JP2013044529A - Testing method for accelerating reinforcement corrosion - Google Patents

Testing method for accelerating reinforcement corrosion Download PDF

Info

Publication number
JP2013044529A
JP2013044529A JP2011180093A JP2011180093A JP2013044529A JP 2013044529 A JP2013044529 A JP 2013044529A JP 2011180093 A JP2011180093 A JP 2011180093A JP 2011180093 A JP2011180093 A JP 2011180093A JP 2013044529 A JP2013044529 A JP 2013044529A
Authority
JP
Japan
Prior art keywords
corrosion
water
temperature
concrete composition
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011180093A
Other languages
Japanese (ja)
Inventor
Koichiro Yamato
功一郎 大和
Hirokazu Kiriyama
宏和 桐山
Koki Wataya
晃希 綿屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2011180093A priority Critical patent/JP2013044529A/en
Publication of JP2013044529A publication Critical patent/JP2013044529A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for accelerating reinforcement corrosion for corroding reinforcement in concrete in a short period of time and evaluating it.SOLUTION: A testing method for accelerating reinforcement corrosion includes: a drying step (A) of stationarily placing a test piece formed by burying reinforcement in a concrete composition, in atmosphere with a temperature of 15 to 30°C for half a day to three days; and a moistening step (B) of stationarily placing the test piece in a moist atmosphere with a temperature of 40 to 80°C and humidity of 80 to 98% or in a warm water with a temperature of 40 to 80°C for half a day to three days. The concrete composition includes water, cement, admixture, fine aggregates, and coarse aggregates; a water/powder ratio is 55-70%; a water/cement ratio is 90-100%; and a chloride ion content is 1-6 kg/m.

Description

本発明は、鉄筋コンクリートの各種防錆材料の鉄筋腐食抑制効果を短期間で評価するためのコンクリート中の鉄筋腐食促進方法に関する。   The present invention relates to a method for promoting corrosion of reinforcing steel bars in concrete for evaluating the effect of inhibiting corrosion of steel bars in various rust-preventing materials in a short period of time.

従来、コンクリート中の鉄筋腐食促進試験方法には,例えば,日本コンクリート工学協会のJCI−SC3「塩分を含んだコンクリート中における補強用棒鋼の促進腐食試験方法−乾湿繰返し法」(非特許文献1)などがある。この方法は,乾湿繰返しの1サイクルを,乾燥4日,湿潤3日とし,20サイクルまで実施するものである。   Conventionally, for example, JCI-SC3 “Promoted corrosion test method for reinforcing steel bars in concrete containing salt content—wet and dry repetition method” (JNCI) and so on. In this method, one cycle of dry and wet cycles is 4 days for dry and 3 days for wet, and the cycle is repeated up to 20 cycles.

JCI規準集,JCI−SC3,塩分を含んだコンクリート中における補強用棒鋼の促進腐食試験方法−乾湿繰返し法−,2004JCI Standards Collection, JCI-SC3, Accelerated Corrosion Test Method for Reinforced Steel Bars in Concrete Containing Salinity-Dry Wet Repeat Method-2004

しかしながら、日本コンクリート工学協会の方法では、コンクリート試験体の前養生期間である1週を加えると,試験終了まで21週の期間を要し,短期間でコンクリートに使用する防錆材料の評価を行うことができない。また,乾燥行程での温度は10〜15℃,湿潤行程での温度は60〜70℃であり,低温と高温の温度可変制御ができる試験装置が必要となる。   However, according to the method of Japan Concrete Engineering Association, adding one week, which is the pre-curing period of the concrete test specimen, requires a period of 21 weeks to complete the test, and evaluates the anticorrosive material used for the concrete in a short period of time. I can't. Further, the temperature in the drying process is 10 to 15 ° C., the temperature in the wet process is 60 to 70 ° C., and a test apparatus capable of variable temperature control between a low temperature and a high temperature is required.

