JP2013045644A - Secondary battery and electrode sheet for secondary battery - Google Patents

Secondary battery and electrode sheet for secondary battery Download PDF

Info

Publication number
JP2013045644A
JP2013045644A JP2011182935A JP2011182935A JP2013045644A JP 2013045644 A JP2013045644 A JP 2013045644A JP 2011182935 A JP2011182935 A JP 2011182935A JP 2011182935 A JP2011182935 A JP 2011182935A JP 2013045644 A JP2013045644 A JP 2013045644A
Authority
JP
Japan
Prior art keywords
current collector
negative electrode
positive electrode
electrode current
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011182935A
Other languages
Japanese (ja)
Inventor
Kazuya Nishimura
和也 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2011182935A priority Critical patent/JP2013045644A/en
Publication of JP2013045644A publication Critical patent/JP2013045644A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery in which satisfied connections between a positive electrode plate and a positive electrode collector, and between a negative electrode plate and a negative electrode collector can be achieved and a state of the satisfied connections can be maintained.SOLUTION: The secondary battery includes: a positive electrode collector and a negative electrode collector arranged to face with each other; and a positive electrode plate and a negative electrode plate arranged between the positive electrode collector and the negative electrode collector, and alternately stacked via a separator in the direction orthogonal to the facing direction of both collectors. The positive electrode plate has a positive electrode contact surface in contact with the positive electrode collector at an outer peripheral end thereof, and the negative electrode plate has a negative electrode contact surface in contact with the negative electrode collector at an outer peripheral end thereof. An electrode sheet is interposed at least one of between the positive electrode collector and the positive electrode contact surface and between the negative electrode collector and the negative electrode contact surface, the electrode sheet using a foam metal having a gap as a base material and obtained by adding an elastic resin into the foam metal.

Description

本発明は、二次電池および二次電池用の電極シートに関する。   The present invention relates to a secondary battery and an electrode sheet for the secondary battery.

従来、携帯電話やモバイルPC、電動工具、電動自転車など、さまざまな製品に二次電池が用いられている。近年では、風力発電や太陽光発電などの自然エネルギーを利用した発電にも二次電池が使われている。これは不安定な出力を二次電池で補い、出力を平滑化するために用いられるもので、大容量の二次電池が使われている。その他、大容量の二次電池は、ハイブリッド車や電気自動車、電車などの車両に搭載されることが知られている。   Conventionally, secondary batteries are used in various products such as mobile phones, mobile PCs, electric tools, and electric bicycles. In recent years, secondary batteries are also used for power generation using natural energy such as wind power generation and solar power generation. This is used to supplement unstable output with a secondary battery and smooth the output, and a large-capacity secondary battery is used. In addition, it is known that large-capacity secondary batteries are mounted on vehicles such as hybrid cars, electric cars, and trains.

このような車両に搭載する大容量の二次電池には、高出力、高エネルギー密度、電圧安定性、安全性などの面から、ニッケル水素二次電池が広く採用されている。   Nickel metal hydride secondary batteries are widely used for such high-capacity secondary batteries mounted on such vehicles in terms of high output, high energy density, voltage stability, safety, and the like.

従来のニッケル水素二次電池としては、捲回型電池や角形電池が主流である。捲回型電池は、正極板と負極板とをセパレータを介して捲回することにより電極体を構成し、電極体を電解液と共に電池容器内に収容してなる。また、角形電池は、複数の正極板と負極板とをセパレータを介して交互に積層することにより電極体を構成し、電極体を電解液と共に電池容器内に収容してなる。いずれの電池も、正極板と負極板とが、それぞれ正極集電体と負極集電体とに接続され、電気を取り出す。   As a conventional nickel-metal hydride secondary battery, a wound battery or a square battery is mainstream. A wound battery comprises an electrode body formed by winding a positive electrode plate and a negative electrode plate through a separator, and the electrode body is accommodated in a battery container together with an electrolyte. In addition, the rectangular battery includes an electrode body that is formed by alternately laminating a plurality of positive and negative electrode plates with separators interposed therebetween, and the electrode body is housed in a battery container together with an electrolytic solution. In any battery, the positive electrode plate and the negative electrode plate are connected to the positive electrode current collector and the negative electrode current collector, respectively, and electricity is taken out.

角形電池では、複数の正極板が正極集電体に当接して電気的に接続され、蛇腹状のセパレータを介して、複数の負極板が負極集電体に当接して電気的に接続されている。このとき、正極板と正極集電体とにずれが生じて、これらの当接が十分でなくなると接触抵抗が増大するなど、電池容量の低下や電池性能の低下を招く。これを回避するためには、正極板と正極集電体、および、負極板と負極集電体が、しっかりと確実に当接した状態を維持する必要がある。   In a rectangular battery, a plurality of positive plates are in contact with and electrically connected to a positive current collector, and a plurality of negative plates are in contact with and electrically connected to a negative current collector via a bellows-shaped separator. Yes. At this time, a shift occurs between the positive electrode plate and the positive electrode current collector, and if the contact between them becomes insufficient, the contact resistance increases, leading to a decrease in battery capacity and a decrease in battery performance. In order to avoid this, it is necessary to maintain a state where the positive electrode plate and the positive electrode current collector, and the negative electrode plate and the negative electrode current collector are in firm contact with each other.

特許文献1の発明では、電子ビーム溶接法により、積層した各電極板の端面を直接集電体に溶接する方法が開示されている。すなわち、各電極板をそれぞれ集電体の表面に対して直立するような姿勢で突き合わせて接合する方法であり、このとき集電体と電極板はT型継手を構成する。(特許文献1の第1図(d)、第2図(b)参照)。   In invention of patent document 1, the method of welding the end surface of each laminated | stacked electrode plate directly to a collector with the electron beam welding method is disclosed. That is, this is a method in which each electrode plate is brought into contact with each other in a posture standing upright with respect to the surface of the current collector, and at this time, the current collector and the electrode plate constitute a T-shaped joint. (See FIG. 1 (d) and FIG. 2 (b) of Patent Document 1).

特許文献2の発明では、正極集電体と負極集電体の間に、蛇腹状のセパレータが交互に両集電体に近接するように配置され、蛇腹状のセパレータと正極集電体で区画される空間に正極活物質が充填され、蛇腹状のセパレータと負極集電体で区画される空間に負極活物質が充填されて、正極活物質と負極活物質とがセパレータを挟んで交互に組み込まれ、電池セルに電解液を充填して構成された電池において、活物質と集電体の間に、ゴム球と空気の入った密閉空間を有する幅2mmの圧力吸収部材が装入された圧力吸収部材が開示されている(特許文献2の図6参照)。また、圧力吸収部材がハニカム構造よりなる発明が開示されている(特許文献2の図4参照)。   In the invention of Patent Document 2, a bellows-like separator is alternately arranged between the positive electrode current collector and the negative electrode current collector so as to be close to both current collectors, and is partitioned by the bellows-shaped separator and the positive electrode current collector. The positive electrode active material is filled in the space, the space defined by the bellows-shaped separator and the negative electrode current collector is filled with the negative electrode active material, and the positive electrode active material and the negative electrode active material are alternately incorporated with the separator interposed therebetween. In a battery constructed by filling a battery cell with an electrolyte solution, a pressure in which a 2 mm wide pressure absorbing member having a sealed space containing a rubber ball and air is inserted between an active material and a current collector An absorbent member is disclosed (see FIG. 6 of Patent Document 2). Further, an invention is disclosed in which the pressure absorbing member has a honeycomb structure (see FIG. 4 of Patent Document 2).

