JP2013043413A - Method of manufacturing transparent fluororesin molded product and transparent fluororesin molded product - Google Patents

Method of manufacturing transparent fluororesin molded product and transparent fluororesin molded product Download PDF

Info

Publication number
JP2013043413A
JP2013043413A JP2011184234A JP2011184234A JP2013043413A JP 2013043413 A JP2013043413 A JP 2013043413A JP 2011184234 A JP2011184234 A JP 2011184234A JP 2011184234 A JP2011184234 A JP 2011184234A JP 2013043413 A JP2013043413 A JP 2013043413A
Authority
JP
Japan
Prior art keywords
fluororesin
transparent
molded body
manufacturing
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011184234A
Other languages
Japanese (ja)
Inventor
Satoshi Yamazaki
智 山崎
Shinya Nishikawa
信也 西川
Makoto Nakabayashi
誠 中林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Fine Polymer Inc
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Fine Polymer Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Fine Polymer Inc, Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Fine Polymer Inc
Priority to JP2011184234A priority Critical patent/JP2013043413A/en
Publication of JP2013043413A publication Critical patent/JP2013043413A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method by which a fluororesin molded product having excellent transparency and heat resistance is obtained at a relatively low cost and the transparent fluororesin molded product obtained by the manufacturing method and having excellent transparency and heat resistance.SOLUTION: The method of manufacturing the transparent fluororesin molded product has a pressing step of pressing a molded product of a resin composition containing fluororesin as a principal ingredient at pressure Y (MPa) satisfying a condition of a following formula (1): logY≥-0.0069T+2.3 (where, Y≤10^[5×(-0.0069T+2.3)]), at a temperature T (°C) below the melting point of the fluororesin. After the pressing step, it is preferable to provide a crosslinking step of crosslinking the fluororesin by irradiation with ionizing radiation.

Description

本発明は、電子機器部品用の光学部材として好適に用いられるフッ素樹脂成形体及びその製造方法に関する。   The present invention relates to a fluororesin molded article suitably used as an optical member for electronic equipment parts and a method for producing the same.

携帯電話機、ノートパソコン、デジタルカメラ、液晶テレビ等の電子機器には、導光板、光拡散シート、集光シート等として種々の光学フィルムが用いられている。又ピックアップレンズ、カメラレンズ、マイクロアレーレンズ、プロジェクターレンズ、フレネルレンズ等の種々の光学レンズが用いられている。これらの光学フィルムや光学レンズには透明性、すなわち可視光線や近赤外光線の透過率が高いことが求められており、アクリル樹脂やポリカーボネート樹脂がこれらの用途に使用されている。   Various optical films are used as light guide plates, light diffusion sheets, light condensing sheets, and the like in electronic devices such as mobile phones, notebook computers, digital cameras, and liquid crystal televisions. Various optical lenses such as a pickup lens, a camera lens, a microarray lens, a projector lens, and a Fresnel lens are used. These optical films and optical lenses are required to have transparency, that is, high transmittance of visible light and near infrared light, and acrylic resins and polycarbonate resins are used for these applications.

またこれらの光学フィルムや光学レンズ(以下、光学部材)には耐熱性も求められている。上記の電子機器の小型化、高性能化により電子部品の実装が半田リフローにより行われているためであり、リフロー温度でも溶融せず形状を維持できる程度の耐熱性が望まれている。さらに、環境問題に対応するため温度の高い鉛フリーハンダにも耐えることも望まれている。   These optical films and optical lenses (hereinafter referred to as optical members) are also required to have heat resistance. This is because electronic components are mounted by solder reflow due to the downsizing and high performance of the electronic devices described above, and heat resistance that can maintain the shape without melting even at the reflow temperature is desired. Furthermore, it is also desired to withstand high temperature lead-free solder to cope with environmental problems.

アクリル樹脂やポリカーボネート樹脂からなる光学部材は耐熱性が低くこのような用途には適さない。したがって耐熱性が高く透明性にも優れるフッ素樹脂を光学部材として使用することが検討されている。しかし汎用的なフッ素樹脂の成形体は透明性が充分ではなく、透明性を上げるために種々の検討がなされている。   Optical members made of acrylic resin or polycarbonate resin have low heat resistance and are not suitable for such applications. Therefore, the use of a fluororesin having high heat resistance and excellent transparency as an optical member has been studied. However, general-purpose fluororesin molded articles are not sufficiently transparent, and various studies have been made to increase transparency.

特許文献1には、非晶性フッ素樹脂を用いたフッ素樹脂組成物からなる透明成形体が記載されている。汎用のフッ素樹脂は結晶性を有しており、このフッ素樹脂の結晶が透明性低下の原因となる。非晶性のフッ素樹脂を用いるとフッ素樹脂の結晶を生じないため透明性の高い成形体を得ることができる。   Patent Document 1 describes a transparent molded body made of a fluororesin composition using an amorphous fluororesin. A general-purpose fluororesin has crystallinity, and the crystal of the fluororesin causes a decrease in transparency. When an amorphous fluororesin is used, a fluororesin crystal is not generated, so that a highly transparent molded body can be obtained.

特許文献2には透明性に優れるフッ素樹脂成形体の製造方法として、フッ素樹脂からなる樹脂組成物を成形する成形工程、成形工程で得られた成形体に前記フッ素樹脂の融点未満の温度雰囲気で1回以上電離放射線を照射して樹脂組成物を架橋する1回目の照射工程、前記フッ素樹脂の融点以上の温度雰囲気で1回以上電離放射線を照射して樹脂組成物を架橋する2回目の照射工程を有する透明樹脂成形体の製造方法が記載されている。フッ素樹脂の融点以上に加熱して2回目の照射を行うことで高い透明性を有する成形体が得られる。その理由としては、フッ素樹脂の融点以上の温度雰囲気ではフッ素樹脂の結晶は溶融しており結晶が存在しない状態であり、この状態にて照射して架橋を生成するので結晶量が低減し成形体の透明性が向上するものと思われる、と記載されている。   In Patent Document 2, as a method for producing a fluororesin molded body having excellent transparency, a molding process for molding a resin composition made of a fluororesin, and a molded body obtained in the molding process in a temperature atmosphere below the melting point of the fluororesin. First irradiation step of irradiating ionizing radiation at least once to crosslink the resin composition, second irradiation of irradiating ionizing radiation at least once in a temperature atmosphere higher than the melting point of the fluororesin to crosslink the resin composition A method for producing a transparent resin molded product having a process is described. A molded body having high transparency can be obtained by heating to the melting point of the fluororesin or higher and performing the second irradiation. The reason for this is that the fluororesin crystals are melted in the temperature atmosphere above the melting point of the fluororesin and there are no crystals, and irradiation is generated in this state to produce crosslinks. It is described that it is considered that the transparency of is improved.