そこで、本発明は、コンクリート中の鉄筋を短期間で腐食させ評価する鉄筋腐食促進方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a method for promoting corrosion of reinforcing steel bars, which evaluates by corroding reinforcing bars in concrete in a short period of time.

本発明者らは、上記目的を達成するため、種々の検討を行った。その結果、特定の条件で乾湿繰返を行うことが鉄筋腐食促進に有効であることを見出し、本発明を完成するに至った。   In order to achieve the above object, the present inventors have conducted various studies. As a result, it has been found that repeated wet and dry conditions under specific conditions are effective for promoting reinforcement corrosion, and the present invention has been completed.

すなわち、本発明は、コンクリート組成物に鉄筋が埋設された試験体を、半日〜3日間、15〜30℃の気中で静置する乾燥工程(A)と、温度40〜80℃、湿度80〜95%の湿空雰囲気、又は温度40〜80℃の温水雰囲気下で、半日〜3日間静置する湿潤工程(B)とを含む鉄筋腐食促進試験方法を提供する。
上記本発明の鉄筋腐食促進試験方法によれば、コンクリート中の鉄筋を短期間で腐食させ評価することが出来る。
That is, the present invention includes a drying step (A) in which a specimen in which reinforcing bars are embedded in a concrete composition is left in the air at 15 to 30 ° C. for half a day to 3 days, a temperature of 40 to 80 ° C., and a humidity of 80 There is provided a reinforcing bar corrosion acceleration test method including a wet step (B) which is allowed to stand for half a day to 3 days in a humid air atmosphere of ~ 95% or a warm water atmosphere of 40 to 80 ° C.
According to the reinforcing bar corrosion acceleration test method of the present invention, the reinforcing bars in concrete can be corroded and evaluated in a short period of time.

本発明に使用するコンクリート組成物の配合は、質量比で、水/粉体比が55〜70%、水/セメント比が90〜100%及び塩化物イオン含有量が1〜6質量%とすることが、さらに好ましい。
コンクリート組成物の配合を上記範囲にすることにより、コンクリート中の鉄筋を一層短期間で腐食させることが出来る。
The composition of the concrete composition used in the present invention is, by mass ratio, a water / powder ratio of 55 to 70%, a water / cement ratio of 90 to 100%, and a chloride ion content of 1 to 6% by mass. More preferably.
By setting the composition of the concrete composition within the above range, the reinforcing bars in the concrete can be corroded in a shorter period of time.

本発明の鉄筋腐食促進試験方法は、乾燥工程(A)と湿潤工程(B)を1サイクルとして、5〜10サイクル繰り返すことが好ましい。
本発明の鉄筋腐食促進試験方法に使用する温水は濃度1〜5質量%の塩水であることが好ましい。
In the reinforcing bar corrosion acceleration test method of the present invention, it is preferable to repeat 5 to 10 cycles, with the drying step (A) and the wetting step (B) as one cycle.
It is preferable that the warm water used for the reinforcing bar corrosion acceleration test method of the present invention is a salt water having a concentration of 1 to 5% by mass.

本発明によれば、わずか14日という短期間でコンクリート中の鉄筋を腐食させ評価する鉄筋腐食促進方法を提供することができる。また,一定温度で乾湿繰返しを行う場合は,温度可変制御のできない試験装置,すなわち,一般的な乾燥機でも試験を行うことが可能な鉄筋腐食促進方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the reinforcement corrosion promotion method of corroding and evaluating the reinforcement in concrete in a short period of only 14 days can be provided. In addition, when performing dry and wet cycles at a constant temperature, it is possible to provide a test apparatus that cannot perform variable temperature control, that is, a method for promoting corrosion of reinforcing steel bars that can be tested even with a general dryer.

試験体の斜視図である。It is a perspective view of a test body.

