JP2013042085A - Organic semiconductor composition and photoelectric conversion element using the same - Google Patents

Organic semiconductor composition and photoelectric conversion element using the same Download PDF

Info

Publication number
JP2013042085A
JP2013042085A JP2011179719A JP2011179719A JP2013042085A JP 2013042085 A JP2013042085 A JP 2013042085A JP 2011179719 A JP2011179719 A JP 2011179719A JP 2011179719 A JP2011179719 A JP 2011179719A JP 2013042085 A JP2013042085 A JP 2013042085A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
organic semiconductor
polymer
conversion element
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011179719A
Other languages
Japanese (ja)
Other versions
JP5658633B2 (en
Inventor
Yasushi Morihara
靖 森原
Takafumi Izawa
隆文 伊澤
Takashi Sugioka
尚 杉岡
Akeshi Fujita
明士 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2011179719A priority Critical patent/JP5658633B2/en
Publication of JP2013042085A publication Critical patent/JP2013042085A/en
Application granted granted Critical
Publication of JP5658633B2 publication Critical patent/JP5658633B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an organic semiconductor composition suitable for the fabrication of a photoelectric conversion element which excels in photoelectric conversion characteristic in a visible to near-infrared region and also has high photoelectric conversion efficiency.SOLUTION: The organic semiconductor composition contains: a polymer (A) containing a molecular structure expressed by the chemical formula (1) below (where, Rand Rare alkyl groups having a carbon number of 1 to 20 which may have the same or different substitution group(s) independently of each other, Ar, Arand Arare bivalent arylene groups or hetero arylene groups which are the same or different independently of each other, and n is a number from 2 to 100,000); an electron receptive organic semiconductor (B); a soluble solvent (C) of the polymer (A) and the electron receptive organic semiconductor (B); and a soluble additive (D) whose boiling point is higher than that of the soluble solvent (C) and whose solubility to the electron receptive organic semiconductor (B) is higher than solubility to the polymer (A).

Description

本発明は、有機薄膜を形成する有機半導体用組成物及びその有機薄膜による光電変換素子に関するものである。   The present invention relates to an organic semiconductor composition for forming an organic thin film and a photoelectric conversion element using the organic thin film.

太陽光発電は、再生可能エネルギーの中でも特に潜在的な利用可能量が多いことから、石油代替エネルギーの筆頭として近年特に着目されている。太陽光発電を担う素子として単結晶シリコン、アモルファスシリコン等のシリコン系太陽電池、GaAs、CIGS、CdTe等の無機化合物系薄膜太陽電池等がある。これらの太陽電池は比較的高い光電変換効率を有するが、高価格である。このコスト高の要因は、高真空且つ高温下で半導体薄膜を製造しなくてはならないプロセスにある。そこで製造プロセスの簡略化が期待される有機半導体材料を用いた有機薄膜太陽電池が検討されている。   Photovoltaic power generation has attracted particular attention in recent years as a leading oil alternative energy because it has a particularly large potential usable amount of renewable energy. Examples of elements responsible for photovoltaic power generation include silicon solar cells such as single crystal silicon and amorphous silicon, and inorganic compound thin film solar cells such as GaAs, CIGS, and CdTe. These solar cells have a relatively high photoelectric conversion efficiency, but are expensive. This high cost is due to the process in which the semiconductor thin film must be manufactured under high vacuum and high temperature. Therefore, an organic thin film solar cell using an organic semiconductor material, which is expected to simplify the manufacturing process, has been studied.

有機半導体材料は塗布法や印刷法により製膜できるため、製造プロセスを簡便化し、発電コストを低減することが期待される。また、軽量且つフレキシブルな素子及びモジュールを作製できることから可搬性に優れ、電気的インフラの整備されていない地域においても簡便に電気エネルギーを利用できる可能性を秘めている。さらに、有機半導体は分子設計により吸収帯域を制御できることから、様々な色調で意匠性に優れる太陽電池を提供できる。   Since an organic semiconductor material can be formed by a coating method or a printing method, it is expected to simplify the manufacturing process and reduce the power generation cost. In addition, since lightweight and flexible elements and modules can be manufactured, it is highly portable and has the potential to easily use electrical energy even in areas where electrical infrastructure is not established. Furthermore, since the organic semiconductor can control the absorption band by molecular design, it can provide a solar cell with various colors and excellent design.

有機薄膜太陽電池の素子構成としては電子供与性有機材料(p型有機半導体)と仕事関数の小さな金属を接合させるショットキー型、電子供与性有機材料(p型有機半導体)と電子受容性有機材料(n型有機半導体)とを接合させるヘテロ接合型等がある。しかし、これらの光電変換素子は電荷分離を起こすpn接合界面の面積が小さいため光電変換効率が低い問題を有する。   The element structure of the organic thin-film solar cell is a Schottky type, an electron-donating organic material (p-type organic semiconductor) and an electron-accepting organic material in which an electron-donating organic material (p-type organic semiconductor) and a metal having a small work function are joined. There is a heterojunction type that joins (n-type organic semiconductor). However, these photoelectric conversion elements have a problem that the photoelectric conversion efficiency is low because the area of the pn junction interface that causes charge separation is small.

そこで有機薄膜太陽電池の光電変換効率を向上させる一つの方法として、電子供与性有機材料(p型有機半導体)と電子受容性有機材料(n型有機半導体)とを混合し、電荷分離を起こすpn接合界面の面積を増大させたバルクヘテロ接合型の光電変換素子が提案され、現在の主流となっている。バルクヘテロ接合型の光電変換素子において高い光電変換効率を達成するためには、電子供与性有機材料(p型有機半導体)と電子受容性有機材料(n型有機半導体)との相分離構造制御が重要である。   Therefore, as one method for improving the photoelectric conversion efficiency of the organic thin-film solar cell, a pn that causes charge separation by mixing an electron-donating organic material (p-type organic semiconductor) and an electron-accepting organic material (n-type organic semiconductor). A bulk heterojunction type photoelectric conversion element having an increased area of the junction interface has been proposed and is now mainstream. In order to achieve high photoelectric conversion efficiency in bulk heterojunction type photoelectric conversion elements, it is important to control the phase separation structure between the electron-donating organic material (p-type organic semiconductor) and the electron-accepting organic material (n-type organic semiconductor). It is.

このような技術開発が進んでも尚、有機薄膜太陽電池はシリコン系や無機化合物系薄膜太陽電池と比較して光電変換効率が低いことが現状の課題の一つである。   Even with such technical development, one of the current problems is that organic thin film solar cells have lower photoelectric conversion efficiency than silicon-based and inorganic compound-based thin film solar cells.

有機薄膜太陽電池の光電変換効率を抜本的に向上させる手段の一つとして、光吸収特性に優れる活性層材料の適用が考えられる。例えば、特許文献1に、ジケトピロロピロール化合物を含んでなる光電変換用増感色素が開示されている。従来から顔料等の光吸収材料や有機EL素子用材料用の発光材料として知られているジケトピロロピロール化合物を色素増感太陽電池用の光吸収色素として用いる試みがなされているが、色素増感太陽電池は、電解質溶液を用いるため、封止が困難であるという実用上の課題を有している。   As one means for drastically improving the photoelectric conversion efficiency of the organic thin film solar cell, application of an active layer material having excellent light absorption characteristics can be considered. For example, Patent Document 1 discloses a sensitizing dye for photoelectric conversion comprising a diketopyrrolopyrrole compound. Attempts have been made to use diketopyrrolopyrrole compounds, which are known as light-absorbing materials such as pigments and light-emitting materials for organic EL device materials, as light-absorbing dyes for dye-sensitized solar cells. Since a solar cell uses an electrolyte solution, it has a practical problem that sealing is difficult.