特許第2616197号公報Japanese Patent No. 2616197 特開2003−317795号公報JP 2003-317795 A

しかし、特許文献1の発明では、溶接部分の電気抵抗が大きく、電気を取り出す際に損失が生じる。   However, in the invention of Patent Document 1, the electric resistance of the welded portion is large, and a loss occurs when taking out electricity.

一方、特許文献2の発明では、圧力吸収部材がハニカム構造であったり、ゴム球を内部に配してなるものであるため、製造が困難でコストもかかる。また、このような圧力吸収部材は、構造が複雑であるため、ある程度の幅(例えば2mm以上)で成形する必要があり、薄型化に限界がある。   On the other hand, in the invention of Patent Document 2, since the pressure absorbing member has a honeycomb structure or rubber balls are arranged inside, manufacturing is difficult and costly. In addition, since such a pressure absorbing member has a complicated structure, it needs to be molded with a certain width (for example, 2 mm or more), and there is a limit to reducing the thickness.

これらの課題を解決すべく、本発明の目的は、正極板と正極集電体、および、負極板と負極集電体が、しっかりと確実に電気的に接続された状態を維持して、電池性能の低下を抑制することにある。また、電極板と集電体との接続に溶接を用いず、製造が容易な電極シートおよびこれを用いた二次電池を提供することにある。   In order to solve these problems, the object of the present invention is to maintain a state where the positive electrode plate and the positive electrode current collector, and the negative electrode plate and the negative electrode current collector are securely and reliably electrically connected, The purpose is to suppress a decrease in performance. Another object of the present invention is to provide an electrode sheet that is easy to manufacture without using welding for connecting the electrode plate and the current collector, and a secondary battery using the electrode sheet.

上記の目的を達成するため、本発明に係る二次電池は、互いに対向して配置された正極集電体および負極集電体と、前記正極集電体と前記負極集電体との間に配され、両集電体の対向方向に直交する方向に、セパレータを介して交互に積層された正極板および負極板とを備え、
前記正極板は、外周端部に前記正極集電体と当接する正極当接面を有し、前記負極板は、外周端部に前記負極集電体と当接する負極当接面を有し、
前記正極集電体と前記正極当接面の間、および、前記負極集電体と前記負極当接面の間、の少なくとも一方に、空隙部を有する発泡金属を基材として、前記発泡金属の内部に弾性樹脂を加えてなる電極シートを介在させたことを特徴とする(CL1)。
In order to achieve the above object, a secondary battery according to the present invention includes a positive electrode current collector and a negative electrode current collector that are disposed to face each other, and between the positive electrode current collector and the negative electrode current collector. A positive electrode plate and a negative electrode plate that are alternately stacked in a direction orthogonal to the opposing direction of both current collectors via separators,
The positive electrode plate has a positive electrode contact surface in contact with the positive electrode current collector at an outer peripheral end portion, and the negative electrode plate has a negative electrode contact surface in contact with the negative electrode current collector at an outer peripheral end portion;
At least one of the positive electrode current collector and the positive electrode contact surface and between the negative electrode current collector and the negative electrode contact surface is a foam metal having a void portion as a base material. It is characterized by interposing an electrode sheet formed by adding an elastic resin (CL1).

この構成によれば、電極シートを、非弾性である発泡金属の空隙部に弾性樹脂を加えてなるため、弾性を有する電極シートとできる。これを電極板(正極板または負極板)と集電体(正極集電体または負極集電体)との間に配することで、電極板が電極シートに食い込み、かつ、電極シートが電極板側に付勢するため、電極板と集電体とが電極シートを介して、しっかりと確実に接続できる。   According to this configuration, since the electrode sheet is formed by adding the elastic resin to the void portion of the foam metal that is inelastic, the electrode sheet can be made elastic. By arranging this between the electrode plate (positive electrode plate or negative electrode plate) and the current collector (positive electrode current collector or negative electrode current collector), the electrode plate bites into the electrode sheet, and the electrode sheet becomes the electrode plate. Since the electrode plate is biased to the side, the electrode plate and the current collector can be securely and reliably connected via the electrode sheet.

また、二次電池の使用により、二次電池の組立力(圧縮力)が弱まることで起こりうる、電極板の位置ずれを抑制することができ、電極板と集電体とが、電極シートを介して良好な接続状態を維持できる。すなわち、二次電池の性能低下を抑制することができる。   In addition, the use of the secondary battery can suppress the displacement of the electrode plate, which can occur due to the weakening of the assembly power (compression force) of the secondary battery, and the electrode plate and the current collector Can maintain a good connection state. That is, the performance degradation of the secondary battery can be suppressed.

なお、電極シートは、正極板と正極集電体、および、負極板と負極集電体のいずれか一方に設けてもよいし、双方に設けてもよい。   In addition, an electrode sheet may be provided in any one of a positive electrode plate and a positive electrode collector, and a negative electrode plate and a negative electrode collector, and may be provided in both.

ここで、前記発泡金属の内部に弾性樹脂を加えるとは、たとえば、基材の内部を切り欠いて弾性樹脂を加えることや、下記請求項2の発明のように基材内部の空隙部に弾性樹脂を加えることなどが考えられる。   Here, adding an elastic resin to the inside of the foamed metal means, for example, adding an elastic resin by cutting out the inside of the base material, or elasticity to a void inside the base material as in the invention of claim 2 below. It is conceivable to add resin.

本発明に係る二次電池は、前記電極シートが前記空隙部に弾性樹脂を含浸させてなることを特徴とする(CL2)。   The secondary battery according to the present invention is characterized in that the electrode sheet is formed by impregnating the gap portion with an elastic resin (CL2).

この構成によれば、発泡金属である基材を弾性樹脂に含浸させるだけで、空隙部に弾性樹脂を加えることができるので、弾性の電極シートを容易に成形することができる。また、薄い基材を用いることで、薄型の電極シートを成形することも容易にできる。   According to this configuration, the elastic resin can be easily formed by simply impregnating the elastic resin with the base material, which is a foam metal, to the void portion. Moreover, a thin electrode sheet can be easily formed by using a thin substrate.

本発明に係る二次電池は、前記基材が、空隙率50%以上の発泡ウレタンにニッケルめっきが施されて形成されることを特徴とする(CL3)。   The secondary battery according to the present invention is characterized in that the base material is formed by subjecting foamed urethane having a porosity of 50% or more to nickel plating (CL3).

この構成によれば、基材の空隙率が50%以上であるため、この空隙部に弾性樹脂を加えることで、電極シートが十分な弾性を有することができる。なお、電極シートが十分な弾性および強度を有するためには、基材の空隙率が、好ましくは70〜99%、より好ましくは95%前後であればよい。   According to this configuration, since the porosity of the substrate is 50% or more, the electrode sheet can have sufficient elasticity by adding an elastic resin to the void. In order for the electrode sheet to have sufficient elasticity and strength, the porosity of the substrate is preferably 70 to 99%, more preferably around 95%.

