JP2013048229A - Thermoelectric generator and thermoelectric power generation method - Google Patents

Thermoelectric generator and thermoelectric power generation method Download PDF

Info

Publication number
JP2013048229A
JP2013048229A JP2012164114A JP2012164114A JP2013048229A JP 2013048229 A JP2013048229 A JP 2013048229A JP 2012164114 A JP2012164114 A JP 2012164114A JP 2012164114 A JP2012164114 A JP 2012164114A JP 2013048229 A JP2013048229 A JP 2013048229A
Authority
JP
Japan
Prior art keywords
thermoelectric
heat receiving
heat
power generation
receiving member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012164114A
Other languages
Japanese (ja)
Other versions
JP6246998B2 (en
Inventor
Nobuyuki Shigaki
伸行 紫垣
Kazuhisa Kabeya
和久 壁矢
Takashi Kuroki
高志 黒木
Takashi Haraoka
たかし 原岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012164114A priority Critical patent/JP6246998B2/en
Publication of JP2013048229A publication Critical patent/JP2013048229A/en
Application granted granted Critical
Publication of JP6246998B2 publication Critical patent/JP6246998B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric generator which can obtain a large heat collection effect when it is applied to a heat source such as a hot steel material and can obtain a large amount of power per thermoelectric element module, and a thermoelectric power generation method using the thermoelectric generator.SOLUTION: The thermoelectric generator includes a heat receiving member 1 whose front face is opposed to a heat source and one or two or more thermoelectric element modules 2 joined to the rear of the heat receiving member 1 via a heat receiving surface 20. The heat receiving member 1 has an effective projection area [A1] which, with respect to a total heat receiving area [A2] of the heat receiving surface 20 of the thermoelectric element module 2, satisfies the relationship [A1]>[A2]. A thermoelectric power generation method uses this thermoelectric generator, and generates electric power from steel materials in a steel manufacturing process as its heat sources. Since a large heat collection effect is obtained by the heat receiving member 1, it is possible to obtain a large amount of power per thermoelectric element module 1.

Description

本発明は、鉄鋼製造プロセスにおけるスラブヤードや圧延後の製品ヤードのような、高温の鋼材を長時間保管するヤードにおいて鋼材(廃熱)を熱源として発電するのに好適な熱電発電装置、及びこの装置を用いた熱電発電方法に関するものである。   The present invention relates to a thermoelectric generator suitable for power generation using steel (waste heat) as a heat source in a yard that stores high-temperature steel for a long time, such as a slab yard in a steel manufacturing process or a product yard after rolling, and this The present invention relates to a thermoelectric power generation method using the apparatus.

近年、地球温暖化防止を目的として、鉄鋼製造プロセスなどのようなCOを多量に発生する製造プロセスにおける更なる省エネルギー化が求められている。省エネルギー対策の一つとして廃熱回収があり、特に鉄鋼製造のような大量生産プロセスにおいては、廃熱として捨てられるエネルギーが大きいため、廃熱回収により得られる省エネルギー効果は非常に大きい。
従来、廃熱回収方法の一つとして、熱電素子を用いた廃熱利用熱電発電が知られている。この熱電発電は、ゼーベック効果を利用して温度差から直接電力を回収する方法であり、近年では熱電素子の特性向上により、一部実用化もされている。
In recent years, for the purpose of preventing global warming, further energy saving is demanded in a production process that generates a large amount of CO 2 such as a steel production process. One of the energy saving measures is waste heat recovery. Especially in mass production processes such as steel production, since a large amount of energy is wasted as waste heat, the energy saving effect obtained by waste heat recovery is very large.
Conventionally, as one of waste heat recovery methods, waste heat utilization thermoelectric power generation using a thermoelectric element is known. This thermoelectric power generation is a method of directly recovering electric power from a temperature difference using the Seebeck effect, and in recent years, part of the thermoelectric power generation has been put into practical use by improving the characteristics of thermoelectric elements.

しかしながら、例えば鉄鋼製造分野においては、廃熱回収への熱電発電の適用は十分には進んでいない。その理由としては、熱電素子のコストが高いことに加えて、鉄鋼製造プロセスの廃熱自体が安定な熱源として利用しにくいため熱電素子の最適設計ができず、十分な発電効率や稼働率が得られないことが挙げられる。熱電素子の発電効率や稼働率が十分でないと、結果的に単位発電量あたりのコストが嵩むことになり、費用対効果の点で熱電発電の適用が著しく困難になる。   However, in the steel manufacturing field, for example, the application of thermoelectric power generation to waste heat recovery has not progressed sufficiently. The reason for this is that, in addition to the high cost of thermoelectric elements, it is difficult to use the waste heat of the steel manufacturing process as a stable heat source, making it impossible to optimally design thermoelectric elements, resulting in sufficient power generation efficiency and availability. It cannot be mentioned. If the power generation efficiency and operation rate of the thermoelectric element are not sufficient, the cost per unit power generation amount will increase as a result, and the application of thermoelectric power generation becomes extremely difficult in terms of cost effectiveness.

鉄鋼製造プロセスで生じる高温鋼材の廃熱回収を考えた場合、廃熱が安定な熱源として利用できないのは、鋼材温度が材質造り込みを目的として時々刻々と変化することと、鋼材がコイルやシート単位で製造されるバッチプロセスであることが主な理由である。また、製造ライン上で粉塵や蒸気等に晒される場所が多いことによる配置上の制約なども、熱電発電の適用が難しい要因の一つである。
上述の熱源の不安定性に伴う課題を解決するためには、熱電素子1個当たりの発電量増加と、熱電素子の発電効率安定化の両方を検討する必要がある。すなわち、受熱側の伝熱部材を工夫して熱電素子の発電量を増加させ、且つ発電能力を高位で安定に保つことにより、熱電素子の性能を最大限に発揮させることができる。
When considering waste heat recovery of high-temperature steel materials generated in the steel manufacturing process, waste heat cannot be used as a stable heat source. The main reason is that it is a batch process manufactured in units. Another factor that makes it difficult to apply thermoelectric power generation is placement restrictions due to many places exposed to dust and steam on the production line.
In order to solve the problems associated with the instability of the heat source described above, it is necessary to consider both an increase in the amount of power generation per thermoelectric element and stabilization of the power generation efficiency of the thermoelectric element. That is, the performance of the thermoelectric element can be maximized by devising the heat transfer member on the heat receiving side to increase the power generation amount of the thermoelectric element and keeping the power generation capacity high and stable.

熱設計における伝熱部材としては、一般にフィンなどが用いられるが、フィンは通常は放冷部材であり、受熱部材として用いるケースは少ない。熱電素子による発電においても、通常は特許文献1,2に示されるように、熱電素子の低温側(冷却側)に放冷部材として用いられる。
一方、熱電素子の高温側(受熱側)に受熱部材を用いる技術も幾つか見受けられる。例えば、特許文献3,4には、熱電素子による熱電冷却(ペルチェ冷却)を行う場合の高温側受熱部材が示されている。但し、熱電発電とは異なり、熱電冷却は外部から投入される電力を用いて吸熱させる方法であり、上記特許文献3,4は、何れも熱電冷却時の吸熱作用を想定した設計となっている。
熱電発電についても、受熱側に受熱部材を用いる方法が幾つか提案されている。例えば、特許文献5〜7には、排ガスダクトにおける排ガスとの接触面積を増やすための受熱フィンが示されている。
Fins and the like are generally used as the heat transfer member in the thermal design, but the fin is usually a cooling member and is rarely used as a heat receiving member. Also in power generation by a thermoelectric element, as shown in Patent Documents 1 and 2, it is usually used as a cooling member on the low temperature side (cooling side) of the thermoelectric element.
On the other hand, some techniques using a heat receiving member on the high temperature side (heat receiving side) of the thermoelectric element are also seen. For example, Patent Documents 3 and 4 show a high-temperature side heat receiving member when thermoelectric cooling (Peltier cooling) is performed by a thermoelectric element. However, unlike thermoelectric power generation, thermoelectric cooling is a method of absorbing heat using externally supplied electric power, and the above Patent Documents 3 and 4 are designed to assume an endothermic action during thermoelectric cooling. .
Regarding thermoelectric power generation, several methods using a heat receiving member on the heat receiving side have been proposed. For example, Patent Documents 5 to 7 show heat receiving fins for increasing the contact area with the exhaust gas in the exhaust gas duct.

特開2006−86210号公報JP 2006-86210 A 特開平5−302987号公報JP-A-5-302987 特開2005−180796号公報Japanese Patent Laid-Open No. 2005-180796 特開平7−218082号公報JP-A-7-218082 特開2002−199762号公報JP 2002-199762 A 特開平11−122960号公報Japanese Patent Laid-Open No. 11-122960 特開2006−214350号公報JP 2006-214350 A

特許文献5〜7に示される受熱フィンは、熱電素子の受熱面に対して鉛直方向の伝熱を促進する構造となっており、排ガスダクトからの受熱は通常は対流伝熱が主体となるため、排ガスとの接触面積の増加だけで十分な集熱効果が得られる。しかしながら、特許文献5〜7に示される受熱フィンは、受熱が輻射伝熱主体である場合には、十分な集熱効果が得られない。
また、上述したように鉄鋼製造プロセスでは熱源(廃熱)自体の温度変化が大きく、熱源の状態に応じて、受熱が実質的に輻射伝熱だけでなされる領域もあれば、受熱が輻射伝熱と対流伝熱でなされる領域もある。従来技術では、このような熱源の温度変化に対応して、熱電素子の性能を最大限且つ安定的に発揮させることができない。
The heat-receiving fins shown in Patent Documents 5 to 7 have a structure that promotes heat transfer in the vertical direction with respect to the heat-receiving surface of the thermoelectric element, and heat reception from the exhaust gas duct is usually mainly convective heat transfer. A sufficient heat collecting effect can be obtained only by increasing the contact area with exhaust gas. However, the heat receiving fins shown in Patent Documents 5 to 7 cannot obtain a sufficient heat collecting effect when the heat receiving is mainly radiant heat transfer.
In addition, as described above, in the steel manufacturing process, the temperature change of the heat source (waste heat) itself is large, and depending on the state of the heat source, there is a region where heat is received only by radiant heat transfer. There are also areas where heat and convective heat transfer occur. In the prior art, the performance of the thermoelectric element cannot be maximized and stably in response to such a temperature change of the heat source.