1 試験面
2 鉄筋
3 コンクリート組成物の打込み方向
1 Test surface 2 Reinforcing bar 3 Concrete composition driving direction

本発明の好適な実施形態について説明する。本発明のコンクリートの鉄筋腐食促進方法は、乾燥工程(A)及び湿潤工程(B)を有する。
乾燥工程(A)では、コンクリート組成物に鉄筋が埋設された試験体を、半日〜3日間、温度15〜30℃の気中に静置する。保持条件は、1日〜2日間、20〜25℃の温度であるとより好ましい。
A preferred embodiment of the present invention will be described. The concrete reinforcing bar corrosion promotion method of the present invention includes a drying step (A) and a wetting step (B).
In the drying step (A), the test specimen in which the reinforcing bars are embedded in the concrete composition is left in the air at a temperature of 15 to 30 ° C. for half a day to 3 days. The holding condition is more preferably a temperature of 20 to 25 ° C. for 1 day to 2 days.

コンクリート組成物の配合は、質量比で、水/粉体比が55〜70%、好ましくは63〜68%である。また、質量比で、水/セメント比が90〜100%、好ましくは92〜95%である。上記範囲であれば、コンクリート硬化体の組織が適度に荒くなり,鉄筋腐食が早く進む。   The concrete composition is blended in a mass ratio with a water / powder ratio of 55 to 70%, preferably 63 to 68%. The water / cement ratio is 90 to 100%, preferably 92 to 95% in terms of mass ratio. If it is the said range, the structure | tissue of a concrete hardened body will become moderately rough, and reinforcement corrosion will advance quickly.

コンクリート組成物中の塩化物イオン量の範囲は,1〜6kg/mであり,好ましくは2〜5kg/mであり、さらに好ましくは4〜5kg/mである。上記範囲であれば、実在の構造物に含まれる塩化物イオン量の範囲であり、また、鉄筋腐食が早く進み、セメントの水和の進行に悪影響を及ぼすこともない。 The range of the amount of chloride ions in the concrete composition is 1 to 6 kg / m 3 , preferably 2 to 5 kg / m 3 , and more preferably 4 to 5 kg / m 3 . If it is the said range, it is the range of the amount of chloride ions contained in an existing structure, and corrosion of a reinforcing bar progresses rapidly and does not have a bad influence on progress of cement hydration.

鉄筋腐食促進養生の条件は,乾燥工程(A)と湿潤工程(B)の行程を繰り返す方法がよい。各工程の期間は半日〜3日間、好ましくは半日〜2日間である。3日を超えると,鉄筋腐食に必要な酸素と水が供給される速度が遅くなり,鉄筋腐食が遅くなる。   As a condition for reinforcing reinforcing corrosion, a method of repeating the steps of the drying step (A) and the wetting step (B) is preferable. The period of each step is from half day to 3 days, preferably from half day to 2 days. If it exceeds 3 days, the rate of supplying oxygen and water necessary for reinforcing steel corrosion will be slow, and corrosion of reinforcing steel will be delayed.

