媒の床温を測定する温度センサ6が、該触媒の担体部分に設けられている。内燃機関1には電子制御ユニット(ECU)10が併設されており、該ECU10は内燃機関1の運転状態等を制御するユニットである。ECU10には、上述した還元剤供給弁5や温度センサ6の他、エアフローメータ(図示略)、クランクポジションセンサ11及びアクセル開度センサ12が電気的に接続されている。
Further, a reducing agent supply valve 5 for supplying urea water as a reducing agent contributing to NOx purification in the selective reduction catalyst included in the exhaust purification device 3 into the exhaust is provided upstream of the exhaust purification device 3. Yes. Further, a temperature sensor 6 for measuring the bed temperature of the selective catalytic reduction catalyst included in the exhaust purification device 3 is provided in the catalyst carrier. The internal combustion engine 1 is provided with an electronic control unit (ECU) 10, and the ECU 10 is a unit that controls the operating state and the like of the internal combustion engine 1. In addition to the reducing agent supply valve 5 and the temperature sensor 6 described above, an air flow meter (not shown), a crank position sensor 11 and an accelerator opening sensor 12 are electrically connected to the ECU 10.

したがって、ECU10は、クランクポジションセンサ11の検出に基づく機関回転数や、アクセル開度センサ12の検出に基づく機関負荷等の内燃機関1の運転状態に基づいて、排気通路2を流れる排気中に含まれるNOx濃度を推定することが可能となる。そして、推定されるNOx濃度に応じて、ECU10は還元剤供給弁5に指示を出し、NOx浄化に必要な量の還元剤が排気中に供給される。なお、排気浄化装置3に含まれる選択還元型触媒が活性された状態にない場合には、供給された還元剤を用いてのNOx浄化を効果的に行えないことから、還元剤供給弁5からの還元剤供給は、温度センサ6によって当該選択還元型触媒の床温が、該触媒が活性状態にある所定温度以上となっている場合に行われる。   Therefore, the ECU 10 is included in the exhaust flowing through the exhaust passage 2 based on the operating state of the internal combustion engine 1 such as the engine speed based on the detection of the crank position sensor 11 and the engine load based on the detection of the accelerator opening sensor 12. It is possible to estimate the NOx concentration. Then, according to the estimated NOx concentration, the ECU 10 issues an instruction to the reducing agent supply valve 5, and an amount of reducing agent necessary for NOx purification is supplied into the exhaust gas. If the selective catalytic reduction catalyst included in the exhaust purification device 3 is not activated, NOx purification using the supplied reducing agent cannot be performed effectively. The reducing agent is supplied when the bed temperature of the selective catalytic reduction catalyst is equal to or higher than a predetermined temperature at which the catalyst is active by the temperature sensor 6.

ここで、図2および図3に基づいて排気浄化装置3について説明する。図2は、排気浄化装置3の概略構成を示す図であり、図3は、還元剤供給弁5から還元剤である尿素水の供給が行われたときの、選択還元型触媒に形成される粗大粒子領域への熱量供給に関する図である。図2に示すように、排気浄化装置3は、排気通路2のハウジング2aに保持部21を介して取り付けられた、排気中のNOxを選択的に還元する選択還元型触媒31と、該触媒31の下流側に固定部33を介して排気通路2に取り付けられた電気加熱式触媒32を有する。電気加熱式触媒32は、電気抵抗となって、通電により発熱する材質の触媒担体に、酸化機能を有する触媒が担持されている。触媒担体は、排気の流れる方向に伸び且つ排気の流れる方向と垂直な断面がハニカム状をなす複数の通路を有している。この通路を排気が流れることで、担持されている触媒による排気浄化が行われる。また、触媒は、たとえば酸化触媒、三元触媒、吸蔵還元型NOx触媒、選択還元型NOx触媒などを挙げることができる。そして、選択還元型触媒31と電気加熱式触媒32は、電気加熱式触媒32が有する熱エネルギーが選択還元型触媒31側に伝熱可能となるように、複数の伝熱ピン34で連結されている。   Here, the exhaust emission control device 3 will be described with reference to FIGS. 2 and 3. FIG. 2 is a diagram showing a schematic configuration of the exhaust gas purification device 3, and FIG. 3 is formed in the selective reduction catalyst when the urea water as the reducing agent is supplied from the reducing agent supply valve 5. It is a figure regarding the heat supply to a coarse particle area | region. As shown in FIG. 2, the exhaust purification device 3 includes a selective reduction catalyst 31 that is selectively attached to the housing 2 a of the exhaust passage 2 via a holding portion 21 and selectively reduces NOx in the exhaust, and the catalyst 31. The electrically heated catalyst 32 is attached to the exhaust passage 2 via a fixed portion 33 on the downstream side. In the electrically heated catalyst 32, a catalyst having an oxidation function is supported on a catalyst carrier made of a material that generates electrical resistance and generates heat when energized. The catalyst carrier has a plurality of passages that extend in the direction in which the exhaust flows and whose cross section perpendicular to the direction in which the exhaust flows forms a honeycomb. By exhaust gas flowing through this passage, exhaust gas purification by the supported catalyst is performed. Examples of the catalyst include an oxidation catalyst, a three-way catalyst, an occlusion reduction type NOx catalyst, and a selective reduction type NOx catalyst. The selective reduction catalyst 31 and the electrically heated catalyst 32 are connected by a plurality of heat transfer pins 34 so that the thermal energy of the electrically heated catalyst 32 can be transferred to the selective reduction catalyst 31 side. Yes.