したがって本発明の目的は、鉄鋼製造プロセスの高温鋼材などのような熱源に適用した場合に大きな集熱効果が得られ、熱電素子モジュール1個当たり大きな発電量が得られる熱電発電装置を提供することにある。また、本発明の他の目的は、熱源の温度変化などに応じて、最適な受熱形態を選択でき、熱電素子の性能を最大限且つ安定的に発揮させることができる熱電発電装置を提供することにある。さらに、本発明の他の目的は、そのような熱電発電装置を用いた、鉄鋼製造プロセスの鋼材を熱源とする熱電発電方法を提供することにある。   Accordingly, an object of the present invention is to provide a thermoelectric power generation device that can obtain a large heat collection effect when applied to a heat source such as a high-temperature steel material in a steel production process and can obtain a large amount of power generation per thermoelectric element module. It is in. Another object of the present invention is to provide a thermoelectric generator capable of selecting an optimum heat receiving form according to a temperature change of a heat source and the like and capable of maximizing and stably exhibiting the performance of a thermoelectric element. It is in. Furthermore, the other object of this invention is to provide the thermoelectric power generation method which uses the steel material of the steel manufacturing process using such a thermoelectric power generation apparatus as a heat source.

本発明者らは、上記課題を解決すべく検討を重ねた結果、(i)熱電素子モジュールの受熱面よりも大きい有効投影面積を有する受熱部材を、熱電素子モジュールの受熱側に配することにより大きな集熱効果が得られ、面積比増分以上に大きな発電量が得られること、(ii)さらに、その受熱部材の前面にフィンを設けるとともに、装置を熱源に対して進退可能とし、熱源との距離(間隔)を調整できるようにすることにより、熱源の温度変化などに応じて、最適な受熱形態を選択でき、熱電素子の性能を最大限且つ安定的に発揮させることができること、(iii)したがって、そのような熱電発電装置を用いることにより、鉄鋼製造プロセスの高温鋼材を熱源として効率的な熱電発電を行えること、などの事実を見出した。
本発明はこのような知見に基づきなされたもので、以下を要旨とするものである。
As a result of repeated studies to solve the above problems, the present inventors have arranged (i) a heat receiving member having an effective projected area larger than the heat receiving surface of the thermoelectric element module on the heat receiving side of the thermoelectric element module. A large heat collection effect can be obtained and a power generation amount larger than the area ratio increment can be obtained. (Ii) Furthermore, fins are provided on the front surface of the heat receiving member, and the apparatus can be moved forward and backward with respect to the heat source. By making it possible to adjust the distance (interval), it is possible to select the optimum heat receiving form according to the temperature change of the heat source, etc., and to maximize the performance of the thermoelectric element, and (iii) Therefore, the present inventors have found the fact that by using such a thermoelectric power generation apparatus, efficient thermoelectric power generation can be performed using a high temperature steel material in a steel manufacturing process as a heat source.
The present invention has been made on the basis of such findings and has the following gist.

[1]前面が熱源と対向する受熱部材(1)と、該受熱部材(1)の背面に受熱面(20)側を介して接合される1又は2以上の熱電素子モジュール(2)を有し、受熱部材(1)が、1又は2以上の熱電素子モジュール(2)の受熱面(20)の合計の受熱面積[A2]に対して、[A1]>[A2]を満足する有効投影面積[A1]を有する熱電発電装置を用い、鉄鋼製造プロセスにおける鋼材を熱源として発電を行うことを特徴とする熱電発電方法。
[2]上記[1]の熱電発電方法において、表面温度が300℃以上の鋼材を熱源として発電を行うことを特徴とする熱電発電方法。
[1] A heat receiving member (1) whose front surface is opposed to a heat source, and one or more thermoelectric element modules (2) joined to the back surface of the heat receiving member (1) via the heat receiving surface (20) side The effective projection in which the heat receiving member (1) satisfies [A1]> [A2] with respect to the total heat receiving area [A2] of the heat receiving surface (20) of one or more thermoelectric element modules (2). A thermoelectric power generation method using a thermoelectric power generation device having an area [A1] and generating power using a steel material in a steel manufacturing process as a heat source.
[2] The thermoelectric power generation method according to [1], wherein power generation is performed using a steel material having a surface temperature of 300 ° C. or higher as a heat source.

[3]上記[1]又は[2]の熱電発電方法において、熱電発電装置は、熱源に対する距離を調整可能としたことを特徴とする熱電発電方法。
[4]上記[3]の熱電発電方法において、熱電発電装置による発電出力をモニタリングし、モニタリングされた発電出力に応じて、熱源に対する熱電発電装置の距離を調整することを特徴とする熱電発電方法。
[5]上記[1]〜[4]のいずれかの熱電発電方法において、熱電発電装置は、受熱部材(1)の有効投影面積[A1]と熱電素子モジュール(2)の受熱面(20)の合計の受熱面積[A2]が、[A1]≧[A2]×2.3を満足することを特徴とする熱電発電方法。
[3] The thermoelectric power generation method according to [1] or [2], wherein the thermoelectric power generator is capable of adjusting a distance to a heat source.
[4] The thermoelectric power generation method according to [3], wherein the power generation output by the thermoelectric power generation device is monitored, and the distance of the thermoelectric power generation device to the heat source is adjusted according to the monitored power generation output. .
[5] In the thermoelectric power generation method according to any one of [1] to [4], the thermoelectric power generator includes an effective projected area [A1] of the heat receiving member (1) and a heat receiving surface (20) of the thermoelectric element module (2). The total heat receiving area [A2] satisfies [A1] ≧ [A2] × 2.3.

[6]上記[1]〜[5]のいずれかの熱電発電方法において、熱電発電装置の受熱部材(1)は、その前面側にフィン(5)を有することを特徴とする熱電発電方法。
[7]上記[1]〜[6]のいずれかの熱電発電方法において、熱電発電装置は、熱源を少なくとも部分的に包囲する受熱部材(1)を有することを特徴とする熱電発電方法。
[8]上記[7]の熱電発電方法において、熱電発電装置は、熱源を覆うトンネル状又はドーム状の受熱部材(1)を有することを特徴とする熱電発電方法。
[9]上記[1]〜[8]のいずれかの熱電発電方法において、熱電発電装置は、受熱部材(1)の前面が黒体処理されていることを特徴とする熱電発電方法。
[6] The thermoelectric power generation method according to any one of [1] to [5], wherein the heat receiving member (1) of the thermoelectric power generator has a fin (5) on the front side thereof.
[7] The thermoelectric power generation method according to any one of [1] to [6], wherein the thermoelectric power generation device includes a heat receiving member (1) that at least partially surrounds the heat source.
[8] The thermoelectric power generation method according to [7], wherein the thermoelectric power generation device includes a tunnel-shaped or dome-shaped heat receiving member (1) covering the heat source.
[9] In the thermoelectric power generation method according to any one of [1] to [8], the thermoelectric power generation device is characterized in that the front surface of the heat receiving member (1) is blackbody-treated.

[10]前面が熱源と対向する受熱部材(1)と、該受熱部材(1)の背面に受熱面(20)側を介して接合される1又は2以上の熱電素子モジュール(2)を有し、受熱部材(1)は、1又は2以上の熱電素子モジュール(2)の受熱面(20)の合計の受熱面積[A2]に対して、[A1]>[A2]を満足する有効投影面積[A1]を有することを特徴とする熱電発電装置。
[11]上記[10]の熱電発電装置において、熱源に対する距離を調整可能としたことを特徴とする熱電発電装置。
[12]上記[11]の熱電発電装置において、発電出力をモニタリングする装置を有し、該装置でモニタリングされた発電出力に応じて熱源に対する距離を調整可能としたことを特徴とする熱電発電装置。
[10] A heat receiving member (1) having a front surface facing the heat source, and one or more thermoelectric element modules (2) joined to the back surface of the heat receiving member (1) via the heat receiving surface (20) side. The heat receiving member (1) has an effective projection satisfying [A1]> [A2] with respect to the total heat receiving area [A2] of the heat receiving surface (20) of one or more thermoelectric element modules (2). A thermoelectric generator having an area [A1].
[11] The thermoelectric generator according to [10], wherein the distance to the heat source is adjustable.
[12] The thermoelectric power generator according to the above [11], comprising a device for monitoring the power generation output, wherein the distance to the heat source can be adjusted according to the power generation output monitored by the device. .

[13]上記[10]〜[12]のいずれかの熱電発電装置において、受熱部材(1)の有効投影面積[A1]と熱電素子モジュール(2)の受熱面(20)の合計の受熱面積[A2]が、[A1]≧[A2]×2.3を満足することを特徴とする熱電発電装置。
[14]上記[10]〜[13]のいずれかの熱電発電装置において、熱電素子モジュール(2)の受熱面(20)は、受熱部材(1)の背面に直接又はシートを介して接合されていることを特徴とする熱電発電装置。
[13] In the thermoelectric generator of any one of [10] to [12] above, the total heat receiving area of the effective projected area [A1] of the heat receiving member (1) and the heat receiving surface (20) of the thermoelectric element module (2) [A2] satisfies [A1] ≧ [A2] × 2.3.
[14] In the thermoelectric generator according to any one of [10] to [13], the heat receiving surface (20) of the thermoelectric element module (2) is joined to the back surface of the heat receiving member (1) directly or via a sheet. A thermoelectric generator characterized by that.

