JP2013045658A - Capacity recovery method of lithium secondary battery - Google Patents

Capacity recovery method of lithium secondary battery Download PDF

Info

Publication number
JP2013045658A
JP2013045658A JP2011183163A JP2011183163A JP2013045658A JP 2013045658 A JP2013045658 A JP 2013045658A JP 2011183163 A JP2011183163 A JP 2011183163A JP 2011183163 A JP2011183163 A JP 2011183163A JP 2013045658 A JP2013045658 A JP 2013045658A
Authority
JP
Japan
Prior art keywords
capacity
potential
positive electrode
lithium secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011183163A
Other languages
Japanese (ja)
Other versions
JP5741942B2 (en
Inventor
Ippei Toyoshima
一平 豊島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011183163A priority Critical patent/JP5741942B2/en
Publication of JP2013045658A publication Critical patent/JP2013045658A/en
Application granted granted Critical
Publication of JP5741942B2 publication Critical patent/JP5741942B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a capacity recovery method of a lithium secondary battery capable of appropriately recovering the chargeable/dischargeable capacity which has reduced due to repetition of charge/discharge or long-term leaving.SOLUTION: In the capacity recovery method of a lithium secondary battery including a positive electrode active material having a potential V2 of plateau region P at a potential higher than the normal use upper limit potential V1 of the positive electrode, the battery is charged up to the potential V2 of plateau region P higher than the normal use upper limit potential V1 of the positive electrode when the chargeable/dischargeable capacity of the lithium secondary battery reduces from the initial capacity. The battery is charged with a quantity of electricity C2, which does not exceed the decrement of capacity ΔC1, in the plateau region P.

Description

本発明は、プラトー領域の電位を有する正極活物質を備えたリチウム二次電池の容量回復方法に関する。   The present invention relates to a capacity recovery method for a lithium secondary battery including a positive electrode active material having a plateau region potential.

近年、リチウム二次電池、ニッケル水素電池その他の二次電池(蓄電池)は、車両搭載用電源、或いはパソコンおよび携帯端末の電源として重要性が高まっている。特に、軽量で高エネルギー密度が得られるリチウム二次電池は、車両搭載用高出力電源として好ましく用いられている。リチウム二次電池では、正負極間をLiイオンが行き来することによって充電および放電が行われる。この種のリチウム二次電池の一つの典型的な構成では、Liイオンを可逆的に吸蔵および放出し得る材料(電極活物質)が導電性部材(電極集電体)に保持された構成の電極を備える。例えば特許文献1には、正極に用いられる電極活物質(正極活物質)として、プラトー電位が4.4V〜4.8Vである固溶体化合物を用いたリチウム二次電池が記載されている。   In recent years, lithium secondary batteries, nickel metal hydride batteries and other secondary batteries (storage batteries) have become increasingly important as power sources for mounting on vehicles or as power sources for personal computers and portable terminals. In particular, a lithium secondary battery that is lightweight and has a high energy density is preferably used as a high-output power source for mounting on a vehicle. In a lithium secondary battery, charging and discharging are performed by Li ions traveling between positive and negative electrodes. In one typical configuration of this type of lithium secondary battery, an electrode having a configuration in which a material (electrode active material) capable of reversibly occluding and releasing Li ions is held in a conductive member (electrode current collector) Is provided. For example, Patent Document 1 describes a lithium secondary battery using a solid solution compound having a plateau potential of 4.4 V to 4.8 V as an electrode active material (positive electrode active material) used for a positive electrode.

特表2009−505367号公報Special table 2009-505367

ところで、この種のリチウム二次電池では、充放電の繰り返しや長期放置により、正負極間で授受されるLiイオンが負極表面で反応し、負極活物質に不可逆的に取り込まれることがある。負極活物質に不可逆的に取り込まれたLiイオンは、それ以降の充放電反応に関与しないため、該不可逆的に取り込まれたLiイオンの容量分だけ電池容量(充放電可能な容量)が低下する事象が生じ得る。本発明はかかる事案に鑑み、充放電の繰り返しや長期放置により低下した充放電可能な容量を適切に回復し得るリチウム二次電池の容量回復方法を提供することを目的とする。   By the way, in this type of lithium secondary battery, Li ions exchanged between the positive and negative electrodes may react on the negative electrode surface and be irreversibly taken into the negative electrode active material due to repeated charge and discharge or prolonged standing. Since the Li ions irreversibly taken into the negative electrode active material do not participate in the subsequent charge / discharge reaction, the battery capacity (capacity that can be charged / discharged) decreases by the capacity of the irreversibly taken Li ions. An event can occur. The present invention has been made in view of such a case, and an object of the present invention is to provide a capacity recovery method for a lithium secondary battery capable of appropriately recovering a chargeable / dischargeable capacity that has decreased due to repeated charge / discharge or prolonged standing.

本発明によって提供される容量回復方法は、正極の通常使用上限電位より高い電位にプラトー領域の電位を有する正極活物質を備えたリチウム二次電池の容量回復方法である。この方法は、上記リチウム二次電池の充放電可能な容量が初期容量よりも低下した場合に、該電池を正極の通常使用上限電位より高いプラトー領域の電位まで充電することを包含する。さらに、上記プラトー領域において上記容量低下分を上回らないレベルの電気量を充電することを包含する。   The capacity recovery method provided by the present invention is a capacity recovery method for a lithium secondary battery including a positive electrode active material having a potential of a plateau region higher than the normal use upper limit potential of the positive electrode. This method includes charging the battery to a potential in a plateau region higher than the normal use upper limit potential of the positive electrode when the chargeable / dischargeable capacity of the lithium secondary battery is lower than the initial capacity. Furthermore, the method includes charging a quantity of electricity that does not exceed the capacity drop in the plateau region.

本明細書において「正極電位」とは、リチウムを基準とした電位(vs Li/Li+)をいい、例えばリチウムを参照極とした模擬電池を用いて測定することができる。また、「正極の通常使用上限電位」とは、電池を通常の使用形態で充電する場合に充電を終止するものとして設定された正極の作動電位範囲における上限の電位をいう。また、「プラトー領域」とは、充電により正極活物質からリチウムを引き抜いても正極の電位が変化しない領域をいい、典型的には該電池を充電したときの充電曲線において正極電位が略一定になる領域をいう。   In this specification, the “positive electrode potential” refers to a potential based on lithium (vs Li / Li +), and can be measured using, for example, a simulated battery using lithium as a reference electrode. In addition, the “normal use upper limit potential of the positive electrode” refers to an upper limit potential in the operating potential range of the positive electrode that is set to terminate the charge when the battery is charged in a normal use form. The “plateau region” refers to a region where the potential of the positive electrode does not change even when lithium is extracted from the positive electrode active material by charging. Typically, the positive electrode potential is substantially constant in the charging curve when the battery is charged. The area which becomes.

本発明の容量回復方法によると、充放電の繰り返しや長期放置によりリチウム二次電池の充放電可能な容量が初期容量よりも低下した場合に、該電池を正極の通常使用上限電位より高いプラトー領域の電位まで充電し、かつ、該プラトー領域において上記容量低下分を上回らないレベルの電気量を充電する。このことによって、電池電圧を過度に上昇させることなく、正極活物質の内部に吸蔵されたままのLiイオンが適切に引き抜かれ、充放電の繰り返しや長期放置により負極活物質に不可逆的に取り込まれたLiイオンの損失分を補填し得る。この結果、電池電圧の急激な上昇による電池劣化を防ぎつつ、不可逆的なLiイオンの取り込みにより低下した電池容量を適切に回復し得、リチウム二次電池の長寿命化を実現することができる。   According to the capacity recovery method of the present invention, when the chargeable / dischargeable capacity of the lithium secondary battery is lower than the initial capacity due to repeated charging / discharging or standing for a long time, the battery has a plateau region higher than the normal use upper limit potential of the positive electrode. And an amount of electricity that does not exceed the capacity drop in the plateau region. As a result, Li ions that are occluded inside the positive electrode active material are appropriately extracted without excessively increasing the battery voltage, and are irreversibly taken into the negative electrode active material by repeated charge and discharge or long-term standing. The loss of Li ions can be compensated. As a result, while preventing battery deterioration due to a rapid rise in battery voltage, the battery capacity reduced by irreversible incorporation of Li ions can be properly recovered, and the life of the lithium secondary battery can be extended.

上記プラトー領域において充電される電気量は、上記容量低下分(すなわち初期容量−劣化後容量)を上回らない電気量であればよい。通常は容量低下分の1/2(半分)以上の電気量が適当であり、好ましくは容量低下分の2/3以上の電気量であり、特に好ましくは容量低下分と等量の電気量である。プラトー領域で充電される電気量が少なすぎると、上述した容量回復効果が十分に得られない場合がある。その一方、容量低下分を上回る電気量を充電すると、負極活物質のLi許容吸蔵量を超えてしまい、負極表面でリチウムが析出する場合がある。   The amount of electricity charged in the plateau region may be an amount of electricity that does not exceed the amount of capacity reduction (that is, initial capacity−capacitance after deterioration). Usually, an amount of electricity of 1/2 (half) or more of the capacity reduction is appropriate, preferably 2/3 or more of the capacity reduction, particularly preferably an amount of electricity equal to the capacity reduction. is there. If the amount of electricity charged in the plateau region is too small, the above-described capacity recovery effect may not be sufficiently obtained. On the other hand, when the amount of electricity exceeding the capacity drop is charged, the Li storage capacity of the negative electrode active material is exceeded, and lithium may be deposited on the negative electrode surface.

