JP2013049592A - Method for manufacturing crystal substrate, and substrate holding tool - Google Patents

Method for manufacturing crystal substrate, and substrate holding tool Download PDF

Info

Publication number
JP2013049592A
JP2013049592A JP2011187778A JP2011187778A JP2013049592A JP 2013049592 A JP2013049592 A JP 2013049592A JP 2011187778 A JP2011187778 A JP 2011187778A JP 2011187778 A JP2011187778 A JP 2011187778A JP 2013049592 A JP2013049592 A JP 2013049592A
Authority
JP
Japan
Prior art keywords
crystal
substrate
base substrate
diameter
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011187778A
Other languages
Japanese (ja)
Other versions
JP5845730B2 (en
Inventor
Jun Akamatsu
純 赤松
Yojiro Ichiraku
洋治郎 一楽
Hiroki Hayashi
宏樹 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2011187778A priority Critical patent/JP5845730B2/en
Publication of JP2013049592A publication Critical patent/JP2013049592A/en
Application granted granted Critical
Publication of JP5845730B2 publication Critical patent/JP5845730B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a means capable of manufacturing a crystal substrate inexpensively.SOLUTION: In this method, a crystal film (30) is grown on a crystal growing surface (21) of a base substrate (20) held by a substrate holding tool (10) of a vapor phase growth apparatus and having an orientation flat (23), and a crystal substrate (35) is manufactured from the crystal film (30). The substrate holding tool (10) includes an opening part (12) for exposing a part of the crystal growing surface (21) of the base substrate (20), and the opening part (12) includes an arc-shaped portion (13) and a chord-shaped portion (14) on its contour, and the inner wall of the chord-shaped portion (14) has a wall surface (15) approximately parallel to a surface determined by rotating the orientation flat (23) integer-fold of 30° or 90° around the center axis of the base substrate (20) as a rotation axis.

Description

本発明は、結晶基板の製造方法及び気相成長装置の基板保持具に関するものである。   The present invention relates to a method for manufacturing a crystal substrate and a substrate holder for a vapor phase growth apparatus.

従来、半導体素子の製造などに使用される結晶基板は、その結晶面方位や表裏を識別するための目印として、オリエンテーションフラット(以下、「オリフラ」と略すことがある)やノッチ、インデックスフラットなどの切り欠きが形成される。   Conventionally, crystal substrates used for manufacturing semiconductor devices have orientation flats (hereinafter sometimes abbreviated as “orientation flats”), notches, index flats, etc., as marks for identifying the crystal plane orientation and front and back. A notch is formed.

例えば特許文献1には、窒化物半導体基板の製造方法であって、所望形状でくり貫かれた部分を有する保護膜を下地基板の上に形成する工程と、前記くり貫かれた部分に窒化物半導体層を成長する工程と、前記窒化物半導体層を剥離する工程と、を含み、前記所望形状が前記窒化物半導体基板におけるオリエンテーションフラット及び/又はインデックスフラットを含むことが記載されている。   For example, Patent Document 1 discloses a method for manufacturing a nitride semiconductor substrate, which includes a step of forming a protective film having a portion hollowed out in a desired shape on a base substrate, and a nitride formed on the hollowed-out portion. The method includes a step of growing a semiconductor layer and a step of peeling off the nitride semiconductor layer, wherein the desired shape includes an orientation flat and / or an index flat in the nitride semiconductor substrate.

特開2010−285325号公報JP 2010-285325 A

しかしながら、特許文献1に記載された窒化物半導体基板の製造方法では、下地基板毎に保護膜を形成する必要があり、工数が増え、製造コストが高くなる。また、保護膜上に堆積する雑晶により、窒化物半導体層の周縁部の結晶性が低下したりクラックや割れが発生したりする虞があり、これを回避するためには保護膜を厚く形成しなければならず、製造コストがさらに高くなる。   However, in the method for manufacturing a nitride semiconductor substrate described in Patent Document 1, it is necessary to form a protective film for each base substrate, which increases man-hours and increases manufacturing costs. In addition, the miscellaneous crystals deposited on the protective film may decrease the crystallinity of the peripheral portion of the nitride semiconductor layer or cause cracks or cracks. To avoid this, a thick protective film is formed. Manufacturing cost is further increased.

そこで、本発明は、かかる事情に鑑みてなされたものであり、結晶基板を安価に製造可能な手段を提供することを目的とする。   Then, this invention is made | formed in view of this situation, and it aims at providing the means which can manufacture a crystal substrate at low cost.

上記課題を解決するために、本発明は、気相成長装置の基板保持具に保持されオリエンテーションフラットを有する下地基板の結晶成長面上に結晶膜を成長させ、該結晶膜から結晶基板を製造する方法であって、前記基板保持具は、前記下地基板の結晶成長面の一部を露出させる開口部を備え、前記開口部は、その輪郭に、円弧状部と弦状部を含み、前記弦状部の内壁は、前記オリエンテーションフラットを前記下地基板の中心軸を回転軸として30°又は90°の整数倍回転させた面に略平行な壁面を有することを特徴とする。   In order to solve the above problem, the present invention grows a crystal film on a crystal growth surface of a base substrate having an orientation flat held by a substrate holder of a vapor phase growth apparatus, and manufactures the crystal substrate from the crystal film. In the method, the substrate holder includes an opening that exposes a part of a crystal growth surface of the base substrate, and the opening includes an arc-shaped portion and a string-shaped portion in its outline, and the string The inner wall of the shape portion has a wall surface substantially parallel to a surface obtained by rotating the orientation flat by an integral multiple of 30 ° or 90 ° with the central axis of the base substrate as a rotation axis.

また、本発明は、オリエンテーションフラットと、結晶成長面と、を有する下地基板を保持する、気相成長装置の基板保持具であって、前記下地基板の結晶成長面の一部を露出させる開口部と、前記下地基板のオリエンテーションフラットと略平行に対面する基準面と、を備え、前記開口部は、その輪郭に、円弧状部と弦状部を含み、前記弦状部の内壁は、前記基準面を前記開口部の中心軸を回転軸として30°又は90°の整数倍回転させた面に略平行な壁面を有することを特徴とする。   Further, the present invention is a substrate holder for a vapor phase growth apparatus for holding a base substrate having an orientation flat and a crystal growth surface, wherein the opening exposes a part of the crystal growth surface of the base substrate. And a reference surface facing substantially parallel to the orientation flat of the base substrate, the opening includes an arcuate portion and a chordal portion in its contour, and an inner wall of the chordal portion is the reference A wall surface substantially parallel to a surface obtained by rotating the surface by an integral multiple of 30 ° or 90 ° with the central axis of the opening as a rotation axis is provided.

本発明によれば、結晶基板にオリフラなどの切り欠きを安価に形成することができる。   According to the present invention, notches such as orientation flats can be formed at low cost on a crystal substrate.

本発明の一実施の形態の結晶基板の製造方法に係る基板保持具の概略上面図(a)と、そのX−X断面における概略断面図(b)である。It is the schematic top view (a) of the substrate holder which concerns on the manufacturing method of the crystal substrate of one embodiment of this invention, and the schematic sectional drawing (b) in the XX cross section. 本発明の一実施の形態の結晶基板の製造方法により製造される結晶基板の一例を示す概略上面図である。It is a schematic top view which shows an example of the crystal substrate manufactured by the manufacturing method of the crystal substrate of one embodiment of this invention. 本発明の一実施の形態の結晶基板の製造方法に係る基板保持具の概略上面図である。It is a schematic top view of the substrate holder which concerns on the manufacturing method of the crystal substrate of one embodiment of this invention.

以下、発明の実施の形態について適宜図面を参照して説明する。但し、以下に説明する結晶基板の製造方法及び基板保持具は、本発明の技術思想を具体化するためのものであって、特定的な記載がない限り、本発明を以下のものに限定しない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため、誇張していることがある。   Hereinafter, embodiments of the invention will be described with reference to the drawings as appropriate. However, the crystal substrate manufacturing method and substrate holder described below are for embodying the technical idea of the present invention, and the present invention is not limited to the following unless otherwise specified. . In addition, the size, positional relationship, and the like of members illustrated in each drawing may be exaggerated for clarity of explanation.

<実施の形態1>
図1(a)は、実施の形態1の結晶基板の製造方法に係る基板保持具の概略上面図であり、図1(b)はそのX−X断面における概略断面図である。また、図2は、実施の形態1の結晶基板の製造方法により製造される結晶基板の一例を示す概略上面図である。図1,2に示すように、実施の形態1の結晶基板の製造方法は、気相成長装置の基板保持具10に保持される下地基板20の結晶成長面21上に結晶膜30を成長させ、その結晶膜30から結晶基板35を製造するものである。すなわち、結晶基板35は、下地基板20上に成長させた結晶膜30を、その下地基板20と分離させることで得られる。その後、下地基板20と分離された結晶膜30は、エッジの面取り加工や主面の研磨が適宜施されて、結晶基板35として仕上げられる。
<Embodiment 1>
FIG. 1A is a schematic top view of a substrate holder according to the method for manufacturing a crystal substrate of Embodiment 1, and FIG. 1B is a schematic cross-sectional view taken along the line XX. FIG. 2 is a schematic top view showing an example of a crystal substrate manufactured by the method for manufacturing a crystal substrate of the first embodiment. As shown in FIGS. 1 and 2, in the method for manufacturing a crystal substrate according to the first embodiment, a crystal film 30 is grown on a crystal growth surface 21 of a base substrate 20 held by a substrate holder 10 of a vapor phase growth apparatus. The crystal substrate 35 is manufactured from the crystal film 30. That is, the crystal substrate 35 is obtained by separating the crystal film 30 grown on the base substrate 20 from the base substrate 20. Thereafter, the crystal film 30 separated from the base substrate 20 is finished as a crystal substrate 35 by appropriately performing chamfering processing of the edge and polishing of the main surface.