[15]上記[10]〜[14]のいずれかの熱電発電装置において、受熱部材(1)は、その前面側にフィン(5)を有することを特徴とする熱電発電装置。
[16]上記[10]〜[15]のいずれかの熱電発電装置において、熱源を少なくとも部分的に包囲する受熱部材(1)を有することを特徴とする熱電発電装置。
[17]上記[16]の熱電発電装置において、熱源を覆うトンネル状又はドーム状の受熱部材(1)を有することを特徴とする熱電発電装置。
[18]上記[10]〜[17]のいずれかの熱電発電装置において、受熱部材(1)の前面が黒体処理されていることを特徴とする熱電発電装置。
[15] The thermoelectric generator according to any one of [10] to [14], wherein the heat receiving member (1) has a fin (5) on the front side thereof.
[16] The thermoelectric generator according to any one of [10] to [15], further including a heat receiving member (1) that at least partially surrounds the heat source.
[17] The thermoelectric generator according to [16], further comprising a tunnel-shaped or dome-shaped heat receiving member (1) that covers a heat source.
[18] The thermoelectric power generator according to any one of [10] to [17], wherein the front surface of the heat receiving member (1) is black-body treated.

本発明の熱電発電装置は、受熱部材(1)により大きな集熱効果が得られるので、そのような部材を有しない従来装置に較べて、熱電素子モジュール1個当たりの発電量を大幅に増やすことができる。このため、単位発電量当たりの設備コストを従来に較べて大幅に低減させることができる。
また、受熱部材(1)の前面にフィン(5)を設けるとともに、熱源に対して進退可能とした装置では、熱源との距離を調整できるようにすることにより、熱源の温度変化などに応じて、最適な受熱形態を選択でき、熱電素子の性能を最大限且つ安定的に発揮させることができる。
また、本発明の熱電発電方法は、従来では殆ど顕熱回収がなされていなかった鉄鋼製造プロセスでの高温鋼材の廃熱を利用して効率的な発電を行うことができ、このためエネルギーの有効利用を図ることができるとともに、一貫製鉄所におけるエネルギー効率を向上させることができる。
Since the thermoelectric power generation device of the present invention can obtain a large heat collecting effect by the heat receiving member (1), the power generation amount per thermoelectric element module can be greatly increased as compared with the conventional device having no such member. Can do. For this reason, the equipment cost per unit power generation amount can be significantly reduced as compared with the conventional case.
In addition, in the apparatus in which the fin (5) is provided on the front surface of the heat receiving member (1) and can be moved back and forth with respect to the heat source, the distance from the heat source can be adjusted, so that the temperature of the heat source can be adjusted. The optimum heat receiving form can be selected, and the performance of the thermoelectric element can be maximized and stably exhibited.
In addition, the thermoelectric power generation method of the present invention can efficiently generate power by using waste heat of high-temperature steel materials in a steel manufacturing process that has hardly been subjected to sensible heat recovery. It can be used and energy efficiency in the integrated steelworks can be improved.

本発明の熱電発電装置の一実施形態を模式的に示したもので、図1(ア)は平面図、図1(イ)は背面図BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A is a plan view and FIG. 1A is a rear view schematically showing an embodiment of a thermoelectric generator of the present invention. 熱電素子による熱電発電時のエネルギー収支を説明するための図面Drawing for explaining energy balance during thermoelectric generation by thermoelectric elements 熱電素子による熱電発電時のエネルギー収支の内訳を示す図面Drawing showing the breakdown of energy balance during thermoelectric generation by thermoelectric elements 本発明の熱電発電装置の他の実施形態を模式的に示したもので、図4(ア)は平面図、図4(イ)は背面図FIG. 4A schematically shows another embodiment of the thermoelectric generator of the present invention, FIG. 4A is a plan view, and FIG. 4A is a rear view. 各種の熱電素子について温度と無次元性能指数ZTとの関係を示すグラフGraph showing the relationship between temperature and dimensionless figure of merit ZT for various thermoelectric elements 熱源に対して進退可能な本発明の熱電発電装置について、熱源との最適距離を説明するための説明図Explanatory drawing for demonstrating the optimal distance with a heat source about the thermoelectric generator of this invention which can advance / retreat with respect to a heat source 本発明の熱電発電装置の他の実施形態を模式的に示したもので、図7(ア)は平面図、図7(イ)は背面図FIG. 7A schematically shows another embodiment of the thermoelectric generator of the present invention, FIG. 7A is a plan view, and FIG. 7A is a rear view. 本発明の熱電発電装置の他の実施形態を模式的に示したもので、図8(ア)は平面図、図8(イ)は背面図FIG. 8A is a plan view and FIG. 8A is a rear view schematically showing another embodiment of the thermoelectric generator of the present invention. 本発明の熱電発電装置の他の実施形態を模式的に示す正面図The front view which shows typically other embodiment of the thermoelectric generator of this invention 実施例で用いた実験装置を模式的に示したもので、図10(ア)は平面図、図10(イ)は背面図FIG. 10A is a plan view and FIG. 10A is a rear view schematically showing an experimental apparatus used in the examples. 実施例において本発明例の実験装置の発生電力Pを示すグラフThe graph which shows the generated electric power P of the experimental apparatus of an example of the present invention in an example. 実施例において比較例の実験装置の発生電力Pを示すグラフThe graph which shows the generated electric power P of the experimental apparatus of a comparative example in an Example

図1は、本発明の熱電発電装置の一実施形態を模式的に示したもので、図1(ア)は平面図、図1(イ)は背面図である。図において、6は熱源(例えば、高温の鋼材)である。
この熱電発電装置は、前面10が熱源6と対向する受熱部材1と、この受熱部材1の背面11に受熱面20側を介して接合される熱電素子モジュール2を有し、受熱部材1は、熱電素子モジュール2の受熱面20の受熱面積[A2](但し、熱電素子モジュール2が複数ある場合には、受熱面20の合計の受熱面積[A2])に対して、[A1]>[A2]を満足する有効投影面積A1を有する。
ここで、受熱部材1の有効投影面積[A1]とは、受熱部材1が平板状の場合は、その平板の投影面積であり、受熱部材1が平板状でない場合は、それを平板状に展開した仮想平板の投影面積を指すものとする。
本実施形態では、1つの受熱部材1に対して1つの熱電素子モジュール2が取り付けられた構造となっているが、後述する実施形態のように、1つの受熱部材1に対して2つ以上の熱電素子モジュール2が取り付けられる構造としてもよい。
FIG. 1 schematically shows an embodiment of a thermoelectric generator according to the present invention. FIG. 1 (a) is a plan view and FIG. 1 (a) is a rear view. In the figure, 6 is a heat source (for example, high-temperature steel).
This thermoelectric generator has a heat receiving member 1 whose front face 10 faces the heat source 6, and a thermoelectric element module 2 joined to the rear face 11 of the heat receiving member 1 via the heat receiving face 20 side. [A1]> [A2] with respect to the heat receiving area [A2] of the heat receiving surface 20 of the thermoelectric element module 2 (however, when there are a plurality of thermoelectric element modules 2, the total heat receiving area [A2] of the heat receiving surface 20). ] Has an effective projection area A1.
Here, the effective projected area [A1] of the heat receiving member 1 is the projected area of the flat plate when the heat receiving member 1 is flat, and is expanded into a flat shape when the heat receiving member 1 is not flat. It refers to the projected area of the virtual flat plate.
In the present embodiment, one thermoelectric element module 2 is attached to one heat receiving member 1. However, as in the embodiment described later, two or more heat receiving members 1 are provided. It is good also as a structure where the thermoelectric element module 2 is attached.

本実施形態の受熱部材1は、金属製の板材で構成されている。受熱部材1は、通常、本実施形態のように板状に構成されるが、これに限定されるものではない。受熱部材1は、例えば、銅、銅合金、アルミニウム、アルミニウム合金などの1種以上の金属で構成される。
熱電素子モジュール2の受熱面20は、受熱部材1との接触熱抵抗を小さくするため、受熱部材1の背面に直接又はシートを介して接合される。本実施形態では、受熱部材1と熱電素子モジュール2の温度差に伴う熱変形や接触面の微細凹凸などによる接触熱抵抗発生の影響を考慮して、熱電素子モジュール2の受熱面20は受熱部材1の背面に高熱伝導性のシート3を介して接合されている。一般に、温度差が生じる部材は熱変形や熱応力の発生が懸念されるため、緩衝材として上記のような高熱伝導のシートを介して取り付けることが行われており、例えば、CPU冷却フィンなどでも広く用いられている。高熱伝導のシート3は、そのような一般に用いられているものでよい。
熱電素子モジュール2の受熱面20と受熱部材1との接合方式は、例えば、ボルトなどの締結手段を用いる方式、両面に粘着層を有するシート3を用いる方式、など任意である。
The heat receiving member 1 of this embodiment is comprised with the metal board | plate material. The heat receiving member 1 is normally configured in a plate shape as in the present embodiment, but is not limited thereto. The heat receiving member 1 is made of, for example, one or more kinds of metals such as copper, copper alloy, aluminum, and aluminum alloy.
The heat receiving surface 20 of the thermoelectric element module 2 is joined to the back surface of the heat receiving member 1 directly or via a sheet in order to reduce the contact heat resistance with the heat receiving member 1. In the present embodiment, the heat receiving surface 20 of the thermoelectric element module 2 is the heat receiving member in consideration of the influence of the thermal deformation caused by the temperature difference between the heat receiving member 1 and the thermoelectric element module 2 and the generation of contact thermal resistance due to fine irregularities on the contact surface. 1 is joined to the back surface of the sheet 1 via a sheet 3 having high thermal conductivity. In general, since a member that generates a temperature difference is concerned about thermal deformation or generation of thermal stress, it is attached as a cushioning material via a sheet having high thermal conductivity as described above. Widely used. The sheet 3 having high thermal conductivity may be the one generally used.
The joining method of the heat receiving surface 20 of the thermoelectric element module 2 and the heat receiving member 1 is arbitrary, for example, a method using a fastening means such as a bolt, or a method using a sheet 3 having an adhesive layer on both sides.