乾燥工程(A)と湿潤工程(B)を1サイクルとして、5〜10サイクル、好ましくは6〜8サイクル繰り返すのが良い。
乾燥工程(A)で試験体を静置する気中の雰囲気温度は、15〜30℃、好ましくは18〜25℃である。この温度範囲であれば特別な冷却設備が不要で、鉄筋腐食も円滑に進む。
湿潤工程(B)は、湿空雰囲気又は温水中で行う。湿空雰囲気の場合、温度40〜80℃、好ましくは50〜70℃、湿度80〜98%、好ましくは湿度90〜95%の条件で行う。温水雰囲気の場合、試験体を浸漬する温水の温度は40〜80℃、好ましくは50〜70℃の条件で行う。上記条件であれば、酸素の拡散速度が早くなり鉄筋腐食も進み、また、セメントの水和の進行に悪影響が及ぼすこともない。また、温水は濃度1〜5質量%の塩水であることが特に好ましい。この範囲であれば、鉄筋腐食も円滑に進む。
The drying step (A) and the wetting step (B) are one cycle, and 5 to 10 cycles, preferably 6 to 8 cycles are repeated.
The atmospheric temperature in the air in which the specimen is allowed to stand in the drying step (A) is 15 to 30 ° C, preferably 18 to 25 ° C. If it is in this temperature range, no special cooling equipment is required, and corrosion of reinforcing bars proceeds smoothly.
The wetting step (B) is performed in a humid air atmosphere or warm water. In the case of a wet air atmosphere, the temperature is 40 to 80 ° C., preferably 50 to 70 ° C., the humidity is 80 to 98%, preferably the humidity is 90 to 95%. In the case of a warm water atmosphere, the temperature of the warm water in which the specimen is immersed is 40 to 80 ° C, preferably 50 to 70 ° C. If it is the said conditions, the diffusion rate of oxygen will become quick, rebar corrosion will also advance, and it will not have a bad influence on the progress of cement hydration. Moreover, it is especially preferable that warm water is salt water with a density | concentration of 1-5 mass%. If it is this range, rebar corrosion will also advance smoothly.

湿空雰囲気又は温水雰囲気を比較した場合、湿空雰囲気がより好ましい。湿潤工程を水中で行った場合も腐食は進行するが,乾燥工程において乾燥が充分に進まず鉄筋腐食は遅くなる場合があるからである。   When a wet air atmosphere or a warm water atmosphere is compared, a wet air atmosphere is more preferable. This is because, when the wetting process is performed in water, the corrosion proceeds, but the drying process does not sufficiently progress in the drying process, and the rebar corrosion may be delayed.

以下、実施例および比較例を挙げて本発明の内容を具体的に説明する。なお、本発明はこれらの例によって限定されるものではない。   Hereinafter, the contents of the present invention will be specifically described with reference to Examples and Comparative Examples. Note that the present invention is not limited to these examples.

[使用材料]
(1)セメント
普通ポルトランドセメント、密度3.16g/cm、宇部三菱セメント製
(2)石灰石微粉末
道路用、密度2.70g/cm、宇部マテリアルズ製
(3)高炉スラグ微粉末
密度2.90g/cm、パワーメント
(4)骨材
(i)細骨材
海砂と砕砂の混合砂5:5
海砂:表乾密度2.59g/cm、吸水率1.34%、粗粒率2.66
砕砂:硬質砂岩、表乾密度:2.66g/cm、吸水率2.18%、粗粒率2.79
(ii)粗骨材
砕石1505、硬質砂岩、表乾密度2.70g/cm、吸水率0.56%、粗粒率6.62、実積率60.6%
(5)混和剤
AE減水剤、レオビルドNo.70、リグニンスルフォン酸系、BASFポゾリス製
(6)練混ぜ水
上水道水
(7)塩化ナトリウム
試薬
[Materials used]
(1) Cement ordinary Portland cement, density 3.16 g / cm 3 , made by Ube Mitsubishi Cement (2) limestone fine powder for road, density 2.70 g / cm 3 , made by Ube Materials (3) blast furnace slag fine powder density 2 .90 g / cm 3 , powerment (4) aggregate (i) mixed sand of fine aggregate sea sand and crushed sand 5: 5
Sea sand: surface dry density 2.59 g / cm 3 , water absorption 1.34%, coarse particle ratio 2.66
Crushed sand: Hard sandstone, Surface dry density: 2.66 g / cm 3 , Water absorption 2.18%, Coarse grain ratio 2.79
(Ii) Coarse aggregate crushed stone 1505, hard sandstone, surface dry density 2.70 g / cm 3 , water absorption 0.56%, coarse particle rate 6.62, actual volume ratio 60.6%
(5) Admixture AE water reducing agent, Leo build No. 70, lignin sulfonic acid, BASF Pozzolith (6) Mixing water tap water (7) Sodium chloride reagent