本発明に係る二次電池は、前記基材に弾性部材を挟み込んでもよい(CL4)。   In the secondary battery according to the present invention, an elastic member may be sandwiched between the base materials (CL4).

この構成によれば、基材に弾性部材を挟み込んでも、弾性を有する電極シートとできる。また、弾性樹脂を含浸した基材に、さらに弾性部材を挟み込んでもよい。ここで、「基材に弾性部材を挟み込む」とは、例えば、基材を厚さ方向に略1/2で切断して間に弾性部材を挟み込む形態や、基材の内部に空間を設けて、そこに弾性部材を挟み込む形態が考えられる。   According to this configuration, an elastic electrode sheet can be obtained even when an elastic member is sandwiched between substrates. Further, an elastic member may be further sandwiched between the base material impregnated with the elastic resin. Here, “sandwiching the elastic member between the base materials” means, for example, a mode in which the base material is cut approximately in half in the thickness direction and the elastic members are sandwiched therebetween, or a space is provided inside the base material. A form in which an elastic member is sandwiched there is conceivable.

本発明に係る二次電池は、前記弾性樹脂が、エチレン・酢酸ビニル共重合樹脂、または、オレフィン系樹脂であってもよい(CL5)。   In the secondary battery according to the present invention, the elastic resin may be an ethylene / vinyl acetate copolymer resin or an olefin resin (CL5).

ここで、エチレン・酢酸ビニル共重合樹脂とはEVAなどの樹脂をいい、オレフィン系樹脂とはPP、PEなどの樹脂をいう。   Here, the ethylene / vinyl acetate copolymer resin refers to a resin such as EVA, and the olefin resin refers to a resin such as PP or PE.

本発明に係る二次電池は、前記弾性樹脂は、導電性のカーボンを混合した樹脂であることを特徴とする(CL6)。   In the secondary battery according to the present invention, the elastic resin is a resin mixed with conductive carbon (CL6).

この構成によれば、基材の空隙部が導電性のカーボンを含む弾性樹脂で充填されるため、電極シートの導電性を向上できる。   According to this structure, since the space | gap part of a base material is filled with the elastic resin containing electroconductive carbon, the electroconductivity of an electrode sheet can be improved.

本発明に係る二次電池は、前記正極板および前記負極板、前記セパレータからなる電極体を、電解液とともに収納する角形のセルを備え、
前記セルは、前記電極体の側端部を囲む枠形部材と、前記枠形部材の開口部を対向して覆う前記正極集電体と前記負極集電体とを有し、
前記正極集電体は、電池の外部に露出する面が正極端子面として、電池の内部に向く面が正極集電面として機能し、前記負極集電体は、電池の外部に露出する面が負極端子面として、電池の内部に向く面が負極集電面として機能することを特徴とする(CL7)。
A secondary battery according to the present invention includes a rectangular cell that houses an electrode body including the positive electrode plate, the negative electrode plate, and the separator together with an electrolyte solution,
The cell includes a frame-shaped member surrounding a side end portion of the electrode body, the positive electrode current collector and the negative electrode current collector that cover and cover an opening of the frame-shaped member,
The positive electrode current collector functions as a positive electrode terminal surface on the surface exposed to the outside of the battery, and a positive current collector surface on the surface facing the inside of the battery, and the negative electrode current collector has a surface exposed on the outside of the battery. As a negative electrode terminal surface, a surface facing the inside of the battery functions as a negative electrode current collecting surface (CL7).

この構成によれば、対向配置された正極集電体と負極集電体とがセルの一部を構成することで、電池モジュールの組み立てを容易にする構造を有しながらも、両集電体と絶縁材料からなる枠形部材とが液密に接合されていることにより、電池単独で十分な密閉性が確保できる。また、この電池を使用する電池モジュールにおいて、密閉確保用部材や外部短絡防止用部材を省いて構造を簡素化し、かつ重量および体積を大幅に低減することができる。   According to this configuration, the positive electrode current collector and the negative electrode current collector that are arranged opposite to each other constitute a part of the cell, so that both current collectors have a structure that facilitates assembly of the battery module. And a frame-shaped member made of an insulating material are joined in a liquid-tight manner, so that a sufficient hermeticity can be secured by the battery alone. Further, in the battery module using this battery, the structure can be simplified by omitting the sealing ensuring member and the external short-circuit preventing member, and the weight and volume can be greatly reduced.

本発明に係る二次電池は、前記正極集電体および前記負極集電体を対向方向に押し付け、前記正極板および前記負極板を前記電極シートに食い込ませたことを特徴とする(CL8)。   The secondary battery according to the present invention is characterized in that the positive electrode current collector and the negative electrode current collector are pressed in the opposite direction so that the positive electrode plate and the negative electrode plate are bitten into the electrode sheet (CL8).

この構成によれば、二次電池の使用によって経年変化した後でも、所定の押付力を維持でき、正極板、負極板と正極集電体、負極集電体との当接状態を保持し、これらの接触抵抗の増大を抑制して二次電池の性能を維持できる。また、所定の押付力とは、正極板、負極板と正極集電体、負極集電体との当接状態を保持できる押付力をいう。   According to this configuration, a predetermined pressing force can be maintained even after aging due to the use of the secondary battery, and the positive electrode plate, the negative electrode plate and the positive electrode current collector, the contact state between the negative electrode current collector, The increase in the contact resistance can be suppressed and the performance of the secondary battery can be maintained. The predetermined pressing force refers to a pressing force that can maintain the contact state between the positive electrode plate, the negative electrode plate, the positive electrode current collector, and the negative electrode current collector.

本発明に係る電極シートは、互いに対向して配置された正極集電体および負極集電体と、前記正極集電体と前記負極集電体との間に配され、両集電体の対向方向に直交する方向に、セパレータを介して交互に積層された正極板および負極板とを備え、前記正極板は、外周端部に前記正極集電体と当接する正極当接面を有し、前記負極板は、外周端部に前記負極集電体と当接する負極当接面を有する二次電池において、
前記正極集電体と前記正極当接面の間、および、前記負極集電体と前記負極当接面の間、の少なくとも一方に介在させ、空隙部を有する発泡金属を基材として、前記発泡金属の内部に弾性樹脂を加えてなることを特徴とする(CL9)。
An electrode sheet according to the present invention is disposed between a positive electrode current collector and a negative electrode current collector, which are arranged to face each other, and between the positive electrode current collector and the negative electrode current collector, and facing both current collectors A positive electrode plate and a negative electrode plate that are alternately stacked via separators in a direction perpendicular to the direction, the positive electrode plate has a positive electrode contact surface that contacts the positive electrode current collector at an outer peripheral end; In the secondary battery, the negative electrode plate has a negative electrode contact surface that contacts the negative electrode current collector at an outer peripheral end.
Using the foam metal having a gap as a base material, the foam is interposed between at least one of the positive electrode current collector and the positive electrode contact surface and between the negative electrode current collector and the negative electrode contact surface. An elastic resin is added to the inside of the metal (CL9).