通常、熱電素子モジュールの受熱側に、本発明装置が有するような大きい受熱部材(すなわち、有効投影面積[A1]が受熱面20の受熱面積[A2]よりも大きい受熱部材)が用いられることはない。その理由の一つとしては、集熱は、放熱と逆側への熱移動であるため伝熱部材内の熱移動が起こりにくく、大きな受熱部材を設けるメリットが得られにくいと考えられてきたことが挙げられる。但し、熱源冷却のように外部から吸熱する場合には、集熱効果が期待できるため、通常はさきに挙げた特許文献3,4のように、熱電冷却用として用いられる。   In general, a large heat receiving member (that is, a heat receiving member whose effective projected area [A1] is larger than the heat receiving area [A2] of the heat receiving surface 20) as the apparatus of the present invention has is used on the heat receiving side of the thermoelectric element module. Absent. One reason for this is that heat collection is a heat transfer to the opposite side of the heat release, so heat transfer in the heat transfer member is unlikely to occur, and it has been considered difficult to obtain the advantage of providing a large heat receiving member. Is mentioned. However, when heat is absorbed from the outside as in heat source cooling, since a heat collecting effect can be expected, it is usually used for thermoelectric cooling as in Patent Documents 3 and 4 mentioned above.

以上のような従来の考え方や従来技術に対して、熱電発電を行う場合について、本発明者らが検討した結果について説明する。熱電素子による熱電発電時のエネルギー収支は、図2と下記(1)〜(3)に示す式で表される。図2のTは熱電素子の高温側温度、Tは低温側温度であり、TとTの温度差ΔTに応じて、熱電素子の高温側及び低温側それぞれにおいてq及びqの熱移動が生じ、qの一部は電力Pに変換される。図3は、下記(1)〜(3)に示す式の熱収支の内訳を示したものである。下記(1)の式(a)において、第1項は発電によって生じる熱の移動(ペルチェ吸熱)、第2項は発電時のジュール発熱、第3項は熱電素子そのものによる熱伝導の効果をそれぞれ表している。 In the case where thermoelectric power generation is performed with respect to the conventional concept and the conventional technology as described above, the results of the study by the present inventors will be described. The energy balance at the time of thermoelectric power generation by the thermoelectric element is represented by the formulas shown in FIG. 2 and (1) to (3) below. T h is the hot side temperature of the thermoelectric element in FIG. 2, T c is the cold side temperature, T h and according to the temperature difference ΔT of T c, q h and q c in each hot side and cold side of the thermoelectric element heat transfer occurs, part of q h is converted to electric power P. FIG. 3 shows a breakdown of the heat balance of the equations shown in the following (1) to (3). In equation (a) of (1) below, the first term is the movement of heat generated by power generation (Peltier heat absorption), the second term is Joule heat generation during power generation, and the third term is the effect of heat conduction by the thermoelectric element itself. Represents.

Figure 2013048229
Figure 2013048229

上述したように、高性能な熱電素子ほど熱抵抗が大きい、すなわち熱コンダクタンスKが小さくなるため、上式(a)における第3項の効果(すなわち図3の(i))は小さくなり、熱の移動は起こり難い。しかし、一方で熱電能αについては、高性能な熱電素子ほどαが大きくなるように設計されているため、上記式(a)の第1項であるペルチェ吸熱の効果(すなわち図3の(ii))が大きい。このペルチェ吸熱の効果は、上記式(a)のように電流I及び熱電素子の高温側温度Tそれぞれに比例する。発生電流Iは熱電素子の高温側温度Tの1次の関数であるため、ペルチェ吸熱の効果はTの2次のオーダーで大きくなる。すなわち、発生電力が大きいほど吸熱効果も大きくなり、熱電素子受熱面の吸熱を促進する作用があるため、受熱部材による集熱効果が拡大する。したがって、高性能な熱電素子を使用するケースにおいては、熱電冷却(ペルチェ冷却)のみでなく、熱電発電においても、このペルチェ吸熱の作用により、受熱部材による集熱効果が期待できる。 As described above, large thermal resistance higher performance thermoelectric element, that is, the thermal conductance K e decreases, the effect of the third term in the above formula (a) (i.e. in Fig. 3 (i)) becomes small, Heat transfer is unlikely to occur. However, on the other hand, the thermoelectric power α e is designed such that the higher the performance of the thermoelectric element, the larger the α e, so the effect of Peltier endothermic which is the first term of the above formula (a) (that is, in FIG. 3). (Ii)) is large. The effect of this Peltier absorption is proportional to the respective upper temperature T h of the current I and the thermoelectric elements as in the above formula (a). Since the generated current I is a linear function of the high-temperature side temperature T h of the thermoelectric elements, the effect of the Peltier absorption increases in second order of T h. That is, the greater the generated power, the greater the heat absorption effect, and the effect of promoting the heat absorption of the thermoelectric element heat receiving surface is increased, so that the heat collecting effect by the heat receiving member is expanded. Therefore, in a case where a high-performance thermoelectric element is used, not only thermoelectric cooling (Peltier cooling) but also thermoelectric power generation can be expected to have a heat collecting effect by the heat receiving member due to this Peltier heat absorption.

さきに述べたように、鉄鋼製造プロセスで生じる廃熱は温度変化が大きく、特に熱源の表面温度が500℃を超える程度に高い温度領域では輻射伝熱の影響が大きい。輻射伝熱の場合、有効投影面積により受熱量が変化するため、本発明では、図1に示すように熱電素子モジュール2の受熱面20の受熱面積[A2]に対して、[A1]>[A2]を満足する有効投影面積[A1]を有する受熱部材1を熱電素子モジュール2の受熱側に設け、受熱量を増加させる。   As described above, the waste heat generated in the steel manufacturing process has a large temperature change, and the influence of radiant heat transfer is particularly large in a temperature range where the surface temperature of the heat source exceeds 500 ° C. In the case of radiant heat transfer, the amount of heat received varies depending on the effective projected area. Therefore, in the present invention, as shown in FIG. 1, [A1]> [ The heat receiving member 1 having an effective projected area [A1] that satisfies A2] is provided on the heat receiving side of the thermoelectric element module 2 to increase the amount of heat received.

本発明装置では、受熱部材1の有効投影面積[A1]と熱電素子モジュール2の受熱面20の受熱面積[A2](熱電素子モジュール2が複数ある場合には、受熱面20の合計の受熱面積[A2])の関係は、[A1]>[A2]を満足すればよいが、熱電素子モジュール1個当たり大きな発電量を得るには、受熱面積[A2]に対して受熱部材1の有効投影面積[A1]が十分に大きいことが好ましい。また、受熱面積[A2]に対する受熱部材1の有効投影面積[A1]が十分に大きくないと、受熱部材1を固定するボルト等による抜熱の影響のために、受熱部材1による集熱効果が十分に得られない可能性もある。このような観点からは、受熱部材1の有効投影面積[A1]と熱電素子モジュール2の受熱面20の受熱面積[A2](熱電素子モジュール2が複数ある場合には、受熱面20の合計の受熱面積[A2])は、[A1]≧[A2]×2.3を満足することが好ましい。
また、受熱部材1と熱電素子モジュール2の受熱面20が図1に示すような正方形又は矩形の場合には、上記と同様の理由から、受熱部材1の1辺の長さ[X1]は、熱電素子モジュール2の受熱面20の1辺の長さ[X2]の1.5倍以上であることが好ましい。
In the device of the present invention, the effective projected area [A1] of the heat receiving member 1 and the heat receiving area [A2] of the heat receiving surface 20 of the thermoelectric element module 2 (when there are a plurality of thermoelectric element modules 2, the total heat receiving area of the heat receiving surface 20). The relationship [A2]) only needs to satisfy [A1]> [A2], but in order to obtain a large amount of power generation per thermoelectric element module, the effective projection of the heat receiving member 1 on the heat receiving area [A2]. It is preferable that the area [A1] is sufficiently large. Further, if the effective projected area [A1] of the heat receiving member 1 with respect to the heat receiving area [A2] is not sufficiently large, the heat collecting effect by the heat receiving member 1 is due to the influence of heat removal by a bolt or the like that fixes the heat receiving member 1. There is a possibility that it cannot be obtained sufficiently. From such a viewpoint, the effective projected area [A1] of the heat receiving member 1 and the heat receiving area [A2] of the heat receiving surface 20 of the thermoelectric element module 2 (if there are a plurality of thermoelectric element modules 2, the total of the heat receiving surfaces 20) The heat receiving area [A2]) preferably satisfies [A1] ≧ [A2] × 2.3.
When the heat receiving surface 20 of the heat receiving member 1 and the thermoelectric element module 2 is square or rectangular as shown in FIG. 1, for the same reason as described above, the length [X1] of one side of the heat receiving member 1 is It is preferably 1.5 times or more the length [X2] of one side of the heat receiving surface 20 of the thermoelectric element module 2.