また、特許文献2に、ジケトピロロピロール骨格を有する化合物、及び電子供与性有機材料を含む光起電力素子用材料が開示されている。ジケトピロロピロール骨格を有する化合物を電子受容性有機材料として、有機薄膜太陽電池へ応用しているが、ジケトピロロピロール骨格を有する化合物は真空蒸着法により製膜されていることから、製造プロセスを簡便化し発電コストを低減することは困難である。さらに、これを電子供与性有機材料とブレンドして、光電変換素子を作製した場合には、十分な光電変換素子特性を得ることができていない。   Patent Document 2 discloses a photovoltaic device material containing a compound having a diketopyrrolopyrrole skeleton and an electron-donating organic material. A compound having a diketopyrrolopyrrole skeleton is applied to an organic thin-film solar cell as an electron-accepting organic material, but a compound having a diketopyrrolopyrrole skeleton is formed by a vacuum deposition method. It is difficult to simplify power generation and reduce power generation cost. Furthermore, when this is blended with an electron-donating organic material to produce a photoelectric conversion element, sufficient photoelectric conversion element characteristics cannot be obtained.

一方、非特許文献3及び非特許文献4に、電子供与性成分として、ジケトピロロピロール骨格を有する有機半導体高分子の研究が報告されている。ジケトピロロピロール骨格を有する有機半導体高分子は、従来用いられてきた電子供与性有機半導体高分子と比較してバンドギャップが小さく、有機薄膜太陽電池においてこれまで有効に利用されていなかった700nm〜900nm(可視〜近赤外領域)の波長域に高い吸光度を有する非常に有用な材料である。しかし、これらを用いたバルクヘテロ接合型光電変換素子の光電変換効率は1〜2%程度であり、それほど高い結果を得られていない。この結果は、ジケトピロロピロール骨格を有する有機半導体高分子を用いた光電変換素子において、最適なpn相分離構造の制御が困難であることを示唆していると考えられる。   On the other hand, Non-Patent Document 3 and Non-Patent Document 4 report research on organic semiconductor polymers having a diketopyrrolopyrrole skeleton as an electron-donating component. The organic semiconductor polymer having a diketopyrrolopyrrole skeleton has a smaller band gap than conventionally used electron donating organic semiconductor polymers, and has not been used effectively in organic thin-film solar cells until now. It is a very useful material having a high absorbance in the wavelength range of 900 nm (visible to near infrared region). However, the photoelectric conversion efficiency of the bulk heterojunction type photoelectric conversion element using these is about 1 to 2%, and the result is not so high. This result is considered to suggest that it is difficult to control the optimal pn phase separation structure in a photoelectric conversion element using an organic semiconductor polymer having a diketopyrrolopyrrole skeleton.

特開2003−346926号公報JP 2003-346926 A 特開2008−166339号公報JP 2008-166339 A

マクロモレキュルズ(Macromolecules)、2009年、第42巻、2891頁Macromolecules, 2009, 42, 2891 ケミストリー オブ マテリアルズ(Chemistry of Materials)2009年、第21巻、4055頁Chemistry of Materials 2009, Vol. 21, p. 4055

本発明は前記の課題を解決するためになされたもので、可視〜近赤外領域の光電変換特性に優れ、かつ高い光電変換効率を有する光電変換素子の作製に適した有機半導体用組成物、及びその有機半導体用組成物から形成される有機薄膜を活性層とする光電変換素子を提供することを目的とする。   The present invention was made in order to solve the above problems, and is an organic semiconductor composition suitable for the production of a photoelectric conversion element having excellent photoelectric conversion characteristics in the visible to near infrared region and having high photoelectric conversion efficiency, And it aims at providing the photoelectric conversion element which uses the organic thin film formed from the composition for organic semiconductors as an active layer.

本発明者らは、前記のような課題を解決すべく鋭意検討し、ジケトピロロピロール骨格を有する有機半導体高分子である重合体(A)、電子受容性有機半導体(B)、重合体(A)及び電子受容性有機半導体(B)に対して良溶媒である可溶解溶媒(C)、及び溶解性添加物(D)を含む有機半導体用組成物を用いて光電変換素子を作製することで前記目的を達成できることを見出し、本発明を完成させるに至った。   The inventors of the present invention have intensively studied to solve the above-mentioned problems, and are a polymer (A), an electron-accepting organic semiconductor (B), a polymer (which is an organic semiconductor polymer having a diketopyrrolopyrrole skeleton) ( A photoelectric conversion element is produced using the composition for organic semiconductors containing the soluble solvent (C) which is a good solvent with respect to A) and an electron-accepting organic semiconductor (B), and a soluble additive (D). Thus, the inventors have found that the object can be achieved, and completed the present invention.

前記の目的を達成するためになされた、特許請求の範囲の請求項1に記載された有機半導体用組成物は、下記化学式(1)

Figure 2013042085
(式中、R及びRはそれぞれ独立して同一または異なる置換基を有してもよい炭素数1〜20のアルキル基であり、Ar、Ar及びArはそれぞれ独立して同一または異なる2価のアリーレン基またはヘテロアリーレン基であり、nは2〜100,000の数である)で示される分子構造を含有する重合体(A)と、電子受容性有機半導体(B)と、前記重合体(A)及び前記電子受容性有機半導体(B)の可溶解溶媒(C)と、沸点が前記可溶解溶媒(C)より高く前記重合体(A)に対する溶解性よりも前記電子受容性有機半導体(B)に対する溶解性が高い溶解性添加物(D)とを含有することを特徴とする。 The composition for an organic semiconductor according to claim 1, which has been made to achieve the above object, has the following chemical formula (1):
Figure 2013042085
(Wherein R 1 and R 2 are each independently an alkyl group having 1 to 20 carbon atoms which may have the same or different substituents, and Ar 1 , Ar 2 and Ar 3 are each independently the same. Or a polymer (A) having a molecular structure represented by a different divalent arylene group or heteroarylene group, and n is a number from 2 to 100,000, and an electron-accepting organic semiconductor (B) The soluble solvent (C) of the polymer (A) and the electron-accepting organic semiconductor (B), and the electron having a boiling point higher than that of the soluble solvent (C) and higher than the solubility in the polymer (A). And a soluble additive (D) having high solubility in the receptive organic semiconductor (B).

請求項2に記載の有機半導体用組成物は、請求項1に記載されたものであって、前記可溶解溶媒(C)及び前記溶解性添加物(D)の合計量100重量部に対して、前記重合体(A)と前記電子受容性有機半導体(B)とを1〜99:99〜1の重量分率としつつそれらの合計量で0.1〜10.0重量部とすることを特徴とする。   The composition for an organic semiconductor according to claim 2 is the composition according to claim 1, wherein the total amount of the soluble solvent (C) and the soluble additive (D) is 100 parts by weight. The polymer (A) and the electron-accepting organic semiconductor (B) have a weight fraction of 1 to 99:99 to 1 and a total amount of 0.1 to 10.0 parts by weight. Features.

請求項3に記載の有機半導体用組成物は、請求項1または2に記載されたものであって、前記溶解性添加物(D)が、ジヨードオクタン、オクタンジチオール、ジブロモオクタン、またはこれらのうちの何れかの混合物であることを特徴とする。   The composition for an organic semiconductor according to claim 3 is the composition according to claim 1 or 2, wherein the soluble additive (D) is diiodooctane, octanedithiol, dibromooctane, or these. It is a mixture of any one of them.

請求項4に記載の有機半導体用組成物は、請求項1〜3に何れかに記載されたものであって、前記電子受容性有機半導体(B)が、C70またはC60フラーレン誘導体であることを特徴とする。 The organic semiconductor composition according to claim 4, which has been described in any one to claims 1 to 3, wherein the electron-accepting organic semiconductor (B) is, is C 70 or C 60 fullerene derivative It is characterized by that.

請求項5に記載の有機半導体用組成物は、請求項1〜4に何れかに記載されたものであって、前記重合体(A)が、下記化学式(2)

Figure 2013042085
(式中、R及びRはそれぞれ独立して置換基を有してもよい炭素数1〜20のアルキル基であり、nは2〜100,000の数である)で示されることを特徴とする。 The composition for organic semiconductor according to claim 5 is the composition according to any one of claims 1 to 4, wherein the polymer (A) has the following chemical formula (2):
Figure 2013042085
Wherein R 1 and R 2 are each independently an alkyl group having 1 to 20 carbon atoms which may have a substituent, and n is a number of 2 to 100,000. Features.

