JP2013044586A - Pyroelectric infrared detection device - Google Patents
Pyroelectric infrared detection device Download PDFInfo
- Publication number
- JP2013044586A JP2013044586A JP2011181229A JP2011181229A JP2013044586A JP 2013044586 A JP2013044586 A JP 2013044586A JP 2011181229 A JP2011181229 A JP 2011181229A JP 2011181229 A JP2011181229 A JP 2011181229A JP 2013044586 A JP2013044586 A JP 2013044586A
- Authority
- JP
- Japan
- Prior art keywords
- infrared
- infrared detection
- pyroelectric infrared
- pyroelectric
- area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 85
- 230000005855 radiation Effects 0.000 abstract description 4
- 230000003287 optical effect Effects 0.000 description 29
- 238000009434 installation Methods 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 230000006378 damage Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229920001903 high density polyethylene Polymers 0.000 description 3
- 239000004700 high-density polyethylene Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000007769 metal material Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003685 thermal hair damage Effects 0.000 description 1
Images
Landscapes
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
Description
本発明は、少なくとも1個以上の貫通孔を有した板を用いた焦電型赤外線検出装置で、図2の様に赤外線検知領域と焦電型赤外線検出器の間に少なくとも1個以上の貫通孔を有した板を配置する事により、人体等から放射される赤外線エネルギーの受光量を調整する事が可能な焦電型赤外線検出装置に関するものである。 The present invention is a pyroelectric infrared detector using a plate having at least one through hole, and at least one through hole is provided between the infrared detection region and the pyroelectric infrared detector as shown in FIG. The present invention relates to a pyroelectric infrared detector capable of adjusting the amount of received infrared energy emitted from a human body or the like by arranging a plate having a hole.
従来の焦電型赤外線検出装置は、焦電型赤外線検出装置の設置場所、設置環境も限定されることなく、幅広い場所にて使用可能へ赤外線検知領域内からの放射赤外線を集光させる樹脂成型光学レンズを、前記焦電型赤外線検出器に焦点位置を合わせる形で設置する事により、設計区分化された赤外線検知領域を有するべく構築されている。 The conventional pyroelectric infrared detector is a resin molding that collects the infrared radiation from the infrared detection area so that it can be used in a wide range of locations without limiting the installation location and installation environment of the pyroelectric infrared detector. The optical lens is constructed so as to have an infrared detection region that is divided into designs by installing the optical lens so that the focal point is aligned with the pyroelectric infrared detector.
前記樹脂成型光学レンズは一般に赤外線透過材から成る樹脂材が用いられており、例えば、一定範囲の検出対象面を複数の赤外線検出領域に分割化させる場合、凸形状体もしくはフレネル形状体の小レンズセグメントを密に集合配置した多集合型レンズとして構成され、前記樹脂成型光学レンズ部の外形状は肉薄球面形状もしくは非球面形状のものが多く使用されている。 The resin-molded optical lens generally uses a resin material made of an infrared transmitting material. For example, when dividing a detection target surface in a certain range into a plurality of infrared detection regions, a small lens having a convex shape or a Fresnel shape is used. It is configured as a multi-aggregate lens in which segments are densely arranged, and the outer shape of the resin-molded optical lens portion is often a thin spherical shape or an aspherical shape.
焦電型赤外線検出器へ具備される樹脂成型光学レンズ4は、集光レンズとして前記赤外線受光素子1との焦点距離関係を考慮して光学設計されており、赤外線検知領域はセグメントの配置により決定される。その赤外線検知領域内に侵入した、人体等から放射される赤外線を、焦電型赤外線検出器内部に配置された赤外線受光素子が感知する。
The resin-molded
赤外線検知領域を構築する際、凸形状体もしくはフレネル形状体の小レンズセグメントを集合配置した多集合型レンズとして構成されているが、人体等から放射された赤外線の入射エネルギー量を微調整する際はセグメント面積を調整する事で各赤外線検知領域から放射される赤外線エネルギーの受光量を微調整していた。 When constructing an infrared detection area, it is configured as a multi-aggregate lens that is a collection of convex or Fresnel-shaped small lens segments. When finely adjusting the amount of incident infrared radiation emitted from the human body, etc. Had fine-tuned the amount of received infrared energy emitted from each infrared detection area by adjusting the segment area.