特開2001−123034号公報JP 2001-123034 A 特開2011−052063号公報JP 2011-052063 A

特許文献1の非晶性フッ素樹脂からなる成形体は透明性に優れているが、高価な材料であるためコストが高くなり実用的ではない。   The molded body made of the amorphous fluororesin of Patent Document 1 is excellent in transparency, but is expensive and expensive, and is not practical.

特許文献2の製造方法で得られる成形体は汎用フッ素樹脂を用いているため材料は比較的低コストである。しかしフッ素樹脂の融点以上の温度雰囲気で電離放射線を照射するという工程が必要であり、複雑な製造設備が必要となるため製造コストが高くなる。   Since the molded body obtained by the manufacturing method of Patent Document 2 uses a general-purpose fluororesin, the material is relatively inexpensive. However, a process of irradiating ionizing radiation in an atmosphere having a temperature equal to or higher than the melting point of the fluororesin is required, and a complicated manufacturing facility is required, resulting in an increase in manufacturing cost.

従って本発明は、耐熱性及び透明性に優れるフッ素樹脂成形体を比較的低コストで得ることができる製造方法、およびこの製造方法によって得られる、耐熱性及び透明性に優れる透明フッ素樹脂成形体を提供することを課題とする。   Therefore, the present invention provides a production method capable of obtaining a fluororesin molded article having excellent heat resistance and transparency at a relatively low cost, and a transparent fluororesin molded article having excellent heat resistance and transparency obtained by this production method. The issue is to provide.

本発明は、フッ素樹脂を主成分とする樹脂組成物の成形体に、前記フッ素樹脂の融点未満の温度T(℃)において下記式(1)の条件を満たす圧力Y(MPa)をかけるプレス工程を有する透明フッ素樹脂成形体の製造方法である(請求項1)。
log10Y≧―0.0069T+2.3 …(1)
(ただし、Y≦10^[5×(−0.0069T+2.3)])
The present invention provides a pressing step of applying a pressure Y (MPa) that satisfies the following formula (1) at a temperature T (° C.) below the melting point of the fluororesin to a molded body of a resin composition containing a fluororesin as a main component. It is a manufacturing method of the transparent fluororesin molded object which has (Claim 1).
log 10 Y ≧ −0.0069T + 2.3 (1)
(However, Y ≦ 10 ^ [5 × (−0.0069T + 2.3)])

本発明者らは、成形体に一定の圧力をかけることで結晶性材料であるフッ素樹脂の透明性を向上できること、またその場合に必要な圧力は温度と相関していることを見出し、本発明を完成した。これにより比較的低コストな汎用のフッ素樹脂を用いた場合でも透明性の高い成形体を得ることができる。またフッ素樹脂の融点未満の温度での加工が可能であるため、製造設備の負荷が少なく低コストで製造可能である。   The present inventors have found that the transparency of the fluororesin, which is a crystalline material, can be improved by applying a certain pressure to the molded body, and that the pressure required in that case correlates with the temperature. Was completed. As a result, a molded article with high transparency can be obtained even when a general-purpose fluororesin having a relatively low cost is used. Further, since processing at a temperature lower than the melting point of the fluororesin is possible, it is possible to manufacture at a low cost with less load on the manufacturing equipment.

前記プレス工程の後、電離放射線を照射して前記フッ素樹脂を架橋する架橋工程を有すると好ましい(請求項2)。前記プレス工程によりフッ素樹脂中に結晶を維持しつつ透明性が向上する。この状態の成形体を架橋するとフッ素樹脂の状態が固定されるため、その後の温度変化があっても透明性を維持できる。また架橋することで成形体の耐熱性が向上する。   Preferably, after the pressing step, there is a crosslinking step of irradiating ionizing radiation to crosslink the fluororesin (Claim 2). The pressing process improves transparency while maintaining crystals in the fluororesin. When the molded body in this state is crosslinked, the state of the fluororesin is fixed, so that transparency can be maintained even if there is a subsequent temperature change. Moreover, the heat resistance of a molded object improves by bridge | crosslinking.

前記フッ素樹脂の融点が300℃未満であると好ましい(請求項3)。フッ素樹脂としてはフッ素を含有する熱可塑性樹脂であって射出成形等で成形可能であり透明な成形体が得られる任意の樹脂を使用できるが、融点が300℃未満であると成形しやすいからである。炭素−水素結合を有し、電離放射線の照射により架橋するフッ素樹脂であると更に好ましい。このようなフッ素樹脂としては、エチレン−テトラフルオロエチレン共重合体、エチレン−テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、およびこれらの変性体から選ばれる1種以上の樹脂が好ましく使用できる(請求項4)。   The melting point of the fluororesin is preferably less than 300 ° C. (Claim 3). As the fluororesin, any resin that is a thermoplastic resin containing fluorine and can be molded by injection molding or the like to obtain a transparent molded body can be used, but if the melting point is less than 300 ° C., it is easy to mold. is there. More preferably, it is a fluororesin having a carbon-hydrogen bond and crosslinked by irradiation with ionizing radiation. As such a fluororesin, at least one resin selected from an ethylene-tetrafluoroethylene copolymer, an ethylene-tetrafluoroethylene-hexafluoropropylene copolymer, and a modified product thereof can be preferably used. 4).