請求項6に記載の光電変換素子は、少なくとも一方が光透過性を有する第1電極及び第2電極の間に、請求項1〜5の何れかに記載の有機半導体用組成物を乾燥硬化してなる有機薄膜が、挟まれていることを特徴とする。   The photoelectric conversion element according to claim 6 is obtained by drying and curing the composition for an organic semiconductor according to any one of claims 1 to 5 between the first electrode and the second electrode, at least one of which has light transmittance. The organic thin film is characterized by being sandwiched.

請求項7に記載のタンデム型光電変換素子は、請求項6に記載の光電変換素子を含有することを特徴とする。   A tandem photoelectric conversion element according to a seventh aspect includes the photoelectric conversion element according to a sixth aspect.

本発明の有機半導体用組成物は、均一な溶液であり、様々な方法により任意の厚みを有する均質な有機薄膜を製膜することができる。この有機薄膜により、可視〜近赤外領域の光電変換が可能で光電変換特性に優れた光電変換素子を提供することができる。   The composition for an organic semiconductor of the present invention is a uniform solution, and a homogeneous organic thin film having an arbitrary thickness can be formed by various methods. With this organic thin film, a photoelectric conversion element capable of performing photoelectric conversion in the visible to near infrared region and having excellent photoelectric conversion characteristics can be provided.

本発明の光電変換素子は、光電変換特性に優れており可視〜近赤外領域に渡って光電変換可能で、高い光電変換効率を示すことができる。さらに、この効果を活かし、本発明の光電変換素子と従来の可視光領域の光電変換特性に優れる光電変換素子とを組み合わせてタンデム型光電変換素子とすることで、高効率な光電変換素子を作製することができる。   The photoelectric conversion element of the present invention has excellent photoelectric conversion characteristics, can be subjected to photoelectric conversion over the visible to near infrared region, and can exhibit high photoelectric conversion efficiency. Furthermore, taking advantage of this effect, a highly efficient photoelectric conversion element is manufactured by combining the photoelectric conversion element of the present invention with a conventional photoelectric conversion element having excellent photoelectric conversion characteristics in the visible light region to form a tandem photoelectric conversion element. can do.

以下、本発明を実施するための形態について詳細に説明するが、本発明の範囲はこれらの形態に限定されるものではない。   Hereinafter, although the form for implementing this invention is demonstrated in detail, the scope of the present invention is not limited to these forms.

本発明の有機半導体用組成物は、電子供与性成分として重合体(A)と、電子受容性成分として電子受容性有機半導体(B)と、それらに対し良溶媒の成分として可溶解溶媒(C)と、沸点がその可溶解溶媒より高く重合体に対し貧溶媒且つ電子受容性有機半導体に対し良溶媒の成分として溶解性添加物(D)とを含有する均一溶液である。   The organic semiconductor composition of the present invention comprises a polymer (A) as an electron donating component, an electron accepting organic semiconductor (B) as an electron accepting component, and a soluble solvent (C) as a good solvent component for them. And a soluble additive (D) as a component of a good solvent for the polymer and a poor solvent for the electron-accepting organic semiconductor.

この有機半導体用組成物における重合体(A)は、ジケトピロロピロール骨格を有する有機半導体高分子であって、下記化学式(1)で示される分子構造(TPP構造)を含有する重合体である。   The polymer (A) in the composition for organic semiconductor is an organic semiconductor polymer having a diketopyrrolopyrrole skeleton, and is a polymer containing a molecular structure (TPP structure) represented by the following chemical formula (1). .

Figure 2013042085
Figure 2013042085

前記化学式(1)におけるR及びRは、それぞれ独立して同一または異なり、置換基を有してもよい直鎖状、分岐状または環状で炭素数1〜20のアルキル基である。 R 1 and R 2 in the chemical formula (1) are each independently the same or different and are linear, branched or cyclic alkyl groups having 1 to 20 carbon atoms which may have a substituent.

置換基を有してもよい炭素数1〜20のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基、n−ヘキシル基、イソヘキシル基、2−エチルヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基等が挙げられる。   Examples of the alkyl group having 1 to 20 carbon atoms which may have a substituent include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert- Butyl group, n-pentyl group, isopentyl group, neopentyl group, tert-pentyl group, n-hexyl group, isohexyl group, 2-ethylhexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl Group, cyclopropyl group, cyclopentyl group, cyclohexyl group, cyclooctyl group and the like.

かかる置換基としては、例えば、フェニル基、ナフチル基、ピリジル基、チエニル基、フリル基、ピロリル基等のアリール基やヘテロアリール基;メトキシ基、エトキシ基、n−プロピルオキシ基、イソプロピルオキシ基、n−ブトキシ基、n−ヘキシル基、シクロヘキシルオキシ基、n−オクチルオキシ基、n−デシルオキシ基、n−ドデシルオキシ基等のアルコキシ基;メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、フェニルチオ基、ナフチルチオ基等のアルキルチオ基;フッ素原子;等が挙げられる。   Examples of the substituent include aryl groups and heteroaryl groups such as phenyl group, naphthyl group, pyridyl group, thienyl group, furyl group, pyrrolyl group; methoxy group, ethoxy group, n-propyloxy group, isopropyloxy group, alkoxy groups such as n-butoxy group, n-hexyl group, cyclohexyloxy group, n-octyloxy group, n-decyloxy group, n-dodecyloxy group; methylthio group, ethylthio group, propylthio group, butylthio group, phenylthio group, An alkylthio group such as a naphthylthio group; a fluorine atom; and the like.

前記化学式(1)におけるAr及びArは、それぞれ独立して同一または異なる2価のアリーレン基若しくはヘテロアリーレン基であり、例えば、フェニレン、2,3−ジアルキルフェニレン、2,5−ジアルキルフェニレン、2,3,5,6−テトラアルキルフェニレン、2,3−アルコキシフェニレン、2,5−アルコキシフェニレン、2,3,5,6−テトラアルコキシフェニレン、2−(N,N,−ジアルキルアミノ)フェニレン、2,5−ジ(N,N,−ジアルキルアミノ)フェニレン、2,3−ジ(N,N,−ジアルキルアミノ)フェニレン、p−フェニレンオキシド、p−フェニレンスルフィド、p−フェニレンアミノ、p−フェニレンビニレン、フルオレニレン、ナフチレン、アントリレン、テトラセニレン、ペンタセニレン、ヘキサセニレン、ヘプタセニレン、ナフチレンビニレン、ペリナフチレン、アミノピレニレン、フェナントレニレン等の芳香環基;N−アルキルカルバゾール等のカルバゾール誘導体;ピリジン、ピリミジン、ピリダジン、トリアジン、ピラジン、キノリン、プリン等のピリジン誘導体;フラン、3−アルキルフラン等のフラン誘導体;ピロール、N−アルキルピロール、エチレン−3,4−ジオキシピロール、プロピレン−3,4−ジオキシピロール等のピロール誘導体;チオフェン、チオフェンビニレン、アルキルチオフェン、エチレン−3,4−ジオキシチオフェン、プロピレン−3,4−ジオキシチオフェン、チエノチオフェン、チエノフラン、チエノピラジン、イソチアナフテン等のチオフェン誘導体;オキサジアゾール、チアジル、セレノフェン、テルロフェン、イミダゾール、オキサゾール、チアゾール、ピラゾール、イソキサゾール、イソチアゾール、ベンゾトリアゾール、ピラン、ベンゾチアジアゾール、ベンゾオキサジアゾール等の複素芳香環基が挙げられる。これらから選択される少なくとも1種が好適に用いられる。中でも、チオフェン誘導体、フラン誘導体、ピロール誘導体の複素環基が好適に用いられる。 Ar 1 and Ar 2 in the chemical formula (1) are each independently the same or different divalent arylene group or heteroarylene group, such as phenylene, 2,3-dialkylphenylene, 2,5-dialkylphenylene, 2,3,5,6-tetraalkylphenylene, 2,3-alkoxyphenylene, 2,5-alkoxyphenylene, 2,3,5,6-tetraalkoxyphenylene, 2- (N, N, -dialkylamino) phenylene 2,5-di (N, N, -dialkylamino) phenylene, 2,3-di (N, N, -dialkylamino) phenylene, p-phenylene oxide, p-phenylene sulfide, p-phenyleneamino, p- Phenylene vinylene, fluorenylene, naphthylene, anthrylene, tetrasenylene, penta Aromatic groups such as nylene, hexasenylene, heptacenylene, naphthylene vinylene, perinaphthylene, aminopyrenylene, phenanthrenylene; carbazole derivatives such as N-alkylcarbazole; pyridine derivatives such as pyridine, pyrimidine, pyridazine, triazine, pyrazine, quinoline, purine A furan derivative such as furan or 3-alkylfuran; a pyrrole derivative such as pyrrole, N-alkylpyrrole, ethylene-3,4-dioxypyrrole or propylene-3,4-dioxypyrrole; thiophene, thiophene vinylene, alkylthiophene; Thiophene derivatives such as ethylene-3,4-dioxythiophene, propylene-3,4-dioxythiophene, thienothiophene, thienofuran, thienopyrazine, isothianaphthene, etc .; oxadiazole , Thiazyl, selenophene, tellurophene, imidazole, oxazole, thiazole, pyrazole, isoxazole, isothiazole, benzotriazole, pyran, benzothiadiazole, benzoxadiazole, and the like. At least one selected from these is preferably used. Of these, heterocyclic groups of thiophene derivatives, furan derivatives, and pyrrole derivatives are preferably used.