この構成によれば、非弾性である発泡金属の空隙部に弾性樹脂を加えてなるため、弾性を有する電極シートとすることができる。これを電極板(正極板または負極板)と集電体(正極集電体または負極集電体)との間に配することで、電極板が電極シートに食い込み、かつ、電極シートが電極板側に付勢するため、電極板と集電体とが電極シートを介して、しっかりと確実に接続できる。   According to this configuration, since the elastic resin is added to the void portion of the foam metal that is inelastic, an electrode sheet having elasticity can be obtained. By arranging this between the electrode plate (positive electrode plate or negative electrode plate) and the current collector (positive electrode current collector or negative electrode current collector), the electrode plate bites into the electrode sheet, and the electrode sheet becomes the electrode plate. Since the electrode plate is biased to the side, the electrode plate and the current collector can be securely and reliably connected via the electrode sheet.

また、二次電池の使用により、二次電池の組立力(圧縮力)が弱まることで起こりうる、電極板の位置ずれを抑制することができ、電極板と集電体とが、電極シートを介して良好な接続状態を維持できる。すなわち、この電極シートを用いることで、二次電池の性能低下を抑制することができる。   In addition, the use of the secondary battery can suppress the displacement of the electrode plate, which can occur due to the weakening of the assembly power (compression force) of the secondary battery, and the electrode plate and the current collector Can maintain a good connection state. That is, by using this electrode sheet, it is possible to suppress the performance deterioration of the secondary battery.

本発明に係る電極シートは、前記基材が、空隙率50%以上の発泡ウレタンにニッケルめっきが施されて形成され、前記空隙部に弾性樹脂を含浸させてなることが好ましい(CL10)。   In the electrode sheet according to the present invention, the base material is preferably formed by subjecting foamed urethane having a porosity of 50% or more to nickel plating and impregnating the void portion with an elastic resin (CL10).

この構成によれば、基材の空隙率が50%以上であるため、この空隙部に弾性樹脂を加えることで、電極シートが十分な弾性を有することができる。また、発泡金属である基材を弾性樹脂に含浸させるだけで、空隙部に弾性樹脂を加えることができるため、弾性の電極シートを容易に成形することができる。また、薄い基材を用いることで、薄型の電極シートを成形することも容易にできる。   According to this configuration, since the porosity of the substrate is 50% or more, the electrode sheet can have sufficient elasticity by adding an elastic resin to the void. Further, since the elastic resin can be added to the gap simply by impregnating the base material, which is a foam metal, into the elastic resin, an elastic electrode sheet can be easily formed. Moreover, a thin electrode sheet can be easily formed by using a thin substrate.

本発明の電極シートは、前記基材に弾性部材を挟み込んでもよい(CL11)。   In the electrode sheet of the present invention, an elastic member may be sandwiched between the substrates (CL11).

以上のように、本発明は、電極板と集電体との間に、弾性を有する電極シートを介在させることで、電極板と集電体との電気的な接続を良好な状態で維持する。すなわち、使用による電極板の位置ずれなどによる接触抵抗の増大を抑制し、電池性能の低下を抑える。   As described above, the present invention maintains the electrical connection between the electrode plate and the current collector in a good state by interposing the elastic electrode sheet between the electrode plate and the current collector. . That is, an increase in contact resistance due to a displacement of the electrode plate due to use is suppressed, and a decrease in battery performance is suppressed.

本発明の第1実施形態に係る二次電池の斜視図である。1 is a perspective view of a secondary battery according to a first embodiment of the present invention. 図1の二次電池におけるセルの分解図である。It is an exploded view of the cell in the secondary battery of FIG. 図1の二次電池における電極体の部分拡大図である。It is the elements on larger scale of the electrode body in the secondary battery of FIG. 図1の二次電池の断面図である。It is sectional drawing of the secondary battery of FIG. 図4の部分拡大図である。It is the elements on larger scale of FIG. 図1の二次電池を複数積層した電池モジュールの部分破断側面図である。FIG. 2 is a partially cutaway side view of a battery module in which a plurality of the secondary batteries of FIG. 1 are stacked. 本発明の第2実施形態に係る二次電池における捲回型の電極体を示す部分破断斜視図である。It is a partially broken perspective view which shows the winding type electrode body in the secondary battery which concerns on 2nd Embodiment of this invention. 図7の電極体における平面図である。It is a top view in the electrode body of FIG. 図7の電極体を複数装填した二次電池の部分破断斜視図である。FIG. 8 is a partially broken perspective view of a secondary battery loaded with a plurality of electrode bodies of FIG. 7. 図9の二次電池における断面図である。FIG. 10 is a cross-sectional view of the secondary battery of FIG. 9.

以下、本発明に係る実施形態を図面に基づき説明するが、本発明は下記実施形態に限定されるものではない。   Hereinafter, although the embodiment concerning the present invention is described based on a drawing, the present invention is not limited to the following embodiment.

(1)第1の実施形態
(二次電池1の構造)
図1は、本発明の第1実施形態に係る二次電池1の斜視図である。二次電池1は、水酸化ニッケルを主な正極活物質とし、水素吸蔵合金を主な負極活物質とし、アルカリ系水溶液を電解液とするニッケル水素二次電池である。
(1) First Embodiment (Structure of Secondary Battery 1)
FIG. 1 is a perspective view of a secondary battery 1 according to the first embodiment of the present invention. The secondary battery 1 is a nickel-hydrogen secondary battery using nickel hydroxide as a main positive electrode active material, a hydrogen storage alloy as a main negative electrode active material, and an alkaline aqueous solution as an electrolyte.

図2の分解図に示すように、絶縁性の矩形の枠形部材7と、枠形部材7を覆うようにX方向に対向して配置され、周縁部が略直角に折り曲げられた矩形の正極集電体8および負極集電体9と、によって角形のセル10が構成されている。そして、セル10の内方には、前記正極活物質からなる正極板3と、前記負極活物質からなる負極板4と、蛇腹状に折り曲げられたセパレータ5とからなる電極体2が、電解液と共に収納されている。なお、セパレータ5は、ポリプロピレン系の不織布からなる親水性のセパレータである。   As shown in the exploded view of FIG. 2, an insulating rectangular frame-shaped member 7 and a rectangular positive electrode which is disposed so as to face the X-direction so as to cover the frame-shaped member 7 and whose peripheral portion is bent at a substantially right angle. The current collector 8 and the negative electrode current collector 9 constitute a square cell 10. Inside the cell 10, an electrode body 2 including a positive electrode plate 3 made of the positive electrode active material, a negative electrode plate 4 made of the negative electrode active material, and a separator 5 bent in a bellows shape is provided as an electrolyte solution. It is stored with. The separator 5 is a hydrophilic separator made of a polypropylene nonwoven fabric.

図3の部分拡大図に示すように、電極体2は、正極板3と負極板4とが、蛇腹状に折り曲げられたセパレータ5に互いに対向して交互に挟み込まれた状態で配置されてなる。なお、本実施形態において、正極板3および負極板4は、縦230mm、横29mm、幅0.35mmの短冊状に形成されている。   As shown in the partially enlarged view of FIG. 3, the electrode body 2 is arranged in a state where the positive electrode plate 3 and the negative electrode plate 4 are alternately sandwiched between the separators 5 bent in a bellows shape. . In the present embodiment, the positive electrode plate 3 and the negative electrode plate 4 are formed in a strip shape having a length of 230 mm, a width of 29 mm, and a width of 0.35 mm.