前記成形体はフッ素樹脂を主成分とする樹脂組成物を射出成形して形成されたものであり、該射出成形工程と前記プレス工程とを射出圧縮成形により連続して行うと好ましい(請求項5)。このような工程を用いることで成形体の製造時間を短縮でき、コストを低減できる。また成形体の透明性のばらつきが少なく、品質向上できる。   The molded body is formed by injection molding a resin composition containing a fluororesin as a main component, and it is preferable that the injection molding step and the pressing step are continuously performed by injection compression molding. ). By using such a process, the manufacturing time of a molded object can be shortened and cost can be reduced. Moreover, there is little dispersion | variation in the transparency of a molded object, and it can improve quality.

上記の製造方法により透明性に優れたフッ素樹脂成形体が得られる。透明性の指標としては波長400nmの光の透過率と波長850nmの光の透過率を用いる。本製造方法により得られるフッ素樹脂成形体は、換算厚み0.45mmでの光の透過率が、波長400nm及び850nmのいずれにおいても85%以上である。また結晶性のフッ素樹脂を用いた場合は、プレス後の成形体(透明フッ素樹脂成形体)でも結晶性を維持している。したがって、本発明は、フッ素樹脂を主成分とする樹脂組成物を成形した透明フッ素樹脂成形体であって、厚みを0.45mmとしたときの光の透過率が、波長400nm及び850nmのいずれにおいても85%以上であるとともに、結晶熱量が10J/g以上である透明フッ素樹脂成形体を提供する(請求項6)。なお結晶熱量は示差走査熱量測定により測定する。   A fluororesin molded article having excellent transparency can be obtained by the above production method. As the transparency index, the transmittance of light having a wavelength of 400 nm and the transmittance of light having a wavelength of 850 nm are used. The fluororesin molded body obtained by this production method has a light transmittance of 85% or more at both a wavelength of 400 nm and 850 nm at a converted thickness of 0.45 mm. In addition, when a crystalline fluororesin is used, the crystallinity is maintained even in a pressed molded body (transparent fluororesin molded body). Accordingly, the present invention is a transparent fluororesin molded body obtained by molding a resin composition containing a fluororesin as a main component, and the light transmittance when the thickness is 0.45 mm is any of the wavelength of 400 nm and 850 nm. Is 85% or more, and a transparent fluororesin molded product having a crystal calorie of 10 J / g or more is provided. The crystal calorie is measured by differential scanning calorimetry.

さらに、プレス工程の後、電離放射線を照射してフッ素樹脂を架橋した透明フッ素樹脂成形体は150℃で3000時間加熱後の光の透過率が、波長400nm及び850nmのいずれにおいても加熱前の光の透過率に対して95%以上であり、長期耐熱性に優れている(請求項7)。   Further, after the pressing step, the transparent fluororesin molded body obtained by irradiating ionizing radiation and cross-linking the fluororesin has a light transmittance after heating at 150 ° C. for 3000 hours at any wavelength of 400 nm and 850 nm. The transmittance is 95% or more, and excellent in long-term heat resistance (Claim 7).

本発明により、耐熱性及び透明性に優れるフッ素樹脂成形体を比較的低コストで得ることができる。またこの製造方法によって耐熱性及び透明性に優れる透明フッ素樹脂成形体が得られる。   According to the present invention, a fluororesin molded product having excellent heat resistance and transparency can be obtained at a relatively low cost. Moreover, the transparent fluororesin molded object which is excellent in heat resistance and transparency is obtained by this manufacturing method.

本発明に用いるフッ素樹脂としては、フッ素を含有する熱可塑性樹脂であって射出成形等で成形可能であり透明な成形体が得られる任意の樹脂を使用できる。さらに電離放射線の照射により架橋するフッ素樹脂であると好ましい。具体的には、エチレン−テトラフルオロエチレン共重合体、エチレン−テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、およびこれらの変性体、並びにポリビニリデンフルオライド等を使用できる。融点が300℃未満であると成形しやすく好ましい。また電離放射線を照射する前の成形体の透過率が、2mm厚さの成形体で20%以上であるものが好ましい。   As the fluororesin used in the present invention, any resin that is a fluorine-containing thermoplastic resin that can be molded by injection molding or the like and can obtain a transparent molded body can be used. Further, a fluororesin that is cross-linked by irradiation with ionizing radiation is preferable. Specifically, an ethylene-tetrafluoroethylene copolymer, an ethylene-tetrafluoroethylene-hexafluoropropylene copolymer, a modified product thereof, a polyvinylidene fluoride, or the like can be used. It is preferable that the melting point is less than 300 ° C. to facilitate molding. Further, it is preferable that the transmittance of the molded body before irradiation with ionizing radiation is 20% or more in the molded body having a thickness of 2 mm.

上記の変性体としては、反応性官能基を主鎖末端、側鎖末端の一方又は両方に有するフッ素樹脂が挙げられる。ここで反応性官能基としてはカルボニル基、カルボニルジオキシ基、ハロホルミル基、水酸基、エポキシ基などが挙げられる。また変性体として、エチレン部位に他の成分をグラフト重合させたものを用いることもできる。例えばダイキン工業(株)製のネオフロンRP−4020(商品名)を挙げることができる。   Examples of the modified body include a fluororesin having a reactive functional group at one or both of the main chain terminal and the side chain terminal. Here, examples of the reactive functional group include a carbonyl group, a carbonyldioxy group, a haloformyl group, a hydroxyl group, and an epoxy group. In addition, a modified product obtained by graft polymerization of other components on an ethylene site can also be used. An example is Neoflon RP-4020 (trade name) manufactured by Daikin Industries.

上記のフッ素樹脂を主成分とする樹脂組成物を成形して、成形体が得られる。なお、主成分とする、とは樹脂組成物の50質量%以上がフッ素樹脂であることを意味する。複数のフッ素樹脂を複数混ぜ合わせて使用しても良い。樹脂組成物には本発明の効果を損ねない範囲で他の樹脂成分を添加しても良い。他の樹脂成分としてはポリエチレン、ポリプロピレン、ポリスチレン、熱可塑性エラストマー等が挙げられる。   A molded body is obtained by molding the resin composition containing the fluororesin as a main component. The phrase “main component” means that 50% by mass or more of the resin composition is a fluororesin. A plurality of fluororesins may be mixed and used. You may add another resin component to the resin composition in the range which does not impair the effect of this invention. Examples of other resin components include polyethylene, polypropylene, polystyrene, and thermoplastic elastomer.