前記化学式(1)におけるArは、2価のアリーレン基またはヘテロアリーレン基であり、Ar及びArで例示した(ヘテロ)アリーレン基に加え、下記化学式(a)〜(p)で示される骨格を有する2価のアリーレン基またはヘテロアリーレン基が挙げられる。これらのなかでも、化学式(f)が好適に用いられる。

Figure 2013042085
Ar 3 in the chemical formula (1) is a divalent arylene group or heteroarylene group, and is represented by the following chemical formulas (a) to (p) in addition to the (hetero) arylene group exemplified for Ar 1 and Ar 2. And a divalent arylene group or heteroarylene group having a skeleton. Of these, the chemical formula (f) is preferably used.
Figure 2013042085

前記化学式(a)〜(p)で示される骨格におけるR〜R30は、それぞれ独立して同一または異なり、置換基を有してもよい直鎖状、分岐状または環状で炭素数1〜20のアルキル基である。 R 3 to R 30 in the skeletons represented by the chemical formulas (a) to (p) are each independently the same or different, and may be a linear, branched or cyclic group having 1 to 1 carbon atoms. 20 alkyl groups.

置換基を有してもよい炭素数1〜20のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基、n−ヘキシル基、イソヘキシル基、2−エチルヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基等が挙げられる。   Examples of the alkyl group having 1 to 20 carbon atoms which may have a substituent include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert- Butyl group, n-pentyl group, isopentyl group, neopentyl group, tert-pentyl group, n-hexyl group, isohexyl group, 2-ethylhexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl Group, cyclopropyl group, cyclopentyl group, cyclohexyl group, cyclooctyl group and the like.

かかる置換基としては、例えば、フェニル基、ナフチル基、ピリジル基、チエニル基、フリル基、ピロリル基等のアリール基やヘテロアリール基;メトキシ基、エトキシ基、n−プロピルオキシ基、イソプロピルオキシ基、n−ブトキシ基、n−ヘキシル基、シクロヘキシルオキシ基、n−オクチルオキシ基、n−デシルオキシ基、n−ドデシルオキシ基等のアルコキシ基;メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、フェニルチオ基、ナフチルチオ基等のアルキルチオ基;フッ素原子;等が挙げられる。   Examples of the substituent include aryl groups and heteroaryl groups such as phenyl group, naphthyl group, pyridyl group, thienyl group, furyl group, pyrrolyl group; methoxy group, ethoxy group, n-propyloxy group, isopropyloxy group, alkoxy groups such as n-butoxy group, n-hexyl group, cyclohexyloxy group, n-octyloxy group, n-decyloxy group, n-dodecyloxy group; methylthio group, ethylthio group, propylthio group, butylthio group, phenylthio group, An alkylthio group such as a naphthylthio group; a fluorine atom; and the like.

前記化学式(1)において、nは数平均重合度を表し、2〜100,000の数である。有機半導体用組成物における重合体(A)の重合度は特に限定されないが、有機溶媒である成分Cの可溶解溶媒(C)に溶解し均一溶液を得るという観点から重合度10,000以下、且つ、均一溶液を塗布することで均質な有機薄膜を得るという観点から重合度5以上であることが好ましい。   In the chemical formula (1), n represents the number average degree of polymerization and is a number of 2 to 100,000. The degree of polymerization of the polymer (A) in the composition for organic semiconductor is not particularly limited, but the degree of polymerization is 10,000 or less from the viewpoint of obtaining a uniform solution by dissolving in the soluble solvent (C) of component C, which is an organic solvent. In addition, the degree of polymerization is preferably 5 or more from the viewpoint of obtaining a homogeneous organic thin film by applying a uniform solution.

本発明の有機半導体用組成物に含有される重合体(A)の好ましい例としては、Ar及びArが同一であり、下記化学式(2)で示されるPCTDTPP構造の化合物が挙げられる。

Figure 2013042085
式中、R及びRは前記と同じであり、nは数平均重合度を表し、2〜100,000の数である。 Preferable examples of the polymer (A) contained in the composition for organic semiconductors of the present invention include compounds having a PCTDTPP structure represented by the following chemical formula (2), wherein Ar 1 and Ar 2 are the same.
Figure 2013042085
In the formula, R 1 and R 2 are the same as described above, and n represents the number average degree of polymerization and is a number of 2 to 100,000.

重合体(A)の最も好ましい例としては、下記化学式(3)で示されるポリ(4,4−ビス(2−エチルヘキシル)シクロペンタ[2,1−b:3,4−b’]ジチオフェン)−2,6−ジイル−アルト−(2,5−ビス(2−エチルヘキシル)−3,6−ジ(チオフェン−2−イル)ピロロ[3,4−c]ピロール−1,4(2H,5H)−ジオン)−2,5−ジイル(PCTi8DTPP)が挙げられる。

Figure 2013042085
As the most preferable example of the polymer (A), poly (4,4-bis (2-ethylhexyl) cyclopenta [2,1-b: 3,4-b ′] dithiophene)-represented by the following chemical formula (3) — 2,6-diyl-alt- (2,5-bis (2-ethylhexyl) -3,6-di (thiophen-2-yl) pyrrolo [3,4-c] pyrrole-1,4 (2H, 5H) -Dione) -2,5-diyl (PCTi8DTPP).
Figure 2013042085

このような前記化学式(1)で示される分子構造を有する重合体(A)であるジケトピロロピロール骨格を有する有機半導体高分子は、公知の反応を用いて合成した種々の単量体を縮合重合に関与する置換基に応じて、既知の縮合反応を用いて合成することができる。合成方法として、例えば、該当する単量体を、クロスカップリング反応により重合する方法、FeCl等の酸化剤により重合する方法、電気化学的に酸化重合する方法、または適当な脱離基を有する中間体高分子の分解による方法等が挙げられる。これらのうち、操作の簡便性及び選択性の観点から、クロスカップリング反応により重合する方法が好ましく、かかるクロスカップリング反応の中でも、縮合重合に関与する置換基の導入容易性の観点から、鈴木−宮浦クロスカップリング反応またはStilleクロスカップリング反応を用いる合成がより好ましく、文献公知の方法に従って合成することができる。 Such an organic semiconductor polymer having a diketopyrrolopyrrole skeleton, which is a polymer (A) having a molecular structure represented by the chemical formula (1), condenses various monomers synthesized using known reactions. Depending on the substituents involved in the polymerization, they can be synthesized using known condensation reactions. As a synthesis method, for example, a method of polymerizing a corresponding monomer by a cross coupling reaction, a method of polymerizing with an oxidizing agent such as FeCl 3, a method of electrochemical oxidative polymerization, or a suitable leaving group Examples thereof include a method by decomposition of an intermediate polymer. Among these, from the viewpoint of easy operation and selectivity, a method of polymerizing by a cross-coupling reaction is preferable. Among such cross-coupling reactions, Suzuki is preferable from the viewpoint of ease of introduction of substituents involved in condensation polymerization. -The synthesis using Miyaura cross coupling reaction or Stille cross coupling reaction is more preferable, and can be synthesized according to methods known in the literature.