図2に示すように、結晶基板35は、略円形状の縁の一部を切り欠く切り欠き36を有している。本実施の形態において、この切り欠き36は、結晶基板35の端面に、オリフラとなる、該基板の結晶面に略平行な平坦面を形成するものである。そして、この切り欠き36は、結晶膜30の成長過程において形成されたものである。   As shown in FIG. 2, the crystal substrate 35 has a notch 36 in which a part of a substantially circular edge is notched. In the present embodiment, the notch 36 forms a flat surface that is an orientation flat on the end surface of the crystal substrate 35 and is substantially parallel to the crystal surface of the substrate. The notch 36 is formed during the growth process of the crystal film 30.

図1に示すように、基板保持具10は、下地基板20の結晶成長面21の一部を露出させる開口部12を備えており、その開口部12の輪郭により、下地基板20の結晶成長面21内の結晶成長領域を制御することができる。また、下地基板20上に成長される結晶膜30の結晶面方位は、下地基板20の結晶面方位に依存する傾向があり、それにより予測することができる。さらに、下地基板20上に結晶膜30を試験的に成長させ、その結晶面方位を測定すれば、下地基板20の結晶面方位と結晶膜30の結晶面方位の関係をより正確に知ることができる。一例としては、下地基板20がサファイアであり、結晶膜30が窒化物半導体であってc軸方向[0001]に成長される場合、結晶膜30のM面({1−100}面)は下地基板20のA面({11−20}面)に略平行となる傾向があることがわかっている。したがって、基板保持具10の開口部12の輪郭の一部を、結晶膜30の結晶面方位に合わせて、その結晶面方位を識別可能なように切り欠いておく又は内側に突出させておくことで、結晶膜30の成長過程において切り欠き36を形成することができる。   As shown in FIG. 1, the substrate holder 10 includes an opening 12 that exposes a part of the crystal growth surface 21 of the base substrate 20, and the crystal growth surface of the base substrate 20 is defined by the outline of the opening 12. The crystal growth region in 21 can be controlled. Further, the crystal plane orientation of the crystal film 30 grown on the base substrate 20 tends to depend on the crystal plane orientation of the base substrate 20 and can be predicted thereby. Furthermore, if the crystal film 30 is grown on the base substrate 20 on a trial basis and the crystal plane orientation is measured, the relationship between the crystal plane orientation of the base substrate 20 and the crystal plane orientation of the crystal film 30 can be known more accurately. it can. As an example, when the base substrate 20 is sapphire and the crystal film 30 is a nitride semiconductor and is grown in the c-axis direction [0001], the M plane ({1-100} plane) of the crystal film 30 is the base It has been found that there is a tendency to be substantially parallel to the A surface ({11-20} surface) of the substrate 20. Therefore, a part of the outline of the opening 12 of the substrate holder 10 is notched or protruded inward so that the crystal plane orientation can be identified in accordance with the crystal plane orientation of the crystal film 30. Thus, the notch 36 can be formed in the growth process of the crystal film 30.

特に、本実施の形態のように、切り欠き36をオリフラとする場合、基板保持具10の開口部12は、その輪郭に、円弧状部13と弦状部(第1の弦状部)14を含む。また、その弦状部14の内壁は、結晶膜30の結晶面に略平行な壁面15を有する。この結晶膜30の結晶面とは、例えば下地基板20のオリフラ23を下地基板20の中心軸を回転軸として30°又は90°の整数倍回転させた面に略平行な結晶面として定義される。なお、下地基板20の中心軸とは、結晶成長面21(オフ角は考慮しない)の中心における垂線である。これにより、弦状部14の内壁で結晶膜30の成長が制限されて、切り欠き36が形成される。そして、結晶膜30が壁面15に接して成長することで、切り欠き36に、結晶膜30の結晶面に略平行な平坦面を形成することができる。なお、円弧状部13は、結晶膜30を円形状(切り欠きを除いて考える)に成長しやすくして、結晶基板35のクラック、チッピング、割れなどの発生を抑制する働きがある。   In particular, as in the present embodiment, when the notch 36 is an orientation flat, the opening 12 of the substrate holder 10 has an arcuate portion 13 and a chord-like portion (first chord-like portion) 14 in its outline. including. Further, the inner wall of the string-like portion 14 has a wall surface 15 substantially parallel to the crystal plane of the crystal film 30. The crystal plane of the crystal film 30 is defined as a crystal plane substantially parallel to a plane obtained by rotating the orientation flat 23 of the base substrate 20 by an integral multiple of 30 ° or 90 ° with the central axis of the base substrate 20 as the rotation axis. . The central axis of the base substrate 20 is a perpendicular line at the center of the crystal growth surface 21 (not considering the off angle). As a result, the growth of the crystal film 30 is restricted by the inner wall of the chord 14 and a notch 36 is formed. The crystal film 30 grows in contact with the wall surface 15, whereby a flat surface substantially parallel to the crystal plane of the crystal film 30 can be formed in the notch 36. The arc-shaped portion 13 has a function of making the crystal film 30 easy to grow into a circular shape (considering notches) and suppressing the occurrence of cracks, chipping, cracks, and the like of the crystal substrate 35.

このほか、結晶基板35の切り欠き36は、ノッチであってもよい。その場合、基板保持具10の開口部12は、その輪郭にV字形状に内側に突出する突出部を含む。そして、その突出部の先端を通る該突出部の中心軸が、結晶膜30の結晶面に略平行となるようにすればよい。   In addition, the notch 36 of the crystal substrate 35 may be a notch. In that case, the opening part 12 of the board | substrate holder 10 contains the protrusion part which protrudes inside in the V shape at the outline. Then, the central axis of the protrusion passing through the tip of the protrusion may be substantially parallel to the crystal plane of the crystal film 30.

なお、結晶基板35のオリフラやノッチなどの切り欠き36が示す結晶面方位の許容精度は、その結晶基板35の用途によって変わるが、例えば±3.0°以内、好ましくは±1.0°以内、より好ましくは±0.5°以内、最も好ましくは±0.1°以内である。   The allowable accuracy of the crystal plane orientation indicated by the notch 36 such as the orientation flat or notch of the crystal substrate 35 varies depending on the use of the crystal substrate 35, but is, for example, within ± 3.0 °, preferably within ± 1.0 °. More preferably, it is within ± 0.5 °, and most preferably within ± 0.1 °.

このように、本発明では、結晶膜30を下地基板20と分離させた後、研削などの加工により切り欠き36を形成する工程を省略することができ、結晶基板35を安価に製造することができる。また、そのような加工に起因するクラック、チッピング、割れなどの発生を抑制することができ、歩留まりを高めることができる。   As described above, in the present invention, after the crystal film 30 is separated from the base substrate 20, the step of forming the notch 36 by processing such as grinding can be omitted, and the crystal substrate 35 can be manufactured at low cost. it can. In addition, generation of cracks, chipping, cracks, and the like due to such processing can be suppressed, and the yield can be increased.

そのうえ、基板保持具10は、繰り返し使用することができる。また、上記従来技術のように、下地基板毎に保護膜の形成など特別な処理を必要としない。さらに、基板保持具10の開口部12の厚さを結晶膜30の成長膜厚に応じて調整しておくことにより、基板保持具10に堆積する虞のある雑晶からの影響を軽減することができる。したがって、結晶性の良好な結晶基板35を安価に製造しやすい。   Moreover, the substrate holder 10 can be used repeatedly. Further, unlike the prior art, no special processing such as formation of a protective film is required for each base substrate. Further, by adjusting the thickness of the opening 12 of the substrate holder 10 in accordance with the growth film thickness of the crystal film 30, the influence from miscellaneous crystals that may be deposited on the substrate holder 10 can be reduced. Can do. Therefore, it is easy to manufacture the crystal substrate 35 with good crystallinity at low cost.

なお、結晶膜30は、その結晶構造の対称性によって、等価に扱える複数の結晶面を有する。このため、結晶基板35において、切り欠き36は、結晶面方位の識別のみを目的とするならば、形成され得る位置が複数存在する。しかしながら、結晶膜30は、下地基板20のオフ角や転位の分布などの特性を引き継ぐ傾向があり、切り欠き36は、結晶面方位のほか、そのような他の特性も識別可能な位置に形成されることがより好ましい。本発明では、結晶膜30の成長過程において切り欠き36を形成するため、結晶膜30の結晶面方位に加え、その切り欠き36の位置により結晶膜30のオフ角や転位の分布なども比較的容易に識別することができる。結晶膜30を下地基板20と分離させた後では、その結晶面方位を知る作業さえ煩雑になるため、本手段は非常に簡便で有用である。   The crystal film 30 has a plurality of crystal planes that can be handled equivalently due to the symmetry of the crystal structure. For this reason, in the crystal substrate 35, the notch 36 has a plurality of positions where the notch 36 can be formed only for the purpose of identifying the crystal plane orientation. However, the crystal film 30 tends to inherit characteristics such as the off-angle and dislocation distribution of the base substrate 20, and the notch 36 is formed at a position where such other characteristics in addition to the crystal plane orientation can be identified. More preferably. In the present invention, since the notch 36 is formed during the growth process of the crystal film 30, in addition to the crystal plane orientation of the crystal film 30, the off-angle of the crystal film 30 and the dislocation distribution are relatively determined depending on the position of the notch 36. It can be easily identified. After separating the crystal film 30 from the base substrate 20, even the work of knowing the crystal plane orientation becomes complicated, so this means is very simple and useful.

以下、本発明の構成の好ましい態様について詳述する。   Hereinafter, the preferable aspect of the structure of this invention is explained in full detail.