樹脂組成物には電離放射線の照射による架橋効率を向上させるため、多官能性モノマーを添加しても良い。多官能性モノマーとしては、分子量が1000以下であり、炭素−炭素二重結合を分子内に2つ以上有するものが好ましい。分子量が1000以下であると、透明性を維持しながら耐熱性に優れたフッ素樹脂成形体を得ることができる。このような多官能性モノマーとしては、トリメチロールプロパン(トリ)メタアクリレート、1,6−ジビニル(パーフルオロヘキサン)、トリス(アクリロキシエチル)イソシアヌレート、トリス(メタクリロキシエチル)イソシアヌレート等が挙げられる。   A polyfunctional monomer may be added to the resin composition in order to improve the crosslinking efficiency by irradiation with ionizing radiation. As the polyfunctional monomer, those having a molecular weight of 1000 or less and having two or more carbon-carbon double bonds in the molecule are preferable. When the molecular weight is 1000 or less, it is possible to obtain a fluororesin molded article having excellent heat resistance while maintaining transparency. Examples of such polyfunctional monomers include trimethylolpropane (tri) methacrylate, 1,6-divinyl (perfluorohexane), tris (acryloxyethyl) isocyanurate, tris (methacryloxyethyl) isocyanurate, and the like. It is done.

多官能性モノマーの添加量はフッ素樹脂100質量部に対して0.05質量部以上20質量部以下とすることが好ましい。添加量が0.05質量部未満だと架橋効率向上効果が得られず電離放射線の照射量が多量に必要となる。また20質量部を超えると、樹脂組成物を作製する際の混練時の取り扱いが困難となる。   The addition amount of the polyfunctional monomer is preferably 0.05 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the fluororesin. If the addition amount is less than 0.05 parts by mass, the effect of improving the crosslinking efficiency cannot be obtained, and a large amount of ionizing radiation is required. Moreover, when it exceeds 20 mass parts, the handling at the time of kneading | mixing at the time of producing a resin composition will become difficult.

樹脂組成物には前記の成分に加えて酸化防止剤、難燃剤、紫外線吸収剤、光安定剤、熱安定剤、滑剤などの各種添加剤を添加することもできる。樹脂組成物はこれらの材料をオープンロール、加圧ニーダー、短軸混合機、2軸混合機等の既知の混合装置を用いて混合することにより作製することができる。使用するフッ素樹脂の融点以上の温度で溶融混合することが好ましい。   In addition to the above-described components, various additives such as antioxidants, flame retardants, ultraviolet absorbers, light stabilizers, heat stabilizers, and lubricants may be added to the resin composition. The resin composition can be produced by mixing these materials using a known mixing apparatus such as an open roll, a pressure kneader, a short-shaft mixer, or a twin-screw mixer. It is preferable to perform melt mixing at a temperature equal to or higher than the melting point of the fluororesin used.

プレス前の成形体は、上記のフッ素樹脂を主成分とする樹脂組成物を成形して得られる。成型方法としては射出成形、プレス成形、押出成形等既存の方法を採用することができる。なかでも射出成形が好ましく用いられる。本発明に使用される樹脂組成物の融点は、フッ素樹脂の種類、例えばフッ素樹脂を構成するモノマー比率により調節することが可能である。融点が300℃未満であるフッ素樹脂を使用する場合は低温での成形が可能であり成形性が優れる。なお融点が300℃以上であるフッ素樹脂を使用する場合は、フッ化水素による設備の腐食を考慮し、成形体と接する設備の部分には耐フッ化水素性のメッキ処理を施す必要がある。   The molded body before pressing is obtained by molding the resin composition containing the fluororesin as a main component. As the molding method, existing methods such as injection molding, press molding, and extrusion molding can be employed. Of these, injection molding is preferably used. The melting point of the resin composition used in the present invention can be adjusted by the type of fluororesin, for example, the ratio of monomers constituting the fluororesin. When a fluororesin having a melting point of less than 300 ° C. is used, molding at a low temperature is possible and moldability is excellent. When a fluororesin having a melting point of 300 ° C. or higher is used, it is necessary to apply a hydrogen fluoride-resistant plating treatment to the part of the equipment in contact with the molded body in consideration of the corrosion of the equipment due to hydrogen fluoride.

上記の成形体に圧力をかけて(プレス工程)透明フッ素樹脂成形体が得られる。この時に必要な圧力Y(MPa)は温度T(℃)に依存しており、下記式(1)の条件を満たす必要がある。例えば25℃でプレスする場合に必要な圧力は134MPa以上、100℃でプレスする場合は41MPa以上である。ただし圧力所定圧力の5倍を超えると成形体が破壊するため、圧力Y(MPa)は10^[5×(−0.0069T+2.3)]以下とする。
logY≧―0.0069T+2.3 …(1)
Pressure is applied to the molded body (pressing step) to obtain a transparent fluororesin molded body. The pressure Y (MPa) required at this time depends on the temperature T (° C.), and it is necessary to satisfy the condition of the following formula (1). For example, the pressure required when pressing at 25 ° C. is 134 MPa or more, and when pressing at 100 ° C., the pressure is 41 MPa or more. However, if the pressure exceeds 5 times the predetermined pressure, the compact is destroyed, so the pressure Y (MPa) is set to 10 ^ [5 × (−0.0069T + 2.3)] or less.
logY ≧ −0.0069T + 2.3 (1)

圧力をかける際の温度はフッ素樹脂の融点未満とする。フッ素樹脂の融点を超えると成形体が変形するからである。温度の下限は特に無いが、温度が低いとプレス工程で必要な圧力が高くなり設備の負荷が大きくなるため、25℃以上とすることが好ましい。このような温度条件の下で一定の圧力をかけることで、結晶性樹脂であるフッ素樹脂の結晶構造が変化して透明性が向上する。また圧力をかける時間は0.1秒〜5分程度とする。   The temperature at which the pressure is applied is less than the melting point of the fluororesin. It is because a molded object will deform | transform if it exceeds melting | fusing point of a fluororesin. There is no particular lower limit to the temperature, but if the temperature is low, the pressure required in the pressing process increases and the load on the equipment increases, so it is preferable to set the temperature to 25 ° C. or higher. By applying a certain pressure under such temperature conditions, the crystal structure of the fluororesin, which is a crystalline resin, is changed and the transparency is improved. The pressure is applied for about 0.1 seconds to 5 minutes.