このような製造方法によって得られるジケトピロロピロール重合体は、その末端基がハロゲン原子、トリアルキルスズ基、ボロン酸基、ボロン酸エステル基、又はそれらの原子若しくは基が脱離した水素原子であるものであってもよく、これらの末端基が臭化ベンゼンなどの芳香族ハロゲン化物や、芳香族ボロン酸化合物などからなる末端封止剤で置換された末端構造であるものであってもよい。また、重合工程では、ジケトピロロピロール重合体の効果を損なわない範囲の少量であれは、ジケトピロロピロール構造を有さない化合物を共存させてもよい。   The diketopyrrolopyrrole polymer obtained by such a production method has a terminal group composed of a halogen atom, a trialkyltin group, a boronic acid group, a boronic ester group, or a hydrogen atom from which these atoms or groups are eliminated. The terminal group may have a terminal structure in which these terminal groups are substituted with an end capping agent made of an aromatic halide such as benzene bromide or an aromatic boronic acid compound. . In the polymerization step, a compound that does not have a diketopyrrolopyrrole structure may coexist in a small amount that does not impair the effect of the diketopyrrolopyrrole polymer.

これらの反応に用いる溶媒は、用いる原料化合物や反応によっても異なるが、一般に副反応を抑制するために、十分に脱酸素処理を施すことが好ましい。反応は不活性雰囲気下で進行させることが好ましい。また、同様に、反応に用いる溶媒は、脱水処理を施すことが好ましい。但し、Suzukiカップリング反応のような水との2相系での反応の場合にはその限りではない。   Although the solvent used for these reactions varies depending on the raw material compounds and reactions used, it is generally preferable to perform sufficient deoxygenation treatment in order to suppress side reactions. The reaction is preferably allowed to proceed under an inert atmosphere. Similarly, the solvent used in the reaction is preferably subjected to dehydration treatment. However, this is not the case in the case of a two-phase reaction with water, such as the Suzuki coupling reaction.

これらの溶媒としては、具体的に、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン、デカリン等の飽和炭化水素;ベンゼン、トルエン、エチルベンゼン、n−ブチルベンゼン、キシレン、テトラリン等の芳香族炭化水素;四塩化炭素、クロロホルム、ジクロロメタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等のハロゲン化飽和炭化水素;クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化芳香族炭化水素;メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、t−ブチルアルコール等のアルコール類;蟻酸、酢酸、プロピオン酸等のカルボン酸類;ジメチルエーテル、ジエチルエーテル、メチル−t−ブチルエーテル、テトラヒドロフラン、テトラヒドロピラン、ジオキサン等のエーテル類;トリメチルアミン、トリエチルアミン、N,N,N’,N’−テトラメチルエチレンジアミン、ピリジン等のアミン類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド、N−メチルモルホリンオキシド等のアミド類等が挙げられる。これらの溶媒は、1種単独で用いてもよく、2種以上を混合して用いてもよい。   Specific examples of these solvents include saturated hydrocarbons such as pentane, hexane, heptane, octane, cyclohexane and decalin; aromatic hydrocarbons such as benzene, toluene, ethylbenzene, n-butylbenzene, xylene and tetralin; tetrachloride Halogenated saturated hydrocarbons such as carbon, chloroform, dichloromethane, chlorobutane, bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane and bromocyclohexane; halogenated aromatic hydrocarbons such as chlorobenzene, dichlorobenzene and trichlorobenzene Alcohols such as methanol, ethanol, propanol, isopropanol, butanol and t-butyl alcohol; carboxylic acids such as formic acid, acetic acid and propionic acid; dimethyl ether, die Ethers such as ether, methyl-t-butyl ether, tetrahydrofuran, tetrahydropyran and dioxane; amines such as trimethylamine, triethylamine, N, N, N ′, N′-tetramethylethylenediamine and pyridine; N, N-dimethylformamide, Examples thereof include amides such as N, N-dimethylacetamide, N, N-diethylacetamide, and N-methylmorpholine oxide. These solvents may be used alone or in combination of two or more.

これらの反応において、アルカリや触媒を添加することが好ましい。これらは用いる反応に応じて適宜選択することができる。このアルカリまたは触媒は、反応に用いる溶媒に十分に溶解するものであると好ましい。アルカリとしては、例えば、炭酸カリウム、炭酸ナトリウム等の無機塩基;トリエチルアミン等の有機塩基;フッ化セシウム等の無機塩が挙げられる。触媒としては、例えば、パラジウム〔テトラキス(トリフェニルホスフィン)〕、パラジウムアセテート類が挙げられる。アルカリまたは触媒を混合する方法としては、反応液をアルゴンや窒素等の不活性雰囲気下で攪拌しながらゆっくりとアルカリまたは触媒の溶液を添加する方法や、逆にアルカリまたは触媒の溶液に反応液をゆっくりと添加する方法が挙げられる。   In these reactions, it is preferable to add an alkali or a catalyst. These can be appropriately selected depending on the reaction used. This alkali or catalyst is preferably one that is sufficiently dissolved in the solvent used in the reaction. Examples of the alkali include inorganic bases such as potassium carbonate and sodium carbonate; organic bases such as triethylamine; inorganic salts such as cesium fluoride. Examples of the catalyst include palladium [tetrakis (triphenylphosphine)] and palladium acetates. As a method of mixing an alkali or a catalyst, a method of slowly adding an alkali or catalyst solution while stirring the reaction solution under an inert atmosphere such as argon or nitrogen, or conversely, adding a reaction solution to an alkali or catalyst solution. The method of adding slowly is mentioned.

本発明の有機半導体用組成物を有機太陽電池等に用いる場合、含有される重合体(A)の純度が光電変換効率等の素子の性能に影響を与えるため、重合前の単量体を蒸留、昇華精製、再結晶等の方法で精製したのちに重合することが好ましい。また重合後、再沈精製、クロマトグラフィーによる分別等の純化処理をすることが好ましい。   When the composition for an organic semiconductor of the present invention is used for an organic solar battery or the like, the purity of the polymer (A) contained affects the performance of the device such as photoelectric conversion efficiency. Polymerization after purification by a method such as sublimation purification or recrystallization is preferred. Further, after the polymerization, it is preferable to carry out a purification treatment such as reprecipitation purification and fractionation by chromatography.