また、赤外線検知領域は、幾何学的に無限遠に延びる。そのため、距離検知を行う場合は、焦電型赤外線検出装置自体に俯角を設ける事により、距離検知を行うことが主流となっている。 The infrared detection area extends geometrically at infinity. Therefore, when performing distance detection, it is the mainstream to perform distance detection by providing a depression angle in the pyroelectric infrared detection device itself.
前述の通り、人体等から放射された赤外線の入射エネルギー量を微調整する際はセグメント面積を調整する事で各赤外線検知領域から放射される赤外線エネルギーの受光量を微調整していたが、セグメント面積のみの変更では受光量の調整に限界があり困難であった。 As described above, when finely adjusting the amount of infrared incident energy emitted from the human body, etc., the amount of received infrared energy emitted from each infrared detection area was finely adjusted by adjusting the segment area. Changing the area alone is difficult because there is a limit to the adjustment of the amount of light received.
各赤外線検知領域から放射される赤外線エネルギーの受光量を調整する際、各セグメント面積の調整の他に、焦電型赤外線検出器内部に配置された赤外線受光素子形状もしくは、赤外線受光素子面積を変更する事で赤外線検知領域形状もしくは赤外線検知領域サイズ調整も可能である。しかし、焦電型赤外線検出器内部に配置された赤外線受光素子形状を変更する場合、全ての赤外線検知領域において赤外線検知領域形状もしくは赤外線検知領域サイズが変更となることから、赤外線検知領域毎での赤外線検知領域形状もしくは赤外線検知領域サイズを任意に変更する事は困難であった。 When adjusting the amount of received infrared energy emitted from each infrared detection area, in addition to adjusting each segment area, the shape of the infrared light receiving element arranged inside the pyroelectric infrared detector or the area of the infrared light receiving element is changed. By doing so, the infrared detection area shape or the infrared detection area size can be adjusted. However, when changing the shape of the infrared light receiving element arranged inside the pyroelectric infrared detector, the shape of the infrared detection area or the size of the infrared detection area is changed in all infrared detection areas. It was difficult to arbitrarily change the infrared detection area shape or the infrared detection area size.
参考として、図9に1つのセグメント面積比による焦電型赤外線検出器から得られる雑音出力に対する信号出力(倍率)の関係を示す。この場合、セグメント面積を小さくし赤外線検知領域から放射される赤外線エネルギーの受光量を少なくすることで焦電型赤外線検出器から得られる雑音出力に対する信号出力(倍率)はセグメント面積100%の時が4.0倍、セグメント面積30%の時が3.25倍と焦電型赤外線検出器以降の信号出力に差が無い事が分かる事から、セグメント面積を小さくすることによる微調整は困難となる。 For reference, FIG. 9 shows the relationship between the signal output (magnification) and the noise output obtained from the pyroelectric infrared detector with one segment area ratio. In this case, the signal output (magnification) with respect to the noise output obtained from the pyroelectric infrared detector by reducing the segment area and reducing the amount of received infrared energy emitted from the infrared detection region is when the segment area is 100%. It can be seen that there is no difference in the signal output after the pyroelectric infrared detector when the segment area is 4.0 times and the segment area is 30%, and it is difficult to make fine adjustments by reducing the segment area. .
そのほかに、焦電型赤外線検出器から得られる信号出力の調整を行う際、焦電型赤外線検出器以降のアンプ回路部で構成されるアンプゲインを調整することも可能である。しかし、全ての赤外線検知領域から放射される赤外線エネルギーの受光量が焦電型赤外線検出器以降のアンプ回路部で構成されるアンプゲインにより調整されることから、セグメント毎での信号出力を調整する事は困難であった。 In addition, when adjusting the signal output obtained from the pyroelectric infrared detector, it is also possible to adjust the amplifier gain constituted by the amplifier circuit section after the pyroelectric infrared detector. However, since the amount of received infrared energy emitted from all infrared detection areas is adjusted by the amplifier gain configured by the amplifier circuit section after the pyroelectric infrared detector, the signal output for each segment is adjusted. Things were difficult.