ここに開示される容量回復方法の好ましい一態様では、上記プラトー領域の電位は、リチウム基準で4.4V(vs Li/Li+)以上である。プラトー領域の電位が低すぎると、上述した容量回復効果が十分に得られないことがある一方で、プラトー領域の電位が高すぎると、該プラトー領域の電位まで正極電位を上昇させたときに電解液が分解し電池の耐久性が低下する虞があるため好ましくない。電池の耐久性の観点からは、4.8V(vs Li/Li+)以下であることが好ましい。   In a preferred aspect of the capacity recovery method disclosed herein, the potential of the plateau region is 4.4 V (vs Li / Li +) or more based on lithium. If the potential of the plateau region is too low, the above-described capacity recovery effect may not be sufficiently obtained. On the other hand, if the potential of the plateau region is too high, electrolysis will occur when the positive electrode potential is increased to the potential of the plateau region. This is not preferable because the liquid may decompose and the durability of the battery may decrease. From the viewpoint of battery durability, it is preferably 4.8 V (vs Li / Li +) or less.

ここに開示される容量回復方法の好ましい一態様では、上記プラトー領域の電位は、上記正極の通常使用上限電位より0.2V以上高い電位である。正極の通常使用上限電位より0.2V以上高いプラトー領域の電位で充電することにより、正極活物質の内部に吸蔵されたままのLiイオンが効果的に引き抜かれ、上記低下した電池容量を回復し得る効果が高まる。また、ここに開示される容量回復方法の好ましい一態様では、上記正極の通常使用上限電位は、リチウム基準で3.8V〜4.2Vである。   In a preferred aspect of the capacity recovery method disclosed herein, the potential of the plateau region is a potential that is 0.2 V or more higher than the normal use upper limit potential of the positive electrode. By charging at a potential in a plateau region that is 0.2 V or more higher than the normal use upper limit potential of the positive electrode, Li ions that are occluded inside the positive electrode active material are effectively extracted, and the reduced battery capacity is recovered. The effect to obtain increases. In a preferred embodiment of the capacity recovery method disclosed herein, the normal use upper limit potential of the positive electrode is 3.8 V to 4.2 V based on lithium.

ここに開示される容量回復方法の好ましい一態様では、上記プラトー領域での充電時における電流レートが、0.002C〜0.1Cである。かかる充電処理を0.1C以下の低速で行うことによって、低下した電池容量を安定して回復させることができる。上記充電処理における電流値の下限値は特に限定されないが、概ね0.002C程度である。0.002Cよりも低すぎると、充電に多大な時間がかかるため、容量回復処理を迅速に行うことができない場合がある。   In a preferred aspect of the capacity recovery method disclosed herein, the current rate during charging in the plateau region is 0.002C to 0.1C. By performing such a charging process at a low speed of 0.1 C or less, the reduced battery capacity can be stably recovered. The lower limit value of the current value in the charging process is not particularly limited, but is approximately about 0.002C. If it is lower than 0.002C, it takes a lot of time to charge, so the capacity recovery process may not be performed quickly.

好ましくは、上記正極活物質は、以下の一般式:
xLiM1O+(1−x)LiM2O
で示される固溶体化合物である。
ここで上記式中のM1は、平均酸化状態が4+である少なくとも一種の金属元素であり、例えば、Mn,Zr,TiおよびSnのうちの一種または二種以上の金属元素である。また、M2は、平均酸化状態が3+である少なくとも一種の遷移金属元素が好ましく採用され得る。例えば、Mn,Co,NiおよびFeのうちの一種または二種以上の遷移金属元素である。上記式中のxの値は、0<x<1である。特にxが0.3≦x≦0.7を満足する実数であることが好ましい。かかる固溶体化合物は、プラトー領域の電位が4.4V〜4.8Vと比較的高いことから、本発明の目的に適した正極活物質として好ましく採用し得る。
Preferably, the positive electrode active material has the following general formula:
xLi 2 M1O 3 + (1- x) LiM2O 2
It is a solid solution compound shown by these.
Here, M1 in the above formula is at least one metal element having an average oxidation state of 4+, for example, one or more metal elements of Mn, Zr, Ti and Sn. In addition, as M2, at least one transition metal element having an average oxidation state of 3+ can be preferably used. For example, one or more transition metal elements of Mn, Co, Ni and Fe. The value of x in the above formula is 0 <x <1. In particular, x is preferably a real number satisfying 0.3 ≦ x ≦ 0.7. Such a solid solution compound can be preferably employed as a positive electrode active material suitable for the purpose of the present invention because the potential of the plateau region is relatively high, 4.4 V to 4.8 V.

本発明の一実施形態に用いられるリチウム二次電池を模式的に示す図である。It is a figure which shows typically the lithium secondary battery used for one Embodiment of this invention. 本発明の一実施形態に用いられる捲回電極体を模式的に示す図である。It is a figure which shows typically the wound electrode body used for one Embodiment of this invention. 充電容量と正極電位及び負極電位との関係を示すグラフである。It is a graph which shows the relationship between charge capacity, a positive electrode potential, and a negative electrode potential. リチウム二次電池を搭載した車両を示す側面図である。It is a side view which shows the vehicle carrying a lithium secondary battery.

以下、図面を参照しながら、本発明による実施の形態を説明する。以下の図面においては、同じ作用を奏する部材・部位には同じ符号を付して説明している。なお、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。また、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、正極及び負極を備えた電極体の構成及び製法、セパレータや電解質の構成及び製法、リチウム二次電池その他の電池の構築に係る一般的技術等)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。   Embodiments according to the present invention will be described below with reference to the drawings. In the following drawings, members / parts having the same action are described with the same reference numerals. Note that the dimensional relationship (length, width, thickness, etc.) in each drawing does not reflect the actual dimensional relationship. Further, matters other than the matters specifically mentioned in the present specification and matters necessary for the implementation of the present invention (for example, the configuration and manufacturing method of an electrode body including a positive electrode and a negative electrode, the configuration and manufacturing method of a separator and an electrolyte, General techniques relating to the construction of lithium secondary batteries and other batteries, etc.) can be understood as design matters for those skilled in the art based on the prior art in this field.

以下、本発明の一実施形態に係るリチウム二次電池の容量回復方法について、対象となるリチウム二次電池の構成、容量回復方法の順に説明する。   Hereinafter, a capacity recovery method for a lithium secondary battery according to an embodiment of the present invention will be described in the order of the configuration of the target lithium secondary battery and the capacity recovery method.

<リチウム二次電池>
本実施形態の容量回復方法が対象とするリチウム二次電池100(以下、適宜「電池」という。)は、例えば、図1に示すように、長尺状の正極シート10と長尺状の負極シート20が長尺状のセパレータ40を介して扁平に捲回された形態の電極体(捲回電極体)80が、図示しない非水電解液とともに、該捲回電極体80を収容し得る形状(扁平な箱型)のケース50に収容された構成を有する。
<Lithium secondary battery>
A lithium secondary battery 100 (hereinafter referred to as “battery” as appropriate) targeted by the capacity recovery method of the present embodiment includes, for example, a long positive electrode sheet 10 and a long negative electrode as shown in FIG. A shape in which an electrode body (winding electrode body) 80 in a form in which the sheet 20 is wound flatly through a long separator 40 can accommodate the winding electrode body 80 together with a non-aqueous electrolyte (not shown). It has a configuration accommodated in a (flat box type) case 50.

ケース50は、上端が開放された扁平な直方体状のケース本体52と、その開口部を塞ぐ蓋体54とを備える。ケース50を構成する材質としては、アルミニウム、スチール等の金属材料が好ましく用いられる(本実施形態ではアルミニウム)。あるいは、ポリフェニレンサルファイド(PPS)、ポリイミド樹脂等の樹脂材料を成形してなるケース50であってもよい。ケース50の上面(すなわち蓋体54)には、捲回電極体80の正極と電気的に接続する正極端子70及び該電極体80の負極20と電気的に接続する負極端子72が設けられている。ケース50の内部には、扁平形状の捲回電極体80が図示しない非水電解液とともに収容される。   The case 50 includes a flat rectangular parallelepiped case main body 52 having an open upper end, and a lid 54 that closes the opening. As a material constituting the case 50, a metal material such as aluminum or steel is preferably used (in this embodiment, aluminum). Or the case 50 formed by shape | molding resin materials, such as a polyphenylene sulfide (PPS) and a polyimide resin, may be sufficient. On the upper surface of the case 50 (that is, the lid body 54), a positive electrode terminal 70 that is electrically connected to the positive electrode of the wound electrode body 80 and a negative electrode terminal 72 that is electrically connected to the negative electrode 20 of the electrode body 80 are provided. Yes. In the case 50, a flat wound electrode body 80 is accommodated together with a non-aqueous electrolyte (not shown).

本実施形態に係る捲回電極体80は、通常のリチウム二次電池の捲回電極体と同様であり、図2に示すように、捲回電極体80を組み立てる前段階において長尺状(帯状)のシート構造を有している。   The wound electrode body 80 according to the present embodiment is the same as the wound electrode body of a normal lithium secondary battery, and as shown in FIG. ) Sheet structure.