図1に示すように、基板保持具10は、上下に開口しており、筒状の筒状部101と、その一端から内側に張り出した支持部102と、を有する。そして、基板保持具10は、筒状部101内に挿入された下地基板20の周縁部を支持部102で支持する。そうすると、支持部102の開口部12に、下地基板20の結晶成長面21の一部、具体的には中央部が露出される。なお、その後、筒状部101内に均熱板40が挿入され、それにより下地基板20は支持部102に押さえ付けられる。   As shown in FIG. 1, the substrate holder 10 is opened up and down, and includes a cylindrical cylindrical portion 101 and a support portion 102 that protrudes inward from one end thereof. The substrate holder 10 supports the peripheral portion of the base substrate 20 inserted into the cylindrical portion 101 with the support portion 102. Then, a part of the crystal growth surface 21 of the base substrate 20, specifically, the central part is exposed to the opening 12 of the support part 102. After that, the soaking plate 40 is inserted into the cylindrical portion 101, whereby the base substrate 20 is pressed against the support portion 102.

基板保持具10は、1つの部品で構成されてもよいし、例えば図示するように保持具本体100とリング110など複数の部品で構成されてもよい。リング110は、下地基板20と保持具本体100との間に介在し、支持部102の一部を構成する。このとき、円弧状部13と弦状部14は、リング110の開口部の輪郭に設けられる。このように、基板保持具10の結晶膜30に接する部位と結晶膜30から離間する部位が別個の部品で構成されれば、それぞれの部位に好適な構成を選択しやすい。   The substrate holder 10 may be composed of one part, or may be composed of a plurality of parts such as a holder body 100 and a ring 110 as shown in the figure. The ring 110 is interposed between the base substrate 20 and the holder main body 100 and constitutes a part of the support portion 102. At this time, the arc-shaped portion 13 and the string-shaped portion 14 are provided in the outline of the opening of the ring 110. As described above, if the portion of the substrate holder 10 that is in contact with the crystal film 30 and the portion that is separated from the crystal film 30 are formed of separate parts, it is easy to select a suitable configuration for each portion.

以上のように下地基板20を保持した基板保持具10は、気相成長装置の反応炉内に設置される。そして、下地基板20の結晶成長面21上に、原料が供給され、結晶膜30が成長される。このとき、多くの場合、基板保持具10は回転される。なお、基板保持具10は、気相成長装置の反応炉内において、下地基板20の結晶成長面21が鉛直方向上側に向く状態で設置されてもよいし(フェイスアップ型)、逆に下地基板20の結晶成長面21が鉛直方向下側に向く状態で設置されてもよい(フェイスダウン型)。   As described above, the substrate holder 10 holding the base substrate 20 is installed in the reaction furnace of the vapor phase growth apparatus. Then, a raw material is supplied on the crystal growth surface 21 of the base substrate 20, and the crystal film 30 is grown. At this time, in many cases, the substrate holder 10 is rotated. The substrate holder 10 may be installed in a reaction furnace of the vapor phase growth apparatus with the crystal growth surface 21 of the base substrate 20 facing upward in the vertical direction (face-up type). 20 crystal growth surfaces 21 may be installed in a state in which they face downward in the vertical direction (face-down type).

下地基板20は、その端面にオリフラ23を有していることが好ましい。また、基板保持具10は、基準面17を備えていることが好ましい。この基準面17は、基板保持具10が下地基板20を保持した際、下地基板20のオリフラ23と略平行に対面するように設けられる。これにより、下地基板20を、基準面17によってその向きを規制して、基板保持具10に設置することができる。そして、弦状部14の位置及び方向、ひいては壁面15の位置及び方向は、この基準面17を基準として設定される。そうすると、下地基板20の結晶面方位に対する壁面15の設置精度を高めることができ、結晶基板35に切り欠き36を精度良く形成しやすい。なお、基準面17は、基板保持具10の構成面の一部として設けられるほか、基板保持具10に設けられる2本のピンに接する平面(接平面)など仮想の平面であってもよい。   The base substrate 20 preferably has an orientation flat 23 on its end face. The substrate holder 10 preferably includes a reference surface 17. The reference surface 17 is provided so as to face substantially parallel to the orientation flat 23 of the base substrate 20 when the substrate holder 10 holds the base substrate 20. As a result, the orientation of the base substrate 20 can be regulated by the reference surface 17 and installed on the substrate holder 10. Then, the position and direction of the chord 14, and thus the position and direction of the wall surface 15 are set with reference to this reference surface 17. Then, the installation accuracy of the wall surface 15 with respect to the crystal plane orientation of the base substrate 20 can be increased, and the notch 36 can be easily formed in the crystal substrate 35 with high accuracy. The reference surface 17 may be a virtual plane such as a plane (tangential plane) in contact with two pins provided on the substrate holder 10 in addition to being provided as a part of the constituent surface of the substrate holder 10.

結晶基板35のオリフラとなる切り欠き36は、その主面(上面:表)に対して、斜めの面であってもよいが、多くの場合は略垂直な面で形成される。したがって、基板保持具10の弦状部14の壁面15は、下地基板20の結晶成長面21に対して略垂直に設けられることが好ましい。すなわち、基板保持具10の支持部102の下地基板の結晶成長面21と接する面と、壁面15とは、略垂直であることが好ましい。また、上述のように、雑晶からの影響を軽減するため、基板保持具10の開口部12の内壁の厚さ(高さ)、すなわち図1に示す例ではリング110の厚さを、結晶膜30の膜厚以上とすることが好ましい。   The cutout 36 serving as the orientation flat of the crystal substrate 35 may be a surface that is oblique with respect to its main surface (upper surface: front), but in many cases is formed by a substantially vertical surface. Therefore, the wall surface 15 of the string-like portion 14 of the substrate holder 10 is preferably provided substantially perpendicular to the crystal growth surface 21 of the base substrate 20. That is, it is preferable that the surface in contact with the crystal growth surface 21 of the base substrate of the support portion 102 of the substrate holder 10 and the wall surface 15 are substantially perpendicular. Further, as described above, in order to reduce the influence from miscellaneous crystals, the thickness (height) of the inner wall of the opening 12 of the substrate holder 10, that is, the thickness of the ring 110 in the example shown in FIG. It is preferable that the thickness be equal to or greater than the film 30.

結晶基板35のオリフラとなる切り欠き36の長さは、オリフラとしての機能、並びに結晶基板35の主面の有効面積などの観点から、該基板35の直径の20%以上40%以下程度とすることが好ましく、例えば直径が3インチや75mmの結晶基板35であれば、15mm以上30mm以下とすることが好ましい。なお、図2に破線で示すように、通常、下地基板20と分離された結晶膜30は、円形状に整形する研削加工(丸め加工)が施される。その際、加工中心の位置により、切り欠き36が削られて小さくなる場合がある。このため、弦状部14の長さは、切り欠き36がオリフラとして機能するのに十分な長さを確保できるように、上記切り欠き36の好ましいとされる長さより長くしておくことが好ましく、求める結晶基板の直径の25%以上45%以下程度とする。   The length of the notch 36 serving as the orientation flat of the crystal substrate 35 is about 20% to 40% of the diameter of the substrate 35 from the viewpoint of the function as the orientation flat and the effective area of the main surface of the crystal substrate 35. For example, in the case of the crystal substrate 35 having a diameter of 3 inches or 75 mm, it is preferably 15 mm or more and 30 mm or less. Note that, as indicated by a broken line in FIG. 2, the crystal film 30 separated from the base substrate 20 is usually subjected to a grinding process (rounding process) for shaping it into a circular shape. At that time, depending on the position of the processing center, the notch 36 may be cut and become smaller. For this reason, it is preferable that the length of the chordal portion 14 is longer than the preferable length of the notch 36 so that the notch 36 can secure a length sufficient to function as an orientation flat. And about 25% to 45% of the diameter of the desired crystal substrate.

結晶膜30が六方晶系に属する結晶である場合、そのC面({0001}面)とM面、及びC面とA面は、垂直な関係にある。また、A面とM面は、c軸を回転軸として30°回転した関係にある。例えば、主面がC面に略平行な結晶基板35の切り欠き36は、M面又はA面に略平行に形成することができる。また例えば、主面がM面に略平行な結晶基板35の切り欠き36は、C面又はA面に略平行に形成することができる。   When the crystal film 30 is a crystal belonging to the hexagonal system, the C plane ({0001} plane) and the M plane, and the C plane and the A plane are perpendicular to each other. In addition, the A plane and the M plane have a relationship of being rotated by 30 ° with the c axis as the rotation axis. For example, the notch 36 of the crystal substrate 35 whose main surface is substantially parallel to the C plane can be formed substantially parallel to the M plane or the A plane. For example, the notch 36 of the crystal substrate 35 whose main surface is substantially parallel to the M plane can be formed substantially parallel to the C plane or the A plane.

また、結晶膜30が立方晶系に属する結晶である場合、その{100}面のうちの1つは、それに連続する4つの面と垂直な関係にある。また{011}面は、{100}面のうちの2つの面と垂直であり、{100}面のうちの残りの4つの面とは45°回転した関係にある。例えば、主面が(100)面に略平行な結晶基板35の切り欠き36は、例えば(01−1)面又は(011)面に略平行に形成することができる。なお、この(01−1)面と(011)面は垂直な関係にある。   Further, when the crystal film 30 is a crystal belonging to a cubic system, one of the {100} planes is in a perpendicular relationship with four consecutive planes. Further, the {011} plane is perpendicular to two of the {100} planes, and is in a relationship rotated by 45 ° with the remaining four of the {100} planes. For example, the notch 36 of the crystal substrate 35 whose main surface is substantially parallel to the (100) plane can be formed, for example, substantially parallel to the (01-1) plane or the (011) plane. The (01-1) plane and the (011) plane are perpendicular to each other.