受熱部材1は前面側(受熱側)にフィンを設けてもよく、このフィンの作用により対流伝熱による集熱効果も得られる。図4は、そのような熱電発電装置の一実施形態を模式的に示したもので、図4(ア)は平面図、図4(イ)は背面図である。
受熱部材1は、板状本体4(本実施形態では平板状の本体)の前面側にフィン5が設けられている。このフィン5は、板状本体4の前面に並列状に突設された複数のプレート50で構成されている。輻射伝熱のみを考慮すれば、図1の実施形態のようにフィン無しの平板状の受熱部材1でも所定の効果が得られる。しかしながら、前述したように、鉄鋼製造プロセスにおける廃熱の熱源温度は変化し、特に表面温度が低くなるほど対流伝熱による熱移動が主体となってくるため、輻射伝熱による効果のみでは十分な廃熱を回収できなくなる場合もある。このような問題に対して、本実施形態のように受熱部材1の前面にフィン5を設けることにより、対流伝熱による集熱効果も得られるようになる。また、フィンのような凹凸がある場合には、見掛け放射率(=吸収率)が向上する効果も得られるため、輻射伝熱を考慮する場合においても有効である。フィン5の形状や構造は任意であり、図4に示すような板状のものだけでなく、角棒状のものやピン状のものでも同様の効果が得られる。
The heat receiving member 1 may be provided with fins on the front side (heat receiving side), and a heat collecting effect by convective heat transfer is also obtained by the action of the fins. FIG. 4 schematically shows an embodiment of such a thermoelectric power generation apparatus. FIG. 4A is a plan view and FIG. 4A is a rear view.
The heat receiving member 1 is provided with fins 5 on the front side of a plate-like main body 4 (in this embodiment, a flat plate-like main body). The fin 5 is composed of a plurality of plates 50 protruding in parallel on the front surface of the plate-like main body 4. If only radiant heat transfer is considered, a predetermined effect can be obtained even with a flat heat receiving member 1 without fins as in the embodiment of FIG. However, as described above, the heat source temperature of waste heat in the steel manufacturing process changes, and heat transfer due to convective heat transfer is mainly performed as the surface temperature is lowered. Sometimes heat cannot be recovered. With respect to such a problem, by providing the fins 5 on the front surface of the heat receiving member 1 as in this embodiment, a heat collecting effect by convective heat transfer can be obtained. Further, when there are irregularities such as fins, an effect of improving the apparent emissivity (= absorption rate) can be obtained, which is also effective when considering radiant heat transfer. The shape and structure of the fin 5 are arbitrary, and the same effect can be obtained not only in a plate shape as shown in FIG. 4 but also in a square bar shape or a pin shape.

熱電発電装置は、熱源に対して進退可能(移動による接近・離間可能)とし、熱源に対する距離を調整できるようにしてもよい。一般に、熱電素子は、その効率を最大化するための適正温度が素子によって決まっている。図5のグラフは、熱電素子の性能を示す無次元性能指数ZT(Z:性能指数)の温度依存性を示すものである。熱電素子は、低温用(100℃程度)から高温用(700℃程度)まで様々な種類があるが、図5に示されるように、何れの熱電素子も無次元性能指数ZTは特定の温度域でピーク値を取る傾向があり、その温度域以外では無次元性能指数ZTが低下して熱電素子の発電効率が低下する。また、各熱電素子には、耐熱性の観点から決まる適用温度の上限もある。したがって、熱電発電装置を熱源に対して進退可能(移動による接近・離間可能)とし、熱源に対する距離を調整できるようにすれば、上述の無次元性能指数ZTから計算される発電量Pが最大となる位置に装置を配置することができる。また、発生電力Pは発電中にモニタリングすることも可能なので、発生電力Pの実測値に応じて熱電発電装置の熱源に対する距離を調整し、発生電力Pを最大化することも可能である。   The thermoelectric generator may be capable of advancing and retreating with respect to the heat source (approaching and separating by movement) so that the distance to the heat source can be adjusted. In general, a thermoelectric element has an appropriate temperature for maximizing its efficiency. The graph of FIG. 5 shows the temperature dependence of a dimensionless figure of merit ZT (Z: figure of merit) indicating the performance of the thermoelectric element. There are various types of thermoelectric elements from low temperature (about 100 ° C.) to high temperature (about 700 ° C.). As shown in FIG. 5, the dimensionless figure of merit ZT is a specific temperature range. The dimensionless figure of merit ZT decreases and the power generation efficiency of the thermoelectric element decreases outside this temperature range. Each thermoelectric element also has an upper limit of application temperature determined from the viewpoint of heat resistance. Therefore, if the thermoelectric generator can be moved back and forth with respect to the heat source (approachable / movable by movement) and the distance to the heat source can be adjusted, the power generation amount P calculated from the dimensionless figure of merit ZT is maximized. The device can be placed at a position. Further, since the generated power P can be monitored during power generation, the generated power P can be maximized by adjusting the distance to the heat source of the thermoelectric generator according to the actual value of the generated power P.

したがって、熱電発電装置の発電出力をモニタリングするモニタリング装置と、熱源に対する距離を調整可能とする機構(熱電発電装置の移動機構)を設け、上記モニタリング装置でモニタリングされた発電出力に応じて、熱源に対する熱電発電装置の距離を調整することが好ましい。例えば、熱電素子の耐熱温度以下での最高発電出力(例えば、Bi−Te系の熱電素子の場合に2.5W)を上限値或いは目標値として設定し、モニタリングされた発電出力がその上限値を超えないように、或いは目標値に近づくように、熱源に対する熱電発電装置の距離を調整するようにしてもよい。また、この調整のために熱電発電装置の位置を初期設定する場合には、発電電力をモニタリングしながら、熱源に対して、熱電発電装置を遠方から接近させていく方法を採ることができる。   Accordingly, a monitoring device for monitoring the power generation output of the thermoelectric power generation device and a mechanism (a movement mechanism of the thermoelectric power generation device) that can adjust the distance to the heat source are provided, and the heat source according to the power generation output monitored by the monitoring device is provided. It is preferable to adjust the distance of the thermoelectric generator. For example, the maximum power generation output (for example, 2.5 W in the case of a Bi-Te thermoelectric element) is set as the upper limit value or the target value, and the monitored power generation output is set to the upper limit value. You may make it adjust the distance of the thermoelectric generator with respect to a heat source so that it may not exceed or approach a target value. Moreover, when initializing the position of the thermoelectric generator for this adjustment, it is possible to adopt a method in which the thermoelectric generator is brought closer to the heat source while monitoring the generated power.

また、図4に示すような受熱部材1にフィン5を設けた熱電発電装置を、熱源に対して進退可能(移動による接近・離間可能)とし、熱源に対する距離を調整できるようにすることにより、その熱電発電装置の利点を最大限に発揮させることができる。すなわち、受熱部材1による基本的な受熱は輻射伝熱によるものであるが、熱電発電装置が熱源に近くなると対流伝熱による受熱もなされるようになり、フィン5はこの対流伝熱による受熱に有効な手段となる。したがって、熱源が変わったり、熱源温度が変化するなど受熱環境が変化した場合、熱源に対して熱電発電装置を進退(接近又は離間)させて熱源と熱電発電装置間の距離を調整することにより、輻射伝熱と対流伝熱それぞれによる受熱量を積極的に制御することができる。具体的には、実質的に輻射伝熱のみにより受熱するか、輻射伝熱+対流伝熱により受熱するかを選択することが可能となり、熱電素子の効率を常に最大化した状態で発電を行うことができる。   In addition, by making the thermoelectric power generation device provided with fins 5 on the heat receiving member 1 as shown in FIG. 4 to be able to advance and retreat with respect to the heat source (approach and separation by movement), and to be able to adjust the distance to the heat source, The advantages of the thermoelectric generator can be maximized. That is, the basic heat receiving by the heat receiving member 1 is due to radiant heat transfer, but when the thermoelectric generator is close to the heat source, heat is also received by convective heat transfer, and the fin 5 receives heat by this convective heat transfer. It becomes an effective means. Therefore, when the heat receiving environment changes, such as when the heat source changes or the heat source temperature changes, the thermoelectric generator is moved forward and backward (approached or separated) from the heat source to adjust the distance between the heat source and the thermoelectric generator, The amount of heat received by each of radiant heat transfer and convective heat transfer can be positively controlled. Specifically, it is possible to select whether the heat is received only by radiant heat transfer or by radiant heat + convection heat transfer, and power generation is performed with the efficiency of the thermoelectric element always maximized. be able to.

熱源に対して進退可能な本発明の熱電発電装置について、熱源が高温の場合と低温の場合における熱源との間隔(距離)調整の考え方を図6に基づいて説明する。熱源(熱源物質)の表面温度が高温(例えば800℃)の場合、輻射伝熱の効果が大きく、Bi−Te系のような耐熱温度の低い熱電素子ではむしろ受熱面の熱流束が過大になるため、図6(ア)に示すように、熱電発電装置(受熱部材1)と熱源6との間隔を拡げ(間隔d)、輻射伝熱による受熱量を調整して発生電力Pの最大化を図る。一方、熱源(熱源物質)の表面温度が低温(例えば300℃)の場合、対流伝熱による熱移動を利用するため、図6(イ)に示すように、熱電発電装置(受熱部材1)と熱源との間隔を狭め(間隔d)、輻射伝熱と対流伝熱により発生電力Pの最大化を図る。このように熱源との間隔を調整することで、熱源の温度変化に対して常に高い出力電圧を安定して得ることができる。 With respect to the thermoelectric power generator of the present invention that can advance and retreat with respect to the heat source, the concept of adjusting the distance (distance) between the heat source when the heat source is high and low will be described with reference to FIG. When the surface temperature of the heat source (heat source material) is high (for example, 800 ° C.), the effect of radiant heat transfer is large, and the heat flux on the heat receiving surface is rather excessive in a thermoelectric element having a low heat resistance such as Bi-Te. Therefore, as shown in FIG. 6A, the interval between the thermoelectric generator (heat receiving member 1) and the heat source 6 is increased (interval d 0 ), and the amount of heat received by radiant heat transfer is adjusted to maximize the generated power P. Plan. On the other hand, when the surface temperature of the heat source (heat source material) is low (for example, 300 ° C.), in order to use heat transfer by convective heat transfer, the thermoelectric generator (heat receiving member 1) and The interval between the heat source is narrowed (interval d 1 ), and the generated power P is maximized by radiant heat transfer and convective heat transfer. By adjusting the distance from the heat source in this way, it is possible to stably obtain a high output voltage constantly with respect to the temperature change of the heat source.