<正極シート>
正極シート10は、正長尺シート状の箔状の正極集電体12の両面に正極活物質を含む正極活物質層14が保持された構造を有している。ただし、正極活物質層14は正極シート10の幅方向の端辺に沿う一方の側縁(図では左側の側縁部分)には付着されず、正極集電体12を一定の幅にて露出させた正極活物質層非形成部16が形成されている。正極集電体12にはアルミニウム箔その他の正極に適する金属箔が好適に使用される。
<Positive electrode sheet>
The positive electrode sheet 10 has a structure in which a positive electrode active material layer 14 containing a positive electrode active material is held on both surfaces of a foil-like positive electrode current collector 12 in the form of a long sheet. However, the positive electrode active material layer 14 is not attached to one side edge (the left side edge portion in the drawing) along the widthwise end of the positive electrode sheet 10, and the positive electrode current collector 12 is exposed with a certain width. The positive electrode active material layer non-formed part 16 is formed. For the positive electrode current collector 12, an aluminum foil or other metal foil suitable for the positive electrode is preferably used.

本実施形態で用いられる正極活物質は、リチウム二次電池の正極活物質として用いることができる物質の一種または二種以上であって、かつ充電によりリチウムを放出しても電位が変化しないプラトー領域を有する物質を使用することができる。例えば、リチウムと遷移金属元素とを構成金属元素として含む酸化物(リチウム遷移金属酸化物)が挙げられる。該酸化物は、層状岩塩型構造、スピネル構造、およびオリビン構造の何れであってもよい。ここで開示される技術の好ましい適用対象として、下記式(I):
xLiM1O+(1−x)LiM2O (I);
で示される固溶体化合物が挙げられる。
上記式(I)中のLiM1OのM1は、平均酸化状態が4+である少なくとも一種の金属元素であり、例えば、Mn,Zr,TiおよびSnのうちの一種または二種以上の金属元素である。このうち、MnあるいはMnとNiとの2種の組み合わせが好ましく、かかる元素の含有率の高い組成のものが好適である。特に、M1がMnであるか、あるいはMnの含有率が高いこと(例えば、M1中においてMnが75モル%以上含まれていること)が好適である。また、上記式(I)中のLiM2OのM2としては、平均酸化状態が3+である少なくとも一種の遷移金属元素が好ましく採用され得る。例えば、Mn,Co,NiおよびFeのうちの一種または二種以上の遷移金属元素である。このうち、Ni,MnおよびCoの組み合わせが好ましく、特にM2がNi1/3Mn1/3Co1/3であることが好適である。また、上記式中のxの取り得る範囲は、固溶体化合物の構造を崩すことなく該構造を維持し得る限りにおいて0<x<1の範囲内であればいずれの実数をとってもよい。好ましくは0.3≦x≦0.7であり、特に好ましくは0.4≦x≦0.6である。かかる固溶体化合物の具体例としては、0.5LiMnO+0.5LiNi1/3Mn1/3Co1/3等が挙げられる。
The positive electrode active material used in the present embodiment is one or more of materials that can be used as the positive electrode active material of a lithium secondary battery, and the plateau region in which the potential does not change even when lithium is released by charging. A substance having can be used. For example, an oxide containing lithium and a transition metal element as a constituent metal element (lithium transition metal oxide) can be given. The oxide may have a layered rock salt structure, a spinel structure, or an olivine structure. As a preferred application target of the technology disclosed herein, the following formula (I):
xLi 2 M1O 3 + (1- x) LiM2O 2 (I);
The solid solution compound shown by these is mentioned.
M1 of Li 2 M1O 3 in the above formula (I) is at least one metal element having an average oxidation state of 4+, for example, one or more metal elements of Mn, Zr, Ti and Sn It is. Among these, two types of combinations of Mn or Mn and Ni are preferable, and compositions having a high content of such elements are preferable. In particular, it is preferable that M1 is Mn or that the content of Mn is high (for example, M1 contains 75 mol% or more in M1). As the M2 of LiM2O 2 in the above formula (I), the transition metal element of at least one average oxidation state is 3+ can be preferably employed. For example, one or more transition metal elements of Mn, Co, Ni and Fe. Among these, a combination of Ni, Mn and Co is preferable, and it is particularly preferable that M2 is Ni 1/3 Mn 1/3 Co 1/3 . The range of x in the above formula may take any real number within the range of 0 <x <1, as long as the structure can be maintained without breaking the structure of the solid solution compound. Preferably 0.3 ≦ x ≦ 0.7, and particularly preferably 0.4 ≦ x ≦ 0.6. Specific examples of such a solid solution compound include 0.5Li 2 MnO 3 + 0.5LiNi 1/3 Mn 1/3 Co 1/3 O 2 and the like.

これら固溶体化合物としては、例えば、従来公知の方法で製造または提供されるものを使用することができる。例えば、レーザ回折・散乱法に基づく体積基準の平均粒径(D50)が0.1μm〜100μm程度の粉末状に調製されたものを好ましく使用することができる。   As these solid solution compounds, for example, those produced or provided by a conventionally known method can be used. For example, those prepared in a powder form with a volume-based average particle diameter (D50) based on the laser diffraction / scattering method of about 0.1 μm to 100 μm can be preferably used.

正極活物質層14は、正極活物質のほか、一般的なリチウム二次電池において正極活物質層の構成成分として使用され得る一種または二種以上の材料を必要に応じて含有することができる。そのような材料の例として、導電材が挙げられる。該導電材としては、カーボン粉末(例えば、アセチレンブラック(AB))やカーボンファイバー等のカーボン材料が好ましく用いられる。あるいは、ニッケル粉末等の導電性金属粉末等を用いてもよい。その他、正極活物質層の成分として使用され得る材料としては、正極活物質の結着材(バインダ)として機能し得る各種のポリマー材料(例えば、ポリフッ化ビニリデン(PVDF))が挙げられる。   In addition to the positive electrode active material, the positive electrode active material layer 14 can contain one or two or more materials that can be used as a constituent component of the positive electrode active material layer in a general lithium secondary battery, if necessary. An example of such a material is a conductive material. As the conductive material, carbon materials such as carbon powder (for example, acetylene black (AB)) and carbon fiber are preferably used. Alternatively, conductive metal powder such as nickel powder may be used. In addition, examples of a material that can be used as a component of the positive electrode active material layer include various polymer materials (for example, polyvinylidene fluoride (PVDF)) that can function as a binder of the positive electrode active material.

<負極シート>
負極シート20も正極シート10と同様に、長尺シート状の箔状の負極集電体22の両面に負極活物質を含む負極活物質層24が保持された構造を有している。ただし、負極活物質層24は負極シート20の幅方向の端辺に沿う一方の側縁(図では右側の側縁部分)には付着されず、負極集電体22を一定の幅にて露出させた負極活物質層非形成部26が形成されている。負極集電体22には銅箔その他の負極に適する金属箔が好適に使用される。負極活物質は従来からリチウム二次電池に用いられる物質の一種または二種以上を特に限定することなく使用することができる。好適例として、グラファイトカーボン、アモルファスカーボン等の炭素系材料が例示される。
<Negative electrode sheet>
Similarly to the positive electrode sheet 10, the negative electrode sheet 20 has a structure in which a negative electrode active material layer 24 containing a negative electrode active material is held on both surfaces of a long sheet-like foil-shaped negative electrode current collector 22. However, the negative electrode active material layer 24 is not attached to one side edge (the right side edge portion in the drawing) along the widthwise edge of the negative electrode sheet 20, and the negative electrode current collector 22 is exposed with a certain width. The negative electrode active material layer non-forming part 26 is formed. For the negative electrode current collector 22, a copper foil or other metal foil suitable for the negative electrode is preferably used. As the negative electrode active material, one or more of materials conventionally used in lithium secondary batteries can be used without any particular limitation. Preferable examples include carbon materials such as graphite carbon and amorphous carbon.

負極活物質層24は、負極活物質のほか、一般的なリチウム二次電池において負極活物質層の構成成分として使用され得る一種または二種以上の材料を必要に応じて含有することができる。そのような材料の例として、負極活物質の結着材(バインダ)として機能し得るポリマー材料(例えばPVDF、スチレンブタジエンゴム(SBR))、負極活物質層形成用ペーストの増粘剤として機能し得るポリマー材料(例えばカルボキシメチルセルロース(CMC))等が挙げられる。   In addition to the negative electrode active material, the negative electrode active material layer 24 can contain one or two or more materials that can be used as a constituent component of the negative electrode active material layer in a general lithium secondary battery, if necessary. Examples of such materials are polymer materials (eg, PVDF, styrene butadiene rubber (SBR)) that can function as a binder for the negative electrode active material, and function as a thickener for the paste for forming the negative electrode active material layer. Examples thereof include a polymer material to be obtained (for example, carboxymethyl cellulose (CMC)).

<セパレータ>
正負極シート10、20間に配置されるセパレータ40としては、捲回電極体を備える一般的なリチウム二次電池のセパレータと同様の各種多孔質シートを用いることができる。好適例として、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン系樹脂から成る多孔質樹脂シート(フィルム、不織布等)が挙げられる。かかる多孔質樹脂シートは、単層構造であってもよく、二層以上の複数構造(例えば、PP層の両面にPE層が積層された三層構造)であってもよい。
<Separator>
As the separator 40 disposed between the positive and negative electrode sheets 10 and 20, various porous sheets similar to those of a general lithium secondary battery provided with a wound electrode body can be used. Preferable examples include porous resin sheets (films, nonwoven fabrics, etc.) made of polyolefin resins such as polyethylene (PE) and polypropylene (PP). Such a porous resin sheet may have a single layer structure, or may have a two or more layers structure (for example, a three-layer structure in which PE layers are laminated on both sides of a PP layer).