また、従来の距離識別においては、焦電型赤外線検出装置に俯角を設け、無限遠に広がる赤外線検知領域を床面に投影させ、必要な赤外線検知領域を焦電型赤外線検出装置の俯角で決定する事が主流である。しかし、筐体の制約等で焦電型赤外線検出装置に俯角を設ける事が困難な場合、赤外線検知領域は幾何学的に無限遠に検知可能であることから、距離検知は困難である。 Also, in conventional distance identification, a pyroelectric infrared detector is provided with a depression angle, an infrared detection area that extends to infinity is projected onto the floor, and the necessary infrared detection area is determined by the depression angle of the pyroelectric infrared detection apparatus. It is mainstream to do. However, when it is difficult to provide a depression angle in the pyroelectric infrared detection device due to restrictions on the housing or the like, distance detection is difficult because the infrared detection region can be detected geometrically at infinity.
更には、樹脂成型光学レンズは集光レンズとして焦電型赤外線検出器2内部に配置された赤外線受光素子との焦点距離関係を考慮して光学設計されており、前述赤外線受光素子に形成されたプラス極性側エリアとマイナス極性側エリアが樹脂成型光学レンズを介して赤外線検知領域として投影される。光学レンズ機能が無い場合、前述赤外線受光素子に形成されたプラス(マイナス)極性側エリア6−aとマイナス(プラス)極性側エリア6−bは光学レンズにて集光されることなく赤外線検知領域として投影されるため、プラス(マイナス)極性側エリア6−aとマイナス(プラス)極性側エリア6−bが重なり焦電型赤外線検出器以降の信号出力がキャンセルする問題もある。
Further, the resin-molded optical lens is optically designed in consideration of the focal length relationship with the infrared light receiving element disposed inside the pyroelectric
対策手法として、図11の様に焦電型赤外線検出器と樹脂成型光学レンズの間に遮蔽板7を使用し、プラス(マイナス)極性側エリア6−aとマイナス(プラス)極性側エリア6−bの重なりを防ぐ手法も存在するが、部品数アップ、遮蔽板挿入による工数アップと量産工程には不向きである。
As a countermeasure method, as shown in FIG. 11, a
上記の課題を解決するために本発明は、少なくとも1個以上の貫通孔を有した板を用いた焦電型赤外線検出装置で、赤外線検知領域と焦電型赤外線検出器の間に貫通孔を有した板を配置する事により、貫通孔を介して投影される赤外線検知領域を制限することで人体等から放射される赤外線エネルギーの受光量を調整する事が可能とするものである。 In order to solve the above problems, the present invention is a pyroelectric infrared detection device using a plate having at least one or more through holes, and a through hole is provided between the infrared detection region and the pyroelectric infrared detector. By disposing the plate, it is possible to adjust the amount of received infrared energy emitted from a human body or the like by limiting the infrared detection region projected through the through hole.
本発明による焦電型赤外線検出装置は、貫通孔を介して投影される赤外線検知領域を制限することで人体等から放射される赤外線エネルギーの受光量を調整する事が可能であることはもとより、貫通孔の個数、貫通孔サイズ、貫通孔形状によって赤外線検知領域毎での赤外線検知領域形状もしくは赤外線検知領域サイズを任意に変更する事が可能となる。 The pyroelectric infrared detection device according to the present invention can adjust the amount of received infrared energy emitted from a human body or the like by limiting the infrared detection area projected through the through-hole, It is possible to arbitrarily change the infrared detection region shape or the infrared detection region size for each infrared detection region depending on the number of through holes, the size of the through hole, and the shape of the through hole.
また、貫通孔の配置によって、貫通孔を介して投影される赤外線検知領域も任意に変更することが可能であり、本焦電型赤外線検出装置の設置場所、設置環境も限定されることなく、幅広い状況にて使用可能となる。 In addition, the infrared detection area projected through the through hole can be arbitrarily changed by the arrangement of the through hole, and the installation location and installation environment of the pyroelectric infrared detection device are not limited, It can be used in a wide range of situations.