[コンクリート組成物の配合]
コンクリート組成物の配合を表1に示す。目標スランプは12±2.5cm、目標空気量は4.5±1.5%とした。配合No.1およびNo.2は,水/粉体比を65%とし,鉄筋腐食を促進するため、塩化物イオン量を5.0kg/mおよび2.0kg/mとなるように塩化ナトリウムを添加した。なお、水/セメント比を大きくすることによる材料分離を抑制するため,混和材として石灰石微粉末を添加した。配合No.3は,日本コンクリート工学協会のJCI−SC3「塩分を含んだコンクリート中における補強用棒鋼の促進腐食試験方法−乾湿繰返し法」(非特許文献1)に記載の基準コンクリートI種(塩分などが鋼材の腐食に与える影響を調べる場合に用いる配合)である。
[Concrete composition]
Table 1 shows the composition of the concrete composition. The target slump was 12 ± 2.5 cm and the target air amount was 4.5 ± 1.5%. Compound No. 1 and no. 2, the water / powder ratio was 65%, to promote Corrosion, sodium chloride was added the chloride ion content such that 5.0 kg / m 3 and 2.0 kg / m 3. In addition, limestone fine powder was added as an admixture in order to suppress material separation caused by increasing the water / cement ratio. Compound No. 3 is JCI-SC3 "Concrete accelerated corrosion test method for reinforcing steel bars in concrete containing salt content-Repeated wet and dry method" (Non-patent document 1). Used in the case of investigating the effect on corrosion of steel).

Figure 2013044529
1)粉体は、セメント+混和材
Figure 2013044529
1) Powder is cement + admixture

[コンクリート組成物の練混ぜ]
コンクリート組成物の練混ぜは、二軸強制練りミキサを使用し、1バッチの練混ぜ量は35Lとして行った。粗骨材、細骨材および粉体材料(セメント、混和材、塩化ナトリウム)を投入後、30秒間攪拌し、予めAE減水剤を溶かした水を投入し90秒間練混ぜた。
[Mixing of concrete composition]
The mixing of the concrete composition was performed using a biaxial forced kneading mixer, and the mixing amount of one batch was 35L. Coarse aggregate, fine aggregate, and powder material (cement, admixture, sodium chloride) were added, and then stirred for 30 seconds. Water in which an AE water reducing agent was dissolved in advance was added and mixed for 90 seconds.

[コンクリート組成物の打設]
鋼製型枠および合板を用いてあらかじめ鉄筋(磨き棒鋼)を設置した型枠にコンクリート組成物を打込み、図1のように試験面を100X100mmとした角柱コンクリートを作成した。試験面は、型枠側面とし、コンクリート組成物打設時に型枠面にテフロンシート(Dupon製、登録商標)を貼付け、剥離剤がコンクリート組成物へ付着しないようにした。鉄筋には、φ16mmの磨き棒鋼を使用した。
鉄筋端部からの劣化因子の侵入を防止するため、鉄筋の両端はエポキシ樹脂にてコーティングした。
[Concrete composition placement]
Using a steel mold and plywood, the concrete composition was poured into a mold in which reinforcing bars (polished steel bars) had been installed in advance, and a prismatic concrete having a test surface of 100 × 100 mm was created as shown in FIG. The test surface was the side surface of the mold, and a Teflon sheet (registered trademark, manufactured by Dupon) was attached to the mold surface when the concrete composition was cast so that the release agent did not adhere to the concrete composition. For the rebar, φ16mm polished steel bar was used.
In order to prevent the deterioration factor from entering from the end of the reinforcing bar, both ends of the reinforcing bar were coated with epoxy resin.