<捲回電極体>
捲回電極体80を作製するに際しては、正極シート10と負極シート20とがセパレータ40を介して積層される。このとき、正極シート10の正極活物質層非形成部分と負極シート20の負極活物質層非形成部分とがセパレータ40の幅方向の両側からそれぞれはみ出すように、正極シート10と負極シート20とを幅方向にややずらして重ね合わせる。このように重ね合わせた積層体を捲回し、次いで得られた捲回体を側面方向から押しつぶして拉げさせることによって扁平状の捲回電極体80が作製され得る。
<Winded electrode body>
In producing the wound electrode body 80, the positive electrode sheet 10 and the negative electrode sheet 20 are laminated via the separator 40. At this time, the positive electrode sheet 10 and the negative electrode sheet 20 are placed so that the positive electrode active material layer non-formation part of the positive electrode sheet 10 and the negative electrode active material layer non-formation part of the negative electrode sheet 20 protrude from both sides of the separator 40 in the width direction. Laminate slightly shifted in the width direction. The laminated body thus stacked is wound, and then the obtained wound body is crushed from the side surface direction and ablated, whereby a flat wound electrode body 80 can be produced.

捲回電極体80の捲回軸方向における中央部分には、捲回コア部分82(即ち正極シート10の正極活物質層14と負極シート20の負極活物質層24とセパレータ40とが密に積層された部分)が形成される。また、捲回電極体80の捲回軸方向の両端部には、正極シート10及び負極シート20の電極活物質層非形成部分16,26がそれぞれ捲回コア部分82から外方にはみ出ている。かかる正極側はみ出し部分(すなわち正極活物質層14の非形成部分)16及び負極側はみ出し部分(すなわち負極活物質層24の非形成部分)26には、正極リード端子74及び負極リード端子76がそれぞれ付設されており、上述の正極端子70及び負極端子72とそれぞれ電気的に接続される。   A wound core portion 82 (that is, the positive electrode active material layer 14 of the positive electrode sheet 10, the negative electrode active material layer 24 of the negative electrode sheet 20, and the separator 40) is densely laminated at the center portion in the winding axis direction of the wound electrode body 80. Part) is formed. Further, the electrode active material layer non-formed portions 16 and 26 of the positive electrode sheet 10 and the negative electrode sheet 20 protrude outward from the wound core portion 82 at both ends of the wound electrode body 80 in the winding axis direction. . A positive electrode lead terminal 74 and a negative electrode lead terminal 76 are provided on the protruding portion 16 (that is, the non-formed portion of the positive electrode active material layer 14) 16 and the protruding portion 26 (that is, the non-formed portion of the negative electrode active material layer 24) 26, respectively. Attached and electrically connected to the positive terminal 70 and the negative terminal 72 described above.

<非水電解質>
そして、ケース本体52の上端開口部から該本体52内に捲回電極体80を収容するとともに、適当な非水電解質90をケース本体52内に配置(注液)する。かる非水電解質は、典型的には、適当な非水溶媒に支持塩を含有させた組成を有する。上記非水溶媒としては、例えば、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)等を用いることができる。また、上記支持塩としては、例えば、LiPF、LiBF、LiAsF、LiCFSO等のリチウム塩を好ましく用いることができる。
<Nonaqueous electrolyte>
Then, the wound electrode body 80 is accommodated in the main body 52 from the upper end opening of the case main body 52, and an appropriate nonaqueous electrolyte 90 is disposed (injected) in the case main body 52. Such a non-aqueous electrolyte typically has a composition in which a supporting salt is contained in a suitable non-aqueous solvent. As said non-aqueous solvent, ethylene carbonate (EC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), diethyl carbonate (DEC), propylene carbonate (PC) etc. can be used, for example. Further, as the supporting salt, for example, LiPF 6, LiBF 4, LiAsF 6, LiCF 3 can be preferably used a lithium salt of SO 3 and the like.

その後、上記開口部を蓋体54との溶接等により封止し、本実施形態に係るリチウム二次電池100の組み立てが完成する。ケース50の封止プロセスや電解質の配置(注液)プロセスは、従来のリチウム二次電池の製造で行われている手法と同様でよく、本発明を特徴付けるものではない。このようにして本実施形態に係るリチウム二次電池100の構築が完成する。該リチウム二次電池100のように、負極活物質に炭素系材料を用いたリチウム二次電池では、充放電の繰り返しや長期放置により、正負極間で授受されるLiイオンが負極活物質に不可逆的に取り込まれ、電池容量(充放電可能な容量)が低下する可能性がある。したがって、該低下した電池容量を回復できる本発明に係る容量回復方法は、上記のような構成のリチウム二次電池に対して、特に好適に適用され得る。   Thereafter, the opening is sealed by welding or the like with the lid 54, and the assembly of the lithium secondary battery 100 according to the present embodiment is completed. The sealing process of the case 50 and the process of placing (injecting) the electrolyte may be the same as those used in the production of a conventional lithium secondary battery, and do not characterize the present invention. In this way, the construction of the lithium secondary battery 100 according to this embodiment is completed. As in the lithium secondary battery 100, in a lithium secondary battery using a carbon-based material as the negative electrode active material, Li ions transferred between the positive and negative electrodes are irreversibly transferred to the negative electrode active material due to repeated charge and discharge or prolonged standing. Battery capacity (capacity that can be charged and discharged) may be reduced. Therefore, the capacity recovery method according to the present invention capable of recovering the reduced battery capacity can be particularly suitably applied to the lithium secondary battery having the above configuration.

<容量回復方法>
ここで開示されるリチウム二次電池の容量回復方法は、正極の通常使用上限電位より高い電位にプラトー領域の電位を有する正極活物質を備えたリチウム二次電池の容量回復方法である。この容量回復方法は、リチウム二次電池の充放電可能な容量が初期容量よりも低下した場合に、該電池を正極の通常使用上限電位より高いプラトー領域の電位まで充電することを包含する。また、そのプラトー領域において上記容量低下分(すなわち初期容量−劣化後容量)を上回らないレベルの電気量を充電することを包含する。以下、本実施形態の容量回復方法における上記充電処理を容量回復充電処理という。
<Capacity recovery method>
The capacity recovery method of a lithium secondary battery disclosed here is a capacity recovery method of a lithium secondary battery including a positive electrode active material having a potential of a plateau region higher than the normal use upper limit potential of the positive electrode. This capacity recovery method includes charging the battery to a potential in a plateau region higher than the normal use upper limit potential of the positive electrode when the chargeable / dischargeable capacity of the lithium secondary battery is lower than the initial capacity. Further, it includes charging an amount of electricity that does not exceed the capacity drop (that is, the initial capacity minus the capacity after deterioration) in the plateau region. Hereinafter, the charging process in the capacity recovery method of the present embodiment is referred to as a capacity recovery charging process.

上記容量回復充電処理は、充放電の繰り返しや長期放置によりリチウム二次電池の充放電可能な容量が初期容量(すなわち未使用新品状態の電池の充放電可能容量)よりも低下した場合に行われる。好ましくは、リチウム二次電池の充放電可能な容量が初期容量の3/4以下(好ましくは2/3以下、特に好ましくは1/2以下)になった時点で上記容量回復充電処理を行うとよい。   The capacity recovery charging process is performed when the chargeable / dischargeable capacity of the lithium secondary battery is lower than the initial capacity (that is, the chargeable / dischargeable capacity of the battery in an unused new state) due to repeated charge / discharge or prolonged standing. . Preferably, when the capacity recovery charging process is performed when the chargeable / dischargeable capacity of the lithium secondary battery becomes 3/4 or less (preferably 2/3 or less, particularly preferably 1/2 or less) of the initial capacity. Good.

プラトー領域は、上述したように、充電により正極活物質からリチウムを引き抜いても電位が変化しない領域であり、典型的には電池を充電させたときの充電曲線(容量の変化に対する電位の推移を示すグラフ)において正極電位が略一定になる領域である。かかるプラトー領域の電位は、正極活物質の種類によって異なり得る。例えば、正極活物質として上述した固溶体化合物を使用した場合、プラトー領域の電位は概ね4.4V〜4.8V(vs Li/Li+)程度となる。図3には、正極活物質として0.5LiMnO+0.5LiNi1/3Mn1/3Co1/3固溶体化合物を使用し、負極活物質としてグラファイトを使用したリチウム二次電池の充電時における正極電位(ラインL1)及び負極電位(ラインL2)の推移を示してある。図3のL1に示すように、上記リチウム二次電池における充電時の正極電位は、充電処理の進行に伴って次第に増大していく。そして、正極電位が4.4Vで略一定となり、プラトー領域Pに達する。 As described above, the plateau region is a region in which the potential does not change even when lithium is extracted from the positive electrode active material by charging. Typically, the charging curve when the battery is charged (the transition of the potential with respect to the change in capacity is shown). In this graph, the positive electrode potential is substantially constant. The potential of the plateau region may vary depending on the type of positive electrode active material. For example, when the above-described solid solution compound is used as the positive electrode active material, the potential of the plateau region is approximately 4.4 V to 4.8 V (vs Li / Li +). FIG. 3 shows a lithium secondary battery using a 0.5Li 2 MnO 3 + 0.5LiNi 1/3 Mn 1/3 Co 1/3 O 2 solid solution compound as a positive electrode active material and graphite as a negative electrode active material. The transition of the positive electrode potential (line L1) and the negative electrode potential (line L2) during charging is shown. As indicated by L1 in FIG. 3, the positive electrode potential during charging in the lithium secondary battery gradually increases as the charging process proceeds. Then, the positive electrode potential becomes substantially constant at 4.4 V and reaches the plateau region P.