ここで、仮に結晶膜30の結晶面方位が下地基板20の結晶面方位と略一致すると考えると、結晶膜30は、下地基板20のオリフラ23が示す結晶面つまりオリフラ23に略平行な結晶面を、下地基板20の中心軸を回転軸として30°の整数倍回転させた面又は90°の整数倍回転させた面に略平行な結晶面を有する場合が多い。したがって、基板保持具10の弦状部の壁面15が、下地基板20のオリフラ23を下地基板20の中心軸を回転軸として又は基準面17を開口部12の中心軸を回転軸として、30°又は90°の整数倍回転させた面に略平行であることで、多くの晶系に対応して、結晶基板35にオリフラとなる切り欠き36を精度良く形成しやすいので、好ましい。   Here, assuming that the crystal plane orientation of the crystal film 30 is substantially coincident with the crystal plane orientation of the base substrate 20, the crystal film 30 is a crystal plane indicated by the orientation flat 23 of the base substrate 20, that is, a crystal plane substantially parallel to the orientation flat 23. In many cases, the substrate has a crystal plane substantially parallel to a plane rotated by an integral multiple of 30 ° or a plane rotated by an integral multiple of 90 ° with the central axis of the base substrate 20 as a rotation axis. Therefore, the wall surface 15 of the string-like portion of the substrate holder 10 is 30 ° with the orientation flat 23 of the base substrate 20 as the rotation axis or the reference surface 17 as the rotation axis as the rotation axis. Alternatively, it is preferable to be substantially parallel to a plane rotated by an integral multiple of 90 °, because a notch 36 serving as an orientation flat can be easily formed on the crystal substrate 35 with high accuracy corresponding to many crystal systems.

結晶膜30は、下地基板20上に成長するにつれて、比較的安定な結晶面がファセット面として現れる傾向がある。特に、結晶膜30が六方晶系に属する結晶、例えば窒化物半導体である場合、比較的安定な結晶面としては、C面、M面、R面({1−102}面)、{1−101}面、{11−22}面、{11−21}面、A面などが挙げられる。そのため、図2に示すように、丸め加工が施される前の結晶膜30は、その端面にファセット面37を有する場合がある。また、このような結晶膜30におけるa軸方向<11−20>の結晶成長は、m軸方向<1−100>の結晶成長より速い傾向がある。そのため、結晶膜30の成長初期に{11−22}面、{11−21}面、A面などが現れ、結晶成長が進行するにつれて、より安定なC面、M面、R面、{1−101}面などが徐々に拡大してくる傾向がある。   As the crystal film 30 grows on the base substrate 20, a relatively stable crystal plane tends to appear as a facet plane. In particular, when the crystal film 30 is a hexagonal crystal, for example, a nitride semiconductor, relatively stable crystal planes include C plane, M plane, R plane ({1-102} plane), {1- 101} plane, {11-22} plane, {11-21} plane, A plane, and the like. Therefore, as shown in FIG. 2, the crystal film 30 before being rounded may have a facet surface 37 on the end face thereof. Also, the crystal growth in the a-axis direction <11-20> in such a crystal film 30 tends to be faster than the crystal growth in the m-axis direction <1-100>. Therefore, the {11-22} plane, the {11-21} plane, the A plane, etc. appear at the initial growth stage of the crystal film 30, and as the crystal growth proceeds, the more stable C plane, M plane, R plane, {1 The −101} plane tends to gradually expand.

したがって、結晶膜30が六方晶系に属する結晶である場合、基板保持具10の弦状部の壁面15は、結晶膜30のA面に略平行であることが好ましい。これにより、結晶膜30が壁面15に接して成長しやすくなり、結晶基板35にオリフラとなる切り欠き36を精度良く形成しやすい。   Therefore, when the crystal film 30 is a crystal belonging to the hexagonal system, the wall surface 15 of the string-like portion of the substrate holder 10 is preferably substantially parallel to the A plane of the crystal film 30. As a result, the crystal film 30 is likely to grow in contact with the wall surface 15, and the notch 36 serving as an orientation flat is easily formed on the crystal substrate 35 with high accuracy.

図2に示すように、結晶基板35は、所定の直径Φを有している。本実施の形態において、結晶基板35は、結晶膜30の丸め加工を行わずに製造されてもよい。その場合、この直径Φは、下地基板20と分離された結晶膜30のアズグロウン(機械加工前の状態)の直径に略等しい。すなわち、この直径Φは、結晶膜30の成長過程において得られる。但し、エッジの面取り加工による若干の縮径は考慮されるものとする。   As shown in FIG. 2, the crystal substrate 35 has a predetermined diameter Φ. In the present embodiment, the crystal substrate 35 may be manufactured without rounding the crystal film 30. In this case, the diameter Φ is substantially equal to the diameter of the as-grown (state before machining) of the crystal film 30 separated from the base substrate 20. That is, this diameter Φ is obtained during the growth process of the crystal film 30. However, a slight reduction in diameter due to chamfering of the edge is considered.

上述のように、本発明では、基板保持具10の開口部12の輪郭により、下地基板20の結晶成長面21内の結晶成長領域を制御することができため、円弧状部13が所定の直径Φと略等しい直径dを有することで、所定の直径Φに略等しい直径を有する結晶膜30を成長させることができる。したがって、結晶膜30を下地基板20と分離させた後、結晶膜30に丸め加工を施す工程を省略することができ、結晶基板35を安価に製造することができる。また、その丸め加工に起因するクラック、チッピング、割れなどの発生を抑制することができ、歩留まりを高めることができる。   As described above, in the present invention, since the crystal growth region in the crystal growth surface 21 of the base substrate 20 can be controlled by the contour of the opening 12 of the substrate holder 10, the arc-shaped portion 13 has a predetermined diameter. By having the diameter d substantially equal to Φ, the crystal film 30 having a diameter substantially equal to the predetermined diameter Φ can be grown. Therefore, the step of rounding the crystal film 30 after separating the crystal film 30 from the base substrate 20 can be omitted, and the crystal substrate 35 can be manufactured at low cost. In addition, generation of cracks, chipping, cracks, and the like due to the rounding process can be suppressed, and the yield can be increased.

基板保持具10の開口部12の円弧状部13の直径dは、求める結晶基板35の直径に合わせて適宜調整される。但し、結晶基板35の直径の一般的な規格として、2インチ、2.5インチ、3インチ、4インチ、5インチ、6インチ、50mm、75mm、100mm、125mm、150mmなどがある。したがって、所定の直径Φは、これらの値のうちのいずれか1つに略等しいことが好ましい。これにより、多くの製造装置や治具に対応し、利用しやすい結晶基板35を得ることができる。なお、±0.5mmの公差は考慮されるものとする。   The diameter d of the arcuate portion 13 of the opening 12 of the substrate holder 10 is appropriately adjusted according to the desired diameter of the crystal substrate 35. However, general standards for the diameter of the crystal substrate 35 include 2 inches, 2.5 inches, 3 inches, 4 inches, 5 inches, 6 inches, 50 mm, 75 mm, 100 mm, 125 mm, and 150 mm. Therefore, the predetermined diameter Φ is preferably approximately equal to any one of these values. Thereby, it is possible to obtain a crystal substrate 35 that is compatible with many manufacturing apparatuses and jigs and is easy to use. Note that a tolerance of ± 0.5 mm is considered.

結晶膜30は、基板保持具10の開口部の12の内壁によって、横方向への成長を制限される。したがって、円弧状部13の内壁の壁面は、結晶膜30の直径を精度良く制御するために、下地基板20の結晶成長面21に対して略垂直に設けられることが好ましい。すなわち、基板保持具10の支持部102の下地基板の結晶成長面21と接する面と、円弧状部13の内壁の壁面とは、略垂直であることが好ましい。なお、円弧状部13の直径dは、円弧状部13の内壁の壁面の角度に関わらず、下地基板20の結晶成長面21に接する円弧状部13の内壁の端部における径で定義されるものとする。また、基板保持具10によって結晶膜30の直径を精度良く制御するためにも、基板保持具10の開口部12の内壁の厚さ(高さ)、すなわち図1に示す例ではリング110の厚さは、結晶膜30の膜厚以上とすることが好ましい。   The growth of the crystal film 30 in the lateral direction is restricted by the inner wall of the opening 12 of the substrate holder 10. Therefore, the inner wall surface of the arc-shaped portion 13 is preferably provided substantially perpendicular to the crystal growth surface 21 of the base substrate 20 in order to accurately control the diameter of the crystal film 30. That is, it is preferable that the surface in contact with the crystal growth surface 21 of the base substrate of the support portion 102 of the substrate holder 10 and the wall surface of the inner wall of the arc-shaped portion 13 are substantially perpendicular. The diameter d of the arc-shaped portion 13 is defined by the diameter at the end of the inner wall of the arc-shaped portion 13 in contact with the crystal growth surface 21 of the base substrate 20 regardless of the angle of the wall surface of the inner wall of the arc-shaped portion 13. Shall. Further, in order to accurately control the diameter of the crystal film 30 by the substrate holder 10, the thickness (height) of the inner wall of the opening 12 of the substrate holder 10, that is, the thickness of the ring 110 in the example shown in FIG. The thickness is preferably equal to or greater than the thickness of the crystal film 30.