[コンクリート組成物の養生]
コンクリート組成物の前養生は、材齢2日まで型枠にて保管し、脱型後、材齢7日まで温度20±3℃、相対湿度60±5%RHの恒温恒湿室内で保管し、試験体とした。
[Curing of concrete composition]
The pre-curing of the concrete composition is stored in a mold until the age of 2 days, and after demolding, it is stored in a constant temperature and humidity room at a temperature of 20 ± 3 ° C. and a relative humidity of 60 ± 5% RH until the age of 7 days. A test specimen was obtained.

[鉄筋腐食促進方法]
鉄筋腐食促進方法は、表2のとおりとした。促進(養生)期間はいずれも14日とした。養生No.1は、温度20℃、相対湿度60%RH一定条件である。養生No.2〜No.5は、乾湿繰返し(乾燥と湿潤の繰返し)の条件や環境条件を変化させたものである。No.6は,JCI−SC3「塩分を含んだコンクリート中における補強用棒鋼の促進腐食試験方法−乾湿繰返し法」(非特許文献1)に記載の方法であるが、試験期間を14日とした関係上、サイクル数を20サイクルから2サイクルに短縮した。装置はいずれも恒温恒湿機を用いた。
[Rebar corrosion promotion method]
Reinforcing bar corrosion promotion methods were as shown in Table 2. The promotion (curing) period was 14 days. Curing No. 1 is a constant condition of a temperature of 20 ° C. and a relative humidity of 60% RH. Curing No. 2-No. No. 5 changes the conditions of repeated wet and dry conditions (repeated drying and wetting) and environmental conditions. No. 6 is a method described in JCI-SC3 “Accelerated corrosion test method for reinforcing steel bars in salt-containing concrete—wet and dry repetition method” (Non-patent Document 1). The number of cycles was shortened from 20 cycles to 2 cycles. All apparatuses used a constant temperature and humidity machine.

Figure 2013044529
Figure 2013044529

[腐食電流密度の測定方法]
腐食電流密度の測定は、(株)四国総合研究所製携帯型鉄筋腐食診断器(SRI−CM−3)を用いて分極抵抗法(2周波交流インピーダンス法)により行った。鉄筋腐食の判定は、表3に示すCEBの基準により行った。
[Measurement method of corrosion current density]
The measurement of the corrosion current density was performed by the polarization resistance method (two-frequency AC impedance method) using a portable rebar corrosion diagnostic device (SRI-CM-3) manufactured by Shikoku Research Institute. Reinforcing bar corrosion was determined according to the CEB criteria shown in Table 3.

Figure 2013044529
Figure 2013044529

[試験結果]
試験結果を表4に示す。養生条件に高温湿空を取り入れ,コンクリート組成物中の塩化物イオン量を5kg/mとした実施例1および実施例3は腐食電流密度が大きく,腐食速度の判定は「激しい,高い腐食速度」となった。塩化物イオン量が2kg/m3と少ない実施例4は「低〜中程度の腐食速度」の判定となった。高温気中〜高温水中の実施例2は上述の実施例1や実施例3よりも腐食電流密度は小さいものの「低〜中程度の腐食速度」の判定であった。これに対し,常温気中一定の比較例1や比較例3,常温気中〜高温水中の比較例2は,「不動態状態(腐食無し)」の判定であった。なお,JCI−SC3「塩分を含んだコンクリート中における補強用棒鋼の促進腐食試験方法〜乾湿繰返し法」(非特許文献1)に記載の促進方法を用いた比較例4および比較例5は,配合によらず腐食速度の判定は「不動態状態(腐食無し)」であった。
[Test results]
The test results are shown in Table 4. In Example 1 and Example 3 in which high-temperature humid air was taken into the curing conditions and the amount of chloride ions in the concrete composition was 5 kg / m 3 , the corrosion current density was large. " Example 4 with a low chloride ion content of 2 kg / m 3 was judged as “low to moderate corrosion rate”. In Example 2 in high-temperature air to high-temperature water, the corrosion current density was smaller than that in Example 1 or Example 3 described above, but “low to moderate corrosion rate” was determined. On the other hand, Comparative Example 1 and Comparative Example 3, which were constant in the normal temperature atmosphere, and Comparative Example 2 in the normal temperature atmosphere to high temperature water, were judged as “passive state (no corrosion)”. In addition, Comparative Example 4 and Comparative Example 5 using the accelerated method described in JCI-SC3 “Accelerated corrosion test method for reinforcing steel bars in concrete containing salt content—wet and dry repeated method” (Non-patent Document 1) Regardless of this, the judgment of the corrosion rate was “passive state (no corrosion)”.