さきに述べたように、本発明の熱電発電装置では、1つの受熱部材1に対して2つ以上の熱電素子モジュール2を取り付ける構造としてもよく、例えば、鉄鋼製造プロセス内の熱源の特性を考えた場合、このような構造の方が適している場合が多い。図7及び図8は、そのような熱電発電装置の実施形態を模式的に示したものである。図7は、図1に示すような受熱部材1が平板状のタイプをベースにしたもので、図7(ア)は平面図、図7(イ)は背面図である。また、図8は、図4に示すような受熱部材1がフィン5を有するタイプをベースにしたもので、図8(ア)は平面図、図8(イ)は背面図である。いずれも1つの受熱部材1に対して、複数の熱電素子モジュール2を縦横で等間隔に取り付けた構造となっている。   As described above, in the thermoelectric generator of the present invention, two or more thermoelectric element modules 2 may be attached to one heat receiving member 1, for example, considering the characteristics of the heat source in the steel manufacturing process. In many cases, such a structure is more suitable. 7 and 8 schematically show an embodiment of such a thermoelectric power generation apparatus. FIG. 7 shows a heat receiving member 1 as shown in FIG. 1 based on a flat plate type. FIG. 7A is a plan view and FIG. 7A is a rear view. 8 is based on a type in which the heat receiving member 1 has fins 5 as shown in FIG. 4, FIG. 8A is a plan view, and FIG. 8A is a rear view. In any case, a plurality of thermoelectric element modules 2 are attached to a single heat receiving member 1 at equal intervals in the vertical and horizontal directions.

したがって、このような実施形態では、受熱部材1は、複数の熱電素子モジュール2の受熱面20の合計の受熱面積[A2]に対して、[A1]>[A2]を満足する有効投影面積[A1]を有する。また、受熱部材1の有効投影面積[A1]と複数の熱電素子モジュール2の受熱面20の合計の受熱面積[A2]は、[A1]≧[A2]×2.3を満足することが好ましい。さらに、図7(イ)、図8(イ)において仮想線で区画された受熱部材1の部分(正方形の区画部分)の1辺の長さ[X1]は、各熱電素子モジュール2の受熱面20の1辺の長さ[X2]の1.5倍以上であることが好ましい。   Accordingly, in such an embodiment, the heat receiving member 1 has an effective projected area satisfying [A1]> [A2] with respect to the total heat receiving area [A2] of the heat receiving surfaces 20 of the plurality of thermoelectric element modules 2 [ A1]. Moreover, it is preferable that the total heat receiving area [A2] of the effective projected area [A1] of the heat receiving member 1 and the heat receiving surfaces 20 of the plurality of thermoelectric element modules 2 satisfy [A1] ≧ [A2] × 2.3. . Further, the length [X1] of one side of the heat receiving member 1 section (square section section) partitioned by imaginary lines in FIGS. 7A and 8B is the heat receiving surface of each thermoelectric element module 2. The length of one side of 20 is preferably 1.5 times or more of the length [X2].

本発明の熱電発電装置では、受熱部材1は平板状である必要はなく、種々の形態(形状・構造)を採り得る。その一つとして、熱源を少なくとも部分的に包囲するように設ける形態があり、例えば、熱源を覆うトンネル状又はドーム状の受熱部材1が挙げられる。通常、このような受熱部材1には、複数の熱電素子モジュール2が取り付けられる。
図9は、そのような熱電発電装置の一実施形態を模式的に示す正面図である。この実施形態では、熱源が高温の管体6aであり、水平に置かれた或いは水平方向に搬送される管体6aを覆う(管体の周方向において下面側を除いて包囲する)トンネル状又はドーム状の受熱部材1が設けられ、この受熱部材1に複数の熱電素子モジュール2が取り付けられている。受熱部材1は断面弧状でもよいが、熱電素子モジュール2の受熱面20の取り付けを考慮して、複数の平面を多角形状に組み合わせた断面形状に構成されている。
In the thermoelectric generator of the present invention, the heat receiving member 1 does not have to be flat, and can take various forms (shapes / structures). One of them is a form in which the heat source is provided so as to at least partially surround it, for example, a tunnel-shaped or dome-shaped heat receiving member 1 covering the heat source. Usually, a plurality of thermoelectric element modules 2 are attached to such a heat receiving member 1.
FIG. 9 is a front view schematically showing an embodiment of such a thermoelectric generator. In this embodiment, the heat source is a high-temperature pipe body 6a, which covers the pipe body 6a placed horizontally or transported in the horizontal direction (enclosed except for the lower surface side in the circumferential direction of the pipe body) or A dome-shaped heat receiving member 1 is provided, and a plurality of thermoelectric element modules 2 are attached to the heat receiving member 1. Although the heat receiving member 1 may have an arc shape in cross section, the heat receiving member 1 is configured in a cross sectional shape in which a plurality of planes are combined into a polygonal shape in consideration of the attachment of the heat receiving surface 20 of the thermoelectric element module 2.

本発明の熱電発電装置では、受熱部材1の集熱効果を高めるため、受熱部材1の前面を黒体処理することができる。受熱部材1の前面にフィン5が設けられる場合、黒体処理する対象にはこのフィン5も含まれる。この黒体処理により輻射伝熱による吸熱量が増加する。黒体処理は、通常、黒体塗料を塗布することによりなされる。
一般に放射率ε=1の完全な黒体塗料は存在しないが、特に受熱部材1がフィン5を有する場合には、さきに述べた見掛け放射率向上効果も得られるため、完全な黒体と見なせる程度に受熱量が向上する。
In the thermoelectric generator of the present invention, the front surface of the heat receiving member 1 can be subjected to a black body treatment in order to enhance the heat collecting effect of the heat receiving member 1. When the fins 5 are provided on the front surface of the heat receiving member 1, the fins 5 are also included in the target for black body processing. This black body treatment increases the amount of heat absorbed by radiant heat transfer. The black body treatment is usually performed by applying a black body paint.
In general, there is no perfect black body paint having an emissivity ε = 1. However, when the heat receiving member 1 has the fins 5 in particular, the apparent emissivity improving effect described above can be obtained, so that it can be regarded as a complete black body. The amount of heat received is improved to a certain extent.

本発明の熱電発電装置が適用される熱源のうち、鉄鋼製造プロセス内の代表的な熱源としては高温の鋼材があり、例えば、スラブヤード内に搬入された或いは搬入途中のスラブ(鋳片)、熱間加工後に製品ヤードに搬入された或いは搬入途中の製品(例えば、熱延コイル、管体、厚板など)などが挙げられる。また、本発明の熱電発電装置は、鉄鋼製造プロセス以外の熱源(廃熱源)にも適用可能である。
したがって、本発明の熱電発電方法では、上述したような本発明の熱電発電装置を用い、鉄鋼製造プロセスにおける鋼材を熱源として発電を行う。このように本発明の熱電発電装置を用い、上記のような鉄鋼製造プロセスにおける高温(常温を超える温度)の鋼材を熱源として熱電発電を行うことにより、従来では殆ど顕熱回収がなされていなかった鉄鋼製造プロセスでの高温鋼材の廃熱を利用して効率的な発電を行うことができ、このためエネルギーの有効利用を図ることができるとともに、一貫製鉄所におけるエネルギー効率を向上させることができる。
Among the heat sources to which the thermoelectric power generation device of the present invention is applied, as a typical heat source in the steel manufacturing process, there is a high-temperature steel material, for example, a slab (slab) carried into the slab yard or in the middle of carrying in, A product (for example, a hot rolled coil, a tubular body, a thick plate, etc.) which is carried into the product yard after hot working or is being carried in can be used. The thermoelectric generator of the present invention can also be applied to a heat source (waste heat source) other than the steel manufacturing process.
Therefore, the thermoelectric power generation method of the present invention uses the thermoelectric power generation device of the present invention as described above to generate power using the steel material in the steel manufacturing process as a heat source. As described above, by using the thermoelectric power generation apparatus of the present invention and performing thermoelectric power generation using a steel material at a high temperature (temperature exceeding room temperature) in the steel manufacturing process as described above, sensible heat recovery has hardly been achieved in the past. Efficient power generation can be performed using the waste heat of the high-temperature steel material in the steel manufacturing process, so that energy can be used effectively and energy efficiency in the integrated steelworks can be improved.