上述のように、下地基板20と分離された結晶膜30は、その周縁部にファセット面を有することがある。そして、結晶膜30に丸め加工を行わない場合、結晶基板35は、図2に示すように、その端面にアズグロウンのファセット面37を有することがある。なお、結晶膜30のエッジに面取り加工が施されても、多くの場合、そのファセット面37の一部は残留するであろう。例えば、本発明の製造方法により製造された、主面がC面に略平行な結晶基板35は、その端面に、M面、R面、{1−101}面、{11−22}面、{11−21}面、A面のうちの少なくとも1つのファセット面37を有する。なかでも、特に多く見られるファセット面37はR面であり、次いで{11−22}面がよく見られる。なお、このようなアズグロウンのファセット面37を、オリフラとして機能させることもできる。   As described above, the crystal film 30 separated from the base substrate 20 may have a facet surface at the periphery thereof. If the crystal film 30 is not rounded, the crystal substrate 35 may have an as-grown facet surface 37 on its end face, as shown in FIG. Even if the edge of the crystal film 30 is chamfered, in many cases, part of the facet surface 37 will remain. For example, the crystal substrate 35 having a principal surface substantially parallel to the C plane manufactured by the manufacturing method of the present invention has an M plane, an R plane, a {1-101} plane, a {11-22} plane, It has at least one facet surface 37 of {11-21} plane and A plane. Among them, the facet surface 37 that is particularly often seen is the R surface, and then the {11-22} surface is often seen. Note that such an as-grown facet surface 37 can also function as an orientation flat.

また、上述のように、結晶膜30は、基板保持具10の開口部12の輪郭に依存した形状で成長させることができるが、その周縁部に現れるファセット面37によって、その端面が基板保持具10の開口部12の内壁から離間して成長する部位を有することがある。さらに、結晶膜30の周縁部は、基板保持具10の開口部12の内壁の陰となり、成長膜厚が比較的小さくなりやすい。このように、結晶膜30は、下地基板20上に成長するにつれて先細りしやすい。そこで、これを考慮し、基板保持具10の円弧状部13の直径dを、求める結晶基板35の直径より所定量大きくしてもよい。より詳細には、基板保持具10の円弧状部13は、所定の直径Φより該所定の直径Φの2%以下の範囲で大きい直径を有するようにしてもよい。これにより、結晶基板35の直径を、求める所定の直径Φに合わせやすい。   Further, as described above, the crystal film 30 can be grown in a shape depending on the outline of the opening 12 of the substrate holder 10, but the end face is formed by the facet surface 37 appearing on the peripheral edge thereof. It may have a part which grows away from the inner wall of ten openings 12. Further, the peripheral edge portion of the crystal film 30 is behind the inner wall of the opening 12 of the substrate holder 10 and the growth film thickness tends to be relatively small. Thus, the crystal film 30 tends to taper as it grows on the base substrate 20. In view of this, the diameter d of the arc-shaped portion 13 of the substrate holder 10 may be made a predetermined amount larger than the diameter of the crystal substrate 35 to be obtained. More specifically, the arc-shaped portion 13 of the substrate holder 10 may have a diameter larger than the predetermined diameter Φ within a range of 2% or less of the predetermined diameter Φ. Thereby, it is easy to match the diameter of the crystal substrate 35 with the predetermined diameter Φ to be obtained.

<実施の形態2>
図3は、実施の形態2の結晶基板の製造方法に係る基板保持具の概略上面図である。図3に示す例の基板保持具11は、複数の開口部12を備えており、複数の下地基板20を保持することが可能である。これにより、複数の下地基板20上に結晶膜30を同時に成長させ、結晶基板35を効率良く製造することができる。なお、複数の開口部12は、その中心が同心円上にほぼ位置するように設けられることが好ましい。そうすれば、各下地基板20上の結晶膜30の膜厚や結晶性の面内分布などの均一性を高めやすい。また、基板保持具11は、開口部12毎に対応して、保持する下地基板20のオリフラ23と略平行に対面する基準面17を備えている。これにより、上述のように、下地基板20の結晶面方位に対する弦状部14(壁面15)の設置精度を高めることができ、結晶基板35にオリフラ(主オリフラ)などの切り欠き36を精度良く形成しやすい。
<Embodiment 2>
FIG. 3 is a schematic top view of a substrate holder according to the method for manufacturing a crystal substrate of the second embodiment. The substrate holder 11 in the example shown in FIG. 3 includes a plurality of openings 12 and can hold a plurality of base substrates 20. Thereby, the crystal film 30 can be simultaneously grown on the plurality of base substrates 20, and the crystal substrate 35 can be efficiently manufactured. In addition, it is preferable that the plurality of openings 12 are provided so that the centers thereof are substantially located on concentric circles. This makes it easy to improve the uniformity of the crystal film 30 on each base substrate 20 and the in-plane distribution of crystallinity. Further, the substrate holder 11 includes a reference surface 17 that faces the opening 12 and faces the orientation flat 23 of the base substrate 20 to be held substantially in parallel. Thereby, as described above, the installation accuracy of the string-like portion 14 (wall surface 15) with respect to the crystal plane orientation of the base substrate 20 can be increased, and the notch 36 such as an orientation flat (main orientation flat) is accurately formed on the crystal substrate 35. Easy to form.

この基板保持具11の開口部12は、その輪郭に、弦状部14と平行でなく且つ弦状部14と異なる大きさの第2の弦状部19を含む。これにより、結晶膜30の成長過程において、結晶膜30に、インデックスフラットなど、結晶基板35の表裏を識別する切り欠きを容易に形成することができる。第2の弦状部19は、視認できれば比較的小さいものでよく、例えば弦状部14より小さいことが好ましい。また、この第2の弦状部19の内壁もまた、結晶膜30の結晶面に略平行な壁面を有するようにしてもよい。これにより、この第2の弦状部19により結晶基板35に形成される切り欠きを、副オリフラとしても機能させることができる。   The opening 12 of the substrate holder 11 includes, in its outline, a second chord 19 that is not parallel to the chord 14 and has a different size from the chord 14. Thereby, in the growth process of the crystal film 30, notches for identifying the front and back of the crystal substrate 35 such as an index flat can be easily formed in the crystal film 30. The second string portion 19 may be relatively small as long as it can be visually recognized, and is preferably smaller than the string portion 14, for example. Further, the inner wall of the second chord portion 19 may also have a wall surface substantially parallel to the crystal plane of the crystal film 30. Thereby, the notch formed in the crystal substrate 35 by this 2nd string-like part 19 can be functioned also as a sub orientation flat.

なお、結晶基板35の表裏を識別する切り欠きの形状は、弦状(直線状)に限定されない。その場合、第2の弦状部19の代わりに、基板保持具10の開口部12は、その輪郭に、V字形状、U字形状、半円状など任意の形状で内側に突出する突出部を含む。そして、この突出部は、第1の弦状部14の中心線(垂直2等分線)上に位置しないか、又は開口部12の内壁における下地基板20側若しくはその反対側どちらか(好ましくは下地基板20側)に偏らせて設けられる。これにより、この突出部により形成される結晶基板35の切り欠きの位置が該基板の表向きと裏向きで異なるので、結晶基板35の表裏を識別することができる。   In addition, the shape of the notch for identifying the front and back of the crystal substrate 35 is not limited to a string shape (straight shape). In that case, instead of the second chord 19, the opening 12 of the substrate holder 10 has a protruding portion that protrudes inward in an arbitrary shape such as a V shape, a U shape, or a semicircular shape. including. And this protrusion part is not located on the center line (vertical bisector) of the 1st chord-like part 14, or the base substrate 20 side in the inner wall of the opening part 12 or its opposite side (preferably It is biased toward the base substrate 20 side). Thereby, the position of the notch of the crystal substrate 35 formed by the projecting portion differs between the front side and the back side of the substrate, so that the front and back sides of the crystal substrate 35 can be identified.

なお、各開口部12における、第1の弦状部14と第2の弦状部19の位置、方向、大きさ、及び円弧状部13の直径dは、揃えることが好ましいが、開口部12毎に変えてもよい。また、実施の形態1の基板保持具10においても、第2の弦状部19を適用することができる。さらに、本実施の形態の基板保持具11においても、実施の形態1で説明した円弧状部13を適用して、結晶膜30の丸め加工を省略することができる。   In addition, it is preferable that the positions, directions, and sizes of the first chord portion 14 and the second chord portion 19 and the diameter d of the arcuate portion 13 in each opening portion 12 are the same, but the opening portion 12. It may be changed every time. Further, the second string-like portion 19 can also be applied to the substrate holder 10 of the first embodiment. Furthermore, also in the substrate holder 11 of the present embodiment, the circular portion of the crystal film 30 can be omitted by applying the arc-shaped portion 13 described in the first embodiment.

以下、本発明の各構成要素について説明する。   Hereinafter, each component of the present invention will be described.

(基板保持具)
基板保持具10,11は、結晶膜30の成長時の高温雰囲気に耐え、下地基板20を保持するのに十分な機械的強度を有するものであればよい。また、結晶膜30の成長時の下地基板20の位置ずれや歪みを抑制するため、基板保持具10,11は、その熱膨張係数が下地基板20のそれ以上であることが好ましい。基板保持具10,11の材料としては、カーボン(炭素質、黒鉛質)、SiC、BNなどが挙げられ、特にカーボンが好ましい。
(Substrate holder)
The substrate holders 10 and 11 may be any ones that can withstand a high temperature atmosphere during the growth of the crystal film 30 and have sufficient mechanical strength to hold the base substrate 20. Further, in order to suppress displacement and distortion of the base substrate 20 during the growth of the crystal film 30, the substrate holders 10 and 11 preferably have a thermal expansion coefficient higher than that of the base substrate 20. Examples of the material for the substrate holders 10 and 11 include carbon (carbonaceous, graphite), SiC, and BN. Carbon is particularly preferable.