更に、樹脂成型光学レンズを使用しない場合、焦電型赤外線検出器中心と少なくとも1個以上の貫通孔を有した板の中心を結ぶ線付近に貫通孔を設けないことによって、焦電型赤外線検出器内部に配置された赤外線受光素子に形成されたプラス(マイナス)極性側エリア6−aとマイナス(プラス)極性側エリア6−bは重なる事はなく、焦電型赤外線検出器以降の信号出力がキャンセルことなく検知が可能となる。 Furthermore, when a resin-molded optical lens is not used, pyroelectric infrared detection is achieved by not providing a through hole near the line connecting the center of the pyroelectric infrared detector and the center of the plate having at least one through hole. The plus (minus) polarity side area 6-a and the minus (plus) polarity side area 6-b formed in the infrared light receiving element arranged inside the detector do not overlap, and the signal output after the pyroelectric infrared detector Can be detected without cancellation.
以下、本考案について図を参照して詳細な説明を行う。
図1は、本発明の実施例1に係わる焦電型赤外線検出装置を示す斜視構造図である。赤外線受光素子1を備えた焦電型赤外線検出器2と光学レンズ機能が無い赤外線が透過可能な高密度ポリエチレンシート3−bと少なくとも1個以上の貫通孔を有する板4からなる構成となっている。
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a perspective structural view showing a pyroelectric infrared detector according to
図2は、樹脂成型光学レンズ3−aと焦電型赤外線検出器2内部に配置された赤外線受光素子との焦点距離関係より設計区分化された貫通孔を介した赤外線検出領域5−a、樹脂成型光学レンズを介した赤外線検出領域5−bが形成される。
FIG. 2 shows an infrared detection region 5-a through a through hole that is designed and divided according to the focal length relationship between the resin-molded optical lens 3-a and the infrared light receiving element disposed inside the pyroelectric
尚、図2にて示している貫通孔を介した赤外線検出領域5−aは、少なくとも1個以上の貫通孔を有し、人体等から放射される赤外線エネルギーの受光量を調整する事が可能な板4を装備したときの赤外線検知領域を表し、樹脂成型光学レンズを介した赤外線検出領域5−bは、焦電型赤外線検出器2と樹脂成型光学レンズ3−aによって作り出される赤外線検知領域を表す。極小赤外線検知領域を形成する場合有効であり、樹脂成型光学レンズ3−aを介して形成された赤外線検知領域をaとした時、前述板4を用いる事によって形成された赤外線検知領域サイズは1/2.5aと極小赤外線検知領域を形成することが容易に出来る。
Note that the infrared detection region 5-a through the through hole shown in FIG. 2 has at least one through hole, and can adjust the amount of received infrared energy emitted from the human body or the like. Infrared detection area 5-b through a resin-molded optical lens represents an infrared detection area created by the pyroelectric
更には図3に示すように、樹脂成型光学レンズ3−aを介して形成される赤外線検知領域をaとし、同様の赤外線検知領域を前述板4を用いる事によって形成する場合、焦電型赤外線検出器2から樹脂成型光学レンズ3−aの距離をaとした時、前述板4を用いる事により焦電型赤外線検出器2から前述板4の距離は1/1.15aとなり、焦電型赤外線検出装置の小型化も出来る 。
図4は、本発明の実施例2に係わる焦電型赤外線検出装置を示す斜視構造図である。前述板4に、多貫通孔を設け、更には貫通孔サイズも大小様々な貫通孔を設けている。貫通孔サイズは、φ0.5〜φ3.0とすることが好ましい。
Further, as shown in FIG. 3, when an infrared detection area formed through the resin-molded optical lens 3-a is a, and a similar infrared detection area is formed by using the
FIG. 4 is a perspective structural view showing a pyroelectric infrared detector according to
図4に示す通り、貫通孔の個数を増やし更には貫通孔サイズも変更する事で、各赤外線検知領域から放射される赤外線エネルギーの受光量を調整する事が容易に行うことが出来る。従って、焦電型赤外線検出装置の設置場所、設置環境も限定されることなく、幅広い場所にて使用可能である。 As shown in FIG. 4, it is possible to easily adjust the amount of received infrared energy emitted from each infrared detection region by increasing the number of through holes and changing the size of the through holes. Therefore, the installation location and installation environment of the pyroelectric infrared detection device are not limited and can be used in a wide range of locations.