本発明の有機半導体用組成物における電子受容性有機半導体(B)は、n型半導体特性を示す有機材料であれば特に限定されない。電子受容性有機半導体(B)として、例えば、1,4,5,8−ナフタレンテトラカルボキシリックジアンハイドライド、3,4,9,10−ペリレンテトラカルボキシリックジアンハイドライド、N,N'−ジオクチル−3,4,9,10−ナフチルテトラカルボキシジイミド、オキサゾール誘導体(2−(4−ビフェニリル)−5−(4−t−ブチルフェニル)−1,3,4−オキサジアゾール、2,5−ジ(1−ナフチル)−1,3,4−オキサジアゾール等)、トリアゾール誘導体(3−(4−ビフェニリル)−4−フェニル−5−(4−t−ブチルフェニル)−1,2,4−トリアゾール等)、フェナントロリン誘導体、C60またはC70フラーレン誘導体、カーボンナノチューブ、ポリ−p−フェニレンビニレン系重合体にシアノ基を導入した誘導体(CN−PPV)等が挙げられる。これらの電子受容性有機半導体(B)は、1種単独で用いてもよく、2種以上を混合して用いてもよい。これらの中でも、安定且つキャリア移動度に優れるn型半導体という観点からフラーレン誘導体が好ましく用いられる。 The electron-accepting organic semiconductor (B) in the composition for organic semiconductors of the present invention is not particularly limited as long as it is an organic material exhibiting n-type semiconductor characteristics. Examples of the electron-accepting organic semiconductor (B) include 1,4,5,8-naphthalene tetracarboxyl dianhydride, 3,4,9,10-perylene tetracarboxyl dianhydride, N, N′-dioctyl-3. , 4,9,10-naphthyltetracarboxydiimide, oxazole derivative (2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole, 2,5-di ( 1-naphthyl) -1,3,4-oxadiazole, etc.), triazole derivatives (3- (4-biphenylyl) -4-phenyl-5- (4-t-butylphenyl) -1,2,4-triazole etc.), shea phenanthroline derivatives, C 60 or C 70 fullerene derivatives, carbon nanotubes, poly -p- phenylene vinylene-based polymer Amino group the introduced derivative (CN-PPV), and the like. These electron-accepting organic semiconductors (B) may be used alone or in a combination of two or more. Among these, fullerene derivatives are preferably used from the viewpoint of an n-type semiconductor that is stable and excellent in carrier mobility.

電子受容性有機半導体(B)として好適に用いられるフラーレン誘導体は、C60、C70、C76、C78、C82、C84、C90、C94を始めとする無置換のものと、[6,6]−フェニル C61 ブチリックアシッドメチルエステル(PC61BM)、[5,6]−フェニル C61 ブチリックアシッドメチルエステル、[6,6]−フェニル C61 ブチリックアシッドn−ブチルエステル、[6,6]−フェニル C61 ブチリックアシッドi−ブチルエステル、[6,6]−フェニル C61 ブチリックアシッドヘキシルエステル、[6,6]−フェニル C61 ブチリックアシッドドデシルエステル、[6,6]−ジフェニル C62ビス(ブチリックアシッドメチルエステル)(bis−PC62BM)、[6,6]−フェニル C71 ブチリックアシッドメチルエステル(PC71BM)をはじめとする置換誘導体等が挙げられる。 Fullerene derivatives suitably used as the electron-accepting organic semiconductor (B) include unsubstituted ones such as C 60 , C 70 , C 76 , C 78 , C 82 , C 84 , C 90 , and C 94 , [6,6] -Phenyl C 61 butyric acid methyl ester (PC 61 BM), [5,6] -Phenyl C 61 butyric acid methyl ester, [6,6] -phenyl C 61 butyric acid n-butyl Ester, [6,6] -phenyl C 61 butyric acid i-butyl ester, [6,6] -phenyl C 61 butyric acid hexyl ester, [6,6] -phenyl C 61 butyric acid dodecyl ester, [ 6,6] - diphenyl C 62 bis (butyric acid methyl ester) (bis-PC 62 BM) , [6 6] - substitution derivatives, including phenyl C 71 butyric acid methyl ester (PC 71 BM) and the like.

本発明の有機半導体用組成物では、前記フラーレン誘導体を単独またはそれらの混合物として用いることができるが、有機溶媒に対する溶解性の観点から、PC61BM、bis−PC62BM、PC71BMが好適に用いられる。さらに光吸収の観点からPC71BMがより好適に用いられる。 In the composition for organic semiconductors of the present invention, the fullerene derivatives can be used alone or as a mixture thereof. From the viewpoint of solubility in organic solvents, PC 61 BM, bis-PC 62 BM, and PC 71 BM are preferable. Used for. Further, PC 71 BM is more preferably used from the viewpoint of light absorption.

本発明の有機半導体用組成物における可溶解溶媒(C)は、重合体(A)、電子受容性有機半導体(B)、溶解性添加物(D)を溶解し、本発明の有機半導体用組成物として均一溶液を与えるものであれば特に限定されない。均一溶液を与える可溶解溶媒(C)として、重合体(A)及び電子受容性有機半導体(B)のそれぞれについて、20℃における溶解度が1mg/mL以上であるものを用いることが有機薄膜製膜上の観点より好ましい。1mg/mL以下の溶解度である場合には、均質な有機薄膜を作製することが困難であるため、本発明の有機半導体用組成物を得ることができない。さらに、有機薄膜の膜厚を任意に制御する観点からは、重合体(A)及び電子受容性有機半導体(B)のそれぞれについて、20℃における溶解度が3mg/mL以上であるものを用いることがより好ましい。また、これら可溶解溶媒(C)の沸点は、室温から200℃の範囲にあるものが製膜性及び後述する製造プロセスの観点より好ましい。   The dissolvable solvent (C) in the organic semiconductor composition of the present invention dissolves the polymer (A), the electron-accepting organic semiconductor (B), and the soluble additive (D), and the organic semiconductor composition of the present invention. If it gives a uniform solution as a thing, it will not specifically limit. As the soluble solvent (C) that gives a homogeneous solution, it is possible to use an organic thin film formed by using a polymer (A) and an electron-accepting organic semiconductor (B) each having a solubility at 20 ° C. of 1 mg / mL or more. It is preferable from the above viewpoint. When the solubility is 1 mg / mL or less, it is difficult to produce a homogeneous organic thin film, and thus the organic semiconductor composition of the present invention cannot be obtained. Furthermore, from the viewpoint of arbitrarily controlling the film thickness of the organic thin film, it is preferable to use a polymer (A) and an electron-accepting organic semiconductor (B) having a solubility at 20 ° C. of 3 mg / mL or more. More preferred. Further, the boiling point of these dissolvable solvents (C) is preferably in the range of room temperature to 200 ° C. from the viewpoint of film forming properties and the manufacturing process described later.

可溶解溶媒(C)としては、テトラヒドロフラン、1,2−ジクロロエタン、シクロヘキサン、クロロホルム、ブロモホルム、ベンゼン、トルエン、o−キシレン、クロロベンゼン、ブロモベンゼン、ヨードベンゼン、o−ジクロロベンゼン、アニソール、メトキシベンゼン、トリクロロベンゼン、ピリジン等が挙げられる。これらの溶媒は単独で用いてもよく、2種類以上混合して用いてもよいが、特に重合体(A)及び電子受容性有機半導体(B)のそれぞれについて溶解度が高いo−ジクロロベンゼン、クロロベンゼン、ブロモベンゼン、ヨードベンゼン、クロロホルム及びこれらの混合物が好ましい。より好ましくは、重合体(A)及び電子受容性有機半導体(B)のそれぞれについて溶解度が最も高いo−ジクロロベンゼン、クロロベンゼン及びこれらの混合物が用いられる。   Soluble solvents (C) include tetrahydrofuran, 1,2-dichloroethane, cyclohexane, chloroform, bromoform, benzene, toluene, o-xylene, chlorobenzene, bromobenzene, iodobenzene, o-dichlorobenzene, anisole, methoxybenzene, tri Examples include chlorobenzene and pyridine. These solvents may be used singly or in combination of two or more types. Particularly, o-dichlorobenzene and chlorobenzene having high solubility for each of the polymer (A) and the electron-accepting organic semiconductor (B). Bromobenzene, iodobenzene, chloroform and mixtures thereof are preferred. More preferably, o-dichlorobenzene, chlorobenzene and a mixture thereof having the highest solubility for each of the polymer (A) and the electron-accepting organic semiconductor (B) are used.

本発明の有機半導体用組成物における溶解性添加物(D)は、可溶解溶媒(C)より高い沸点であって、重合体(A)に対する溶解性よりも前記電子受容性有機半導体(B)に対する溶解性が高く、重合体(A)について貧溶媒且つ電子受容性有機半導体(B)について良溶媒であり、本発明の均一な有機半導体用組成物を与えるものであれば特に限定されない。   The soluble additive (D) in the composition for organic semiconductor of the present invention has a boiling point higher than that of the soluble solvent (C), and the electron-accepting organic semiconductor (B) is more soluble than the polymer (A). As long as the polymer (A) is a poor solvent and the electron-accepting organic semiconductor (B) is a good solvent and gives the uniform composition for an organic semiconductor of the present invention, there is no particular limitation.