(下地基板)
下地基板20は、その上に結晶膜30の成長、好ましくはエピタキシャル成長が可能なものであればよい。下地基板20の材料としては、サファイア(Al)、スピネル(MgAl)、GaN、AlGaN、AlN、Si、SiC、GaAs、GaP、InP、ZnS、ZnO、ZnSe、ダイヤモンドなどが挙げられる。また、これらのうちで結晶膜30と異なる材料の自立基板上に、それとは異なる材料、好ましくは結晶膜30と近似する材料の層が形成された複合基板であってもよい。特に、結晶膜30が窒化物半導体である場合、結晶成長面21がC面(0001)に略平行なサファイア、又はその上に窒化物半導体の層が形成された複合基板が好ましい。なお、下地基板20の結晶成長面21は、特定の結晶面から所定角度傾斜(オフ)していてもよい。下地基板20の大きさは、例えば1インチ以上8インチ以下、好ましくは2インチ以上6インチ以下、より好ましくは2インチ以上4インチ以下とする。下地基板20の厚さは、例えば30μm以上3mm以下、好ましくは0.1mm以上2mm以下、より好ましくは0.5mm以上2mm以下とする。このような大きさ、厚さの下地基板20であれば、結晶膜30のクラックや割れを抑制しやすい。下地基板20の形状(オリフラ等の切り欠きを除いて考える)は、円形状が好ましいが、矩形状、三角形状、半円状、扇状などでもよい。
(Base substrate)
The base substrate 20 may be any substrate on which the crystal film 30 can be grown, preferably epitaxially grown. Examples of the material of the base substrate 20 include sapphire (Al 2 O 3 ), spinel (MgAl 2 O 4 ), GaN, AlGaN, AlN, Si, SiC, GaAs, GaP, InP, ZnS, ZnO, ZnSe, diamond, and the like. It is done. In addition, a composite substrate in which a layer of a material different from that, preferably a material similar to the crystal film 30 is formed on a self-supporting substrate made of a material different from the crystal film 30 may be used. In particular, when the crystal film 30 is a nitride semiconductor, a sapphire whose crystal growth surface 21 is substantially parallel to the C plane (0001) or a composite substrate in which a nitride semiconductor layer is formed thereon is preferable. Note that the crystal growth surface 21 of the base substrate 20 may be inclined (off) by a predetermined angle from a specific crystal plane. The size of the base substrate 20 is, for example, 1 inch or more and 8 inches or less, preferably 2 inches or more and 6 inches or less, more preferably 2 inches or more and 4 inches or less. The thickness of the base substrate 20 is, for example, 30 μm to 3 mm, preferably 0.1 mm to 2 mm, more preferably 0.5 mm to 2 mm. If the base substrate 20 has such a size and thickness, cracks and cracks in the crystal film 30 can be easily suppressed. The shape of the base substrate 20 (considering notches such as orientation flats) is preferably circular, but may be rectangular, triangular, semicircular, fan-shaped, or the like.

(結晶膜)
結晶膜30は、気相成長法により下地基板20上に結晶成長可能なものであればよい。結晶膜30は、単層膜でも多層膜でもよく、自立基板となるもののほか、半導体素子構造を含むものでもよい。結晶膜30の材料としては、例えばGaN、AlGaN、InGaNなど、主として一般式AlInGa1−x−yN(0≦x≦1,0≦y≦1,x+y≦1)で表される窒化物半導体が挙げられる。なお、III族元素の一部がBで置換されてもよく、Nの一部がP、Asなどで置換されてもよい。窒化物半導体はバルク結晶を比較的得難く、その結晶基板は他の材料に比べ未だ高価であり、本発明が特に効果を奏する。このほか、結晶膜30の材料は、GaAs系化合物(主として一般式AlInGa1−v−wAs(0≦v≦1,0≦w≦1,v+w≦1)で表される)、GaP系化合物(主として一般式AlInGa1−s−tP(0≦s≦1,0≦t≦1,s+t≦1)で表される)、ZnS、ZnSe、ZnO、Si、SiC、ダイヤモンドなどでもよい。また、結晶膜30は、その導電型を制御するために、適宜不純物がドープされてもよい。特に、結晶膜30が窒化物半導体である場合、n型不純物はSi、O、Sなどを、p型不純物はMg、Zn、Cなどを用いることができる。なかでも、n型不純物はSi、p型不純物はMgが好ましい。これらの不純物の濃度は、例えば1×1017/cm以上1×1021/cm以下とするとよい。
(Crystal film)
The crystal film 30 only needs to be capable of crystal growth on the base substrate 20 by vapor phase growth. The crystal film 30 may be a single layer film or a multilayer film, and may be a self-standing substrate or a semiconductor element structure. The material of the crystal film 30 is mainly represented by the general formula Al x In y Ga 1-xy N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, x + y ≦ 1) such as GaN, AlGaN, InGaN, and the like. A nitride semiconductor. A part of the group III element may be substituted with B, and a part of N may be substituted with P, As, or the like. Nitride semiconductors are relatively difficult to obtain bulk crystals, and their crystal substrates are still more expensive than other materials, and the present invention is particularly effective. In addition, the material of the crystal film 30 is a GaAs compound (mainly expressed by the general formula Al v In w Ga 1-vw As (0 ≦ v ≦ 1, 0 ≦ w ≦ 1, v + w ≦ 1)). , GaP-based compound (mainly represented by the general formula Al s in t Ga 1-s -t P (0 ≦ s ≦ 1,0 ≦ t ≦ 1, s + t ≦ 1)), ZnS, ZnSe, ZnO, Si, SiC, diamond, etc. may be used. The crystal film 30 may be appropriately doped with impurities in order to control the conductivity type. In particular, when the crystal film 30 is a nitride semiconductor, the n-type impurity can be Si, O, S, or the like, and the p-type impurity can be Mg, Zn, C, or the like. Among these, the n-type impurity is preferably Si, and the p-type impurity is preferably Mg. The concentration of these impurities may be, for example, 1 × 10 17 / cm 3 or more and 1 × 10 21 / cm 3 or less.

また、結晶膜30を下地基板20と分離させる方法としては、下地基板20を研磨により除去する方法、結晶膜30と下地基板20の界面近傍に薬液処理やレーザ照射などを施して結晶膜30を下地基板20から剥離させる方法、結晶膜30の成長後の熱応力などにより結晶膜30を下地基板20から自然に剥離させる方法などが挙げられる。特に、自然剥離を利用することで、安価に結晶膜30を下地基板20と分離させやすい。   Further, as a method of separating the crystal film 30 from the base substrate 20, a method of removing the base substrate 20 by polishing, a chemical treatment or laser irradiation is performed near the interface between the crystal film 30 and the base substrate 20 to form the crystal film 30. Examples thereof include a method of peeling from the base substrate 20 and a method of naturally peeling the crystal film 30 from the base substrate 20 due to thermal stress after the crystal film 30 is grown. In particular, by utilizing natural peeling, the crystal film 30 can be easily separated from the base substrate 20 at a low cost.

(気相成長装置)
気相成長法(装置)は、例えば、気相エピタキシー法(VPE:Vapor Phase Epitaxy)、化学気相成長法(CVD:Chemical Vapor Deposition)、分子線エピタキシー(MBE:Molecular Beam Epitaxy)などの方法(装置)を用いることができる。特に、VPE法、CVD法が好ましく、より具体的には、比較的高速の結晶成長が可能なハイドライド気相エピタキシー法(HVPE:Hydride Vapor Phase Epitaxy)、成長速度や膜厚の制御がしやすい有機金属化学気相成長法(MOCVD:Metal Organic Chemical Vapor Deposition)が好適である。これらの方法を組み合わせて用いてもよい。特に、結晶膜30が窒化物半導体である場合、HVPE法では、主原料としてアンモニア(NH)とIII族元素のハロゲン化物(例えばGaCl)を用いる。MOCVD法では、主原料としてNHとトリメチルガリウム(TMG)などを用いる。また上述のような不純物をドープする場合には、これらの主原料と共に、例えばシラン(SiH)やシクロペンタジエニルマグネシウム(CpMg)などのドーパントを用いる。また、このような不純物をドープすることで、結晶膜30の成長モードを制御する(例えば横方向成長を促進させる)こともできる。
(Vapor phase growth equipment)
Vapor phase epitaxy (VPE: Vapor Phase Epitaxy), chemical vapor deposition (CVD: Chemical Vapor Deposition), molecular beam epitaxy (MBE: Molecular Beam Epitaxy), etc. Apparatus). In particular, the VPE method and the CVD method are preferable, and more specifically, a hydride vapor phase epitaxy (HVPE) capable of relatively high-speed crystal growth, and an organic in which growth rate and film thickness can be easily controlled. A metal organic chemical vapor deposition (MOCVD) method is suitable. You may use combining these methods. In particular, when the crystal film 30 is a nitride semiconductor, the HVPE method uses ammonia (NH 3 ) and a group III element halide (eg, GaCl) as main raw materials. In the MOCVD method, NH 3 and trimethyl gallium (TMG) are used as main raw materials. In addition, when doping impurities as described above, a dopant such as silane (SiH 4 ) or cyclopentadienyl magnesium (Cp 2 Mg) is used together with these main raw materials. Further, by doping such impurities, the growth mode of the crystal film 30 can be controlled (for example, lateral growth can be promoted).

以下、本発明に係る実施例について詳述する。なお、本発明は以下に示す実施例のみに限定されないことは言うまでもない。   Examples according to the present invention will be described in detail below. Needless to say, the present invention is not limited to the following examples.

<実施例1>
まず、MOCVD装置で、サファイア基板上に、バッファ層と、GaNの下地層を25μm成長させ、これを下地基板とする。このとき、バッファ層と下地層は、この上に成長される結晶膜の自然剥離を促進する条件で成長させる。なお、このサファイア基板は、直径89mm、厚さ0.5mmで、その端面に長さ15mm、A面のオリフラを有する。また、サファイア基板の結晶成長面は、オリフラを手前にしたとき右側が高くなるように、C面(0001)から0.35°以下のオフ角が付いている。
<Example 1>
First, with a MOCVD apparatus, a buffer layer and a GaN foundation layer are grown on a sapphire substrate by 25 μm, and this is used as a foundation substrate. At this time, the buffer layer and the base layer are grown under conditions that promote natural peeling of the crystal film grown thereon. This sapphire substrate has a diameter of 89 mm and a thickness of 0.5 mm, and has an orientation flat with an A surface of 15 mm in length at its end face. The crystal growth surface of the sapphire substrate has an off angle of 0.35 ° or less from the C plane (0001) so that the right side is higher when the orientation flat is facing forward.