正極の通常使用上限電位は、上述したように、電池を通常の使用形態で充電する場合に充電を終止するものとして設定された正極の作動電位範囲における上限の電位であり、例えば、電池特性を大きく損なわずに(例えば電解液の分解を防ぎながら)充放電することが可能な電位範囲における上限の電位である。かかる通常使用上限電位は、電池の構成によっても異なり得る。例えば、正極活物質として0.5LiMnO+0.5LiNi1/3Mn1/3Co1/3固溶体化合物を使用し、負極活物質としてグラファイトを使用した電池の場合、図3に示すように、正極の作動電位範囲Rは概ね3.0V〜4.2Vの範囲に設定され得る。この場合、正極の通常使用上限電位V1は4.2Vとなる。本実施形態の電池は、この通常使用上限電位V1より高い電位にプラトー領域Pの電位V2(ここでは4.4V)を有する。 As described above, the normal use upper limit potential of the positive electrode is the upper limit potential in the operating potential range of the positive electrode that is set to terminate the charge when the battery is charged in the normal use form. This is the upper limit potential in the potential range that can be charged and discharged without significant damage (for example, while preventing decomposition of the electrolyte). Such normal use upper limit potential may vary depending on the configuration of the battery. For example, a battery using 0.5Li 2 MnO 3 + 0.5LiNi 1/3 Mn 1/3 Co 1/3 O 2 solid solution compound as the positive electrode active material and graphite as the negative electrode active material is shown in FIG. Thus, the operating potential range R of the positive electrode can be set to a range of approximately 3.0V to 4.2V. In this case, the normal use upper limit potential V1 of the positive electrode is 4.2V. The battery of this embodiment has the potential V2 (4.4 V in this case) of the plateau region P at a potential higher than the normal use upper limit potential V1.

ここで開示されるリチウム二次電池の容量回復方法では、上記正極の通常使用上限電位V1およびプラトー領域Pの電位V2を有するリチウム二次電池において、該リチウム二次電池の充放電可能な容量が初期容量よりも低下した場合に、該電池を正極の通常使用上限電位V1より高いプラトー領域Pの電位V2まで充電する。そして、該プラトー領域Pにおいて上記容量低下分ΔC1(=初期容量−劣化後容量)を上回らないレベルの電気量C2を充電する(C2≦ΔC1)。ここで、図3中のラインL2は初期の負極電位を、ラインL3は容量劣化後の負極電位の推移を示している。   In the lithium secondary battery capacity recovery method disclosed herein, the lithium secondary battery having the normal use upper limit potential V1 of the positive electrode and the potential V2 of the plateau region P has a chargeable / dischargeable capacity of the lithium secondary battery. When the capacity is lower than the initial capacity, the battery is charged to the potential V2 of the plateau region P higher than the normal use upper limit potential V1 of the positive electrode. In the plateau region P, an amount of electricity C2 that does not exceed the capacity decrease ΔC1 (= initial capacity−capacitance after deterioration) is charged (C2 ≦ ΔC1). Here, the line L2 in FIG. 3 shows the initial negative electrode potential, and the line L3 shows the transition of the negative electrode potential after capacity deterioration.

このように、リチウム二次電池の充放電可能な容量が初期容量よりも低下した場合に、該電池を正極の通常使用上限電位V1より高いプラトー領域Pの電位V2まで充電し、かつ、該プラトー領域Pにおいて上記容量低下分ΔC1を上回らない電気量C2を充電することによって、電池電圧を過度に上昇させることなく、正極活物質の内部に吸蔵されたままのLiイオンが適切に引き抜かれ、負極活物質に不可逆的に取り込まれたLiイオンの損失分を補填することができる。この結果、電池電圧の急激な上昇による電池劣化を防ぎつつ、不可逆的なLiイオンの取り込みにより低下した電池容量を適切に回復し得、リチウム二次電池の長寿命化を実現することができる。   As described above, when the chargeable / dischargeable capacity of the lithium secondary battery is lower than the initial capacity, the battery is charged to the potential V2 of the plateau region P higher than the normal use upper limit potential V1 of the positive electrode, and the plateau By charging the amount of electricity C2 that does not exceed the capacity decrease ΔC1 in the region P, Li ions that are occluded in the positive electrode active material are appropriately extracted without excessively increasing the battery voltage, and the negative electrode The loss of Li ions irreversibly taken into the active material can be compensated. As a result, while preventing battery deterioration due to a rapid rise in battery voltage, the battery capacity reduced by irreversible incorporation of Li ions can be properly recovered, and the life of the lithium secondary battery can be extended.

上記プラトー領域Pにおいて充電される電気量C2は、上記容量低下分を上回らない電気量であればよい(C2≦ΔC1)。通常は容量低下分の1/2(半分)以上の電気量が適当であり、容量低下分の2/3以上の電気量であることが好ましく、容量低下分と等量の電気量であることが特に好ましい。プラトー領域Pで充電される電気量が少なすぎると、上述した容量回復効果が十分に得られない場合がある。その一方、容量低下分を上回る電気量を充電すると、負極活物質のLi許容吸蔵量を超えてしまい、負極表面でリチウムが析出する場合があり好ましくない。さらに、図3で規定される各容量について、Ca+Cb+C2≦Cc+Cd+ΔC1を満足することが好ましい。これにより、負極表面へのLi析出をより確実に防ぐことができる。なお、図3で規定される各容量は、例えばリチウムを参照極とした模擬電池を用いて測定することができる。   The amount of electricity C2 charged in the plateau region P may be an amount of electricity that does not exceed the capacity drop (C2 ≦ ΔC1). Usually, the amount of electricity that is 1/2 (half) or more of the capacity decrease is appropriate, and the amount of electricity is preferably 2/3 or more of the capacity decrease, and the amount of electricity is equal to the capacity decrease. Is particularly preferred. If the amount of electricity charged in the plateau region P is too small, the above-described capacity recovery effect may not be sufficiently obtained. On the other hand, if the amount of electricity exceeding the capacity drop is charged, it exceeds the allowable Li storage capacity of the negative electrode active material, and lithium may be deposited on the negative electrode surface, which is not preferable. Furthermore, it is preferable to satisfy Ca + Cb + C2 ≦ Cc + Cd + ΔC1 for each capacity defined in FIG. Thereby, Li precipitation to the negative electrode surface can be prevented more reliably. In addition, each capacity | capacitance prescribed | regulated by FIG. 3 can be measured, for example using the simulation battery which used lithium as the reference electrode.

ここに開示される技術では、プラトー領域Pの電位V2は、正極の通常使用上限電位V1より0.2V以上高い電位であることが好ましく、0.3V以上高い電位であることが特に好ましい。例えば、プラトー領域Pの電位V2が4.4V以上であり、かつ、通常使用上限電位V1が4.2V以下であることが好適である。このように正極の通常使用上限電位より0.2V以上高いプラトー領域の電位で充電することにより、正極活物質の内部に吸蔵されたままのLiイオンが効果的に引き抜かれ、上記低下した容量を回復し得る効果が高まる。   In the technique disclosed here, the potential V2 of the plateau region P is preferably a potential higher by 0.2V or more than the normal use upper limit potential V1 of the positive electrode, and particularly preferably a potential higher by 0.3V or more. For example, it is preferable that the potential V2 of the plateau region P is 4.4 V or higher and the normal use upper limit potential V1 is 4.2 V or lower. Thus, by charging at a potential in the plateau region that is 0.2 V or more higher than the normal use upper limit potential of the positive electrode, Li ions that are occluded inside the positive electrode active material are effectively extracted, and the reduced capacity is reduced. The recoverable effect increases.

また、上記プラトー領域Pの電位V2は、リチウム基準で4.4V以上であることが好ましくは、4.5V以上であることが特に好ましい。プラトー領域の電位が低すぎると、上述した容量回復効果が十分に得られない場合がある一方で、プラトー領域の電位が高すぎると、該プラトー領域の電位まで正極電位を上昇させたときに電解液が分解し電池の耐久性が低下するため好ましくない。電池の耐久性の観点からは、4.8V以下であることが好ましい。例えば、上記プラトー領域の電位が4.4V〜4.8V(特に4.4V〜4.6V)であることが、容量回復効果と電池耐久性を両立させる観点から適当である。   In addition, the potential V2 of the plateau region P is preferably 4.4 V or higher, particularly preferably 4.5 V or higher, based on lithium. If the potential of the plateau region is too low, the above-described capacity recovery effect may not be sufficiently obtained. On the other hand, if the potential of the plateau region is too high, electrolysis occurs when the positive electrode potential is raised to the potential of the plateau region. This is not preferable because the liquid decomposes and the durability of the battery decreases. From the viewpoint of battery durability, it is preferably 4.8 V or less. For example, it is appropriate that the potential of the plateau region is 4.4 V to 4.8 V (particularly 4.4 V to 4.6 V) from the viewpoint of achieving both a capacity recovery effect and battery durability.

