JP2011091137A - Thermoelectric module - Google Patents

Thermoelectric module Download PDF

Info

Publication number
JP2011091137A
JP2011091137A JP2009242128A JP2009242128A JP2011091137A JP 2011091137 A JP2011091137 A JP 2011091137A JP 2009242128 A JP2009242128 A JP 2009242128A JP 2009242128 A JP2009242128 A JP 2009242128A JP 2011091137 A JP2011091137 A JP 2011091137A
Authority
JP
Japan
Prior art keywords
electrodes
thermoelectric
thermoelectric conversion
substrate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009242128A
Other languages
Japanese (ja)
Inventor
Kazuhisa Fujii
和久 藤井
Junichi Teraki
潤一 寺木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2009242128A priority Critical patent/JP2011091137A/en
Publication of JP2011091137A publication Critical patent/JP2011091137A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric module capable of keeping a temperature difference between electrodes by reducing the amount of heat transfer between a substrate and a thermoelectric conversion material. <P>SOLUTION: The thermoelectric module 10 includes an insulating substrate 12, a thermoelectric conversion portion 14 having the thermoelectric conversion material formed on the substrate 12 in a thin film form, and a pair of electrodes 16a, 16b formed on the thermoelectric conversion portion 14. The distance between the electrodes is equal to or less than a half as large as the length of the thermoelectric conversion portion 14 in a direction wherein the electrodes 16a, 16b are arrayed. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、熱電変換材料を利用した熱電モジュールに関するものである。   The present invention relates to a thermoelectric module using a thermoelectric conversion material.

ペルチェ効果(Peltier effect)は、異なる金属を接合して電圧を印加したとき、接合部で発熱や吸熱が生じる現象である。発熱と吸熱は電流の流れる方向で決定される。このペルチェ効果を利用した熱電モジュールが開発されている。   The Peltier effect is a phenomenon in which, when different metals are joined and a voltage is applied, heat is generated or absorbed. Heat generation and heat absorption are determined by the direction of current flow. Thermoelectric modules using the Peltier effect have been developed.

図6(a)、(b)に示す従来の熱電モジュール50は、基板12、基板12の上の熱電変換部14、熱電変換部14の両端に接続された一対の電極16a,16bを備える。基板12は絶縁基板である。熱電変換部14は、ペルチェ効果の大きい金属や熱電半導体を薄膜状にした熱電変換材料が挙げられ、例えばBi−Te系、Pb−Te系、Si−Ge系の材料が挙げられる。電極16a,16bは、金属で形成された正極と負極である。   A conventional thermoelectric module 50 shown in FIGS. 6A and 6B includes a substrate 12, a thermoelectric conversion unit 14 on the substrate 12, and a pair of electrodes 16 a and 16 b connected to both ends of the thermoelectric conversion unit 14. The substrate 12 is an insulating substrate. Examples of the thermoelectric conversion unit 14 include a thermoelectric conversion material in which a metal having a large Peltier effect or a thermoelectric semiconductor is formed into a thin film, and examples thereof include Bi—Te, Pb—Te, and Si—Ge materials. The electrodes 16a and 16b are a positive electrode and a negative electrode formed of metal.

熱電モジュール50の熱電変換部14がP型の半導体材料であるとする。この場合、矢印方向に電流Iが流れれば、電極16aと熱電変換部14の接合部で吸熱され、電極16bと熱電変換部14の接合部で発熱される。冷却をおこないたい箇所に電極16aを直接的または間接的に接触させることによって、接触された箇所が冷却される。このような熱電モジュール50は、電子機器の局所冷却に使用したりすることができる。なお、熱電変換部14がN型の半導体材料であれば、発熱と吸熱が逆になる。   It is assumed that the thermoelectric conversion part 14 of the thermoelectric module 50 is a P-type semiconductor material. In this case, if the current I flows in the direction of the arrow, heat is absorbed at the junction between the electrode 16a and the thermoelectric conversion unit 14, and heat is generated at the junction between the electrode 16b and the thermoelectric conversion unit 14. By bringing the electrode 16a into direct or indirect contact with the location where cooling is desired, the contacted location is cooled. Such a thermoelectric module 50 can be used for local cooling of electronic equipment. If the thermoelectric converter 14 is an N-type semiconductor material, heat generation and heat absorption are reversed.