その場合、さきに述べたように、熱源に対する熱電発電装置の距離を調整できるようにすることが好ましく、さらに、熱電発電装置による発電出力をモニタリングし、モニタリングされた発電出力に応じて、熱源に対する熱電発電装置の距離を調整することが好ましい。
ここで、熱源となる鋼材の表面温度は300℃以上であることが好ましい。鋼材の表面温度が300℃未満では効率よく発電するのが難しく、受熱部材1やフィン5を過大な大きさにする必要が生じる。
In that case, as described above, it is preferable to be able to adjust the distance of the thermoelectric generator to the heat source, and furthermore, the power generation output by the thermoelectric power generator is monitored, and according to the monitored power output, It is preferable to adjust the distance of the thermoelectric generator.
Here, the surface temperature of the steel material serving as a heat source is preferably 300 ° C. or higher. If the surface temperature of the steel material is less than 300 ° C., it is difficult to generate power efficiently, and it is necessary to make the heat receiving member 1 and the fins 5 excessively large.

高温鋼材のような熱源を想定して、図10に示すような本発明例の実験装置を用いた実験を行った。図10(ア)は実験装置の平面図、図10(イ)は実験装置の背面図である。鋼板7(板厚:5mm、サイズ:500mm×500mm)の背面をセラミックヒータ8で加熱したものを熱源6とし、鋼板温度(平均温度)を325℃で一定に保持した。本発明例の実験装置は、前面10にフィン5を備えた銅製の受熱部材1と、その背面11に受熱面20側を介して接合されたBi−Te系熱電素子モジュール2からなる。受熱部材1は100mm×100mmの正方形で有効投影面積[A1]が100cmの板材あり、前面にフィン5を有するとともに、このフィン5を含めた前面(受熱面)に黒体塗料を均一に塗布してある。Bi−Te系熱電素子モジュール2の受熱面20は、45mm×50mmの正方形で受熱面積[A2]が22.5cmである。この受熱面20を厚さ2mmの高熱伝導シート3を介して受熱部材1の裏面11に接合した。この実験では、実験装置と熱源6との間隔(距離)dを200mm、50mm、10mmの3段階に変化させ、装置に抵抗負荷を接続して発生電力の測定を行った。
また、比較例として、受熱部材1を有しない以外は上記と同じ構成を有する実験装置を用い、本発明例の実験装置と同様の実験を行い、発生電力の測定を行った。
Assuming a heat source such as a high-temperature steel material, an experiment using an experimental apparatus of the present invention example as shown in FIG. 10 was conducted. FIG. 10A is a plan view of the experimental apparatus, and FIG. 10A is a rear view of the experimental apparatus. What heated the back surface of the steel plate 7 (plate thickness: 5 mm, size: 500 mm x 500 mm) with the ceramic heater 8 was made into the heat source 6, and the steel plate temperature (average temperature) was kept constant at 325 degreeC. The experimental apparatus according to the present invention includes a copper heat receiving member 1 having fins 5 on the front surface 10 and a Bi-Te thermoelectric element module 2 joined to the rear surface 11 via the heat receiving surface 20 side. The heat receiving member 1 has a plate of 100 mm × 100 mm square and an effective projection area [A1] of 100 cm 2 , has fins 5 on the front surface, and uniformly applies black body paint to the front surface (heat receiving surface) including the fins 5. It is. The heat receiving surface 20 of the Bi-Te-based thermoelectric element module 2 is a 45 mm × 50 mm square, and the heat receiving area [A2] is 22.5 cm 2 . The heat receiving surface 20 was joined to the back surface 11 of the heat receiving member 1 through the high heat conductive sheet 3 having a thickness of 2 mm. In this experiment, the distance (distance) d between the experimental apparatus and the heat source 6 was changed in three stages of 200 mm, 50 mm, and 10 mm, and the generated power was measured by connecting a resistance load to the apparatus.
Further, as a comparative example, an experiment apparatus having the same configuration as described above except that the heat receiving member 1 was not used was used, and an experiment similar to the experiment apparatus of the present invention example was performed to measure the generated power.

図11は本発明例の実験装置による発生電力Pの測定結果を、図12に比較例の実験装置による発生電力Pの測定結果を、それぞれ示す。各グラフには、横軸を電流Iとして、それぞれ熱源6との間隔(距離)d毎の発生電力Pを示してある。これによれば、図12に示される比較例の装置の発生電力に対して、図11に示される本発明例の装置の発生電力は約10倍になっており、極めて大きい集熱効果が得られていることが判る。特に、d=50mmよりも短い間隔での発生電力Pの上昇は、受熱部材1のフィン5を介した対流伝熱による影響が大きいものと考えられる。   FIG. 11 shows the measurement result of the generated power P by the experimental apparatus of the present invention, and FIG. 12 shows the measurement result of the generated power P by the experimental apparatus of the comparative example. In each graph, the electric power P generated at each interval (distance) d from the heat source 6 is shown with the horizontal axis being the current I. According to this, the generated power of the device of the present invention shown in FIG. 11 is about 10 times the generated power of the device of the comparative example shown in FIG. 12, and an extremely large heat collecting effect is obtained. It can be seen that In particular, it is considered that the increase in the generated power P at intervals shorter than d = 50 mm is greatly influenced by convective heat transfer through the fins 5 of the heat receiving member 1.

1 受熱部材
2 熱電素子モジュール
3 シート
4 板状本体
5 フィン
6 熱源
6a 管体
10 前面
11 背面
20 受熱面
50 プレート
DESCRIPTION OF SYMBOLS 1 Heat receiving member 2 Thermoelectric element module 3 Sheet | seat 4 Plate-shaped main body 5 Fin 6 Heat source 6a Tubing body 10 Front surface 11 Back surface 20 Heat receiving surface 50 Plate

Claims (18)

前面が熱源と対向する受熱部材(1)と、該受熱部材(1)の背面に受熱面(20)側を介して接合される1又は2以上の熱電素子モジュール(2)を有し、受熱部材(1)が、1又は2以上の熱電素子モジュール(2)の受熱面(20)の合計の受熱面積[A2]に対して、[A1]>[A2]を満足する有効投影面積[A1]を有する熱電発電装置を用い、
鉄鋼製造プロセスにおける鋼材を熱源として発電を行うことを特徴とする熱電発電方法。
A heat receiving member (1) having a front surface facing the heat source, and one or more thermoelectric element modules (2) joined to the back surface of the heat receiving member (1) via the heat receiving surface (20) side; Effective projected area [A1] in which member (1) satisfies [A1]> [A2] with respect to the total heat receiving area [A2] of the heat receiving surface (20) of one or more thermoelectric element modules (2) A thermoelectric generator having
A thermoelectric power generation method, wherein power generation is performed using a steel material in a steel manufacturing process as a heat source.
表面温度が300℃以上の鋼材を熱源として発電を行うことを特徴とする請求項1に記載の熱電発電方法。   The thermoelectric power generation method according to claim 1, wherein power generation is performed using a steel material having a surface temperature of 300 ° C. or more as a heat source. 熱電発電装置は、熱源に対する距離を調整可能としたことを特徴とする請求項1又は2に記載の熱電発電方法。   The thermoelectric power generation method according to claim 1, wherein the thermoelectric power generation device is capable of adjusting a distance to the heat source. 熱電発電装置による発電出力をモニタリングし、モニタリングされた発電出力に応じて、熱源に対する熱電発電装置の距離を調整することを特徴とする請求項3に記載の熱電発電方法。   The thermoelectric power generation method according to claim 3, wherein the power generation output by the thermoelectric power generation device is monitored, and the distance of the thermoelectric power generation device to the heat source is adjusted according to the monitored power generation output. 熱電発電装置は、受熱部材(1)の有効投影面積[A1]と熱電素子モジュール(2)の受熱面(20)の合計の受熱面積[A2]が、[A1]≧[A2]×2.3を満足することを特徴とする請求項1〜4のいずれかに記載の熱電発電方法。   In the thermoelectric generator, the total heat receiving area [A2] of the effective projected area [A1] of the heat receiving member (1) and the heat receiving surface (20) of the thermoelectric element module (2) is [A1] ≧ [A2] × 2. The thermoelectric power generation method according to claim 1, wherein the thermoelectric power generation method according to claim 1 is satisfied. 熱電発電装置の受熱部材(1)は、その前面側にフィン(5)を有することを特徴とする請求項1〜5のいずれかに記載の熱電発電方法。   The thermoelectric power generation method according to any one of claims 1 to 5, wherein the heat receiving member (1) of the thermoelectric power generator has a fin (5) on the front surface side thereof. 熱電発電装置は、熱源を少なくとも部分的に包囲する受熱部材(1)を有することを特徴とする請求項1〜6のいずれかに記載の熱電発電方法。   The thermoelectric power generation method according to claim 1, wherein the thermoelectric power generation device includes a heat receiving member (1) that at least partially surrounds the heat source. 熱電発電装置は、熱源を覆うトンネル状又はドーム状の受熱部材(1)を有することを特徴とする請求項7に記載の熱電発電方法。   The thermoelectric power generation method according to claim 7, wherein the thermoelectric power generation device includes a tunnel-shaped or dome-shaped heat receiving member (1) covering the heat source. 熱電発電装置は、受熱部材(1)の前面が黒体処理されていることを特徴とする請求項1〜8のいずれかに記載の熱電発電方法。   The thermoelectric power generation method according to claim 1, wherein the front surface of the heat receiving member (1) is blackbody-treated. 前面が熱源と対向する受熱部材(1)と、該受熱部材(1)の背面に受熱面(20)側を介して接合される1又は2以上の熱電素子モジュール(2)を有し、
受熱部材(1)は、1又は2以上の熱電素子モジュール(2)の受熱面(20)の合計の受熱面積[A2]に対して、[A1]>[A2]を満足する有効投影面積[A1]を有することを特徴とする熱電発電装置。
A heat receiving member (1) having a front surface facing the heat source, and one or more thermoelectric element modules (2) joined to the back surface of the heat receiving member (1) via the heat receiving surface (20) side;
The heat receiving member (1) has an effective projected area satisfying [A1]> [A2] with respect to the total heat receiving area [A2] of the heat receiving surface (20) of one or more thermoelectric element modules (2) [ A1]. A thermoelectric power generator characterized by having A1].
熱源に対する距離を調整可能としたことを特徴とする請求項10に記載の熱電発電装置。   The thermoelectric generator according to claim 10, wherein the distance to the heat source is adjustable. 発電出力をモニタリングする装置を有し、該装置でモニタリングされた発電出力に応じて熱源に対する距離を調整可能としたことを特徴とする請求項11に記載の熱電発電装置。   The thermoelectric power generation apparatus according to claim 11, further comprising a device for monitoring the power generation output, wherein the distance to the heat source can be adjusted according to the power generation output monitored by the device. 受熱部材(1)の有効投影面積[A1]と熱電素子モジュール(2)の受熱面(20)の合計の受熱面積[A2]が、[A1]≧[A2]×2.3を満足することを特徴とする請求項10〜12のいずれかに記載の熱電発電装置。   The total heat receiving area [A2] of the effective projected area [A1] of the heat receiving member (1) and the heat receiving surface (20) of the thermoelectric element module (2) satisfies [A1] ≧ [A2] × 2.3. The thermoelectric power generator according to any one of claims 10 to 12. 熱電素子モジュール(2)の受熱面(20)は、受熱部材(1)の背面に直接又はシートを介して接合されていることを特徴とする請求項10〜13のいずれかに記載の熱電発電装置。   The thermoelectric power generation according to any one of claims 10 to 13, wherein the heat receiving surface (20) of the thermoelectric element module (2) is joined to the back surface of the heat receiving member (1) directly or via a sheet. apparatus. 受熱部材(1)は、その前面側にフィン(5)を有することを特徴とする請求項10〜14のいずれかに記載の熱電発電装置。   The thermoelectric generator according to any one of claims 10 to 14, wherein the heat receiving member (1) has fins (5) on the front side thereof. 熱源を少なくとも部分的に包囲する受熱部材(1)を有することを特徴とする請求項10〜15のいずれかに記載の熱電発電装置。   The thermoelectric generator according to any one of claims 10 to 15, further comprising a heat receiving member (1) that at least partially surrounds the heat source. 熱源を覆うトンネル状又はドーム状の受熱部材(1)を有することを特徴とする請求項16に記載の熱電発電装置。   17. The thermoelectric generator according to claim 16, further comprising a tunnel-shaped or dome-shaped heat receiving member (1) covering the heat source. 受熱部材(1)の前面が黒体処理されていることを特徴とする請求項10〜17のいずれかに記載の熱電発電装置。   The thermoelectric generator according to any one of claims 10 to 17, wherein the front surface of the heat receiving member (1) is black-body treated.
JP2012164114A 2011-07-27 2012-07-24 Thermoelectric power generation apparatus and thermoelectric power generation method Active JP6246998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012164114A JP6246998B2 (en) 2011-07-27 2012-07-24 Thermoelectric power generation apparatus and thermoelectric power generation method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011163793 2011-07-27
JP2011163793 2011-07-27
JP2012164114A JP6246998B2 (en) 2011-07-27 2012-07-24 Thermoelectric power generation apparatus and thermoelectric power generation method