Figure 2013044529
Figure 2013044529

Claims (5)

コンクリート組成物に鉄筋が埋設された試験体を、半日〜3日間、温度15〜30℃の気中で静置する乾燥工程(A)と、
温度40〜80℃、湿度80〜98%の湿空雰囲気、又は温度40〜80℃の温水中で、半日〜3日間静置する湿潤工程(B)とを含むことを特徴とする鉄筋腐食促進試験方法。
A drying step (A) in which a specimen in which reinforcing bars are embedded in a concrete composition is allowed to stand in the air at a temperature of 15 to 30 ° C. for half a day to 3 days;
Reinforcement corrosion promotion characterized by including a wet air atmosphere at a temperature of 40 to 80 ° C. and a humidity of 80 to 98%, or a wet process (B) that is allowed to stand for half a day to 3 days in warm water at a temperature of 40 to 80 ° C. Test method.
前記コンクリート組成物は、水、セメント、混和材、細骨材及び粗骨材を含み、水/粉体比が55〜70%、水/セメント比が90〜100%及び塩化物イオン含有量が1〜6質量kg/mである請求項1記載の鉄筋腐食促進試験方法。 The concrete composition includes water, cement, admixture, fine aggregate and coarse aggregate, having a water / powder ratio of 55 to 70%, a water / cement ratio of 90 to 100% and a chloride ion content. The reinforcing bar corrosion acceleration test method according to claim 1, which is 1 to 6 mass kg / m 3 . 前記コンクリート組成物は、前記混和材として石灰石微粉末を50〜100kg/m含む請求項2記載の鉄筋腐食促進試験方法。 The said concrete composition is a reinforcing bar corrosion acceleration | stimulation test method of Claim 2 containing 50-100 kg / m < 3 > of limestone fine powder as said admixture. 前記乾燥工程(A)と前記湿潤工程(B)を1サイクルとして、5〜10サイクル繰り返す請求項1〜3の何れか1項記載の鉄筋腐食促進試験方法。   The reinforcing corrosion test method according to any one of claims 1 to 3, wherein the drying step (A) and the wetting step (B) are defined as one cycle and are repeated for 5 to 10 cycles. 前記温水は濃度1〜5質量%の塩水である請求項1〜4の何れか1項記載の鉄筋腐食促進試験方法。   The rebar corrosion acceleration test method according to any one of claims 1 to 4, wherein the warm water is salt water having a concentration of 1 to 5 mass%.
JP2011180093A 2011-08-22 2011-08-22 Testing method for accelerating reinforcement corrosion Withdrawn JP2013044529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011180093A JP2013044529A (en) 2011-08-22 2011-08-22 Testing method for accelerating reinforcement corrosion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011180093A JP2013044529A (en) 2011-08-22 2011-08-22 Testing method for accelerating reinforcement corrosion

Publications (1)

Publication Number Publication Date
JP2013044529A true JP2013044529A (en) 2013-03-04

Family

ID=48008566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011180093A Withdrawn JP2013044529A (en) 2011-08-22 2011-08-22 Testing method for accelerating reinforcement corrosion

Country Status (1)