プレス工程は任意の方法で行うことができる。射出成形で成形体を作製した後、金型を型締めして圧力をかける射出圧縮成形により圧力をかけると連続した工程で透明フッ素樹脂成形体を製造することができ、製造コストを低減できると共にできあがった成形体の品質が安定する。この場合、まず射出成形により溶融した樹脂組成物を金型内に充填する。充填された樹脂組成物を一定温度まで冷却することで成形体となる。その後金型を移動させて成形体に圧力をかける。この場合に必要な圧力は金型を移動させる際の金型温度を基準として算出する。   The pressing step can be performed by any method. After producing a molded body by injection molding, when a pressure is applied by injection compression molding that clamps the mold and applies pressure, a transparent fluororesin molded body can be manufactured in a continuous process, and the manufacturing cost can be reduced. The quality of the finished compact is stable. In this case, first, the mold is filled with the resin composition melted by injection molding. A molded product is obtained by cooling the filled resin composition to a certain temperature. Thereafter, the mold is moved to apply pressure to the molded body. The pressure required in this case is calculated based on the mold temperature when the mold is moved.

上記プレス工程により得られた透明フッ素樹脂成形体に電離放射線を照射してフッ素樹脂を架橋すると耐熱性が向上して好ましい。また照射架橋によりフッ素樹脂の構造が固定化され、透明性を維持できる。特に高温環境で長時間保持された後でも透明性を維持でき、長期耐熱性に優れる透明フッ素樹脂成形体が得られる。   It is preferable that the transparent fluororesin molded body obtained by the pressing step is irradiated with ionizing radiation to crosslink the fluororesin because heat resistance is improved. Moreover, the structure of the fluororesin is fixed by irradiation crosslinking, and transparency can be maintained. In particular, a transparent fluororesin molded article that can maintain transparency even after being held for a long time in a high-temperature environment and has excellent long-term heat resistance is obtained.

電離放射線源としては加速電子線、ガンマ線、X線、α線、紫外線等を例示することができる。線源利用の簡便さや電離放射線の透過厚み、架橋処理の速度等、工業的利用の観点から加速電子線が好ましい。加速電子線の加速電圧は成形品の肉厚に応じて適宜設定すれば良い。例えば厚さ2mm程度の成形品であれば加速電圧は100kV〜10,000kVの間で選定される。電離放射線の照射線量が大きいほどフッ素樹脂の架橋度が向上して耐熱性が向上する。しかし照射線量が大きすぎる場合は成形体の着色、白濁や樹脂の分解等の問題が生じる場合がある。従って照射量は100kGy以上1500kGy未満が好ましい。この範囲内であれば鉛フローハンダを使用したハンダリフローに耐える耐熱性が得られる。具体的には260℃×60秒の熱暴露がされても変形、収縮等が生じず、また850nm波長光の透過率変化が少ないという耐熱性を有している。   Examples of ionizing radiation sources include accelerated electron beams, gamma rays, X rays, α rays, ultraviolet rays, and the like. An accelerated electron beam is preferable from the viewpoint of industrial use, such as ease of use of the radiation source, transmission thickness of ionizing radiation, speed of crosslinking treatment, and the like. What is necessary is just to set the acceleration voltage of an acceleration electron beam suitably according to the thickness of a molded article. For example, in the case of a molded product having a thickness of about 2 mm, the acceleration voltage is selected between 100 kV and 10,000 kV. The greater the irradiation dose of ionizing radiation, the higher the degree of cross-linking of the fluororesin and the better the heat resistance. However, when the irradiation dose is too large, problems such as coloring of the molded product, white turbidity, and resin decomposition may occur. Therefore, the irradiation dose is preferably 100 kGy or more and less than 1500 kGy. Within this range, heat resistance that can withstand solder reflow using lead flow solder can be obtained. Specifically, even when exposed to heat at 260 ° C. for 60 seconds, deformation, shrinkage, etc. do not occur, and heat resistance is such that there is little change in transmittance of light having a wavelength of 850 nm.

透明フッ素樹脂成形体は任意の形状とすることができる。板状の成形体の場合厚みは0.05mm〜1.5mmとすることが好ましい。より好ましくは0.1mm〜1mmである。また換算厚み0.45mmでの光の透過率X(%)は以下の式で求めることができる。
X(%)=100*10^[(log10(A/100))×0.45/t]
t:測定した成形体の厚み(mm)
A:厚みt(mm)での透過率(%)
The transparent fluororesin molded product can have any shape. In the case of a plate-shaped molded body, the thickness is preferably 0.05 mm to 1.5 mm. More preferably, it is 0.1 mm-1 mm. The light transmittance X (%) at a converted thickness of 0.45 mm can be obtained by the following equation.
X (%) = 100 * 10 ^ [(log 10 (A / 100)) × 0.45 / t]
t: Measured thickness of molded product (mm)
A: Transmittance (%) at thickness t (mm)

次に、本発明を実施例に基づいてさらに詳細に説明する。実施例は本発明の範囲を限定するものではない。   Next, the present invention will be described in more detail based on examples. The examples are not intended to limit the scope of the invention.