Publications (2)

Publication Number Publication Date
JP2013048229A true JP2013048229A (en) 2013-03-07
JP6246998B2 JP6246998B2 (en) 2017-12-13

Family

ID=48011051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012164114A Active JP6246998B2 (en) 2011-07-27 2012-07-24 Thermoelectric power generation apparatus and thermoelectric power generation method

Country Status (1)

Country Link
JP (1) JP6246998B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015021956A1 (en) * 2013-08-12 2015-02-19 Gentherm Gmbh Electricity generation unit for converting heat into electrical energy
KR20150136289A (en) * 2014-05-27 2015-12-07 주식회사 엘지화학 Thermoelectric generator using heat of gas range

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59198883A (en) * 1983-04-21 1984-11-10 Nippon Steel Corp Recovering method of high temperature article surface radiation heat
JPH0618093A (en) * 1992-07-02 1994-01-25 Paloma Ind Ltd Instrument utilizing thermal power generation
JP2001007412A (en) * 1999-06-18 2001-01-12 Siird Center:Kk Solar thermal electric power generator
JP2002171776A (en) * 2000-12-04 2002-06-14 Ishikawajima Harima Heavy Ind Co Ltd Thermoelectric generating device for industrial furnace
JP2004350479A (en) * 2003-05-26 2004-12-09 Hitachi Powdered Metals Co Ltd Thermoelectric conversion power generating unit and tunnel type furnace equipped with same
JP2005033894A (en) * 2003-07-10 2005-02-03 Toshiba Corp Waste heat power generation system
JPWO2005112141A1 (en) * 2004-05-19 2008-03-27 財団法人電力中央研究所 Thermoelectric conversion system and method for improving efficiency of thermoelectric conversion system
JP2010123792A (en) * 2008-11-20 2010-06-03 Ihi Corp Method for simulating thermoelectric conversion device, heat receiving plate shape optimizing method, and thermoelectric conversion device
JP2010238822A (en) * 2009-03-30 2010-10-21 Ube Ind Ltd Thermoelectric power generator
JP2011062727A (en) * 2009-09-17 2011-03-31 Toshiba Mitsubishi-Electric Industrial System Corp Heat recovery device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59198883A (en) * 1983-04-21 1984-11-10 Nippon Steel Corp Recovering method of high temperature article surface radiation heat
JPH0618093A (en) * 1992-07-02 1994-01-25 Paloma Ind Ltd Instrument utilizing thermal power generation
JP2001007412A (en) * 1999-06-18 2001-01-12 Siird Center:Kk Solar thermal electric power generator
JP2002171776A (en) * 2000-12-04 2002-06-14 Ishikawajima Harima Heavy Ind Co Ltd Thermoelectric generating device for industrial furnace
JP2004350479A (en) * 2003-05-26 2004-12-09 Hitachi Powdered Metals Co Ltd Thermoelectric conversion power generating unit and tunnel type furnace equipped with same
JP2005033894A (en) * 2003-07-10 2005-02-03 Toshiba Corp Waste heat power generation system
JPWO2005112141A1 (en) * 2004-05-19 2008-03-27 財団法人電力中央研究所 Thermoelectric conversion system and method for improving efficiency of thermoelectric conversion system
JP2010123792A (en) * 2008-11-20 2010-06-03 Ihi Corp Method for simulating thermoelectric conversion device, heat receiving plate shape optimizing method, and thermoelectric conversion device
JP2010238822A (en) * 2009-03-30 2010-10-21 Ube Ind Ltd Thermoelectric power generator
JP2011062727A (en) * 2009-09-17 2011-03-31 Toshiba Mitsubishi-Electric Industrial System Corp Heat recovery device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015021956A1 (en) * 2013-08-12 2015-02-19 Gentherm Gmbh Electricity generation unit for converting heat into electrical energy
CN105453285A (en) * 2013-08-12 2016-03-30 捷温有限责任公司 Electricity generation unit for converting heat into electrical energy
CN105453285B (en) * 2013-08-12 2018-05-08 捷温有限责任公司 For converting heat to the power generator of electric energy
KR20150136289A (en) * 2014-05-27 2015-12-07 주식회사 엘지화학 Thermoelectric generator using heat of gas range
KR101672241B1 (en) * 2014-05-27 2016-11-03 주식회사 엘지화학 Thermoelectric generator using heat of gas range

Also Published As

Publication number Publication date
JP6246998B2 (en) 2017-12-13

Similar Documents

Publication Publication Date Title
JP5832698B2 (en) Thermoelectric power generation apparatus and thermoelectric power generation method
Kuroki et al. Research and development for thermoelectric generation technology using waste heat from steelmaking process
KR20150106328A (en) Thermoelectric power generation system using gradient heat exchanger
TW201222904A (en) Thermoelectric generator apparatus with high thermoelectric conversion efficiency
TWI650217B (en) Cutting machine and thermoelectric power generation method
JP5444787B2 (en) Thermoelectric generator
JP6246998B2 (en) Thermoelectric power generation apparatus and thermoelectric power generation method
Ghosh et al. Radiant heat recovery by thermoelectric generators: A theoretical case-study on hot steel casting
JP5832697B2 (en) Thermoelectric power generation apparatus and thermoelectric power generation method using the same
JP5991131B2 (en) Forged pipe installation line and thermoelectric power generation method using the same
JP6112154B2 (en) Steelworks manufacturing equipment line and thermoelectric power generation method
JP6217776B2 (en) Manufacturing equipment column and thermoelectric power generation method
JP6112153B2 (en) Steelworks manufacturing equipment line and thermoelectric power generation method
Maduabuchi et al. Parametric optimization of a segmented thermoelectric generator in a concentrated photovoltaic system under fluctuating weather conditions
JP6873193B2 (en) Manufacturing equipment line and thermoelectric power generation method
JP5998983B2 (en) Continuous casting equipment line and thermoelectric power generation method using the same
JP2013085334A (en) Thermoelectric generator
JP5958433B2 (en) Steel plate manufacturing equipment row for casting and rolling, and thermoelectric power generation method using the same
JP2011091137A (en) Thermoelectric module
JP6011221B2 (en) Forged pipe installation line and thermoelectric power generation method using the same
Yadav et al. Thermal characteristics of thermoelectric generator for waste heat recovery from a billet casting cooling process
JP6011208B2 (en) Hot rolling equipment line and thermoelectric power generation method using the same
PL224629B1 (en) Thermo-electric electric current generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171116

R150 Certificate of patent or registration of utility model

Ref document number: 6246998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250