ここで、図3に示すように、排気浄化装置3の上流側に還元剤供給弁5が設けられ、上記の通り選択還元型触媒31の床温が活性状態を示す所定温度を超えたときに、還元剤供給弁5から排気への還元剤供給が行われる。還元剤供給弁5から噴射された還元剤は、排気中に拡散し、排気とともに選択還元型触媒31に流入することで排気中のNOxが還元浄化されるが、還元剤供給弁5からの噴射方向や噴射角、また排気通路2を流れている排気の流量などによって、排気中での噴射された還元剤の拡散状態は均等なものとはならない。たとえば、還元剤が供給された排気において、還元剤の粒子が粗く、また大きい状態で拡散している部分や、逆に、還元剤が多く存在しない部分など、ある程度の還元剤のムラが生じうる。そのため、選択還元型触媒31に還元剤が流れ込むと、選択還元型触媒31の長手方向(排気が流通する方向)に直交する触媒断面において、還元剤の粒子が粗く、比較的大きい状態である粗大粒子状態となって流れ込む粗大粒子領域と、当該粗大粒子領域と比べて還元剤の粒子が細かい状態となっている非粗大粒子領域とが形成される傾向が見出される。   Here, as shown in FIG. 3, when the reducing agent supply valve 5 is provided on the upstream side of the exhaust purification device 3 and the bed temperature of the selective catalytic reduction catalyst 31 exceeds a predetermined temperature indicating the active state as described above. Then, the reducing agent is supplied from the reducing agent supply valve 5 to the exhaust gas. The reducing agent injected from the reducing agent supply valve 5 diffuses into the exhaust gas and flows into the selective reduction catalyst 31 together with the exhaust gas, whereby the NOx in the exhaust gas is reduced and purified. Depending on the direction, the injection angle, the flow rate of the exhaust gas flowing through the exhaust passage 2, the diffusion state of the injected reducing agent in the exhaust gas is not uniform. For example, in the exhaust gas supplied with the reducing agent, there may be some unevenness of the reducing agent, such as a portion where the particles of the reducing agent are coarse and diffused in a large state, or a portion where there is not much reducing agent. . Therefore, when the reducing agent flows into the selective catalytic reduction catalyst 31, the particles of the reducing agent are coarse and relatively large in the catalyst cross section perpendicular to the longitudinal direction of the selective catalytic reduction catalyst 31 (the direction in which the exhaust gas flows). There is a tendency to form a coarse particle region that flows into a particle state and a non-coarse particle region in which the reducing agent particles are finer than the coarse particle region.

図3に示す一例では、還元剤供給弁5からは、還元剤が円錐状に排気中に拡散するように噴射されるため、噴射された還元剤による噴霧の先端外周部に、先端中央部と比較して、還元剤が高い密度で分布した状態となる。還元剤供給弁5から選択還元型触媒31まで
はある程度の距離があるため、噴霧は排気中に次第に拡散してはいくが、やはり噴霧先端における還元剤の分布ムラが、選択還元型触媒31に流れ込む還元剤のムラとして反映されることになる。図3の一例では、触媒前面図に示すように、噴霧の先端外周の形状に対応して、選択還元型触媒31の触媒断面での一定の幅を有したリング状の領域において、還元剤の粒子が粗大粒子状態となっている粗大粒子領域R1が形成される。なお、この粗大粒子領域R1の内部の略円状の領域R2は、全く還元剤が供給されていないというのではなく、粗大粒子領域R1より還元剤の粒子が細かい状態となっている領域である。そして、選択還元型触媒31の前面に流れ込んだ還元剤は、ある程度は排気の流れに沿って触媒の内部を進んでいくものの、粗大粒子領域R1は、選択還元型触媒31の前面近傍に形成される。
In the example shown in FIG. 3, since the reducing agent is injected from the reducing agent supply valve 5 so as to diffuse into the exhaust gas in a conical shape, the tip central portion and the tip outer peripheral portion of the spray by the injected reducing agent are In comparison, the reducing agent is distributed at a high density. Since there is a certain distance from the reducing agent supply valve 5 to the selective catalytic reduction catalyst 31, the spray gradually diffuses into the exhaust gas. However, uneven distribution of the reducing agent at the tip of the spraying is still in the selective catalytic reduction catalyst 31. It will be reflected as unevenness of the reducing agent flowing in. In the example of FIG. 3, as shown in the front view of the catalyst, in the ring-shaped region having a certain width in the catalyst cross section of the selective catalytic reduction catalyst 31 corresponding to the shape of the outer periphery of the tip of the spray, A coarse particle region R1 in which the particles are in a coarse particle state is formed. The substantially circular region R2 inside the coarse particle region R1 is not a state where no reducing agent is supplied at all, but is a region in which the particles of the reducing agent are finer than the coarse particle region R1. . The reducing agent that has flown into the front surface of the selective catalytic reduction catalyst 31 proceeds to some extent along the exhaust flow, but the coarse particle region R1 is formed near the front surface of the selective catalytic reduction catalyst 31. The