前記の条件を満たす溶解性添加物(D)を用いることで、本発明の有機半導体用組成物を塗布し、乾燥して有機薄膜を製膜する過程において、重合体(A)及び電子受容性有機半導体(B)の微細且つ連続した相分離構造が形成されるため、光電変換効率に優れる活性層を得ることが可能となる。   In the process of forming the organic thin film by applying the organic semiconductor composition of the present invention by using the soluble additive (D) satisfying the above conditions, the polymer (A) and the electron accepting property are formed. Since a fine and continuous phase separation structure of the organic semiconductor (B) is formed, an active layer having excellent photoelectric conversion efficiency can be obtained.

かかる溶解性添加物(D)としては、例えば重合体(A)として前記化学式(3)に示すPCTi8DTPPを、電子受容性有機半導体(B)として[6,6]−C71−PCBMまたは[6,6]−C61−PCBMを、可溶解溶媒(C)としてo−ジクロロベンゼン(沸点:180℃)をそれぞれ用いた場合、オクタンジチオール(沸点:270℃)、ジブロモオクタン(沸点:272℃)、ジヨードオクタン(沸点:327℃)等が例示される。このとき、可溶解溶媒(C)であるo−ジクロロベンゼンは、重合体(A)であるPCTi8DTPP及び電子受容性有機半導体(B)である[6,6]−C71−PCBMまたは[6,6]−C61−PCBMに対して良溶媒である。溶解性添加物(D)であるオクタンジチオール、ジブロモオクタン、ジヨードオクタンは、重合体(A)であるPCTi8DTPPに対して溶解度が低い貧溶媒であり、電子受容性有機半導体(B)である[6,6]−C71−PCBMに対して溶解度が高い良溶媒である。 Examples of the soluble additive (D) include PCTi8DTPP represented by the chemical formula (3) as the polymer (A) and [6,6] -C 71 -PCBM or [6 as the electron-accepting organic semiconductor (B). , 6] -C 61 -PCBM and o-dichlorobenzene (boiling point: 180 ° C.) as the soluble solvent (C), respectively, octanedithiol (boiling point: 270 ° C.), dibromooctane (boiling point: 272 ° C.) And diiodooctane (boiling point: 327 ° C.). At this time, o-dichlorobenzene, which is a soluble solvent (C), is PCTi8DTPP, which is a polymer (A), and [6,6] -C 71 -PCBM or [6, which is an electron-accepting organic semiconductor (B). is a good solvent for 6] -C 61 -PCBM. The soluble additive (D), octanedithiol, dibromooctane and diiodooctane, is a poor solvent having low solubility in the PCTi8DTPP which is the polymer (A), and is an electron-accepting organic semiconductor (B). 6,6] -C 71 -PCBM is a good solvent with high solubility.

本発明の有機半導体用組成物における溶解性添加物(D)の添加量は、本発明の均一な有機半導体用組成物を与えるものであれば特に限定されないが、可溶解溶媒(C)に対して体積分率で0.1%〜20%であることが好ましい。溶解性添加物(D)の添加量が0.1%よりも少ない場合は、重合体(A)及び電子受容性有機半導体(B)の微細且つ連続した相分離構造が形成されるに十分な効果を得ることができず、20%よりも多い場合は、可溶解溶媒(C)及び溶解性添加物(D)の乾燥速度が遅くなり、均質な有機薄膜を得ることが困難となる。より好ましくは0.5%〜10%の範囲である。   Although the addition amount of the soluble additive (D) in the composition for organic semiconductors of the present invention is not particularly limited as long as it provides the uniform composition for organic semiconductors of the present invention, it is not limited to the soluble solvent (C). The volume fraction is preferably 0.1% to 20%. When the addition amount of the soluble additive (D) is less than 0.1%, it is sufficient to form a fine and continuous phase separation structure of the polymer (A) and the electron-accepting organic semiconductor (B). When the effect cannot be obtained and the content is more than 20%, the drying rate of the soluble solvent (C) and the soluble additive (D) is slowed, and it becomes difficult to obtain a homogeneous organic thin film. More preferably, it is in the range of 0.5% to 10%.

本発明の有機半導体用組成物は電子供与性成分である成分A、電子受容性成分である成分B、成分C、及び成分Dのほか、本発明の目的を阻害しない範囲において、界面活性剤やバインダー樹脂、フィラー等の他の成分を含んでいてもよい。   The composition for an organic semiconductor of the present invention is not limited to the component A, which is an electron donating component, the component B, the component C, and the component D, which are electron accepting components. Other components such as a binder resin and a filler may be included.

本発明の有機半導体用組成物は、はじめに電子供与性成分である重合体(A)及び電子受容性成分である電子受容性有機半導体(B)を所定量秤量し、あらかじめ調製しておいた所定体積分率の溶解性添加物(D)を含有する可溶性溶媒(C)を加えて、加熱・攪拌し溶解した後、所定の細孔径を有するフィルターでろ過して得ることができる。   In the composition for an organic semiconductor of the present invention, the polymer (A) which is an electron donating component and the electron accepting organic semiconductor (B) which is an electron accepting component are weighed in a predetermined amount, and are prepared in advance. A soluble solvent (C) containing a volumetric volume soluble additive (D) is added, dissolved by heating and stirring, and then filtered through a filter having a predetermined pore size.

有機半導体高分子であるジケトピロロピロール骨格を有する重合体(A)及び電子受容性有機半導体(B)の含有量は、本発明にかかる有機半導体用組成物中においてそれらが共に溶解していれば、特に限定されない。重合体(A)と電子受容性半導体(B)との重量分率として、重合体(A):電子受容性半導体(B)=1〜99:99〜1の範囲であることが好ましく、より好ましくは20〜80:80〜20の範囲である。ただし、いずれの重量分率であっても重合体(A)と電子受容性半導体(B)との重量の和は、可溶性溶媒(C)及び溶解性添加物(D)との和100重量部に対して0.1〜10.0重量部であると好ましく、0.5〜5.0重量部であるとより好ましい。   The contents of the polymer (A) having a diketopyrrolopyrrole skeleton, which is an organic semiconductor polymer, and the electron-accepting organic semiconductor (B) may be dissolved in the organic semiconductor composition according to the present invention. There is no particular limitation. The weight fraction of the polymer (A) and the electron-accepting semiconductor (B) is preferably in the range of polymer (A): electron-accepting semiconductor (B) = 1 to 99: 99-1. Preferably it is the range of 20-80: 80-20. However, the sum of the weights of the polymer (A) and the electron-accepting semiconductor (B) is 100 parts by weight of the soluble solvent (C) and the soluble additive (D) at any weight fraction. The amount is preferably 0.1 to 10.0 parts by weight, and more preferably 0.5 to 5.0 parts by weight.

本発明の有機半導体用組成物を作製する際の加熱条件及び攪拌条件は、均一な有機半導体用組成物を得る範囲であれば特に限定されない。しかし、生産性及び安全性の観点から、加熱温度は、10℃〜200℃であると好ましく、30℃〜100℃であるとより好ましい。また、攪拌速度は、50rpm〜1500rpmであると好ましく、100rpm〜700rpmであるとより好ましい。   The heating conditions and stirring conditions for producing the organic semiconductor composition of the present invention are not particularly limited as long as a uniform organic semiconductor composition is obtained. However, from the viewpoint of productivity and safety, the heating temperature is preferably 10 ° C to 200 ° C, more preferably 30 ° C to 100 ° C. In addition, the stirring speed is preferably 50 rpm to 1500 rpm, and more preferably 100 rpm to 700 rpm.