しかし、電極16aと電極16bの間の距離が短い場合、熱電変換部14及び基板12の熱伝導によって電極16bから電極16aに熱が移動する。電極16aやその付近が暖められ、局所冷却をおこなうことができない。   However, when the distance between the electrode 16a and the electrode 16b is short, heat is transferred from the electrode 16b to the electrode 16a due to heat conduction of the thermoelectric converter 14 and the substrate 12. The electrode 16a and its vicinity are warmed, and local cooling cannot be performed.

下記の特許文献1には、基板が2箇所に分割された熱電モジュールが開示されている。基板を介して熱の移動が生じない。しかし、基板が分割されたことによって、熱電変換部の中心で亀裂が生じやすい。   The following Patent Document 1 discloses a thermoelectric module in which a substrate is divided into two places. There is no heat transfer through the substrate. However, since the substrate is divided, a crack is likely to occur at the center of the thermoelectric conversion portion.

特開平6−188464号公報JP-A-6-188464

本発明の目的は、基板と熱電変換部間の熱の移動量を小さくし、電極間の温度差を保つことが可能な熱電モジュールを提供することにある。   An object of the present invention is to provide a thermoelectric module capable of reducing the amount of heat transferred between a substrate and a thermoelectric conversion unit and maintaining a temperature difference between electrodes.

熱電モジュールは、絶縁性の基板と、前記基板上に薄膜状態で形成された熱電変換部と、前記熱電変換部上に形成され、熱電変換部の一の方向に並べられた一対の電極とを備える。また、電極間の距離は、熱電変換部における一の方向の長さの1/2以下である。電極間距離を熱電変換部の長さの1/2以下にし、電極間の熱の移動を小さくする。   The thermoelectric module includes an insulating substrate, a thermoelectric conversion portion formed in a thin film state on the substrate, and a pair of electrodes formed on the thermoelectric conversion portion and arranged in one direction of the thermoelectric conversion portion. Prepare. Moreover, the distance between electrodes is 1/2 or less of the length of the one direction in a thermoelectric conversion part. The distance between the electrodes is set to ½ or less of the length of the thermoelectric conversion part to reduce the heat transfer between the electrodes.

熱電変換部の厚みは0.1mm以下である。また、電極間の距離は1mm以下である。さらに、熱電変換部の熱伝導率は1W/mK以下である。上記構成にすることにより、電極間の熱の移動を小さくする。   The thickness of the thermoelectric conversion part is 0.1 mm or less. The distance between the electrodes is 1 mm or less. Furthermore, the thermal conductivity of the thermoelectric converter is 1 W / mK or less. With the above configuration, the movement of heat between the electrodes is reduced.

基板と電極との間に熱電変換部があり、基板を介して熱が移動しにくい。   There is a thermoelectric conversion portion between the substrate and the electrode, and heat hardly moves through the substrate.

本発明によると、上記構成にすることにより、電極と熱電変換材料の接合部、つまり吸熱及び発熱する部位が従来の構成とは異なり、熱の移動が小さくなる。従来の構成では電極間の温度差を大きく保てなかったが、電極間隔などを上記の構成にすることによって、電極間の温度差が大きく保てる。   According to the present invention, by adopting the above-described configuration, the joint between the electrode and the thermoelectric conversion material, that is, the portion that absorbs heat and generates heat, unlike the conventional configuration, the heat transfer becomes small. In the conventional configuration, the temperature difference between the electrodes could not be kept large. However, the temperature difference between the electrodes can be kept large by adopting the above-described configuration of the electrode spacing.

本発明の熱電モジュールの構造を示す図であり、(a)は側面図、(b)は上面図である。It is a figure which shows the structure of the thermoelectric module of this invention, (a) is a side view, (b) is a top view. 本発明の熱電モジュールの他の構造を示す図であり、(a)は側面図、(b)は上面図である。It is a figure which shows the other structure of the thermoelectric module of this invention, (a) is a side view, (b) is a top view. シミュレーション結果1における長さの比と温度の減少率の関係を示すグラフである。It is a graph which shows the relationship between the ratio of length in the simulation result 1, and the decreasing rate of temperature. シミュレーション結果2における熱電変換部の厚みと温度差の減少率の関係を示すグラフである。It is a graph which shows the relationship between the thickness of the thermoelectric conversion part in the simulation result 2, and the decreasing rate of a temperature difference. シミュレーション結果3における電極間隔と温度差の減少率の関係を示すグラフである。It is a graph which shows the relationship between the electrode interval in the simulation result 3, and the decreasing rate of a temperature difference. 従来の熱電モジュールの構造を示す図であり、(a)は側面図、(b)は上面図である。It is a figure which shows the structure of the conventional thermoelectric module, (a) is a side view, (b) is a top view.