このように選択還元型触媒31においては、必ずしも還元剤供給弁5から排気中に供給された還元剤が均一に流れ込むわけではない。そして、粗大粒子領域R1においては、領域R2と比較して還元剤の濃度が高くなるため、還元剤である尿素水の加水分解が、領域R2と比較して効率的に行いにくくなる。その結果、尿素水の加水分解が進行しNOx還元に寄与するアンモニアが形成されないまま、下流側に流される還元剤が一定量生じてしまい、還元剤の効果的な活用が阻害され得る。   Thus, in the selective reduction catalyst 31, the reducing agent supplied from the reducing agent supply valve 5 into the exhaust does not necessarily flow uniformly. And in coarse particle area | region R1, since the density | concentration of a reducing agent becomes high compared with area | region R2, compared with area | region R2, it becomes difficult to hydrolyze urea water which is a reducing agent efficiently. As a result, a certain amount of reducing agent is caused to flow downstream without the formation of ammonia contributing to NOx reduction due to the hydrolysis of urea water, and the effective utilization of the reducing agent can be hindered.

そこで、本実施例に係る排気浄化装置3は、この粗大粒子領域R1における還元剤の有効活用を促進させるために、電気加熱式触媒32で生じた熱エネルギーを選択還元型触媒31の粗大粒子領域R1に優先的に伝えられるように配置された複数の伝熱ピン34を介して、電気加熱式触媒32と選択還元型触媒31とが連結されている。具体的には、図3の触媒後面図に示すように、選択還元型触媒31の後面には、粗大粒子領域R1にオーバラップする部位に伝熱ピン34が挿入される挿入孔34aが設けられている。この挿入孔34aは、選択還元型触媒31の前面近傍に形成される粗大粒子領域R1に近接する位置まで延在しており、そこに伝熱ピン34が挿入されて二つの触媒の連結が実現される。このように二つの触媒を連結することで、通電により電気加熱式触媒32が発熱するとその熱エネルギーが選択還元型触媒31の粗大粒子領域R1に優先的に伝わり、それからその他の領域へと伝わっていく。その結果、選択還元型触媒31において、粗大粒子領域R1への供給熱量を、その他の領域(例えば、領域R2)への供給熱量よりも多くすることができ、以て粗大粒子領域R1の優先的な加熱を図ることができる。   Therefore, the exhaust gas purification apparatus 3 according to the present embodiment uses the thermal energy generated in the electrically heated catalyst 32 to increase the coarse particle region of the selective reduction catalyst 31 in order to promote effective utilization of the reducing agent in the coarse particle region R1. The electrically heated catalyst 32 and the selective reduction catalyst 31 are connected via a plurality of heat transfer pins 34 arranged so as to be preferentially transmitted to R1. Specifically, as shown in the catalyst rear view of FIG. 3, the rear surface of the selective catalytic reduction catalyst 31 is provided with an insertion hole 34a into which the heat transfer pin 34 is inserted at a portion overlapping the coarse particle region R1. ing. The insertion hole 34a extends to a position close to the coarse particle region R1 formed in the vicinity of the front surface of the selective catalytic reduction catalyst 31, and the heat transfer pin 34 is inserted therein to realize the connection of the two catalysts. Is done. By connecting the two catalysts in this way, when the electrically heated catalyst 32 generates heat by energization, the thermal energy is preferentially transmitted to the coarse particle region R1 of the selective catalytic reduction catalyst 31 and then to other regions. Go. As a result, in the selective catalytic reduction catalyst 31, the amount of heat supplied to the coarse particle region R1 can be made larger than the amount of heat supplied to other regions (for example, the region R2), and therefore the coarse particle region R1 is preferential. Heating can be achieved.