次に、このように作製した下地基板を、基板保持具に固定する。この基板保持具は、保持具本体と、リングと、の2つの部品で構成されている。両部品ともカーボン製である。保持具本体の筒状部の内壁は、下地基板の輪郭に対応して、直径89.2mmの円の一部が長さ15mmの弦で切り欠かれた輪郭を有しており、この弦の部位の壁面が基準面となっている。なお、保持具本体の支持部の開口部の輪郭は、直径83mmの円である。リングの外郭は、この保持具本体の筒状部の内壁の輪郭と略一致している(嵌め合い公差は考慮する)。これにより、リングは、保持具本体にほぼ固定される。リングの開口部は、直径80mmの円の一部が長さ26mmの弦(弦状部)で切り欠かれた輪郭を有する。この弦状部は、外郭の弦の部位から反時計回りに90°回転した向きに設けられている。リングの厚さは、1mmである。そして、下地基板は、保持具本体の筒状部に挿入され、そのオリフラを基準面と略平行に対面させて、リング上に設置される。これにより、下地基板もまた、保持具本体にほぼ固定される。最後に、均熱板が下地基板の裏面上に載せられる。   Next, the base substrate thus manufactured is fixed to a substrate holder. This substrate holder is composed of two parts, a holder body and a ring. Both parts are made of carbon. The inner wall of the cylindrical portion of the holder body has a contour in which a part of a circle having a diameter of 89.2 mm is cut out by a chord having a length of 15 mm corresponding to the contour of the base substrate. The wall surface of the part is the reference plane. In addition, the outline of the opening part of the support part of a holder main body is a circle with a diameter of 83 mm. The outer shell of the ring substantially coincides with the contour of the inner wall of the cylindrical portion of the holder body (considering the fitting tolerance). Thereby, a ring is substantially fixed to a holder main body. The opening portion of the ring has a contour in which a part of a circle having a diameter of 80 mm is cut out by a chord (string portion) having a length of 26 mm. The chord-like portion is provided in a direction rotated 90 ° counterclockwise from the portion of the outer chord. The thickness of the ring is 1 mm. And a base substrate is inserted in the cylindrical part of a holder main body, the orientation flat is made to face substantially parallel to a reference plane, and it is installed on a ring. Thereby, the base substrate is also substantially fixed to the holder body. Finally, a soaking plate is placed on the back surface of the base substrate.

以上のように、下地基板を保持した基板保持具をHVPE装置の反応炉内に設置し、1020℃で下地基板上にGaNを1mm程度成長させる。このとき、周縁部の成長膜厚が中央部のそれよりやや大きくなるように条件を調整することが好ましい。その後、HVPE装置から基板保持具を取り出すと、降温時にサファイア基板から自然に剥離したGaNの結晶膜を得ることができる。この結晶膜は、リングの開口部の輪郭とほぼ一致する、直径80mmの円の一部が長さ26mmの弦で切り欠かれた輪郭を有している。そして、その結晶膜の切り欠きの端面は、X線回折法により評価すると、GaNのA面からのズレ量が約0.83°の面であることが確認できる。なお、この結晶膜に、その中心から直径3インチの範囲を残すように丸め加工を施すと、オリフラとして機能可能な長さ15mmの切り欠きを残すことができる。   As described above, the substrate holder holding the base substrate is installed in the reaction furnace of the HVPE apparatus, and GaN is grown on the base substrate by about 1 mm at 1020 ° C. At this time, it is preferable to adjust conditions so that the growth film thickness of a peripheral part becomes a little larger than that of a center part. Thereafter, when the substrate holder is taken out of the HVPE apparatus, a GaN crystal film that is naturally separated from the sapphire substrate when the temperature is lowered can be obtained. This crystal film has a contour in which a part of a circle having a diameter of 80 mm is cut out by a chord having a length of 26 mm, which substantially matches the contour of the opening of the ring. Then, the end face of the cutout of the crystal film can be confirmed to be a plane where the amount of deviation from the A-plane of GaN is about 0.83 ° when evaluated by the X-ray diffraction method. If the crystal film is rounded so as to leave a range of 3 inches in diameter from the center, a notch with a length of 15 mm that can function as an orientation flat can be left.

<実施例2>
実施例2において、基板保持具のリングを除く構成及び工程は、実施例1と同様である。実施例2におけるリングの開口部は、直径76.7mmの円の一部が長さ16mmの弦(弦状部)で切り欠かれた輪郭を有する。このような基板保持具を用いて、実施例1と同様にすると、直径76.24〜76.51mmの円の一部が長さ約16mmの弦で切り欠かれた輪郭を有する、GaNの結晶膜を得ることができる。その後、この結晶膜は、丸め加工が施されずに、両面研磨加工とエッジの面取り加工が施されて、直径約3インチの円の一部が長さ約16mmの弦で切り欠かれた輪郭を有する、GaNの結晶基板に仕上げられる。なお、このGaNの結晶基板の端面には、エッジの面取り加工により形成される面のほか、アズグロウンのR面、{11−22}面などが観測される。
<Example 2>
In the second embodiment, the configuration and process excluding the ring of the substrate holder are the same as those in the first embodiment. The opening of the ring in Example 2 has a contour in which a part of a circle having a diameter of 76.7 mm is cut out by a chord (string portion) having a length of 16 mm. Using such a substrate holder, in the same manner as in Example 1, a GaN crystal having a contour in which a part of a circle having a diameter of 76.24 to 76.51 mm is cut out by a string having a length of about 16 mm. A membrane can be obtained. After that, this crystal film was not rounded, but was subjected to double-sided polishing and edge chamfering, and a part of a circle with a diameter of about 3 inches was cut out by a string with a length of about 16 mm. A GaN crystal substrate is finished. In addition to the surface formed by chamfering the edge, the as-grown R-plane, {11-22} plane, and the like are observed on the end face of the GaN crystal substrate.

本発明に係る結晶基板の製造方法は、LEDやLD等の発光デバイス、トランジスタ等の電子デバイスなど半導体素子のウエハ、又はそのようなウエハの結晶成長用基板の製造に利用することができる。   The method for manufacturing a crystal substrate according to the present invention can be used for manufacturing a wafer of a semiconductor element such as a light emitting device such as an LED or LD, an electronic device such as a transistor, or a substrate for crystal growth of such a wafer.

10,11…基板保持具、100…保持具本体、101…筒状部、102…支持部、110…リング、12…開口部、13…円弧状部、14…弦状部(第1の弦状部)、15…壁面、17…基準面、19…第2の弦状部
20…下地基板、21…結晶成長面、23…オリエンテーションフラット
30…結晶膜、35…結晶基板、36…切り欠き、37…ファセット面
40…均熱板
DESCRIPTION OF SYMBOLS 10,11 ... Board | substrate holder, 100 ... Holder main body, 101 ... Cylindrical part, 102 ... Support part, 110 ... Ring, 12 ... Opening part, 13 ... Arc-shaped part, 14 ... String-like part (1st string 15) wall surface, 17 ... reference plane, 19 ... second string-like portion 20 ... base substrate, 21 ... crystal growth surface, 23 ... orientation flat 30 ... crystal film, 35 ... crystal substrate, 36 ... notch , 37 ... Faceted surface 40 ... Soaking plate

Claims (7)