更には、図5に示す通り、前述の通り貫通孔サイズを任意に設ける事で、各赤外線検知領域から放射される赤外線エネルギーの受光量を調整する事が容易に行うことが出来、距離検知に対しても効果を発揮する事が出来る。前述板4と介して形成される赤外線検知領域も幾何学的に無限遠に検知可能であるが、貫通孔サイズによる各赤外線検知領域から放射される赤外線エネルギーの受光量の調整により、距離検知が可能である。
Furthermore, as shown in FIG. 5, by arbitrarily setting the through-hole size as described above, it is possible to easily adjust the amount of received infrared energy radiated from each infrared detection region, for distance detection. The effect can be demonstrated against. The infrared detection area formed through the
参考として、図−10にて貫通孔サイズを変更したときに得られる雑音出力に対する信号出力(倍率)の関係を示したグラフを示す。各貫通孔サイズによる焦電型赤外線検出器からの信号出力に差が生じている事より、距離検知が可能であることを確認した。 As a reference, a graph showing the relationship between the signal output (magnification) and the noise output obtained when the through-hole size is changed in FIG. It was confirmed that distance detection was possible because there was a difference in signal output from pyroelectric infrared detectors for each through-hole size.
図6は、本発明の実施例2に係わる別の形態の焦電型赤外線検出装置の赤外線検知領域を示す図である。図5で示す通り、樹脂成型光学レンズ3−aを使用しない手法でも同様の効果が得られる。光学レンズ機能が無い赤外線が透過可能な高密度ポリエチレンシートを使用した場合でも、焦電型赤外線検出器2中心と前述板4の中心を結ぶ線上に貫通孔を設けないことによって、不感帯を形成する事が出来る。この不感帯により焦電型赤外線検出器2内部に配置された赤外線受光素子1に形成されたプラス(マイナス)極性側エリア6−aとマイナス(プラス)極性側エリア6−bは重なる事はなく、焦電型赤外線検出器以降の信号出力がキャンセルことなく検知が使用可能となる。
FIG. 6 is a diagram showing an infrared detection region of another form of pyroelectric infrared detection apparatus according to the second embodiment of the present invention. As shown in FIG. 5, the same effect can be obtained even by a method that does not use the resin-molded optical lens 3-a. Even when a high-density polyethylene sheet having no optical lens function and capable of transmitting infrared rays is used, a dead zone is formed by not providing a through hole on a line connecting the center of the pyroelectric
図7は、貫通孔を有する板の構造図である。多数個の貫通孔を有する事で任意の赤外線検知領域を形成する事が出来、またφ0.5〜φ3.0の多サイズの貫通孔を配置する事で、各赤外線検知領域から放射される赤外線エネルギーの受光量の調整により、距離検知が可能である。尚、図7は樹脂成型光学レンズ3−aを使用しない場合に用いられ、中心部分は貫通孔と貫通孔の間に隙間を設けているが、これは図11で示す遮蔽板7と同等の効果を得る為であり、図6で示す赤外線検知領域を作り出す事が出来る。
FIG. 7 is a structural diagram of a plate having a through hole. Arbitrary infrared detection areas can be formed by having a large number of through-holes, and infrared rays radiated from each infrared detection area by arranging multi-size through-holes of φ0.5 to φ3.0 The distance can be detected by adjusting the amount of energy received. 7 is used when the resin-molded optical lens 3-a is not used, and the central portion has a gap between the through hole, which is equivalent to the
図8は、図7と同様に貫通孔を有する板の構造図である。尚、図8は樹脂成型光学レンズ3−aを使用する場合に用いられる。光学レンズ機能を有しているため図6と同様にプラス(マイナス)極性側エリア6−aとマイナス(プラス)極性側エリア6−bは重なる事はなく、中心部分は貫通孔を設けている。 FIG. 8 is a structural diagram of a plate having a through hole as in FIG. FIG. 8 is used when the resin-molded optical lens 3-a is used. Since it has an optical lens function, the plus (minus) polarity side area 6-a and the minus (plus) polarity side area 6-b do not overlap each other as in FIG. 6, and the central portion is provided with a through hole. .