このように粗大粒子領域R1を優先的に加熱すれば、そこに比較的高い濃度で分布している還元剤に対して、加水分解に要する熱エネルギーを効率的に供給することが可能となるから、加水分解の促進が図られ、上記のように加水分解が生じることなく下流側に流れてしまう還元剤の量を低減させることができる。また、選択還元型触媒31に供給された還元剤の分布に応じた加熱を行うことで、すなわち、選択還元型触媒31を全体的に加熱するのではなく、必要十分な加熱のみを行うことになるため、その加熱に要するエネルギー、すなわち電気加熱式触媒32での消費電力を抑制することも可能となる。   If the coarse particle region R1 is preferentially heated in this way, it is possible to efficiently supply heat energy required for hydrolysis to the reducing agent distributed at a relatively high concentration therein. Thus, the hydrolysis can be promoted, and the amount of the reducing agent that flows downstream can be reduced without hydrolysis as described above. Further, by performing heating in accordance with the distribution of the reducing agent supplied to the selective catalytic reduction catalyst 31, that is, not performing heating of the selective catalytic reduction catalyst 31 as a whole, but performing only necessary and sufficient heating. Therefore, energy required for the heating, that is, power consumption in the electrically heated catalyst 32 can be suppressed.

ここで、選択還元型触媒31における、触媒温度(床温)と還元剤である尿素水から生成されるアンモニアの吸着率の相関を図4に示す。触媒温度が加水分解温度を超えると、供給された尿素水の加水分解によるアンモニアの生成が促進される。このとき、触媒温度が加水分解温度付近であれば、アンモニア吸着率は比較的高い状態にある。したがって、上述したように、電気加熱式触媒32による加熱の結果、粗大粒子領域R1の温度が少なくとも図4に示す加水分解温度以上となるように、電気加熱式触媒32への通電を制御することで、還元剤からアンモニアが生成されない(生成されにくい)状態を回避することができる。なお、選択還元型触媒31の温度が更に上昇すると、アンモニア吸着率は極めてゼロに近くなり、還元剤から生成されたアンモニアが実質的に触媒に吸着されずに順次パージされる状態となる。そこで、粗大粒子領域R1の温度を図4に示すアンモニアパー
ジ領域に属する温度とすることで、選択還元型触媒31の後段側に積極的にアンモニアを供給することが可能となり、NOx浄化の促進を図ることができる。このように、選択還元型触媒31における還元剤からのアンモニアの生成、および触媒後段側へのアンモニアの供給は触媒温度を介して制御することができる。そこで、排気中に含まれるNOx濃度に応じて電気加熱式触媒32への通電量を制御することで、還元剤を効果的に活用しながら、NOx還元に要するアンモニアの供給を適切にコントロールすることが可能となる。
Here, in the selective reduction catalyst 31, the correlation between the catalyst temperature (bed temperature) and the adsorption rate of ammonia produced from urea water as the reducing agent is shown in FIG. When the catalyst temperature exceeds the hydrolysis temperature, generation of ammonia is promoted by hydrolysis of the supplied urea water. At this time, if the catalyst temperature is near the hydrolysis temperature, the ammonia adsorption rate is relatively high. Therefore, as described above, the energization of the electrically heated catalyst 32 is controlled so that the temperature of the coarse particle region R1 becomes at least the hydrolysis temperature shown in FIG. 4 as a result of the heating by the electrically heated catalyst 32. Thus, it is possible to avoid a state in which ammonia is not generated (is difficult to generate) from the reducing agent. As the temperature of the selective catalytic reduction catalyst 31 further rises, the ammonia adsorption rate becomes very close to zero, and ammonia generated from the reducing agent is purged sequentially without being substantially adsorbed by the catalyst. Therefore, by setting the temperature of the coarse particle region R1 to a temperature belonging to the ammonia purge region shown in FIG. 4, it becomes possible to positively supply ammonia to the rear stage side of the selective catalytic reduction catalyst 31 and promote NOx purification. You can plan. Thus, the generation of ammonia from the reducing agent in the selective reduction catalyst 31 and the supply of ammonia to the downstream side of the catalyst can be controlled via the catalyst temperature. Therefore, by controlling the amount of current supplied to the electrically heated catalyst 32 according to the concentration of NOx contained in the exhaust, it is possible to appropriately control the supply of ammonia required for NOx reduction while effectively using the reducing agent. Is possible.