本発明の熱電モジュールについて図面を用いて説明する。   The thermoelectric module of the present invention will be described with reference to the drawings.

図1に示す熱電モジュール10は、絶縁性の基板12、基板12の上に熱電変換材料を薄膜状に形成した熱電変換部14、および熱電変換部14の上に形成された一対の電極16a,16bを備える。   A thermoelectric module 10 shown in FIG. 1 includes an insulating substrate 12, a thermoelectric conversion portion 14 in which a thermoelectric conversion material is formed in a thin film on the substrate 12, and a pair of electrodes 16a formed on the thermoelectric conversion portion 14. 16b.

基板12は、ガラス基板、セラミック基板、または樹脂基板が挙げられる。熱電変換部14はペルチェ効果が利用できるものである。具体的には、熱電半導体を薄膜状にしたものであり、Bi−Te系、Pb−Te系、またはSi−Ge系の材料が挙げられる。電極16a,16bは、正極と負極であり、銅や銅合金などの金属で形成される。熱電変換部14の一の方向に電極16a,16bが並べられる。図1であれば、x軸方向に電極16a,16bが並べられているが、y軸方向に並べられても良い。   Examples of the substrate 12 include a glass substrate, a ceramic substrate, and a resin substrate. The thermoelectric conversion part 14 can utilize the Peltier effect. Specifically, a thermoelectric semiconductor is formed into a thin film, and examples include Bi—Te, Pb—Te, or Si—Ge materials. Electrode 16a, 16b is a positive electrode and a negative electrode, and is formed with metals, such as copper and a copper alloy. The electrodes 16 a and 16 b are arranged in one direction of the thermoelectric conversion unit 14. In FIG. 1, the electrodes 16a and 16b are arranged in the x-axis direction, but may be arranged in the y-axis direction.

また、図2のように、電極16a,16bの一部が基板12に接するようにしても良い。それぞれ電極16a,16bの基板に接している部分の距離が十分離れていれば、基板12を介して熱の移動が生じにくくなっている。   Further, as shown in FIG. 2, a part of the electrodes 16 a and 16 b may be in contact with the substrate 12. If the distance between the portions of the electrodes 16 a and 16 b that are in contact with the substrate is sufficiently large, heat transfer is less likely to occur through the substrate 12.

その他、電極間に電流Iが流れるように電源を備え、電源と電極16a,16bとが接続される。吸熱側の電極16a(または16b)は、局所冷却をおこないたい箇所に直接または間接的に接触される。   In addition, a power source is provided so that a current I flows between the electrodes, and the power source and the electrodes 16a and 16b are connected. The electrode 16a (or 16b) on the heat absorption side is directly or indirectly brought into contact with a location where local cooling is desired.

次に本発明の熱電モジュール10の発熱と吸熱について、種々の計算結果を説明する。図2の熱電モジュール10をモデルとして計算に使用した。熱電変換部14の熱伝導率は0.5W/mK、基板12の厚みは0.05mm、基板12の熱伝導率は1.0W/mK、電極16a,16bは銅、電極16a,16bの厚みは0.01mm、熱電モジュール10のx方向は0.5mm、y方向は3mmである。   Next, various calculation results regarding heat generation and heat absorption of the thermoelectric module 10 of the present invention will be described. The thermoelectric module 10 of FIG. 2 was used as a model for the calculation. The thermoelectric converter 14 has a thermal conductivity of 0.5 W / mK, the thickness of the substrate 12 is 0.05 mm, the thermal conductivity of the substrate 12 is 1.0 W / mK, the electrodes 16a and 16b are copper, and the thickness of the electrodes 16a and 16b. Is 0.01 mm, the x direction of the thermoelectric module 10 is 0.5 mm, and the y direction is 3 mm.