Country Link
JP (1) JP2013044529A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104964917A (en) * 2015-06-24 2015-10-07 廖引家 Alkali-resisting corrosion detecting method for hydraulic concrete
CN104964920A (en) * 2015-06-05 2015-10-07 西安建筑科技大学 Apparatus and method for simulating natural corrosion of reinforced concrete
JP2020024100A (en) * 2018-08-06 2020-02-13 日本電信電話株式会社 Corrosion accelerating test method and corrosion accelerating test apparatus
CN112098308A (en) * 2020-09-04 2020-12-18 中铁十七局集团第三工程有限公司 Method for rapidly testing sulfate erosion resistance grade of concrete

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104964920A (en) * 2015-06-05 2015-10-07 西安建筑科技大学 Apparatus and method for simulating natural corrosion of reinforced concrete
CN104964920B (en) * 2015-06-05 2018-06-12 西安建筑科技大学 A kind of device and method of simulating reinforced concrete natural rust
CN104964917A (en) * 2015-06-24 2015-10-07 廖引家 Alkali-resisting corrosion detecting method for hydraulic concrete
JP2020024100A (en) * 2018-08-06 2020-02-13 日本電信電話株式会社 Corrosion accelerating test method and corrosion accelerating test apparatus
WO2020031546A1 (en) * 2018-08-06 2020-02-13 日本電信電話株式会社 Method and apparatus for accelerated corrosion testing
US20210318228A1 (en) * 2018-08-06 2021-10-14 Nippon Telegraph And Telephone Corporation Method and Apparatus for Accelerated Corrosion Testing
US11867609B2 (en) * 2018-08-06 2024-01-09 Nippon Telegraph And Telephone Corporation Method and apparatus for accelerated corrosion testing
CN112098308A (en) * 2020-09-04 2020-12-18 中铁十七局集团第三工程有限公司 Method for rapidly testing sulfate erosion resistance grade of concrete
CN112098308B (en) * 2020-09-04 2024-05-31 中铁十七局集团第三工程有限公司 Method for rapidly testing sulfate erosion resistance grade of concrete

Similar Documents

Publication Publication Date Title
Chand et al. Effect of self curing chemicals in self compacting mortars
Shaikh et al. Chloride induced corrosion durability of high volume fly ash concretes containing nano particles
Espinoza-Hijazin et al. Extending internal curing to concrete mixtures with W/C higher than 0.42
US8617452B2 (en) Methods of making a construction material with a voltage
JP5889221B2 (en) Concrete (composition) and method for producing concrete
Sezer et al. Usage of steel slag in concrete as fine and/or coarse aggregate
JP2013044529A (en) Testing method for accelerating reinforcement corrosion
JP2006306647A (en) Alumina cement composition and repairing method using the same
JP5698870B2 (en) Concrete production method
Radlińska et al. Material properties of structurally viable alkali-activated fly ash concrete
KR101577748B1 (en) Grout Composite for Offshore PSC Structure
Papatzani et al. The effect of the addition of nanoparticles of silica on the strength and microstructure of blended Portland cement pastes
Kushartomo et al. The application of sodium acetate as concrete permeability-reducing admixtures
JP2013107284A (en) Cured body and method for producing the same
JP2017194417A (en) Method of evaluating aggregate for high strength concrete
JP5724188B2 (en) Concrete production method
JP2015189628A (en) Method of producing crack-reduced cement product and crack-reduced cement product
JP2012032156A (en) Dry shrinkage prediction method for concrete
JP2011136887A (en) Repairing material
JP2017160082A (en) Fine aggregate having resin hollow microsphere, concrete using the same, and method for producing concrete
JP2013177276A (en) In-water inseparable concrete
JP2007197322A (en) Cement composition and method for producing hardened concrete using the same
JP5730627B2 (en) Curing agent for alumina cement composition and repair method using the same
Zhang et al. Synergistic Effects of Ethylene Glycol Solution and Polycarboxylate Superplasticizer on the Hydration of Calcium Sulphoaluminate Cement at− 10° C
JP6474688B2 (en) Embedded formwork board

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104