特に、図3に示す排気浄化装置3においては、電気加熱式触媒32は、選択還元型触媒31の下流側に配置されていることで、還元剤供給弁5から排気中に供給された還元剤を、電気加熱式触媒32に阻害されること無く選択還元型触媒31に流れ込ませることができる。そのため、選択還元型触媒31におけるアンモニアの生成、放出を、より容易に且つ正確に制御することができる。   In particular, in the exhaust emission control device 3 shown in FIG. 3, the electrically heated catalyst 32 is disposed on the downstream side of the selective catalytic reduction catalyst 31 so that the reducing agent supplied from the reducing agent supply valve 5 into the exhaust gas. Can be allowed to flow into the selective catalytic reduction catalyst 31 without being inhibited by the electrically heated catalyst 32. Therefore, generation and release of ammonia in the selective catalytic reduction catalyst 31 can be controlled more easily and accurately.

なお、上述した粗大粒子領域R1に対する優先的な熱量供給に関しては、電気加熱式触媒32を選択還元型触媒31の上流側に配置したとしても、上記の例と同じように還元剤の効果的な活用を実現し得るものである。ただし、この場合は、電気加熱式触媒32の存在により、選択還元型触媒31において生じる粗大粒子領域R1の形状や位置が、図3に示すものとは異なり得る。そこで、上流側に位置する電気加熱式触媒32の存在を踏まえた上で想定される粗大粒子領域R1に対して、電気加熱式触媒32からの熱エネルギーが伝わるように伝熱ピン34の配置を決定すればよい。   Regarding the preferential heat supply to the coarse particle region R1 described above, even if the electrically heated catalyst 32 is arranged upstream of the selective catalytic reduction catalyst 31, an effective reducing agent can be used as in the above example. Utilization can be realized. However, in this case, due to the presence of the electrically heated catalyst 32, the shape and position of the coarse particle region R1 generated in the selective catalytic reduction catalyst 31 may be different from that shown in FIG. Therefore, the heat transfer pins 34 are arranged so that the thermal energy from the electrically heated catalyst 32 is transmitted to the coarse particle region R1 that is assumed based on the presence of the electrically heated catalyst 32 located on the upstream side. Just decide.

ここで、図3に示す一例で、選択還元型触媒31の前面近傍において還元剤の粒子が粗大粒子状態と形成される位置は、排気通路2を流れる排気の流量や還元剤供給弁5から供給される還元剤量等に関連する内燃機関1の運転状態に応じて変化し得る。そこで、粗大粒子領域R1として設定される領域は、内燃機関1の運転状態が変化し得る限りにおいて、粗大粒子状態が生じる領域の全てを包含する領域としてもよい。また、別法としては、内燃機関1の運転状態が変化し得る範囲において出現の頻度が比較的高い場合の運転状態に対応した粗大粒子状態が生じる領域を、粗大粒子領域R1として設定してもよい。   In the example shown in FIG. 3, the position where the reducing agent particles are formed in a coarse particle state in the vicinity of the front surface of the selective catalytic reduction catalyst 31 is supplied from the flow rate of the exhaust gas flowing through the exhaust passage 2 or the reducing agent supply valve 5. It may vary depending on the operating state of the internal combustion engine 1 related to the amount of reducing agent etc. to be performed. Therefore, the region set as the coarse particle region R1 may be a region including all of the regions where the coarse particle state occurs as long as the operating state of the internal combustion engine 1 can be changed. As another method, a region in which a coarse particle state corresponding to an operation state when the frequency of appearance is relatively high in a range where the operation state of the internal combustion engine 1 can be changed is set as the coarse particle region R1. Good.

また、図3に示す一例では、電気加熱式触媒32が選択還元型触媒31の下流側に配置されていることから、電気加熱式触媒32に排気中の未燃HCやPM(粒子状物質)が付着しにくくなる。そのため付着物の酸化による電気加熱式触媒32の急激な温度上昇を抑制でき、その熱劣化を回避し得る。一方で、電気加熱式触媒32は、上記の通り、担体に酸化能を有する触媒が担持されることで形成される。そのため、通電による温度上昇に加えて酸化触媒の酸化熱による温度上昇を活用することで、選択還元型触媒31により多くの熱エネルギーを伝えることができ、上述した粗大粒子領域R1の優先的な加熱を含めたNOx浄化に限らず、選択還元型触媒31において生じた硫黄被毒の回復を図ることも可能である。   Further, in the example shown in FIG. 3, since the electrically heated catalyst 32 is disposed on the downstream side of the selective catalytic reduction catalyst 31, unburned HC and PM (particulate matter) contained in the exhaust gas are discharged to the electrically heated catalyst 32. Becomes difficult to adhere. Therefore, the rapid temperature rise of the electrically heated catalyst 32 due to the oxidation of the deposit can be suppressed, and the thermal deterioration can be avoided. On the other hand, as described above, the electrically heated catalyst 32 is formed by supporting a catalyst having oxidizing ability on a carrier. Therefore, by utilizing the temperature increase due to the oxidation heat of the oxidation catalyst in addition to the temperature increase due to energization, more thermal energy can be transmitted to the selective catalytic reduction catalyst 31, and the above-described preferential heating of the coarse particle region R1 It is also possible to recover sulfur poisoning generated in the selective catalytic reduction catalyst 31 without being limited to NOx purification including the above.