(実施例1〜10、比較例1〜4)
(樹脂組成物ペレットの作製)
表1に示す配合処方の樹脂及び添加剤を、二軸混合機(30mmφ、L/D=30)を使用し、バレル温度を190℃〜330℃に設定し、スクリュー回転数100rpmで溶融混合して樹脂組成物を作製した後、ストランドカットペレタイザで樹脂組成物ペレットを作製した。バレル温度は樹脂の融点より10℃以上高くなるように適宜選定した。
(Examples 1-10, Comparative Examples 1-4)
(Preparation of resin composition pellets)
Using a biaxial mixer (30 mmφ, L / D = 30), the barrel temperature is set to 190 ° C. to 330 ° C., and the resin and additives shown in Table 1 are melt mixed at a screw rotation speed of 100 rpm. After preparing the resin composition, resin composition pellets were prepared with a strand cut pelletizer. The barrel temperature was appropriately selected so as to be 10 ° C. or higher than the melting point of the resin.

(成形体の作製)
得られた樹脂組成物ペレットを型締力40tクラスの射出成形機(日精樹脂社製)に投入し、面粗度Ra=1.6aレベルで研磨したSUS304製の金型を用いて射出成形を実施し、所定の肉厚のプレートを作製した。得られた成形体の厚みを表1中に示す。
(Production of molded body)
The obtained resin composition pellets were put into an injection molding machine (manufactured by Nissei Plastic Co., Ltd.) having a clamping force of 40 t class, and injection molding was performed using a mold made of SUS304 polished with a surface roughness Ra = 1.6a level. It carried out and produced the plate of predetermined thickness. Table 1 shows the thickness of the obtained molded body.

(プレス工程)
表1に示す温度と圧力で成形体をプレスして、透明フッ素樹脂成形体を作製した。なおプレスの時間は予熱1分、加圧20秒とした。プレス後の透明フッ素樹脂成形体の厚みを表1中に示す。なお比較例1、比較例4はプレス工程を行っていない。
(Pressing process)
The molded body was pressed at the temperature and pressure shown in Table 1 to produce a transparent fluororesin molded body. The pressing time was 1 minute preheating and 20 seconds pressurization. Table 1 shows the thickness of the transparent fluororesin molded body after pressing. In Comparative Example 1 and Comparative Example 4, no pressing process was performed.

(透明性評価)
上記透明フッ素樹脂成形体のプレートから10mm×10mm角でカッティングしたサンプルの色目を目視で確認した。また波長400nmと850nmとで光の透過率を測定した。なお測定サンプルの厚みは表1中の「プレス後厚み」である。
(Transparency evaluation)
The color of the sample cut at 10 mm × 10 mm square from the plate of the transparent fluororesin molded product was visually confirmed. The light transmittance was measured at wavelengths of 400 nm and 850 nm. The thickness of the measurement sample is the “thickness after pressing” in Table 1.

(電子線照射)
上記透明フッ素樹脂成形体のプレートに、加速電圧200kVの加速電子線を、表1に記載の線量で照射した。なお照射する際の温度は室温である。
(Electron beam irradiation)
The plate of the transparent fluororesin molded body was irradiated with an acceleration electron beam having an acceleration voltage of 200 kV at a dose shown in Table 1. The temperature at the time of irradiation is room temperature.

(融点測定)
電子線を照射した後の透明フッ素樹脂成形体(実施例8〜10は未照射の透明フッ素樹脂成形体)の融点を示差走査熱量測定で測定した。樹脂本来の融点近傍に熱量1J/g以上のピークが観察された場合にこれを融点ピークと判断し、そのピーク温度を融点とした。
(Melting point measurement)
The melting point of the transparent fluororesin molded body after irradiation with the electron beam (Examples 8 to 10 are unirradiated transparent fluororesin molded bodies) was measured by differential scanning calorimetry. When a peak having a calorific value of 1 J / g or more was observed in the vicinity of the original melting point of the resin, this was judged as the melting point peak, and the peak temperature was taken as the melting point.

(耐熱性評価)
上記電子線照射を行った透明フッ素樹脂成形体のプレートを30mm×30mm角にカッティングし、270℃の恒温槽内に60秒静置して加熱した後の色目を目視で確認した。また波長400nmと850nmとで透過率を測定した。
(Heat resistance evaluation)
The plate of the transparent fluororesin molded body that had been irradiated with the electron beam was cut into a 30 mm × 30 mm square, and the color after being heated in a constant temperature bath at 270 ° C. for 60 seconds was visually confirmed. The transmittance was measured at wavelengths of 400 nm and 850 nm.

(長期耐熱性評価)
上記電子線照射を行った透明フッ素樹脂成形体のプレートを30mm×30mm角にカッティングし、150℃の恒温槽内に3000時間秒静置して加熱した後の色目を目視で確認した。また波長400nmと850nmとで透過率を測定した。以上の結果を表1に示す。














































(Long-term heat resistance evaluation)
The plate of the transparent fluororesin molded body that had been irradiated with the electron beam was cut into a 30 mm × 30 mm square, and the color after being heated in a constant temperature bath at 150 ° C. for 3000 hours was visually confirmed. The transmittance was measured at wavelengths of 400 nm and 850 nm. The results are shown in Table 1.














































Figure 2013043413
Figure 2013043413

(脚注)
(*1)エチレン−テトラフルオロエチレン共重合体。(旭硝子(株)製、商品名フルオンLM−ETFE LM730AP)
(*2)エチレン−テトラフルオロエチレン共重合体。(旭硝子(株)製、商品名フルオンETFE C−88AP)
(*3)エチレン−テトラフルオロエチレン−ヘキサフルオロプロピレンの共重合体。(ダイキン工業(株)製、商品名ネオフロンRP4020)
(*4)テトタフルオロエチレン−ヘキサフルオロプロピレン共重合体。(ダイキン工業(株)製、商品名ネオフロンFEP NP−21)
(*5)ポリカーボネート。(三菱エンジニアリングプラスチックス(株)製、商品名ユーピロンS3000)
(*6)トリメチロールプロパントリメタクリレート
(footnote)
(* 1) An ethylene-tetrafluoroethylene copolymer. (Product name Fullon LM-ETFE LM730AP, manufactured by Asahi Glass Co., Ltd.)
(* 2) Ethylene-tetrafluoroethylene copolymer. (Asahi Glass Co., Ltd., trade name Fullon ETFE C-88AP)
(* 3) A copolymer of ethylene-tetrafluoroethylene-hexafluoropropylene. (Product name: Neoflon RP4020, manufactured by Daikin Industries, Ltd.)
(* 4) Tetotafluoroethylene-hexafluoropropylene copolymer. (Product name: Neoflon FEP NP-21, manufactured by Daikin Industries, Ltd.)
(* 5) Polycarbonate. (Made by Mitsubishi Engineering Plastics, trade name Iupilon S3000)
(* 6) Trimethylolpropane trimethacrylate