シミュレーション結果1
熱電変換材料14の長さをwt、電極間隔の長さをwg、長さの比をwt/wgとし、長さの比を変化させた場合のシミュレーション結果を表1に示す。最高温度は発熱している電極16a(または16b)の最高温度、最低温度は吸熱している電極16b(または16a)の最低温度である。減少率は、長さの比が5の場合を基準とした温度差の変化を示すものである。長さの比と温度の減少率をグラフにすると図3のようになる。電極間隔と熱電変換部14の長さが同一の場合は、従来の熱電モジュール50と同じ構成である。
Simulation result 1
Table 1 shows the simulation results when the length ratio of the thermoelectric conversion material 14 is wt, the length of the electrode interval is wg, the length ratio is wt / wg, and the length ratio is changed. The maximum temperature is the maximum temperature of the electrode 16a (or 16b) that generates heat, and the minimum temperature is the minimum temperature of the electrode 16b (or 16a) that absorbs heat. The decrease rate indicates a change in temperature difference based on the case where the length ratio is 5. FIG. 3 is a graph showing the ratio of length and the rate of temperature decrease. When the electrode interval and the length of the thermoelectric converter 14 are the same, the configuration is the same as that of the conventional thermoelectric module 50.

Figure 2011091137
Figure 2011091137

表1より、長さの比が2より小さくなると急激に温度差の減少率(長さの比が5の場合の温度差との比較)が大きくなる。発熱の電極16a(16b)と吸熱の電極16b(16a)とで温度差が小さくなっていることより、両電極間で熱の移動が生じていることが分かる。電極16a,16bが基板12に接することによって、基板12を介して熱の移動が生じている。反対に長さの比が2より大きくなると温度の減少率が小さくなる。両電極間で熱の移動が小さいことが分かる。したがって、熱電変換部14の上に電極16a,16bを形成することが好ましく、特に電極間の距離が、熱電変換部14のx軸方向の長さの1/2以下、特に1/5〜1/2が好ましいことが分かる。   From Table 1, when the length ratio is smaller than 2, the temperature difference reduction rate (comparison with the temperature difference when the length ratio is 5) increases rapidly. Since the temperature difference between the exothermic electrode 16a (16b) and the endothermic electrode 16b (16a) is small, it can be seen that heat transfer occurs between the two electrodes. When the electrodes 16 a and 16 b are in contact with the substrate 12, heat is transferred through the substrate 12. On the other hand, when the length ratio is greater than 2, the temperature decrease rate decreases. It can be seen that the heat transfer between the electrodes is small. Therefore, it is preferable to form the electrodes 16a and 16b on the thermoelectric conversion portion 14, and the distance between the electrodes is particularly ½ or less of the length of the thermoelectric conversion portion 14 in the x-axis direction, particularly 1/5 to 1. It can be seen that / 2 is preferred.

シミュレーション結果2
2種の長さの比(wt/wg)が1及び3において、熱電変換部14の厚みを変化させた場合のシミュレーション結果を表2に示す。長さの比が1の場合、従来の熱電モジュール50であり、長さの比が3の場合、本願の熱電モジュール10である。また、減少率は、熱電変換部14の同じ厚みにおける、長さの比1及び3の温度差の変化である。熱電変換部14の厚みと温度差の減少率の関係をグラフにすると図4のようになる。
Simulation result 2
Table 2 shows the simulation results when the thickness of the thermoelectric converter 14 is changed when the ratio of the two lengths (wt / wg) is 1 and 3. When the length ratio is 1, it is the conventional thermoelectric module 50, and when the length ratio is 3, it is the thermoelectric module 10 of the present application. Further, the reduction rate is a change in temperature difference between length ratios 1 and 3 in the same thickness of the thermoelectric conversion unit 14. FIG. 4 is a graph showing the relationship between the thickness of the thermoelectric converter 14 and the rate of decrease in temperature difference.