図4の断面図に示すように、正極板3と負極板4とは、セパレータ5を介してY方向に積層されている。そして、正極板3と正極集電体8との間、および、負極板4と負極集電体9との間に、電極シート6が介在されている。また、正極板3の端部(図4における上端)が上の電極シート6に食い込むように配され、負極板4の端部(図4における下端)が下の電極シート6に食い込むように配されている(図5参照)。また、正極板3および負極板4の端面が電極シート6と当接しており、正極板3と正極集電体8、負極板4と負極集電体9が、それぞれ電極シート6を介して電気的に接続される。   As shown in the cross-sectional view of FIG. 4, the positive electrode plate 3 and the negative electrode plate 4 are stacked in the Y direction with a separator 5 interposed therebetween. An electrode sheet 6 is interposed between the positive electrode plate 3 and the positive electrode current collector 8 and between the negative electrode plate 4 and the negative electrode current collector 9. Moreover, it arrange | positions so that the edge part (upper end in FIG. 4) of the positive electrode plate 3 may bite into the upper electrode sheet 6, and it arrange | positions so that the edge part (lower end in FIG. 4) of the negative electrode plate 4 may bite into the lower electrode sheet 6. (See FIG. 5). Moreover, the end surfaces of the positive electrode plate 3 and the negative electrode plate 4 are in contact with the electrode sheet 6, and the positive electrode plate 3 and the positive electrode current collector 8, and the negative electrode plate 4 and the negative electrode current collector 9 are electrically connected via the electrode sheet 6. Connected.

なお、本実施形態の二次電池1では、正極板3、負極板4と、電極シート6と、正極集電体8、負極集電体9との導通は、金属屑のような異物の混入の防止および工程の簡略化のために溶接は行わず、両集電体8,9の対向方向Xの接触圧(押し付け)によって確保されている。   In the secondary battery 1 of the present embodiment, the conduction between the positive electrode plate 3, the negative electrode plate 4, the electrode sheet 6, the positive electrode current collector 8, and the negative electrode current collector 9 is mixed with foreign matters such as metal scraps. In order to prevent this and to simplify the process, welding is not performed and the current collectors 8 and 9 are secured by contact pressure (pressing) in the facing direction X.

このように、正極板3および負極板4と、正極集電体8および負極集電体9との間に弾性の電極シート6を介在させることで、上の電極シート6が正極板3側に付勢し、下の電極シート6が負極板4側に付勢するため、正極板3および負極板4と、電極シート6との良好な当接状態を維持できる。具体的には、二次電池1の経年使用等によって、組立力(押し付け力)が低下しても、正極板3または負極板4の位置ずれを防ぎ、接触抵抗の増大等による電池性能の低下を抑制することができる。つまり、本実施形態の二次電池1では、正極板3および負極板4と、正極集電体8および負極集電体9との、電気的に良好な接触状態を維持することが可能となる。   As described above, the elastic electrode sheet 6 is interposed between the positive electrode plate 3 and the negative electrode plate 4, and the positive electrode current collector 8 and the negative electrode current collector 9, so that the upper electrode sheet 6 faces the positive electrode plate 3 side. Since the lower electrode sheet 6 is biased toward the negative electrode plate 4, a good contact state between the positive electrode plate 3 and the negative electrode plate 4 and the electrode sheet 6 can be maintained. Specifically, even if the assembly force (pressing force) decreases due to the use of the secondary battery 1 over time, the displacement of the positive electrode plate 3 or the negative electrode plate 4 is prevented, and the battery performance decreases due to an increase in contact resistance. Can be suppressed. That is, in the secondary battery 1 of the present embodiment, it is possible to maintain an electrically good contact state between the positive electrode plate 3 and the negative electrode plate 4, and the positive electrode current collector 8 and the negative electrode current collector 9. .

また、正極集電体8および負極集電体9はニッケルめっきを施した鋼板で形成されており、正極集電体8の電池内側の面が、正極集電面8aとして機能し、電池外側の露出面が正極端子面8bとして機能する。同様に、負極集電体9の電池内側の面が、負極集電面9aとして機能し、電池外側の露出面が負極端子面9bとして機能する。   The positive electrode current collector 8 and the negative electrode current collector 9 are formed of nickel-plated steel plates, and the battery inner surface of the positive electrode current collector 8 functions as the positive electrode current collector surface 8a. The exposed surface functions as the positive electrode terminal surface 8b. Similarly, the battery inner surface of the negative electrode current collector 9 functions as the negative electrode current collector surface 9a, and the exposed surface outside the battery functions as the negative electrode terminal surface 9b.

(電極シート6の構造)
次に、電極シート6の構造について、説明する。電極シート6は、発泡ウレタンにニッケルめっきを施した発泡ニッケルを、シート状に形成してなる。図5に示すように、電極シート6は、発泡ニッケルからなる基材6aと、その内部の空隙部6bとを有する。そして、空隙部6bにEVA(エチレン・酢酸ビニル共重合樹脂)からなる弾性樹脂Rが含浸されている。このように、非弾性体である発泡ニッケルに弾性樹脂Rを含浸させることで、弾性の電極シート6を形成することができる。なお、本実施形態における基材6aの空隙率は95%前後である。
(Structure of electrode sheet 6)
Next, the structure of the electrode sheet 6 will be described. The electrode sheet 6 is formed by forming foamed nickel obtained by applying nickel plating to foamed urethane in a sheet shape. As shown in FIG. 5, the electrode sheet 6 includes a base material 6 a made of nickel foam and an internal space 6 b. The gap 6b is impregnated with an elastic resin R made of EVA (ethylene / vinyl acetate copolymer resin). Thus, the elastic electrode sheet 6 can be formed by impregnating the foamed nickel, which is an inelastic material, with the elastic resin R. In addition, the porosity of the base material 6a in this embodiment is around 95%.

また、空隙部6bのすべてに弾性樹脂Rを含浸させてもよいし、図5のように、空隙部6bにまだらに弾性樹脂Rを含浸させてもよい。   Further, the entire gap 6b may be impregnated with the elastic resin R, or the gap 6b may be impregnated with the elastic resin R as shown in FIG.

また、電極シート6は、発泡金属に弾性樹脂Rを含浸させるだけで製造できるので、製造が容易である。そのため、電極シート6を薄型化することも容易にできる。つまり、薄型の発泡金属を用意し、これに弾性樹脂Rを含浸させればよい。   Moreover, since the electrode sheet 6 can be produced simply by impregnating the foamed metal with the elastic resin R, the production is easy. Therefore, the electrode sheet 6 can be easily reduced in thickness. That is, a thin foam metal may be prepared and impregnated with the elastic resin R.

なお、弾性樹脂Rは、EVA以外にも、PPやPEなどのオレフィン系を用いることも可能である。   In addition to EVA, the elastic resin R can also use olefins such as PP and PE.