更に、図3に示す一例では、電気加熱式触媒32が選択還元型触媒31の下流側に配置されていることから、基本的には、電気加熱式触媒32に担持されている酸化触媒によって生じる酸化熱は、伝熱ピン34を介して選択還元型触媒31に伝えられるだけである。ここで、図6に示すように、還元剤である尿素水が温度上昇すると、液体のビュレット、固体のシアヌル酸、気体のシアン酸と形態が変化し得る。特に、固体のシアヌル酸に変化した場合には、選択還元型触媒31において供給された還元剤が固体堆積物となり、その目詰まりの原因となり好ましくない。しかし、上記の通り、図3に示す例では、電気加熱式触媒32での酸化熱によって昇温された排気が選択還元型触媒31に流れ込む構成になっていないことから、選択還元型触媒31が急激に温度上昇される環境下に置かれるのを回避している。そのため、還元剤である尿素水を急激に温度上昇させないため、尿素水を固体状のビュレットやシアヌル酸に変化させてしまうことを可及的に抑制することができ
る。なお、還元剤である尿素水が固体化した場合には、それが気化する温度(約360℃)まで昇温し、除去するのが好ましい。例えば、内燃機関1の運転状態が減速状態にあるときに電気加熱式触媒32による加熱を停止せずに、空間速度(SV)を低下させることで、堆積した固体物質を除去することができる。
Further, in the example shown in FIG. 3, since the electrically heated catalyst 32 is disposed on the downstream side of the selective catalytic reduction catalyst 31, it is basically generated by the oxidation catalyst supported on the electrically heated catalyst 32. Oxidation heat is only transmitted to the selective catalytic reduction catalyst 31 via the heat transfer pins 34. Here, as shown in FIG. 6, when the temperature of urea water as a reducing agent rises, the form can be changed from liquid burette, solid cyanuric acid, and gaseous cyanic acid. In particular, when it is changed to solid cyanuric acid, the reducing agent supplied in the selective catalytic reduction catalyst 31 becomes a solid deposit, which is not preferable because it causes clogging. However, as described above, in the example shown in FIG. 3, the exhaust that has been heated by the heat of oxidation in the electrically heated catalyst 32 is not configured to flow into the selective catalytic reduction catalyst 31. It avoids being placed in an environment where the temperature is rapidly increased. Therefore, since the temperature of the urea water that is the reducing agent is not rapidly increased, it is possible to suppress the urea water from being changed to a solid burette or cyanuric acid as much as possible. In addition, when the urea water which is a reducing agent solidifies, it is preferable to raise and raise to the temperature (about 360 degreeC) which it vaporizes. For example, when the operating state of the internal combustion engine 1 is in a decelerating state, the deposited solid substance can be removed by reducing the space velocity (SV) without stopping the heating by the electrically heated catalyst 32.

本発明に係る内燃機関1の排気浄化装置3の第二の実施例について、図5に基づいて説明する。本実施例に係る排気浄化装置では、選択還元型触媒31を排気通路ハウジング2aに保持する保持部21に、選択還元型触媒31の上流側の排気通路と下流側の排気通路とを結ぶ貫通路21aが設けられている。したがって、内燃機関1から排出された排気は、排気通路2において、一部が排気浄化装置3の選択還元型触媒31に流入し、その他が貫通路21aを経て、選択還元型触媒31の下流側に流れ込むことになる。   A second embodiment of the exhaust emission control device 3 for the internal combustion engine 1 according to the present invention will be described with reference to FIG. In the exhaust purification apparatus according to this embodiment, the holding portion 21 that holds the selective reduction catalyst 31 in the exhaust passage housing 2a connects the through-passage that connects the upstream exhaust passage and the downstream exhaust passage of the selective reduction catalyst 31. 21a is provided. Therefore, a part of the exhaust discharged from the internal combustion engine 1 flows into the selective reduction catalyst 31 of the exhaust purification device 3 in the exhaust passage 2 and the other passes through the through passage 21a and is downstream of the selective reduction catalyst 31. Will flow into.