ここで開示される容量回復方法における容量回復充電処理は、適当な充電装置(例えば充電回路)を用いて行うことができる。上記容量回復充電処理に使用できる装置としては、従来のリチウム二次電池の充電を実施し得る充電装置であれば特に限定はなく、種々の回路構成をとることができる。かかる充電装置による容量回復充電処理は、例えば、定電流で所定の電圧となるまで充電する定電流充電(CC充電)方式であってもよく、定電流で所定の電圧となるまで充電した後、所定の電圧を維持して所定時間充電する定電流定電圧充電(CCCV充電)方式であってもよい。   The capacity recovery charging process in the capacity recovery method disclosed herein can be performed using an appropriate charging device (for example, a charging circuit). The device that can be used for the capacity recovery charging process is not particularly limited as long as it is a conventional charging device that can charge a lithium secondary battery, and various circuit configurations can be adopted. The capacity recovery charging process by such a charging device may be, for example, a constant current charging (CC charging) method that charges until a predetermined voltage is reached with a constant current, and after charging until a predetermined voltage is reached with a constant current, A constant current and constant voltage charging (CCCV charging) method in which a predetermined voltage is maintained and charging is performed for a predetermined time may be used.

上記容量回復充電処理における電流値(レート)は特に制限されないが、通常は0.1C以下にすることが適当であり、例えば0.05C以下にすることが好ましい。かかる容量回復充電処理を0.1C以下の低速で行うことによって、低下した電池容量を安定して回復させることができる。上記容量回復充電処理における電流値の下限は特に限定されないが、概ね0.002C程度である。0.002Cよりも低すぎると、充電に多大な時間がかかるため、容量回復充電処理を迅速に行うことができない場合がある。なお、1Cとは、定格容量を1時間で放電できる電流量を意味する。   The current value (rate) in the capacity recovery charging process is not particularly limited, but it is usually appropriate to make it 0.1 C or less, for example 0.05 C or less. By performing the capacity recovery charging process at a low speed of 0.1 C or less, the reduced battery capacity can be stably recovered. The lower limit of the current value in the capacity recovery charging process is not particularly limited, but is about 0.002C. If it is lower than 0.002C, it takes a lot of time to charge, so the capacity recovery charging process may not be performed quickly. 1C means the amount of current that can discharge the rated capacity in one hour.

上記容量回復充電処理の温度は特に制限されないが、通常は0℃〜40℃程度にすることが適当であり、例えば20℃〜30℃程度にすることが好ましい。また、上記容量回復充電処理を行う回数は1回に限らず、複数回(例えば2〜10回)繰り返してもよい。容量回復充電処理の処理回数を増やせば増やすほど、低下した容量を初期容量により近いレベルまで回復させることができる。   The temperature of the capacity recovery charging process is not particularly limited, but is usually appropriately about 0 ° C to 40 ° C, and preferably about 20 ° C to 30 ° C, for example. The number of times the capacity recovery charging process is performed is not limited to one, and may be repeated a plurality of times (for example, 2 to 10 times). As the number of times of the capacity recovery charging process is increased, the reduced capacity can be recovered to a level closer to the initial capacity.

以下、本発明に関する試験例を説明するが、本発明をかかる具体例に示すものに限定することを意図したものではない。   Hereinafter, although the test example regarding this invention is demonstrated, it is not intending to limit this invention to what is shown to this specific example.

<試験例1:リチウム二次電池の作製>
評価試験用のリチウム二次電池を以下のようにして作製した。
まず、正極活物質としての上述した固溶体化合物(0.5LiMnO+0.5LiNi1/3Mn1/3Co1/3)に、導電材としてのABを、結着材としてのPVDFとともに水と混合して正極ペーストを調製した。この正極ペーストに含まれる各材料の質量比は、正極活物質が85質量%、導電材が10質量%、結着材が5質量%である。この正極ペーストを、正極集電体としての長尺状のアルミニウム箔の両面に塗布して、正極集電体の両面に正極活物質層を備える正極シートを作製した。
<Test Example 1: Production of lithium secondary battery>
A lithium secondary battery for evaluation test was produced as follows.
First, the solid solution compound (0.5Li 2 MnO 3 + 0.5LiNi 1/3 Mn 1/3 Co 1/3 O 2 ) as the positive electrode active material is mixed with AB as the conductive material and PVDF as the binder. Together with water, a positive electrode paste was prepared. The mass ratio of each material contained in this positive electrode paste is 85 mass% for the positive electrode active material, 10 mass% for the conductive material, and 5 mass% for the binder. This positive electrode paste was applied to both sides of a long aluminum foil as a positive electrode current collector to prepare a positive electrode sheet having a positive electrode active material layer on both surfaces of the positive electrode current collector.

一方、負極活物質としての炭素材料(ここではグラファイト粉末を使用した。)を、結着材としてのPVDFとともに水と混合して、負極ペーストを調製した。この負極ペーストに含まれる各材料の質量比は、上記炭素材料が92.5質量%、結着材が7.5質量%である。この負極ペーストを、負極集電体としての長尺状の銅箔の片面に塗布して、負極集電体の片面に負極活物質層を備える負極シートを作製した。   On the other hand, a carbon material (here, graphite powder was used) as a negative electrode active material was mixed with water together with PVDF as a binder to prepare a negative electrode paste. The mass ratio of each material contained in this negative electrode paste is 92.5% by mass for the carbon material and 7.5% by mass for the binder. This negative electrode paste was applied to one side of a long copper foil as a negative electrode current collector to prepare a negative electrode sheet having a negative electrode active material layer on one side of the negative electrode current collector.

正極シートと2枚の負極シートとを正極活物質層と負極活物質層とが互いに対向するように交互に積層し、両シートの間に2枚のセパレータ(PP層の両面にPE層が積層された三層構造の多孔質樹脂シートを用いた。)を挿入して電極体を作製した。この電極体を非水電解液とともにラミネート袋に挿入して評価試験用リチウム二次電池(ラミネートセル)を構築した。なお、非水電解液としては、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを5:5の体積比で含む混合溶媒に支持塩としてのLiPFを約1mol/リットルの濃度で含有させたものを用いた。その後、常法により初期充放電処理(コンディショニング)を行って、評価試験用リチウム二次電池を得た。 The positive electrode sheet and the two negative electrode sheets are alternately laminated so that the positive electrode active material layer and the negative electrode active material layer face each other, and two separators (PE layers are laminated on both sides of the PP layer) between both sheets. The three-layered porous resin sheet was used.) Was inserted to prepare an electrode body. This electrode body was inserted into a laminating bag together with a non-aqueous electrolyte to construct a lithium secondary battery (laminate cell) for evaluation test. As a non-aqueous electrolyte, LiPF 6 as a supporting salt is contained in a mixed solvent containing ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in a volume ratio of 5: 5 at a concentration of about 1 mol / liter. Used. Thereafter, initial charge / discharge treatment (conditioning) was performed by a conventional method to obtain a lithium secondary battery for evaluation test.

なお、予備的実験により求めた上記リチウム二次電池の作動電圧範囲における上限電圧は4.1Vであった。このときの正極電位をLi参照極付電池を用いて測定したところ、4.2V(vs Li/Li)であった。図3には、かかるリチウム二次電池の充電時における正極電位及び負極電位の推移を示してある。図3に示すように、上記リチウム二次電池における充電時の正極電位は充電処理の進行に伴って増大した。そして、正極電位が4.4Vで略一定となり、プラトー領域に達した。 In addition, the upper limit voltage in the operating voltage range of the lithium secondary battery obtained by preliminary experiments was 4.1V. When the positive electrode potential at this time was measured using a battery with a Li reference electrode, it was 4.2 V (vs Li / Li + ). FIG. 3 shows the transition of the positive electrode potential and the negative electrode potential during charging of the lithium secondary battery. As shown in FIG. 3, the positive electrode potential during charging in the lithium secondary battery increased with the progress of the charging process. The positive electrode potential became substantially constant at 4.4 V and reached the plateau region.

以下に説明する実験例2及び3は、以下の実験方法I〜IIの条件で行われた。
I.容量測定
(1)電池電圧が4.1V(正極電位が通常使用上限電位の4.2V)になるまで、1/20Cの電流値で定電流充電を実施した。
(2)10分間(m)休止した。
(3)電池電圧が2.5V(正極電位が3.0V)になるまで、1/20Cの電流値で定電流放電を実施した。そのときの放電容量を電池容量(mAh)とした。
なお、上記操作(1)〜(3)は全て25℃の温度条件下で行われた。
II.サイクル試験
(1)電池電圧が4.1V(正極電位が通常使用上限電位の4.2V)になるまで、1/3Cの電流値で定電流充電を実施した。
(2)10分間(m)休止した。
(3)電池電圧が2.5V(正極電位が3.0V)になるまで、1/3Cの電流値で定電流放電を実施した。
(4)10分間(m)休止した。
(5)2サイクル目以降は、上記(1)〜(4)を繰り返し、合計50サイクルを実施した。
なお、上記操作(1)〜(5)は全て60℃の温度条件下で行われた。
Experimental examples 2 and 3 described below were performed under the conditions of the following experimental methods I to II.
I. Capacity measurement (1) Constant current charging was performed at a current value of 1/20 C until the battery voltage reached 4.1 V (the positive electrode potential was 4.2 V, which is the upper limit potential for normal use).
(2) Paused for 10 minutes (m).
(3) Constant current discharge was performed at a current value of 1/20 C until the battery voltage was 2.5 V (positive electrode potential was 3.0 V). The discharge capacity at that time was defined as the battery capacity (mAh).
In addition, all said operation (1)-(3) was performed on 25 degreeC temperature conditions.
II. Cycle test (1) The battery was charged with a constant current at a current value of 1/3 C until the battery voltage reached 4.1 V (the positive electrode potential was 4.2 V, which is the normal use upper limit potential).
(2) Paused for 10 minutes (m).
(3) Constant current discharge was performed at a current value of 1/3 C until the battery voltage was 2.5 V (positive electrode potential was 3.0 V).
(4) Paused for 10 minutes (m).
(5) From the second cycle onward, the above (1) to (4) were repeated and a total of 50 cycles were carried out.
In addition, all said operation (1)-(5) was performed on 60 degreeC temperature conditions.