温度と圧力との関係が式(1)を満たしており、かつ電子線を照射してフッ素樹脂を架橋した実施例1〜7の透明フッ素樹脂成形体は初期の透過率が高く透明性が良好である。また270℃×60秒加熱後の透過率は初期の透過率とほとんど変化無く、耐リフロー性にも優れている。さらに150℃3000時間の長期耐熱試験後の透過率も波長400nm、850nmいずれでもほとんど変化がなく長期耐熱性にも優れていることがわかる。   The relationship between temperature and pressure satisfies the formula (1), and the transparent fluororesin molded bodies of Examples 1 to 7 in which the fluororesin is crosslinked by irradiating an electron beam have high initial transmittance and good transparency. It is. Further, the transmittance after heating at 270 ° C. for 60 seconds is almost the same as the initial transmittance, and is excellent in reflow resistance. Further, it can be seen that the transmittance after a long-term heat test at 150 ° C. for 3000 hours is almost unchanged at both wavelengths of 400 nm and 850 nm, and excellent in long-term heat resistance.

実施例8及び実施例9の透明フッ素樹脂成形体は電子線を照射していない。従って初期の透明性は良好であるが、270℃×60秒加熱後は白濁して透明性が悪化した。実施例10の透明樹脂成形体も電子線を照射していないが、融点の高いPFAを用いているため、初期の透明性だけでなく270℃×60秒加熱後、150℃3000時間加熱後の透明性も優れている。また実施例1〜9の透明フッ素樹脂成形体の照射後の結晶熱量は全て10J/g以上であり、結晶性を維持していることがわかる。   The transparent fluororesin moldings of Examples 8 and 9 are not irradiated with an electron beam. Therefore, the initial transparency was good, but after heating at 270 ° C. for 60 seconds, it became cloudy and the transparency deteriorated. The transparent resin molded body of Example 10 was not irradiated with an electron beam, but because PFA having a high melting point was used, not only the initial transparency but also after heating at 270 ° C. for 60 seconds and after heating at 150 ° C. for 3000 hours. Transparency is also excellent. Moreover, the crystal calorie | heat amount after irradiation of the transparent fluororesin molding of Examples 1-9 is all 10 J / g or more, and it turns out that crystallinity is maintained.

比較例1〜3は、実施例1、4〜5と同じフッ素樹脂を用いて成形し、プレス条件を変更したものである。プレス工程を全く行っていない比較例1は初期の透明性が悪く、厚みが0.5mmと薄いにもかかわらず目視で白濁しており、400nm波長光、850nm波長光での透過率も同じ厚みの実施例1と比べて低くなっている。比較例2はプレス工程を行っているが、温度25℃で必要な圧力(134MPa)よりも低い圧力でプレスしているため透明性が充分でない。比較例3は圧力が高すぎるため成形体が破壊している。また比較例4はフッ素樹脂ではなくポリカーボネートを用いて成形体を作製している。ポリカーボネートは透明性に優れており、初期の透過率は高いが耐熱性が低く、270℃×60秒加熱すると成形体が溶融した。また150℃3000時間の加熱では溶融はしなかったが成形体が黄色く変色し、透過率も低下した。   Comparative Examples 1 to 3 are formed using the same fluororesin as in Examples 1 and 4 to 5, and the pressing conditions are changed. In Comparative Example 1 in which the pressing process was not performed at all, the initial transparency was poor, and although the thickness was as thin as 0.5 mm, it was visually turbid, and the transmittance at 400 nm wavelength light and 850 nm wavelength light was also the same thickness. This is lower than that of Example 1. Although the comparative example 2 is performing the press process, since it is pressing at a pressure lower than the required pressure (134 MPa) at a temperature of 25 ° C., the transparency is not sufficient. In Comparative Example 3, since the pressure is too high, the molded body is broken. In Comparative Example 4, a molded body is produced using polycarbonate instead of fluororesin. Polycarbonate is excellent in transparency and has high initial transmittance but low heat resistance. When heated at 270 ° C. for 60 seconds, the molded body melted. Moreover, although it did not melt | dissolve by heating at 150 degreeC for 3000 hours, the molded object turned yellow and the transmittance | permeability also fell.

Claims (7)