Figure 2011091137
Figure 2011091137

表2より、熱電変換部14の厚みが厚くなると熱電変換部14によって電極16a,16bから基板12に熱が伝わりにくく、本願と従来とで温度差の変化(減少率)が小さくなる。すなわち、本願と従来との差が無くなる。本発明の構成であれば、熱電変換部14の厚みが0.1mm以下、特に0.01〜0.1mmにすることによって、従来の構成よりも温度差が大きくなり、本発明の構成の効果が発揮される。   From Table 2, when the thickness of the thermoelectric conversion part 14 is increased, heat is not easily transmitted from the electrodes 16a and 16b to the substrate 12 by the thermoelectric conversion part 14, and the change (decrease rate) in temperature difference between the present application and the conventional one is reduced. That is, there is no difference between the present application and the conventional one. If the thickness of the thermoelectric conversion part 14 is 0.1 mm or less, especially 0.01-0.1 mm if it is the structure of this invention, a temperature difference will become larger than the conventional structure, and the effect of the structure of this invention Is demonstrated.

シミュレーション結果3
2種の長さの比(wt/wg)が1及び3において、電極間隔を変化させた場合のシミュレーション結果を表3に示す。長さの比が1の場合、従来の熱電モジュール50であり、長さの比が3の場合、本願の熱電モジュール10である。また、減少率は、同じ電極間隔における、長さの比1及び3温度差の変化である。電極間隔と温度差の減少率の関係をグラフにすると図5のようになる。
Simulation result 3
Table 3 shows the simulation results when the electrode spacing is changed when the ratio of the two lengths (wt / wg) is 1 and 3. When the length ratio is 1, it is the conventional thermoelectric module 50, and when the length ratio is 3, it is the thermoelectric module 10 of the present application. Further, the decrease rate is a change in length ratio 1 and 3 temperature difference at the same electrode spacing. FIG. 5 is a graph showing the relationship between the electrode interval and the temperature difference reduction rate.

Figure 2011091137
Figure 2011091137

表3より、電極間隔が長くなれば電極間を熱が移動しにくくなり、本願と従来とで温度差の変化(減少率)が小さくなる。すなわち、図1のように熱電変換部14の上に電極16a,16bを形成する必要が無くなる。したがって、本発明の構成は電極間隔が1mm以下、特に0.1〜1mmとすることよって、熱電変換部14の上に電極16a,16bを形成する効果が生じる。   From Table 3, if the distance between the electrodes becomes longer, it becomes difficult for heat to move between the electrodes, and the change (decrease rate) in the temperature difference between the present application and the conventional one becomes smaller. That is, it is not necessary to form the electrodes 16a and 16b on the thermoelectric converter 14 as shown in FIG. Therefore, the configuration of the present invention has an effect of forming the electrodes 16a and 16b on the thermoelectric conversion portion 14 by setting the electrode interval to 1 mm or less, particularly 0.1 to 1 mm.

さらに、本発明の構成は、基板12の熱伝導率が熱電変換部14の熱伝導率よりも高い場合に効果的であるが、基板12の熱伝導率が熱電変換部14の熱伝導率よりも低い場合であっても、電極16a,16bから基板12までの間に熱電変換部14を介することとなる。したがって、電極間の熱移動を小さくすることができる。   Furthermore, the configuration of the present invention is effective when the thermal conductivity of the substrate 12 is higher than the thermal conductivity of the thermoelectric conversion unit 14, but the thermal conductivity of the substrate 12 is higher than the thermal conductivity of the thermoelectric conversion unit 14. Even if it is low, the thermoelectric conversion unit 14 is interposed between the electrodes 16a and 16b and the substrate 12. Therefore, the heat transfer between the electrodes can be reduced.

その他、本発明は、その主旨を逸脱しない範囲で当業者の知識に基づき種々の改良、修正、変更を加えた態様で実施できるものである。   In addition, the present invention can be carried out in a mode in which various improvements, modifications, and changes are added based on the knowledge of those skilled in the art without departing from the spirit of the present invention.