<試験例2:容量回復充電処理>
上記サイクル試験により低下した電位容量を、前述した容量回復充電処理により回復し得ることを確認するため、以下の試験を行った。
まず、実験対象のリチウム二次電池の「サイクル試験前の電池容量(初期容量)」を調べるために、上述した実験方法I(容量測定)を実施した。次に、上記実験方法II(サイクル試験)を行った。そして、再び上記実験方法I(容量測定)を実施した。これにより「サイクル試験後の電池容量」を得た。
その結果、上記サイクル試験前の電池容量(初期容量)は42mAhであり、上記サイクル試験後の電池容量は35mAhであった。したがって、上記サイクル試験前後における容量低下量は7mAhとなる。
<Test Example 2: Capacity recovery charging process>
In order to confirm that the potential capacity decreased by the cycle test can be recovered by the capacity recovery charging process described above, the following test was performed.
First, in order to examine the “battery capacity before the cycle test (initial capacity)” of the lithium secondary battery to be tested, the above-described experimental method I (capacity measurement) was performed. Next, the experimental method II (cycle test) was performed. And the said experimental method I (capacitance measurement) was implemented again. Thus, “battery capacity after cycle test” was obtained.
As a result, the battery capacity (initial capacity) before the cycle test was 42 mAh, and the battery capacity after the cycle test was 35 mAh. Therefore, the amount of capacity decrease before and after the cycle test is 7 mAh.

上記サイクル試験(実験方法II)を実施した後、上記リチウム二次電池に対して容量回復充電処理を行った。容量回復充電処理は、以下の手順で行った。
(1)電池電圧が4.3V(正極電位がプラトー領域の電位4.4V)になるまで、1/20Cの電流値で定電流充電を実施した。
(2)上記プラトー領域において上記容量低下量に相当する電気量7mAhを、1/20Cの電流値で定電流充電した。
(3)10分間(m)休止した。
(4)電池電圧が2.5V(正極電位が3.0V)になるまで、1/20Cの電流値で定電流放電を実施した。
なお、上記操作(1)〜(4)は全て25℃の温度条件下で行われた。
上記容量回復充電処理を実施した後、再び上記実験方法I(容量測定)を実施した。これにより「容量回復充電処理後の電池容量」を得た。
その結果、上記容量回復充電処理後の電池容量は41mAhとなり、上記サイクル試験後の電池容量35mAhから大幅に増大した。このことから、リチウム二次電池を通常使用上限電位より高いプラトー領域の電位まで充電し、かつ、該プラトー領域において容量低下分に相当する電気量を充電することで、電池容量を回復し得ることが確認された。
After performing the cycle test (Experimental Method II), the lithium secondary battery was subjected to a capacity recovery charging process. The capacity recovery charging process was performed according to the following procedure.
(1) Constant current charging was performed at a current value of 1/20 C until the battery voltage was 4.3 V (the positive electrode potential was 4.4 V in the plateau region).
(2) In the plateau region, an electric amount of 7 mAh corresponding to the capacity reduction amount was charged with a constant current at a current value of 1 / 20C.
(3) Paused for 10 minutes (m).
(4) Constant current discharge was performed at a current value of 1/20 C until the battery voltage was 2.5 V (positive electrode potential was 3.0 V).
In addition, all said operation (1)-(4) was performed on 25 degreeC temperature conditions.
After performing the capacity recovery charging process, the experimental method I (capacity measurement) was performed again. Thus, “battery capacity after capacity recovery charging process” was obtained.
As a result, the battery capacity after the capacity recovery charging process was 41 mAh, which was significantly increased from the battery capacity of 35 mAh after the cycle test. From this, the battery capacity can be recovered by charging the lithium secondary battery to a potential in the plateau region higher than the normal use upper limit potential, and charging the amount of electricity corresponding to the capacity decrease in the plateau region. Was confirmed.

<試験例3>
比較例として、以下の試験を行った。
すなわち、上記サイクル試験(実験方法II)を実施した後、下記の条件で充電処理を行った。
(1)電池電圧が4.3V(正極電位がプラトー領域の電位4.4V)になるまで、1/20Cの電流値で定電流充電を実施した。
(2)10分間(m)休止した。
(3)電池電圧が2.5V(正極電位が3.0V)になるまで、1/20Cの電流値で定電流放電を実施した。
なお、上記操作(1)において、通常使用上限電位からプラトー領域の電位に至るまでに充電された電気量は5mAhである。上記操作(1)〜(3)は全て25℃の温度条件下で行われた。
上記充電処理を実施した後、再び上記実験方法I(容量測定)を実施した。これにより「充電処理後の電池容量」を得た。
その結果、上記充電処理後の電池容量は34mAhとなり、上記サイクル試験後の電池容量35mAhとほとんど変わらなかった。この結果から、リチウム二次電池を通常使用上限電位より高いプラトー領域の電位まで充電するだけでは、電池容量を有効に回復し得ないことが確認された。
<Test Example 3>
The following tests were conducted as comparative examples.
That is, after performing the cycle test (Experimental Method II), the charging process was performed under the following conditions.
(1) Constant current charging was performed at a current value of 1/20 C until the battery voltage was 4.3 V (the positive electrode potential was 4.4 V in the plateau region).
(2) Paused for 10 minutes (m).
(3) Constant current discharge was performed at a current value of 1/20 C until the battery voltage was 2.5 V (positive electrode potential was 3.0 V).
In the operation (1), the amount of electricity charged from the normal use upper limit potential to the plateau region potential is 5 mAh. The above operations (1) to (3) were all performed under a temperature condition of 25 ° C.
After carrying out the charging process, the experimental method I (capacity measurement) was carried out again. As a result, “battery capacity after charging” was obtained.
As a result, the battery capacity after the charge treatment was 34 mAh, which was almost the same as the battery capacity 35 mAh after the cycle test. From this result, it was confirmed that the battery capacity could not be effectively recovered only by charging the lithium secondary battery to a potential in a plateau region higher than the normal use upper limit potential.

以上、本発明を詳細に説明したが、これらは例示に過ぎず、ここで開示される発明には上述の具体例を様々に変形、変更したものが含まれる。   Although the present invention has been described in detail above, these are merely examples, and the invention disclosed herein includes various modifications and changes of the above-described specific examples.

なお、ここに開示されるいずれかのリチウム二次電池100は、車両に搭載される電池として適した性能を備えたものであり得る。したがって本発明によると、図15に示すように、ここに開示されるいずれかの電池100を備えた車両1が提供される。特に、該電池100を動力源(典型的には、ハイブリッド車両または電気車両の動力源)として備える車両(例えば自動車)1が提供される。   Note that any of the lithium secondary batteries 100 disclosed herein may have performance suitable as a battery mounted on a vehicle. Therefore, according to the present invention, as shown in FIG. 15, a vehicle 1 provided with any of the batteries 100 disclosed herein is provided. In particular, a vehicle (for example, an automobile) 1 including the battery 100 as a power source (typically a power source of a hybrid vehicle or an electric vehicle) is provided.

1 車両
10 正極シート
12 正極集電体
14 正極活物質層
16 正極活物質層非形成部
20 負極シート
22 負極集電体
24 負極活物質層
26 負極活物質層非形成部
40 セパレータ
50 電池ケース
52 ケース本体
54 蓋体
70 正極端子
72 負極端子
74 正極リード端子
76 負極リード端子
80 捲回電極体
82 捲回コア部分
90 非水電解質
100 リチウム二次電池
DESCRIPTION OF SYMBOLS 1 Vehicle 10 Positive electrode sheet 12 Positive electrode collector 14 Positive electrode active material layer 16 Positive electrode active material layer non-formation part 20 Negative electrode sheet 22 Negative electrode current collector 24 Negative electrode active material layer 26 Negative electrode active material layer non-formation part 40 Separator 50 Battery case 52 Case main body 54 Lid 70 Positive electrode terminal 72 Negative electrode terminal 74 Positive electrode lead terminal 76 Negative electrode lead terminal 80 Winding electrode body 82 Winding core part 90 Nonaqueous electrolyte 100 Lithium secondary battery

Claims (9)