フッ素樹脂を主成分とする樹脂組成物の成形体に、前記フッ素樹脂の融点未満の温度T(℃)において下記式(1)の条件を満たす圧力Y(MPa)をかけるプレス工程を有する透明フッ素樹脂成形体の製造方法。
logY≧―0.0069T+2.3 …(1)
(ただし、Y≦10^[5×(−0.0069T+2.3)])
Transparent fluorine having a pressing step of applying a pressure Y (MPa) satisfying the following formula (1) to a molded body of a resin composition containing a fluororesin as a main component at a temperature T (° C.) below the melting point of the fluororesin Manufacturing method of resin molding.
logY ≧ −0.0069T + 2.3 (1)
(However, Y ≦ 10 ^ [5 × (−0.0069T + 2.3)])
前記プレス工程の後、電離放射線を照射して前記フッ素樹脂を架橋する架橋工程を有する請求項1に記載の透明フッ素樹脂成形体の製造方法。   The manufacturing method of the transparent fluororesin molding of Claim 1 which has a bridge | crosslinking process of irradiating ionizing radiation and bridge | crosslinking the said fluororesin after the said press process. 前記フッ素樹脂の融点が300℃未満である、請求項1又は2に記載の透明フッ素樹脂成形体の製造方法。   The manufacturing method of the transparent fluororesin molding of Claim 1 or 2 whose melting | fusing point of the said fluororesin is less than 300 degreeC. 前記フッ素樹脂が、エチレン−テトラフルオロエチレン共重合体、エチレン−テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、及びこれらの変性体から選ばれる1種以上である、請求項1〜3のいずれか1項に記載の透明フッ素樹脂成形体の製造方法。   The said fluororesin is 1 or more types chosen from ethylene-tetrafluoroethylene copolymer, ethylene-tetrafluoroethylene-hexafluoropropylene copolymer, and these modified bodies, The any one of Claims 1-3 The manufacturing method of the transparent fluororesin molded object of description. 前記成形体はフッ素樹脂を主成分とする樹脂組成物を射出成形して成形されたものであり、該射出成形工程と前記プレス工程とを射出圧縮成形により連続して行うことを特徴とする、請求項1〜4のいずれか1項に記載の透明フッ素樹脂成形体の製造方法。   The molded body is formed by injection molding a resin composition containing a fluororesin as a main component, and the injection molding step and the pressing step are continuously performed by injection compression molding, The manufacturing method of the transparent fluororesin molded object of any one of Claims 1-4. フッ素樹脂を主成分とする樹脂組成物を成形した透明フッ素樹脂成形体であって、換算厚み0.45mmでの光の透過率が、波長400nm及び850nmのいずれにおいても85%以上であるとともに、結晶熱量が10J/g以上である透明フッ素樹脂成形体。   A transparent fluororesin molded body obtained by molding a resin composition containing a fluororesin as a main component, and the light transmittance at a converted thickness of 0.45 mm is 85% or more at both wavelengths of 400 nm and 850 nm, A transparent fluororesin molded product having a crystal calorie of 10 J / g or more. 請求項2に記載の透明フッ素樹脂成形体の製造方法により得られる透明フッ素樹脂成形体であって、150℃で3000時間加熱後の光の透過率が、波長400nm及び850nmのいずれにおいても、加熱前の光の透過率に対して95%以上である透明フッ素樹脂成形体。   A transparent fluororesin molded product obtained by the method for producing a transparent fluororesin molded product according to claim 2, wherein the light transmittance after heating at 150 ° C. for 3000 hours is heated at both wavelengths of 400 nm and 850 nm. A transparent fluororesin molded body having a transmittance of 95% or more with respect to the previous light transmittance.
JP2011184234A 2011-08-26 2011-08-26 Method of manufacturing transparent fluororesin molded product and transparent fluororesin molded product Withdrawn JP2013043413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011184234A JP2013043413A (en) 2011-08-26 2011-08-26 Method of manufacturing transparent fluororesin molded product and transparent fluororesin molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011184234A JP2013043413A (en) 2011-08-26 2011-08-26 Method of manufacturing transparent fluororesin molded product and transparent fluororesin molded product

Publications (1)

Publication Number Publication Date
JP2013043413A true JP2013043413A (en) 2013-03-04

Family

ID=48007688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011184234A Withdrawn JP2013043413A (en) 2011-08-26 2011-08-26 Method of manufacturing transparent fluororesin molded product and transparent fluororesin molded product

Country Status (1)

Country Link
JP (1) JP2013043413A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017025245A (en) * 2015-07-27 2017-02-02 住友電気工業株式会社 Heat resistant transparent resin molded body and method for producing the same
WO2021117467A1 (en) * 2019-12-13 2021-06-17 住友電気工業株式会社 Method for manufacturing sliding member, and sliding member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017025245A (en) * 2015-07-27 2017-02-02 住友電気工業株式会社 Heat resistant transparent resin molded body and method for producing the same
WO2021117467A1 (en) * 2019-12-13 2021-06-17 住友電気工業株式会社 Method for manufacturing sliding member, and sliding member
CN114787253A (en) * 2019-12-13 2022-07-22 住友电气工业株式会社 Method for manufacturing sliding member and sliding member
JP7575403B2 (en) 2019-12-13 2024-10-29 住友電気工業株式会社 Manufacturing method of slide member

Similar Documents

Publication Publication Date Title
JP5529466B2 (en) Transparent resin molded body and method for producing the same
JP7411379B2 (en) Methacrylic resin, methacrylic resin composition, film
KR102130433B1 (en) Methacrylic resin composition and molded body
JP5598579B2 (en) Modified fluororesin mixture, fluororesin molded product, and method for producing fluororesin molded product
JP6731913B2 (en) Resin composition and film
TWI504645B (en) A modified fluorocarbon copolymer, a fluororesin molded article, and a fluororesin molded article
JP5361613B2 (en) Optical material and optical element
CN107109019B (en) Methacrylic resin composition and molded article
KR20180018334A (en) Resin composition for optical material and optical film comprising the same
KR101889078B1 (en) Optical film and polarization plate comprising the same
JP2011052063A5 (en)
JP2017179354A (en) Methacrylic resin composition and molded body
JP2010054750A (en) Method for manufacturing retardation film
JP2013043413A (en) Method of manufacturing transparent fluororesin molded product and transparent fluororesin molded product
JP2016094537A (en) Thermoplastic resin composition and manufacturing method therefor, molded body and thermoplastic resin film
JP2010117701A (en) Optical module lens
JP5456346B2 (en) Transparent resin molded body having heat resistance
EP1000726B1 (en) Process for preparing polyvinyl alcohol contact lenses
JPWO2018008579A1 (en) Resin composition for polarizer protective film, polarizer protective film
TWI649367B (en) Protective film, polarizer and display device therewith
JP2017061602A (en) Resin composition, resin molding, and method for producing resin molding
JP2017025245A (en) Heat resistant transparent resin molded body and method for producing the same
JP2019035019A (en) (meth)acrylic resin composition, (meth)acrylic optical film, and polarizing plate
Sano et al. Injection molded optical lens using a heat resistant thermoplastic resin with electron beam cross-linking
EP4130058A1 (en) Methacrylic copolymer, composition, shaped object, method for producing film or sheet, and layered product

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104