また、電極シート6の導電性を高めるため、弾性樹脂Rに耐酸化性のカーボンを混合してもよい。これにより、負極板4から負極集電体9への電気伝導が良好となる。つまり、弾性樹脂Rが非導電性である場合、電気の一部が、負極板4から電極シート6の縁部などを迂回して負極集電体9に到達するところ、弾性樹脂Rが導電性であると、負極板4から電極シート6の内部を通りそのまま負極集電体9に到達することができる。   Further, in order to increase the conductivity of the electrode sheet 6, oxidation-resistant carbon may be mixed into the elastic resin R. Thereby, the electrical conduction from the negative electrode plate 4 to the negative electrode current collector 9 is improved. That is, when the elastic resin R is non-conductive, a part of the electricity bypasses the edge of the electrode sheet 6 from the negative electrode plate 4 and reaches the negative electrode current collector 9, and the elastic resin R becomes conductive. If so, the negative electrode current collector 9 can be reached from the negative electrode plate 4 through the inside of the electrode sheet 6 as it is.

また、電極シート6は、基材6aの空隙部6bに弾性樹脂Rを含浸して形成する以外にも、基材6aを厚さ方向に略1/2で一旦切断し、間に板状で導電性を有する弾性樹脂からなる弾性部材を挟み込むように形成することもできる。さらに、このように形成した電極シートの空隙部に、弾性樹脂を含浸してもよい。   In addition to forming the electrode sheet 6 by impregnating the elastic resin R in the gap 6b of the base material 6a, the electrode sheet 6 is once cut in about 1/2 in the thickness direction, It can also be formed so as to sandwich an elastic member made of an elastic resin having conductivity. Furthermore, you may impregnate the elastic part in the space | gap part of the electrode sheet formed in this way.

(電池モジュールM)
続き、二次電池1を複数個(本実施形態では30個)積層した電池モジュールMについて説明する。図6に示すように、電池モジュールMは、30個の二次電池1と、これを囲む側面板11、圧縮板12とを備え、これらが絶縁素材からなるケーシング13によって覆われている。また、側面板11と圧縮板12とケーシング13とがボルトまたはネジによって締結され、30個の二次電池1が積層方向(Z方向)に押し付けられた状態でこれらに保持される。
(Battery module M)
Next, a battery module M in which a plurality of secondary batteries 1 (30 in this embodiment) are stacked will be described. As shown in FIG. 6, the battery module M includes 30 secondary batteries 1, a side plate 11 and a compression plate 12 surrounding the secondary battery 1, and these are covered with a casing 13 made of an insulating material. Further, the side plate 11, the compression plate 12, and the casing 13 are fastened by bolts or screws, and the 30 secondary batteries 1 are held in a state of being pressed in the stacking direction (Z direction).

なお、前記の通り、二次電池1は、正極集電体8の電池外側に露出した面が正極端子面8b、負極集電体9の電池外側に露出した面が負極端子面9bとして機能するため、隣り合う二次電池の正極端子面8bと負極端子面9bとを当接して積層することで、これら二次電池が電気的に接続されることとなる。また、隣り合う二次電池1の間に、二次電池1を冷却するための導電性の放熱板14を介在させてもよい。   As described above, in the secondary battery 1, the surface of the positive electrode current collector 8 exposed outside the battery functions as the positive electrode terminal surface 8 b and the surface of the negative electrode current collector 9 exposed outside the battery functions as the negative electrode terminal surface 9 b. Therefore, these secondary batteries are electrically connected by abutting and laminating the positive electrode terminal surface 8b and the negative electrode terminal surface 9b of adjacent secondary batteries. Further, a conductive heat dissipation plate 14 for cooling the secondary battery 1 may be interposed between the adjacent secondary batteries 1.

(2)第2の実施形態
次に、本発明の第2の実施形態について図7〜図10に基づき説明する。第2の実施形態は、電極シート6を、捲回型の電池に適用した場合の実施形態である。第1の実施形態との主な違いは電極板およびセパレータの構造である。
(2) Second Embodiment Next, a second embodiment of the present invention will be described with reference to FIGS. The second embodiment is an embodiment in which the electrode sheet 6 is applied to a wound battery. The main difference from the first embodiment is the structure of the electrode plate and the separator.

(二次電池101の構造)
図7は、本発明の二次電池101における捲回型の電極体102の構造を示す一部破断斜視図であり、図8は、電極体102の平面図である。図7および図8に示すように、略円筒状の電極体102は、シート状の負極板103と、シート状の正極板104と、両電極板間に介在するイオンは透過するが電子を透過させない板状のセパレータ105とを備える。負極板103と正極板104とは、セパレータ105を介して、上下にずらして重ね合わされた状態で渦巻き状に巻回され、電極体102を構成する。つまり、電極体102の軸方向において、負極板103の上端がセパレータ105の上方に突き出ており、正極板104の下端がセパレータ105の下方に突き出る(図7参照)。また、電極体102の軸方向に直交する方向において、電極体102の外方から径方向内方に向け、セパレータ105を介して負極板103と正極板104とが交互に積層された状態となる(図8参照)。
(Structure of secondary battery 101)
FIG. 7 is a partially broken perspective view showing the structure of the wound electrode body 102 in the secondary battery 101 of the present invention, and FIG. 8 is a plan view of the electrode body 102. As shown in FIGS. 7 and 8, the substantially cylindrical electrode body 102 transmits a sheet-like negative electrode plate 103, a sheet-like positive electrode plate 104, and ions that are interposed between the two electrode plates but transmits electrons. And a plate-like separator 105 that is not allowed to move. The negative electrode plate 103 and the positive electrode plate 104 are wound in a spiral shape in a state where they are overlapped while being shifted up and down via the separator 105 to constitute the electrode body 102. That is, in the axial direction of the electrode body 102, the upper end of the negative electrode plate 103 protrudes above the separator 105, and the lower end of the positive electrode plate 104 protrudes below the separator 105 (see FIG. 7). Further, in the direction orthogonal to the axial direction of the electrode body 102, the negative electrode plates 103 and the positive electrode plates 104 are alternately stacked via the separator 105 from the outer side of the electrode body 102 to the inner side in the radial direction. (See FIG. 8).

図9に示すように、二次電池101は、複数の電極体102が角形状のセル110に並列的に収納されてなる二次電池である。セル110は、矩形の枠形部材107と、枠形部材107を覆うようにP方向に対向して配置され、周縁部が略直角に折り曲げられた矩形の負極集電体108および正極集電体109とにより構成されている。なお、枠形部材107が絶縁材からなり、負極集電体108と正極集電体109がニッケルめっきを施した鋼板からなる。   As shown in FIG. 9, the secondary battery 101 is a secondary battery in which a plurality of electrode bodies 102 are accommodated in parallel in a rectangular cell 110. The cell 110 includes a rectangular frame-shaped member 107, a rectangular negative electrode current collector 108 and a positive electrode current collector that are arranged to face the P-shape so as to cover the frame-shaped member 107 and have a peripheral edge bent at a substantially right angle. 109. The frame-shaped member 107 is made of an insulating material, and the negative electrode current collector 108 and the positive electrode current collector 109 are made of a steel plate plated with nickel.