気相成長装置の基板保持具に保持されオリエンテーションフラットを有する下地基板の結晶成長面上に結晶膜を成長させ、該結晶膜から結晶基板を製造する方法であって、
前記基板保持具は、前記下地基板の結晶成長面の一部を露出させる開口部を備え、
前記開口部は、その輪郭に、円弧状部と弦状部を含み、
前記弦状部の内壁は、前記オリエンテーションフラットを前記下地基板の中心軸を回転軸として30°又は90°の整数倍回転させた面に略平行な壁面を有する結晶基板の製造方法。
A method of producing a crystal substrate from the crystal film by growing a crystal film on a crystal growth surface of a base substrate having an orientation flat held by a substrate holder of a vapor phase growth apparatus,
The substrate holder includes an opening that exposes a part of a crystal growth surface of the base substrate,
The opening includes an arcuate portion and a chordal portion in its outline,
The method for producing a crystal substrate, wherein the inner wall of the string-like portion has a wall surface substantially parallel to a surface obtained by rotating the orientation flat by an integral multiple of 30 ° or 90 ° with the central axis of the base substrate as a rotation axis.
前記開口部は、その輪郭に、前記弦状部と平行でなく且つ前記弦状部と異なる大きさの第2の弦状部を含む請求項1に記載の結晶基板の製造方法。   2. The method for manufacturing a crystal substrate according to claim 1, wherein the opening includes a second chord-shaped portion that is not parallel to the chord-shaped portion and has a size different from that of the chord-shaped portion. 前記結晶膜は、窒化物半導体である請求項1又は2に記載の結晶基板の製造方法。   The method for manufacturing a crystal substrate according to claim 1, wherein the crystal film is a nitride semiconductor. 前記結晶膜から、2インチ、2.5インチ、3インチ、4インチ、5インチ、6インチ、50mm、75mm、100mm、125mm、150mmのうちのいずれか1つに略等しい直径Φを有する結晶基板を製造する方法であって、
前記円弧状部は、前記直径Φと略等しい直径、又は前記直径Φより該直径Φの2%以下の範囲で大きい直径を有する請求項1乃至3のいずれか一項に記載の結晶基板の製造方法。
A crystal substrate having a diameter Φ approximately equal to any one of 2 inch, 2.5 inch, 3 inch, 4 inch, 5 inch, 6 inch, 50 mm, 75 mm, 100 mm, 125 mm, and 150 mm from the crystal film. A method of manufacturing
4. The manufacturing of the crystal substrate according to claim 1, wherein the arc-shaped portion has a diameter substantially equal to the diameter Φ or a diameter larger than the diameter Φ in a range of 2% or less of the diameter Φ. Method.
オリエンテーションフラットと、結晶成長面と、を有する下地基板を保持する、気相成長装置の基板保持具であって、
前記下地基板の結晶成長面の一部を露出させる開口部と、前記下地基板のオリエンテーションフラットと略平行に対面する基準面と、を備え、
前記開口部は、その輪郭に、円弧状部と弦状部を含み、
前記弦状部の内壁は、前記基準面を前記開口部の中心軸を回転軸として30°又は90°の整数倍回転させた面に略平行な壁面を有する基板保持具。
A substrate holder for a vapor phase growth apparatus for holding a base substrate having an orientation flat and a crystal growth surface,
An opening for exposing a part of the crystal growth surface of the base substrate, and a reference surface facing substantially parallel to the orientation flat of the base substrate,
The opening includes an arcuate portion and a chordal portion in its outline,
The inner wall of the string-like portion is a substrate holder having a wall surface substantially parallel to a surface obtained by rotating the reference surface by an integral multiple of 30 ° or 90 ° about the central axis of the opening.
前記開口部は、その輪郭に、前記弦状部と平行でなく且つ前記弦状部と異なる大きさの第2の弦状部を含む請求項5に記載の基板保持具。   6. The substrate holder according to claim 5, wherein the opening includes a second string-shaped portion that is not parallel to the string-shaped portion and has a size different from that of the string-shaped portion in an outline thereof. 前記円弧状部は、2インチ、2.5インチ、3インチ、4インチ、5インチ、6インチ、50mm、75mm、100mm、125mm、150mmのうちのいずれか1つに略等しい直径Φと略等しい直径、又は前記直径Φより該直径Φの2%以下の範囲で大きい直径を有する請求項5又は6に記載の基板保持具。   The arcuate portion is approximately equal to a diameter Φ approximately equal to any one of 2 inches, 2.5 inches, 3 inches, 4 inches, 5 inches, 6 inches, 50 mm, 75 mm, 100 mm, 125 mm, and 150 mm. The substrate holder according to claim 5 or 6, wherein the substrate holder has a diameter or a diameter larger than the diameter Φ in a range of 2% or less of the diameter Φ.
JP2011187778A 2011-08-30 2011-08-30 Crystal substrate manufacturing method and substrate holder Active JP5845730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011187778A JP5845730B2 (en) 2011-08-30 2011-08-30 Crystal substrate manufacturing method and substrate holder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011187778A JP5845730B2 (en) 2011-08-30 2011-08-30 Crystal substrate manufacturing method and substrate holder

Publications (2)

Publication Number Publication Date
JP2013049592A true JP2013049592A (en) 2013-03-14
JP5845730B2 JP5845730B2 (en) 2016-01-20

Family

ID=48011975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011187778A Active JP5845730B2 (en) 2011-08-30 2011-08-30 Crystal substrate manufacturing method and substrate holder

Country Status (1)

Country Link
JP (1) JP5845730B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013049593A (en) * 2011-08-30 2013-03-14 Nichia Corp Method for producing crystal substrate
RU2539903C2 (en) * 2012-11-09 2015-01-27 Федеральное государственное бюджетное учреждение науки Институт общей физики им. А,М. Прохорова Российской академии наук (ИОФ РАН) Method for refinement of substrate orientation for diamond epitaxy
RU173825U1 (en) * 2017-03-17 2017-09-13 Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") Substrate for vacuum deposition with sectoral formation of a conductive layer around the periphery of the semiconductor wafer in the manufacture of microwave monolithic integrated circuits
US10790466B2 (en) * 2018-12-11 2020-09-29 Feng-wen Yen In-line system for mass production of organic optoelectronic device and manufacturing method using the same system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6287484A (en) * 1985-10-11 1987-04-21 Hitachi Ltd Ring susceptor for molecular beam epitaxial apparatus
JPH11243056A (en) * 1998-02-24 1999-09-07 Fuji Electric Co Ltd Manufacture of iii-group nitride semiconductor
JP2001185605A (en) * 1999-12-24 2001-07-06 Sharp Corp Substrate holding mechanism and method for manufacturing compound semiconductor by using the same
JP2002280441A (en) * 2001-03-16 2002-09-27 Nec Kyushu Ltd Film-forming device
US20040216998A1 (en) * 2002-02-05 2004-11-04 Jianming Fu Cover ring and shield supporting a wafer ring in a plasma reactor
JP2007258694A (en) * 2006-02-21 2007-10-04 Nuflare Technology Inc Vapor phase deposition apparatus and support table
JP2008047841A (en) * 2006-08-21 2008-02-28 Advantest Corp Holder device
JP2010511584A (en) * 2006-12-08 2010-04-15 リュミログ Method for producing nitride single crystal by epitaxial growth on substrate so that crystal does not grow on edge of substrate
JP2010248022A (en) * 2009-04-13 2010-11-04 Hitachi Cable Ltd Group iii nitride semiconductor self-standing substrate
JP2010285325A (en) * 2009-06-15 2010-12-24 Hitachi Cable Ltd Method for producing nitride semiconductor substrate

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6287484A (en) * 1985-10-11 1987-04-21 Hitachi Ltd Ring susceptor for molecular beam epitaxial apparatus
JPH11243056A (en) * 1998-02-24 1999-09-07 Fuji Electric Co Ltd Manufacture of iii-group nitride semiconductor
JP2001185605A (en) * 1999-12-24 2001-07-06 Sharp Corp Substrate holding mechanism and method for manufacturing compound semiconductor by using the same
JP2002280441A (en) * 2001-03-16 2002-09-27 Nec Kyushu Ltd Film-forming device
US20040216998A1 (en) * 2002-02-05 2004-11-04 Jianming Fu Cover ring and shield supporting a wafer ring in a plasma reactor
JP2007258694A (en) * 2006-02-21 2007-10-04 Nuflare Technology Inc Vapor phase deposition apparatus and support table
JP2008047841A (en) * 2006-08-21 2008-02-28 Advantest Corp Holder device
JP2010511584A (en) * 2006-12-08 2010-04-15 リュミログ Method for producing nitride single crystal by epitaxial growth on substrate so that crystal does not grow on edge of substrate
JP2010248022A (en) * 2009-04-13 2010-11-04 Hitachi Cable Ltd Group iii nitride semiconductor self-standing substrate
JP2010285325A (en) * 2009-06-15 2010-12-24 Hitachi Cable Ltd Method for producing nitride semiconductor substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013049593A (en) * 2011-08-30 2013-03-14 Nichia Corp Method for producing crystal substrate
RU2539903C2 (en) * 2012-11-09 2015-01-27 Федеральное государственное бюджетное учреждение науки Институт общей физики им. А,М. Прохорова Российской академии наук (ИОФ РАН) Method for refinement of substrate orientation for diamond epitaxy
RU173825U1 (en) * 2017-03-17 2017-09-13 Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") Substrate for vacuum deposition with sectoral formation of a conductive layer around the periphery of the semiconductor wafer in the manufacture of microwave monolithic integrated circuits
US10790466B2 (en) * 2018-12-11 2020-09-29 Feng-wen Yen In-line system for mass production of organic optoelectronic device and manufacturing method using the same system

Also Published As

Publication number Publication date
JP5845730B2 (en) 2016-01-20

Similar Documents

Publication Publication Date Title
US9112096B2 (en) Method for producing group-III nitride semiconductor crystal, group-III nitride semiconductor substrate, and semiconductor light emitting device
US20050208687A1 (en) Method of Manufacturing Single-Crystal GaN Substrate, and Single-Crystal GaN Substrate
JP4462251B2 (en) III-V nitride semiconductor substrate and III-V nitride light emitting device
US9343525B2 (en) Aluminum nitride substrate and group-III nitride laminate
US20120112320A1 (en) Nitride semiconductor crystal and production process thereof
JP5509680B2 (en) Group III nitride crystal and method for producing the same
US10100434B2 (en) Nitride semiconductor single crystal substrate manufacturing method
US10472715B2 (en) Nitride semiconductor template, manufacturing method thereof, and epitaxial wafer
JP2005350315A (en) Group iii-v nitride semiconductor self-standing substrate, its producing method, and group iii-v nitride semiconductor
JP5845730B2 (en) Crystal substrate manufacturing method and substrate holder
JP5445105B2 (en) Method for producing group III nitride crystal and group III nitride crystal
JP5120285B2 (en) III-V nitride semiconductor free-standing substrate manufacturing method
WO2016136552A1 (en) C-PLANE GaN SUBSTRATE
US9673044B2 (en) Group III nitride substrates and their fabrication method
JP5729221B2 (en) Crystal substrate manufacturing method
WO2016090223A1 (en) Group iii nitride substrates and their fabrication method
US20220010455A1 (en) GaN SUBSTRATE WAFER AND METHOD FOR MANUFACTURING GaN SUBSTRATE WAFER
KR101137909B1 (en) Gallium nitride substrate and method of manufacturing the same
US11680339B2 (en) Method of manufacturing group III nitride semiconductor substrate, group III nitride semiconductor substrate, and bulk crystal
JP6982469B2 (en) Method for manufacturing group III nitride semiconductor substrate and group III nitride semiconductor substrate
KR20060074754A (en) Preparation of single crystalline gallium nitride thick film
JP2019085290A (en) Group-iii nitride semiconductor substrate
JP2012136418A (en) Group iii nitride semiconductor substrate and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151109

R150 Certificate of patent or registration of utility model

Ref document number: 5845730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250