正極の通常使用上限電位より高い電位にプラトー領域の電位を有する正極活物質を備えたリチウム二次電池の容量回復方法であって、
前記リチウム二次電池の充放電可能な容量が初期容量よりも低下した場合に、該電池を正極の通常使用上限電位より高いプラトー領域の電位まで充電すること、および、
前記プラトー領域において前記容量低下分を上回らないレベルの電気量を充電すること
を包含する、リチウム二次電池の容量回復方法。
A method for recovering the capacity of a lithium secondary battery comprising a positive electrode active material having a plateau potential higher than the normal use upper limit potential of the positive electrode,
When the chargeable / dischargeable capacity of the lithium secondary battery is lower than the initial capacity, charging the battery to a potential in a plateau region higher than the normal use upper limit potential of the positive electrode; and
A method for recovering the capacity of a lithium secondary battery, comprising charging an amount of electricity that does not exceed the capacity drop in the plateau region.
前記プラトー領域において充電される電気量は、前記容量低下分の1/2以上の電気量である、請求項1に記載の容量回復方法。   2. The capacity recovery method according to claim 1, wherein the amount of electricity charged in the plateau region is an amount of electricity that is ½ or more of the capacity decrease. 前記正極の通常使用上限電位は、リチウム基準で3.8V〜4.2Vである、請求項1または2に記載の容量回復方法。   The capacity recovery method according to claim 1 or 2, wherein a normal use upper limit potential of the positive electrode is 3.8 V to 4.2 V on a lithium basis. 前記プラトー領域の電位は、前記正極の通常使用上限電位より0.2V以上高い電位である、請求項1〜3の何れか一つに記載の容量回復方法。   The capacity recovery method according to claim 1, wherein the potential of the plateau region is a potential that is 0.2 V or more higher than the normal use upper limit potential of the positive electrode. 前記プラトー領域の電位は、リチウム基準で4.4V〜4.8Vである、請求項1〜4の何れか一つに記載の容量回復方法。   5. The capacity recovery method according to claim 1, wherein a potential of the plateau region is 4.4 V to 4.8 V on a lithium basis. 前記プラトー領域での充電時における電流レートが、0.002C〜0.1Cである、請求項1〜5の何れか一つに記載の容量回復方法。   The capacity recovery method according to any one of claims 1 to 5, wherein a current rate during charging in the plateau region is 0.002C to 0.1C. 前記正極活物質は、以下の一般式:
xLiM1O+(1−x)LiM2O
(ここでM1は、平均酸化状態が4+である少なくとも一種の金属元素であり、M2は、少なくとも一種の遷移金属元素である:0<x<1)
で示される固溶体化合物である、請求項1〜6の何れか一つに記載の容量回復方法。
The positive electrode active material has the following general formula:
xLi 2 M1O 3 + (1- x) LiM2O 2
(Where M1 is at least one metal element having an average oxidation state of 4+, and M2 is at least one transition metal element: 0 <x <1)
The capacity | capacitance recovery method as described in any one of Claims 1-6 which is a solid solution compound shown by these.
前記式(1)中のM1は、Mn,Zr,TiおよびSnからなる群から選択される少なくとも一種の金属元素である、請求項7に記載の容量回復方法。   The capacity recovery method according to claim 7, wherein M1 in the formula (1) is at least one metal element selected from the group consisting of Mn, Zr, Ti, and Sn. 前記式(1)中のM2は、Mn,Co,NiおよびFeからなる群から選択される少なくとも一種の遷移金属元素である、請求項7または8に記載の容量回復方法。














The capacity recovery method according to claim 7 or 8, wherein M2 in the formula (1) is at least one transition metal element selected from the group consisting of Mn, Co, Ni, and Fe.














JP2011183163A 2011-08-24 2011-08-24 Capacity recovery method for lithium secondary battery Active JP5741942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011183163A JP5741942B2 (en) 2011-08-24 2011-08-24 Capacity recovery method for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011183163A JP5741942B2 (en) 2011-08-24 2011-08-24 Capacity recovery method for lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2013045658A true JP2013045658A (en) 2013-03-04
JP5741942B2 JP5741942B2 (en) 2015-07-01

Family

ID=48009396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011183163A Active JP5741942B2 (en) 2011-08-24 2011-08-24 Capacity recovery method for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5741942B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103316852A (en) * 2013-05-24 2013-09-25 上海中聚佳华电池科技有限公司 Battery selecting method
JP2018055804A (en) * 2016-09-26 2018-04-05 トヨタ自動車株式会社 Recovery processing method for lithium ion secondary battery
JP2021044161A (en) * 2019-09-11 2021-03-18 株式会社東芝 Charge/discharge control device, battery pack, vehicle and charge/discharge control method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005149867A (en) * 2003-11-14 2005-06-09 Yuasa Corp Lithium secondary battery and its manufacturing method
JP2006073308A (en) * 2004-09-01 2006-03-16 Matsushita Electric Ind Co Ltd Non-aqueous electrolytic liquid secondary battery
US20070037043A1 (en) * 2005-07-22 2007-02-15 Chang Sung K Pretreatment method of electrode active material
JP2008270201A (en) * 2007-03-27 2008-11-06 Univ Kanagawa Positive electrode material for lithium ion battery
JP2009505367A (en) * 2005-08-19 2009-02-05 エルジー・ケム・リミテッド High-capacity electrochemical device and manufacturing method thereof
US20090081546A1 (en) * 2007-09-26 2009-03-26 Sanyo Electric Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery, process for preparing the same, and positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2010103086A (en) * 2008-09-26 2010-05-06 Nissan Motor Co Ltd Positive electrode for lithium-ion batteries
US20120212186A1 (en) * 2011-02-21 2012-08-23 Denso Corporation Charging apparatus and charging method for lithium rechargeable battery
JP2013537792A (en) * 2010-07-15 2013-10-03 ゼットパワー, エルエルシー Method and apparatus for recharging a battery

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005149867A (en) * 2003-11-14 2005-06-09 Yuasa Corp Lithium secondary battery and its manufacturing method
JP2006073308A (en) * 2004-09-01 2006-03-16 Matsushita Electric Ind Co Ltd Non-aqueous electrolytic liquid secondary battery
US20070037043A1 (en) * 2005-07-22 2007-02-15 Chang Sung K Pretreatment method of electrode active material
JP2009503766A (en) * 2005-07-22 2009-01-29 エルジー・ケム・リミテッド Pretreatment method of electrode active material
JP2009505367A (en) * 2005-08-19 2009-02-05 エルジー・ケム・リミテッド High-capacity electrochemical device and manufacturing method thereof
JP2008270201A (en) * 2007-03-27 2008-11-06 Univ Kanagawa Positive electrode material for lithium ion battery
US20090081546A1 (en) * 2007-09-26 2009-03-26 Sanyo Electric Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery, process for preparing the same, and positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2009245917A (en) * 2007-09-26 2009-10-22 Sanyo Electric Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing same, and positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2010103086A (en) * 2008-09-26 2010-05-06 Nissan Motor Co Ltd Positive electrode for lithium-ion batteries
JP2013537792A (en) * 2010-07-15 2013-10-03 ゼットパワー, エルエルシー Method and apparatus for recharging a battery
US20120212186A1 (en) * 2011-02-21 2012-08-23 Denso Corporation Charging apparatus and charging method for lithium rechargeable battery
JP2012174437A (en) * 2011-02-21 2012-09-10 Denso Corp Charging apparatus and charging method for lithium secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103316852A (en) * 2013-05-24 2013-09-25 上海中聚佳华电池科技有限公司 Battery selecting method
JP2018055804A (en) * 2016-09-26 2018-04-05 トヨタ自動車株式会社 Recovery processing method for lithium ion secondary battery
JP2021044161A (en) * 2019-09-11 2021-03-18 株式会社東芝 Charge/discharge control device, battery pack, vehicle and charge/discharge control method
JP7293055B2 (en) 2019-09-11 2023-06-19 株式会社東芝 Charge/discharge control device, battery pack, vehicle, and charge/discharge control method

Also Published As

Publication number Publication date
JP5741942B2 (en) 2015-07-01

Similar Documents

Publication Publication Date Title
KR102237266B1 (en) Negative electrode for nonaqueous electrolytic secondary battery and nonaqueous electrolytic secondary battery
CN107204454B (en) Electrode, nonaqueous electrolyte battery, battery pack, and vehicle
JP5218873B2 (en) Lithium secondary battery and manufacturing method thereof
JP6305263B2 (en) Non-aqueous electrolyte battery, battery pack, battery pack and car
JP5344236B2 (en) Method for manufacturing lithium secondary battery
JP2010034024A (en) Lithium-ion secondary battery
JP6287187B2 (en) Nonaqueous electrolyte secondary battery
JP6776291B2 (en) Batteries, battery packs, vehicles, and stationary power supplies
JP6121697B2 (en) Non-aqueous electrolyte battery
JP2013201077A (en) Nonaqueous electrolytic secondary battery
JP5532296B2 (en) Lithium secondary battery and manufacturing method thereof
JP5781219B2 (en) Nonaqueous electrolyte secondary battery and battery pack
JP2016219190A (en) Negative electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery, and method for producing negative electrode material for nonaqueous electrolyte secondary battery
JP2014035922A (en) Nonaqueous electrolyte secondary battery
JP5397715B2 (en) Lithium secondary battery
JP5282966B2 (en) Lithium ion secondary battery
JP5865951B2 (en) Nonaqueous electrolyte battery and battery pack
JP6287186B2 (en) Nonaqueous electrolyte secondary battery
JP5741942B2 (en) Capacity recovery method for lithium secondary battery
JP6081604B2 (en) Non-aqueous electrolyte battery, battery pack and automobile
US20140127561A1 (en) Non-aqueous electrolyte secondary battery
JP2013197052A (en) Lithium ion power storage device
CN109643828B (en) Nonaqueous electrolyte storage element
WO2015029084A1 (en) Electrode structure and secondary battery
CN111435729B (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150415

R151 Written notification of patent or utility model registration

Ref document number: 5741942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151