図10に示すとおり、電極体102と負極集電体108または正極集電体109との間に介在するように、電極シート106が電極体102の上下に配されている。そして、負極板103の上端部が上の電極シート6に食い込むように配され、負極板103と負極集電体108とが電気的に接続される。同様に、正極板104の下端部が下の電極シート106に食い込むように配され、正極板104と正極集電体109とが電気的に接続される。なお、負極集電体108の電池内側の面が負極集電面108aとして機能し、電池外側に露出した面が負極端子面108bとして機能する。正極集電体109の電池内側の面が正極集電面109aとして機能し、電池外側に露出した面が正極端子面109bとして機能する。   As shown in FIG. 10, the electrode sheets 106 are arranged above and below the electrode body 102 so as to be interposed between the electrode body 102 and the negative electrode current collector 108 or the positive electrode current collector 109. Then, the upper end portion of the negative electrode plate 103 is arranged so as to bite into the upper electrode sheet 6, and the negative electrode plate 103 and the negative electrode current collector 108 are electrically connected. Similarly, the lower end portion of the positive electrode plate 104 is arranged so as to bite into the lower electrode sheet 106, and the positive electrode plate 104 and the positive electrode current collector 109 are electrically connected. The inner surface of the negative electrode current collector 108 functions as the negative electrode current collecting surface 108a, and the surface exposed to the outer side of the battery functions as the negative electrode terminal surface 108b. The surface inside the battery of the positive electrode current collector 109 functions as the positive electrode current collecting surface 109a, and the surface exposed to the outside of the battery functions as the positive electrode terminal surface 109b.

また、電極体102の上下にそれぞれ突き出している負極板103および正極板104とは、負極集電体108および正極集電体109と電気的に接続するにあたり、これらが電極シート106に当接するのみで溶接されていないので、溶接部の電気抵抗による電圧低下がない。これにより、二次電池101の高性能化が可能となる。そして、セル110内部に水酸化カリウム(KOH)を主体とする電解液を所定量装入して、二次電池101が構成される。   Further, the negative electrode plate 103 and the positive electrode plate 104 protruding above and below the electrode body 102 are only brought into contact with the electrode sheet 106 when electrically connected to the negative electrode current collector 108 and the positive electrode current collector 109. Since it is not welded, there is no voltage drop due to the electrical resistance of the weld. Thereby, the performance of the secondary battery 101 can be improved. Then, a predetermined amount of an electrolyte mainly composed of potassium hydroxide (KOH) is charged into the cell 110 to form the secondary battery 101.

このように構成された二次電池101は、弾性の電極シート106が存在することにより、上の電極シート106が負極板103側に付勢し、下の電極シート106が正極板104側に付勢するので、これらの当接面にずれ等が生じにくく、接触抵抗の増大を抑制でき、電池性能の低下を抑えることができる。   In the secondary battery 101 configured in this manner, the upper electrode sheet 106 is biased toward the negative electrode plate 103 and the lower electrode sheet 106 is biased toward the positive electrode plate 104 due to the presence of the elastic electrode sheet 106. Therefore, it is difficult for these contact surfaces to be displaced, so that an increase in contact resistance can be suppressed, and a decrease in battery performance can be suppressed.

以上のとおり、図面を参照しながら本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。また、適宜負極板や正極板、セパレータ、セルの形状を変更してもよい。したがって、そのようなものも本発明の範囲内に含まれる。   As described above, the preferred embodiments of the present invention have been described with reference to the drawings, but various additions, modifications, or deletions can be made without departing from the spirit of the present invention. Moreover, you may change the shape of a negative electrode plate, a positive electrode plate, a separator, and a cell suitably. Therefore, such a thing is also included in the scope of the present invention.

本発明に係る二次電池は、電気鉄道車両や重機、マイクログリッド、風力発電用の二次電池として好適に用いることができる。   The secondary battery according to the present invention can be suitably used as a secondary battery for electric railway vehicles, heavy machinery, microgrids, and wind power generation.

1 二次電池(第1の実施形態)
2 電極体
3 正極板
3a 正極当接面
4 負極板
4a 負極当接面
5 セパレータ
6 電極シート
6a 基材
6b 空隙部
7 枠形部材
8 正極集電体
8a 正極集電面
8b 正極端子面
9 負極集電体
9a 負極集電面
9b 負極端子面
10 セル
11 側面板
12 圧縮板
13 ケーシング
14 放熱板
101 二次電池(第2の実施形態)
102 電極体
103 負極板
103a 負極当設面
104 正極板
104a 正極当接面
105 セパレータ
106 電極シート
107 枠形部材
108 負極集電体
108a 負極集電面
108b 負極端子面
109 正極集電体
109a 正極集電面
109b 正極端子面
110 セル
R 弾性樹脂
1 Secondary battery (first embodiment)
2 Electrode body 3 Positive electrode plate 3a Positive electrode contact surface 4 Negative electrode plate 4a Negative electrode contact surface 5 Separator 6 Electrode sheet 6a Base material 6b Space 7 Frame-shaped member 8 Positive electrode current collector 8a Positive electrode current collector surface 8b Positive electrode terminal surface 9 Negative electrode Current collector 9a Negative electrode current collector surface 9b Negative electrode terminal surface 10 Cell 11 Side plate 12 Compression plate 13 Casing 14 Heat sink 101 Secondary battery (second embodiment)
102 Electrode 103 Negative electrode plate 103a Negative electrode contact surface 104 Positive electrode plate 104a Positive electrode contact surface 105 Separator 106 Electrode sheet 107 Frame member 108 Negative electrode current collector 108a Negative electrode current collector surface 108b Negative electrode terminal surface 109 Positive electrode current collector 109a Positive electrode current collector Electrical surface 109b Positive terminal surface 110 Cell R Elastic resin

Claims (11)