上記実施例1に係る構成では、選択還元型触媒31を保持している保持部21の近傍には、排気通路2を流れる排気をトラップしやすい構造、たとえば、図2に示すようにやや窪んだ空間が形成される。そのため、還元剤供給弁5から供給された還元剤である尿素水から生成される固体状のシアヌル酸等がそこに付着し、選択還元型触媒31や排気通路ハウジング2aの熱劣化の原因ともなる。しかし、図5に示すように保持部21に対して上記貫通路21aを設けることで、保持部21近傍に排気をトラップしにくくなるため、シアヌル酸等の生成および付着を効果的に抑制することができる。   In the configuration according to the first embodiment, in the vicinity of the holding portion 21 that holds the selective catalytic reduction catalyst 31, a structure that easily traps exhaust flowing in the exhaust passage 2, for example, slightly depressed as shown in FIG. 2. A space is formed. For this reason, solid cyanuric acid or the like generated from urea water as the reducing agent supplied from the reducing agent supply valve 5 adheres to the selective reducing catalyst 31 and the exhaust passage housing 2a and causes thermal deterioration. . However, as shown in FIG. 5, by providing the through passage 21 a with respect to the holding portion 21, it becomes difficult to trap exhaust gas in the vicinity of the holding portion 21, so that generation and adhesion of cyanuric acid and the like are effectively suppressed. Can do.

また、図5に示す構成では、排気通路2側の保持部21に対して貫通路21aを設けているが、このような貫通路を選択還元型触媒31側に設けてもよい。たとえば、選択還元型触媒31の担体において上述した粗大粒子領域R1と干渉しない部分に貫通路21aを設けてもよい。   In the configuration shown in FIG. 5, the through passage 21a is provided for the holding portion 21 on the exhaust passage 2 side. However, such a through passage may be provided on the selective reduction catalyst 31 side. For example, the through passage 21a may be provided in a portion of the carrier of the selective catalytic reduction catalyst 31 that does not interfere with the coarse particle region R1 described above.

1・・・・内燃機関
2・・・・排気通路
3・・・・排気浄化装置
4・・・・フィルタ
5・・・・還元剤供給弁
6・・・・温度センサ
10・・・・ECU
11・・・・クランクポジションセンサ
12・・・・アクセル開度センサ
31・・・・選択還元型触媒
32・・・・電気加熱式触媒
34・・・・伝熱ピン
R1・・・・粗大粒子領域
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 2 ... Exhaust passage 3 ... Exhaust gas purification device 4 ... Filter 5 ... Reducing agent supply valve 6 ... Temperature sensor 10 ... ECU
11 .... Crank position sensor 12 .... Accelerator opening sensor 31 ... Selective reduction type catalyst 32 ... Electric heating catalyst 34 ... Heat transfer pin R1 ... Coarse particles region

Claims (5)

内燃機関の排気通路に設けられた選択還元型触媒と、
前記選択還元型触媒の上流側で、該選択還元型触媒に流れ込む排気に還元剤を供給する還元剤供給手段と、
前記選択還元型触媒を加熱する加熱手段と、
前記加熱手段によって加熱された前記選択還元型触媒に対して、前記還元剤供給手段を介して排気中に還元剤を供給することで、該選択還元型触媒における排気浄化を行う制御手段と、
を備える内燃機関の排気浄化装置であって、
前記加熱手段は、前記選択還元型触媒における排気の通気方向に対する触媒断面において、前記還元剤供給手段から供給された還元剤が粗大粒子状態で分布する粗大粒子領域に対する供給熱量が、該触媒断面における該粗大粒子領域以外の領域と比べて多くなるように、該選択還元型触媒を加熱する、
内燃機関の排気浄化装置。
A selective reduction catalyst provided in an exhaust passage of the internal combustion engine;
Reducing agent supply means for supplying a reducing agent to the exhaust flowing into the selective catalytic reduction catalyst on the upstream side of the selective catalytic reduction catalyst;
Heating means for heating the selective catalytic reduction catalyst;
Control means for purifying exhaust gas in the selective reduction catalyst by supplying a reducing agent into the exhaust gas via the reducing agent supply means with respect to the selective reduction catalyst heated by the heating means;
An exhaust purification device for an internal combustion engine comprising:
In the catalyst cross section with respect to the exhaust ventilation direction in the selective reduction catalyst, the heating means has a supply heat amount in the coarse particle region where the reducing agent supplied from the reducing agent supply means is distributed in a coarse particle state in the catalyst cross section. Heating the selective catalytic reduction catalyst so as to be larger than the region other than the coarse particle region
An exhaust purification device for an internal combustion engine.
前記選択還元型触媒の上流側の排気通路と下流側の排気通路とを結ぶ貫通路が、該選択還元型触媒における触媒担持部分もしくは該選択還元型触媒を該排気通路に保持固定する保持部分に設けられる、
請求項1に記載の内燃機関の排気浄化装置。
A through passage connecting the upstream exhaust passage and the downstream exhaust passage of the selective catalytic reduction catalyst serves as a catalyst supporting portion in the selective catalytic reduction catalyst or a holding portion that holds and fixes the selective catalytic reduction catalyst in the exhaust passage. Provided,
The exhaust emission control device for an internal combustion engine according to claim 1.
前記加熱手段は、前記排気通路において前記選択還元型触媒の下流側に配置される、
請求項1又は請求項2に記載の内燃機関の排気浄化装置。
The heating means is disposed on the downstream side of the selective catalytic reduction catalyst in the exhaust passage.
An exhaust emission control device for an internal combustion engine according to claim 1 or 2.
前記還元剤は、アンモニア由来の化合物であって、
前記加熱手段は、前記還元剤の加水分解が生じる所定温度以上となるように前記選択還元型触媒を加熱する、
請求項1から請求項3の何れか1項に記載の内燃機関の排気浄化装置。
The reducing agent is a compound derived from ammonia,
The heating means heats the selective catalytic reduction catalyst so as to be at or above a predetermined temperature at which hydrolysis of the reducing agent occurs;
The exhaust emission control device for an internal combustion engine according to any one of claims 1 to 3.
前記還元剤は、アンモニア由来の化合物であって、
前記加熱手段は、前記還元剤の固体堆積物が除去可能となる所定温度以上となるように前記選択還元型触媒を加熱する、
請求項1から請求項3の何れか1項に記載の内燃機関の排気浄化装置。
The reducing agent is a compound derived from ammonia,
The heating means heats the selective catalytic reduction catalyst so as to be at or above a predetermined temperature at which the solid deposit of the reducing agent can be removed
The exhaust emission control device for an internal combustion engine according to any one of claims 1 to 3.
JP2011188464A 2011-08-31 2011-08-31 Exhaust purification device for internal combustion engine Withdrawn JP2013050078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011188464A JP2013050078A (en) 2011-08-31 2011-08-31 Exhaust purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011188464A JP2013050078A (en) 2011-08-31 2011-08-31 Exhaust purification device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2013050078A true JP2013050078A (en) 2013-03-14