10:熱電モジュール
12:基板
14:熱電変換部
16a,16b:電極
10: Thermoelectric module 12: Substrate 14: Thermoelectric converter 16a, 16b: Electrode

Claims (5)

絶縁性の基板と、
前記基板上に熱電変換材料を薄膜状態で形成した熱電変換部と、
前記熱電変換部上の一対の電極と、
を備えた熱電モジュールであって、
前記電極間の距離が、熱電変換材料における電極の並べられた方向の長さの1/2以下である熱電モジュール。
An insulating substrate;
A thermoelectric conversion part in which a thermoelectric conversion material is formed in a thin film state on the substrate;
A pair of electrodes on the thermoelectric converter;
A thermoelectric module comprising:
The thermoelectric module in which the distance between the electrodes is ½ or less of the length in the direction in which the electrodes are arranged in the thermoelectric conversion material.
前記熱電変換部の厚みが0.1mm以下である請求項1の熱電モジュール。 The thermoelectric module according to claim 1, wherein the thermoelectric conversion part has a thickness of 0.1 mm or less. 前記電極間の距離が1mm以下である請求項1または2の熱電モジュール。 The thermoelectric module according to claim 1 or 2, wherein a distance between the electrodes is 1 mm or less. 前記熱電変換材料の熱伝導率が1W/mK以下である請求項1から3のいずれかの熱電モジュール。 The thermoelectric module according to any one of claims 1 to 3, wherein the thermoelectric conversion material has a thermal conductivity of 1 W / mK or less. 前記基板の熱伝導率が熱電変換部の熱伝導率よりも高い請求項1から4のいずれかの熱電モジュール。 The thermoelectric module according to any one of claims 1 to 4, wherein the thermal conductivity of the substrate is higher than the thermal conductivity of the thermoelectric converter.
JP2009242128A 2009-10-21 2009-10-21 Thermoelectric module Withdrawn JP2011091137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009242128A JP2011091137A (en) 2009-10-21 2009-10-21 Thermoelectric module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009242128A JP2011091137A (en) 2009-10-21 2009-10-21 Thermoelectric module

Publications (1)

Publication Number Publication Date
JP2011091137A true JP2011091137A (en) 2011-05-06

Family

ID=44109145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009242128A Withdrawn JP2011091137A (en) 2009-10-21 2009-10-21 Thermoelectric module

Country Status (1)

Country Link
JP (1) JP2011091137A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016219609A (en) * 2015-05-21 2016-12-22 秋田県 Thermoelectric transducer and power generation device
KR20210082947A (en) * 2019-12-26 2021-07-06 포항공과대학교 산학협력단 A electrochemical peltier cell and method for fabricating the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016219609A (en) * 2015-05-21 2016-12-22 秋田県 Thermoelectric transducer and power generation device
KR20210082947A (en) * 2019-12-26 2021-07-06 포항공과대학교 산학협력단 A electrochemical peltier cell and method for fabricating the same
KR102311546B1 (en) * 2019-12-26 2021-10-08 포항공과대학교 산학협력단 A electrochemical peltier cell and method for fabricating the same

Similar Documents

Publication Publication Date Title
TWI443883B (en) Thermoelectric generator apparatus with high thermoelectric conversion efficiency
US8997502B2 (en) Thermoelectric assembly for improved airflow
WO2005124882A1 (en) Thermoelectric conversion module
WO2004061982A1 (en) Cooling device for electronic component using thermo-electric conversion material
JP2015526895A (en) Thermoelectric power generation system using gradient heat exchanger
JP2005317648A (en) Thermoelectric conversion module
JP2004071969A (en) Thermoelectric cooling apparatus
JP3977378B2 (en) Module for cooling semiconductor elements
JP2006237146A (en) Cascade module for thermoelectric conversion
JP4524382B2 (en) Thermoelectric power generation elements that are subject to temperature differences
JP5444787B2 (en) Thermoelectric generator
TWI620354B (en) Thermoelectric conversion device having insulating diamond-like film, method for making the same and thermoelectric conversion module
JP2011091137A (en) Thermoelectric module
EP2660888A1 (en) Thermoelectric conversion member
JP2015076607A (en) Semiconductor chip structure
US20130160808A1 (en) Thermoelectric generating apparatus and module
JP2010192776A (en) Structure of thick film type thermoelectric power generation module
Bar-Cohen et al. Thermal management of on-chip hot spot
JP2004266145A (en) Cooling device
JP6246998B2 (en) Thermoelectric power generation apparatus and thermoelectric power generation method
JP2013143792A (en) Electric power generation system
JP6450941B2 (en) Power generator
KR20120070904A (en) Thermoelectric module
JP2014110245A (en) Thermoelectric conversion device
JPWO2018158980A1 (en) Thermoelectric converter

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130108