互いに対向して配置された正極集電体および負極集電体と、
前記正極集電体と前記負極集電体との間に配され、両集電体の対向方向に直交する方向に、セパレータを介して交互に積層された正極板および負極板とを備え、
前記正極板は、外周端部に前記正極集電体と当接する正極当接面を有し、
前記負極板は、外周端部に前記負極集電体と当接する負極当接面を有し、
前記正極集電体と前記正極当接面の間、および、前記負極集電体と前記負極当接面の間、の少なくとも一方に、空隙部を有する発泡金属を基材として、前記発泡金属の内部に弾性樹脂を加えてなる電極シートを介在させた二次電池。
A positive electrode current collector and a negative electrode current collector disposed to face each other;
A positive electrode plate and a negative electrode plate, which are arranged between the positive electrode current collector and the negative electrode current collector and are alternately stacked via separators in a direction perpendicular to the opposing direction of the both current collectors;
The positive electrode plate has a positive electrode contact surface in contact with the positive electrode current collector at an outer peripheral end portion;
The negative electrode plate has a negative electrode contact surface in contact with the negative electrode current collector at an outer peripheral end,
At least one of the positive electrode current collector and the positive electrode contact surface and between the negative electrode current collector and the negative electrode contact surface is a foam metal having a void portion as a base material. A secondary battery in which an electrode sheet made of elastic resin is interposed.
前記電極シートは、
前記空隙部に弾性樹脂を含浸させてなる
請求項1記載の二次電池。
The electrode sheet is
The secondary battery according to claim 1, wherein the void is impregnated with an elastic resin.
前記基材は、
空隙率50%以上の発泡ウレタンにニッケルめっきが施されて形成される
請求項1または2項記載の二次電池。
The substrate is
The secondary battery according to claim 1, which is formed by applying nickel plating to urethane foam having a porosity of 50% or more.
前記基材に弾性部材を挟み込んだ
請求項1〜3のいずれか1項記載の電極シート。
The electrode sheet according to claim 1, wherein an elastic member is sandwiched between the base materials.
前記弾性樹脂は、
エチレン・酢酸ビニル共重合樹脂、または、オレフィン系樹脂である
請求項1〜4のいずれか1項記載の二次電池。
The elastic resin is
The secondary battery according to claim 1, which is an ethylene / vinyl acetate copolymer resin or an olefin resin.
前記弾性樹脂は、
導電性のカーボンを混合した樹脂である
請求項1〜5のいずれか1項記載の二次電池。
The elastic resin is
The secondary battery according to claim 1, which is a resin mixed with conductive carbon.
前記正極板および前記負極板、前記セパレータからなる電極体を、電解液とともに収納する角形のセルを備え、
前記セルは、
前記電極体の側端部を囲む枠形部材と、
前記枠形部材の開口部を対向して覆う前記正極集電体と前記負極集電体とを有し、
前記正極集電体は、電池の外部に露出する面が正極端子面として、電池の内部に向く面が正極集電面として機能し、
前記負極集電体は、電池の外部に露出する面が負極端子面として、電池の内部に向く面が負極集電面として機能する
請求項1〜6のいずれか1項記載の二次電池。
An electrode body composed of the positive electrode plate, the negative electrode plate, and the separator is provided with a rectangular cell that accommodates an electrolyte solution,
The cell is
A frame-shaped member surrounding a side end of the electrode body;
The positive electrode current collector and the negative electrode current collector that cover and cover the opening of the frame-shaped member,
The positive electrode current collector, the surface exposed to the outside of the battery as a positive electrode terminal surface, the surface facing the inside of the battery functions as a positive electrode current collector surface,
The secondary battery according to claim 1, wherein the negative electrode current collector functions as a negative electrode terminal surface at a surface exposed to the outside of the battery and a negative electrode current collector surface at a surface facing the inside of the battery.
前記正極集電体および前記負極集電体を対向方向に押し付け、
前記正極板および前記負極板を前記電極シートに食い込ませて配置した
請求項1〜7のいずれか1項記載の二次電池。
Pressing the positive electrode current collector and the negative electrode current collector in opposite directions;
The secondary battery according to claim 1, wherein the positive electrode plate and the negative electrode plate are arranged so as to bite into the electrode sheet.
互いに対向して配置された正極集電体および負極集電体と、
前記正極集電体と前記負極集電体との間に配され、両集電体の対向方向に直交する方向に、セパレータを介して交互に積層された正極板および負極板とを備え、
前記正極板は、外周端部に前記正極集電体と当接する正極当接面を有し、前記負極板は、外周端部に前記負極集電体と当接する負極当接面を有する二次電池において、
前記正極集電体と前記正極当接面の間、および、前記負極集電体と前記負極当接面の間、の少なくとも一方に介在させ、空隙部を有する発泡金属を基材として、前記発泡金属の内部に弾性樹脂を加えてなる電極シート。
A positive electrode current collector and a negative electrode current collector disposed to face each other;
A positive electrode plate and a negative electrode plate, which are arranged between the positive electrode current collector and the negative electrode current collector and are alternately stacked via separators in a direction perpendicular to the opposing direction of the both current collectors;
The positive electrode plate has a positive electrode contact surface in contact with the positive electrode current collector at an outer peripheral end portion, and the negative electrode plate has a negative electrode contact surface in contact with the negative electrode current collector at an outer peripheral end portion. In batteries,
Using the foam metal having a gap as a base material, the foam is interposed between at least one of the positive electrode current collector and the positive electrode contact surface and between the negative electrode current collector and the negative electrode contact surface. An electrode sheet obtained by adding an elastic resin to the inside of a metal.
前記基材は、
空隙率50%以上の発泡ウレタンにニッケルめっきが施されて形成され、
前記空隙部に弾性樹脂を含浸させてなる
請求項9記載の電極シート。
The substrate is
It is formed by applying nickel plating to urethane foam with a porosity of 50% or more,
The electrode sheet according to claim 9, wherein the gap is impregnated with an elastic resin.
前記基材に弾性部材を挟み込んだ
請求項9または10記載の電極シート。
The electrode sheet according to claim 9 or 10, wherein an elastic member is sandwiched between the base materials.
JP2011182935A 2011-08-24 2011-08-24 Secondary battery and electrode sheet for secondary battery Withdrawn JP2013045644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011182935A JP2013045644A (en) 2011-08-24 2011-08-24 Secondary battery and electrode sheet for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011182935A JP2013045644A (en) 2011-08-24 2011-08-24 Secondary battery and electrode sheet for secondary battery

Publications (1)

Publication Number Publication Date
JP2013045644A true JP2013045644A (en) 2013-03-04

Family

ID=48009383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011182935A Withdrawn JP2013045644A (en) 2011-08-24 2011-08-24 Secondary battery and electrode sheet for secondary battery

Country Status (1)

Country Link
JP (1) JP2013045644A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019021384A (en) * 2017-07-11 2019-02-07 日産自動車株式会社 battery
CN110474104A (en) * 2018-05-09 2019-11-19 郑州宇通集团有限公司 A kind of takeup type battery core and the battery using the takeup type battery core

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019021384A (en) * 2017-07-11 2019-02-07 日産自動車株式会社 battery
JP7129150B2 (en) 2017-07-11 2022-09-01 日産自動車株式会社 battery
CN110474104A (en) * 2018-05-09 2019-11-19 郑州宇通集团有限公司 A kind of takeup type battery core and the battery using the takeup type battery core

Similar Documents

Publication Publication Date Title
JP4894129B2 (en) Thin battery and battery pack
JP6780345B2 (en) Power storage device and manufacturing method of power storage device
KR20080005623A (en) Safety kit for secondary battery
JP6705358B2 (en) Method for manufacturing power storage device
JP2018028983A (en) Bipolar battery
JP6750389B2 (en) Bipolar battery
KR20130108688A (en) Battery cell of improved connection reliability and battery pack comprising the same
JP6838640B2 (en) Power storage device
KR102285642B1 (en) Battery Cell Comprising Electrode Lead Facing Outer Surface of Electrode Assembly
US20140255761A1 (en) Battery cell, manufacturing method thereof, and battery module including the same
KR20140012601A (en) Secondary battery and electrochemical cell having the same
KR101487092B1 (en) Pouch for secondary battery and secondary battery using the same
KR101484369B1 (en) Secondary battery and electrochemical cell having the same
JP2018147572A (en) Negative electrode composite body structure of lithium air battery
JP5809044B2 (en) Secondary battery
JP2019029226A (en) Method of manufacturing power storage element
JP2013045644A (en) Secondary battery and electrode sheet for secondary battery
US10446805B2 (en) Stacked battery
US9660245B2 (en) Battery cell
JP2017212145A (en) Power storage device
JP6125766B2 (en) Manufacturing method and manufacturing apparatus for battery and buffer member
JP2020077528A (en) Fixture and storage battery module
JP5528131B2 (en) Stacked battery
JP2019125564A (en) Power storage module
JP7316520B2 (en) battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104