Family

ID=48012303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011188464A Withdrawn JP2013050078A (en) 2011-08-31 2011-08-31 Exhaust purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2013050078A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018096279A (en) * 2016-12-13 2018-06-21 いすゞ自動車株式会社 Exhaust emission control device for internal combustion engine
JP2019120134A (en) * 2017-12-28 2019-07-22 株式会社クボタ Exhaust treatment device of engine
JP2019120133A (en) * 2017-12-28 2019-07-22 株式会社クボタ Exhaust treatment device of engine
JP2019120135A (en) * 2017-12-28 2019-07-22 株式会社クボタ Exhaust treatment device of engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018096279A (en) * 2016-12-13 2018-06-21 いすゞ自動車株式会社 Exhaust emission control device for internal combustion engine
JP2019120134A (en) * 2017-12-28 2019-07-22 株式会社クボタ Exhaust treatment device of engine
JP2019120133A (en) * 2017-12-28 2019-07-22 株式会社クボタ Exhaust treatment device of engine
JP2019120135A (en) * 2017-12-28 2019-07-22 株式会社クボタ Exhaust treatment device of engine

Similar Documents

Publication Publication Date Title
US8707684B2 (en) Control method and apparatus for regenerating a particulate filter
US8365517B2 (en) Apparatus and method for regenerating an exhaust filter
US8646259B2 (en) Electronically heated selective catalytic reduction (SCR) device
US8973349B2 (en) Electronically heated hydrocarbon (HC) adsorber
US8763369B2 (en) Apparatus and method for regenerating an exhaust filter
JP5999193B2 (en) Exhaust gas purification device for internal combustion engine
US20110067386A1 (en) Oxidizing Particulate Filter
JP2010019239A (en) Exhaust emission control device
JP2012062821A (en) Method for warming after-treatment burner system
JP2013050078A (en) Exhaust purification device for internal combustion engine
US8864875B2 (en) Regeneration of a particulate filter based on a particulate matter oxidation rate
EP2940265A1 (en) Exhaust purification system for internal combustion engine
JP2012127307A (en) Exhaust emission control device for engine
CN107725156B (en) Method for controlling detection and cleaning of diesel exhaust fluid injector deposits
US20110258985A1 (en) Electrically Heated Filter Regeneration Methods and Systems
WO2014087466A1 (en) Exhaust purification system for internal combustion engine
US20140311122A1 (en) Flow controlled electrically assisted dpf regeneration
US20130086886A1 (en) Electrically heated oxidation catalyst particulate matter protection
JP7283146B2 (en) Exhaust gas purification device
JP2018003811A (en) Oxidation catalyst and exhaust emission control system
JP2012117489A (en) Engine exhaust emission control device
US8726642B2 (en) Electrically heated particulate filter restrike methods and systems
JP2007205308A (en) Exhaust emission control method and exhaust emission control system
JP2013127209A (en) Exhaust emission control apparatus of internal combustion engine
WO2020208975A1 (en) Exhaust purifying device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104