そのほか、前述板4を用いる事で、外的ダメージによる破損防止が出来る。例えば、前述板4の材質に金属系を使用する事で、外面から鋭利なものでダメージを加えた場合、また熱的ダメージを加えた場合でも金属系材質を使用している事、或いは貫通孔サイズがφ3max.と小さいことより、樹脂成型光学レンズ3−a或いは焦電型赤外線検出器2を外的ダメージから防ぐことが出来る。
In addition, the use of the
1 赤外線受光素子
2 焦電型赤外線検出器
3−a 樹脂成型光学レンズ
3−b 高密度ポリエチレンシート
4 貫通孔を有する板
5−a 貫通孔を介した赤外線検出領域
5−b 樹脂成型光学レンズを介した赤外線検出領域
6−a プラス(マイナス)極性側エリア
6−b マイナス(プラス)極性側エリア
7 遮蔽板
DESCRIPTION OF
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011181229A JP2013044586A (en) | 2011-08-23 | 2011-08-23 | Pyroelectric infrared detection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011181229A JP2013044586A (en) | 2011-08-23 | 2011-08-23 | Pyroelectric infrared detection device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013044586A true JP2013044586A (en) | 2013-03-04 |
Family
ID=48008615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011181229A Withdrawn JP2013044586A (en) | 2011-08-23 | 2011-08-23 | Pyroelectric infrared detection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013044586A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014020927A1 (en) * | 2012-07-31 | 2014-02-06 | Eizo株式会社 | Structure for masks |
GB2520321A (en) * | 2013-11-18 | 2015-05-20 | Melexis Technologies Nv | Infrared sensor with limitation aperture |
-
2011
- 2011-08-23 JP JP2011181229A patent/JP2013044586A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014020927A1 (en) * | 2012-07-31 | 2014-02-06 | Eizo株式会社 | Structure for masks |
US9389123B2 (en) | 2012-07-31 | 2016-07-12 | Eizo Corporation | Mask applied to a sensing surface of a dual pyroelectric sensor |
GB2520321A (en) * | 2013-11-18 | 2015-05-20 | Melexis Technologies Nv | Infrared sensor with limitation aperture |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7655896B2 (en) | Optical sensor, method for producing an optical sensor, and method for detecting an object with an optical sensor | |
EP3553581B1 (en) | Lens structure, manufacturing method thereof, and camera | |
US20080117531A1 (en) | Optical sensor and method for homogenizing a light beam | |
US11408765B2 (en) | Optical detector and system therefor | |
ATE369627T1 (en) | OPTOELECTRONIC IMAGE RECORDING SYSTEM ADAPTED TO THE CURVAGE OF THE FOCAL PLANE AND ITS PRODUCTION METHOD | |
WO2011005346A3 (en) | Projectile guidance system including a compact semi-active laser seeker | |
JP2009031415A (en) | Optical element | |
CN111624724B (en) | Camera module and electronic device | |
JP2013044586A (en) | Pyroelectric infrared detection device | |
US20200084850A1 (en) | Light grid | |
US20190056536A1 (en) | Fresnel lens array with improved off-axis optical efficiency | |
JP6601761B2 (en) | Infrared detector | |
KR101554130B1 (en) | Long wavelength infrared optical system with wide field of view | |
JP2021501886A5 (en) | ||
TWI420230B (en) | Spacer and camera module using same | |
CN215344767U (en) | Shading structure, camera module and electronic equipment | |
CN211014677U (en) | Infrared detector with enhanced detection range | |
WO2018101001A1 (en) | Infrared sensor | |
JP5274953B2 (en) | Passive infrared sensor | |
CN110672201B (en) | Photoelectric sensing detection device based on curved surface light condensation | |
JP2010169872A (en) | Resin molding optical lens | |
CN106662729A (en) | Far infrared imaging lens set, objective lens and fire source detector | |
CN104597599A (en) | Imaging device based on adjustable and controllable microlens array | |
CN110749937B (en) | Infrared detector with enhanced detection range | |
KR101828882B1 (en) | Light Glancing Angle Adjustable Floodlight |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20141104 |