本発明の有機半導体用組成物を作製する際のろ過工程で使用するろ材には、市販されている種々のものを用いることができる。ろ材の選定は使用する有機溶媒に応じ、溶解しない素材を選択することができるが、耐溶剤性の観点から、ポリフッ化ビニリデン、ポリテトラフルオロエチレン製のものが好ましく用いられる。   Various commercially available filters can be used as the filter medium used in the filtration step when producing the composition for an organic semiconductor of the present invention. Although the filter medium can be selected from materials that do not dissolve in accordance with the organic solvent used, those made of polyvinylidene fluoride or polytetrafluoroethylene are preferably used from the viewpoint of solvent resistance.

また、使用するろ材の細孔径は、有機半導体用組成物の溶解性に応じて任意のものを選択できるが、均一な有機半導体用組成物を用いて均質な有機薄膜を得るためには、0.1μm〜5μmの細孔径であることが好ましく、0.2μmまたは0.45μmの細孔径であることがより好ましい。   In addition, the pore diameter of the filter medium to be used can be arbitrarily selected according to the solubility of the organic semiconductor composition. However, in order to obtain a homogeneous organic thin film using a uniform organic semiconductor composition, The pore diameter is preferably 1 μm to 5 μm, and more preferably 0.2 μm or 0.45 μm.

本発明の有機半導体用組成物を基板または支持体へ塗工する方法としては、特に制限されず、液状の塗工材料を用いる従来から知られている塗工方法のいずれも採用することができる。例えば、浸漬コーティング法、スプレーコーティング法、インクジェット法、エアロゾルジェット法、スピンコーティング法、ビードコーティング法、ワイヤーバーコーティング法、ブレードコーティング法、ローラーコーティング法、カーテンコーティング法、スリットダイコーター法、グラビアコーター法、スリットリバースコーター法、マイクログラビア法、コンマコーター法等の塗工方法を採用することができ、塗膜厚さ制御や配向制御等、得ようとする塗膜特性に応じて塗布方法を選択すればよい。このとき、必要に応じて不活性ガス雰囲気下で製膜することにより、材料の変性を抑制することができる。次いで、形成した塗膜から溶媒を除去するために、減圧下または不活性ガス雰囲気下(窒素やアルゴン雰囲気下)で乾燥する。   The method for coating the organic semiconductor composition of the present invention on the substrate or the support is not particularly limited, and any conventionally known coating method using a liquid coating material can be employed. . For example, dip coating method, spray coating method, ink jet method, aerosol jet method, spin coating method, bead coating method, wire bar coating method, blade coating method, roller coating method, curtain coating method, slit die coater method, gravure coater method , Slit reverse coater method, micro gravure method, comma coater method and other coating methods can be adopted, and the coating method can be selected according to the characteristics of the coating film to be obtained, such as coating thickness control and orientation control. That's fine. At this time, material denaturation can be suppressed by forming a film in an inert gas atmosphere as necessary. Next, in order to remove the solvent from the formed coating film, the film is dried under reduced pressure or under an inert gas atmosphere (nitrogen or argon atmosphere).

本発明の有機半導体用組成物から製膜される有機薄膜を活性層として用いた光電変換素子について例を挙げて説明する。   An example is given and demonstrated about the photoelectric conversion element using the organic thin film formed from the composition for organic semiconductors of this invention as an active layer.

本発明の光電変換素子は、少なくとも一方が光透過性を有する第1の電極及び第2の電極、つまり正極と負極と間に本発明の有機半導体用組成物を用いて製膜した活性層を有するものである。   In the photoelectric conversion element of the present invention, at least one of the first electrode and the second electrode having optical transparency, that is, an active layer formed by using the organic semiconductor composition of the present invention between a positive electrode and a negative electrode. It is what you have.

光電変換素子の動作機構は、透明または半透明の電極から入射した光エネルギーが、本発明の有機半導体用組成物により製膜された活性層中の電子受容性成分である電子受容性有機半導体(B)つまり電子受容性化合物、及び/または電子供与性成分である重合体(A)つまり電子供与性化合物で吸収され、電子とホールとの結合した励起子を生成する。生成した励起子が移動して、電子受容性化合物と電子供与性化合物とが隣接しているヘテロ接合界面に達すると界面でのそれぞれのHOMOエネルギー及びLUMOエネルギーの違いにより電子とホールとが分離し、独立に動くことができる電荷(電子及びホール)が発生する。発生した電荷は、それぞれ電極へ移動することにより外部へ電気エネルギー(電流)として取り出すことができる。   The operation mechanism of the photoelectric conversion element is an electron-accepting organic semiconductor in which light energy incident from a transparent or translucent electrode is an electron-accepting component in an active layer formed by the organic semiconductor composition of the present invention ( B) That is, it is absorbed by the electron-accepting compound and / or the polymer (A) that is the electron-donating component, that is, the electron-donating compound, and generates excitons in which electrons and holes are combined. When the generated excitons move and reach the heterojunction interface where the electron-accepting compound and the electron-donating compound are adjacent to each other, electrons and holes are separated due to the difference in HOMO energy and LUMO energy at the interface. Electric charges (electrons and holes) that can move independently are generated. The generated charges can be taken out as electric energy (current) by moving to the electrodes.

本発明の光電変換素子は、通常、基板上に形成される。この基板は、電極を形成し、有機物の層を形成する際に変化しないものであればよい。基板の材料としては、例えば、無アルカリガラス、石英ガラス、シリコン等の無機材料;ポリエステル、ポリカーボネート、ポリオレフィン、ポリアミド、ポリイミド、ポリフェニレンスルフィド、ポリパラキシレン、エポキシ樹脂やフッ素系樹脂等の有機材料から任意の方法によって作製されたフィルムや板が使用可能である。不透明な基板の場合には、反対の電極即ち、基板から遠い方の電極が透明または半透明であることが好ましい。   The photoelectric conversion element of the present invention is usually formed on a substrate. This substrate may be any substrate that does not change when an electrode is formed and an organic layer is formed. As a material of the substrate, for example, an inorganic material such as alkali-free glass, quartz glass, or silicon; any organic material such as polyester, polycarbonate, polyolefin, polyamide, polyimide, polyphenylene sulfide, polyparaxylene, epoxy resin, or fluorine resin can be used. Films and plates produced by the above method can be used. In the case of an opaque substrate, the opposite electrode, that is, the electrode far from the substrate is preferably transparent or translucent.

前記の透明または半透明の電極材料としては、導電性の金属酸化物膜、半透明の金属薄膜等が挙げられる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるインジウム・スズ・オキサイド(ITO)、フッ素・スズ・オキサイド(FTO)、アンチモン・スズ・オキサイド、インジウム・亜鉛・オキサイド(IZO)、ガリウム・亜鉛・オキサイド、アルミニウム・亜鉛・オキサイド、アンチモン・亜鉛・オキサイドからなる導電性材料を用いて作製された膜や、金、白金、銀、銅の極薄膜が用いられ、ITO、FTO、IZO、酸化スズが好ましい。電極の作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。   Examples of the transparent or translucent electrode material include a conductive metal oxide film and a translucent metal thin film. Specifically, indium oxide, zinc oxide, tin oxide, and their composites, indium tin oxide (ITO), fluorine tin oxide (FTO), antimony tin oxide, indium zinc oxide (IZO), gallium / zinc / oxide, aluminum / zinc / oxide, antimony / zinc / oxide conductive film, gold, platinum, silver, copper ultrathin film is used, ITO , FTO, IZO and tin oxide are preferred. Examples of the method for producing the electrode include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like.

また、電極材料として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機の透明導電膜を用いてもよい。さらに電極材料としては、金属、導電性高分子等を用いることができ、好ましくは一対の電極のうち、一方の電極は仕事関数の小さい材料が好ましい。例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属、及びそれら金属のうち2つ以上の合金、またはそれら金属のうち1つ以上と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうち1つ以上の金属との合金、グラファイトまたはグラファイト層間化合物等が用いられる。合金の例としては、マグネシウム−銀合金、マグネシウム−インジウム合金、マグネシウム−アルミニウム合金、インジウム−銀合金、リチウム−アルミニウム合金、リチウム−マグネシウム合金、リチウム−インジウム合金、カルシウム−アルミニウム合金等が挙げられる。   Moreover, you may use organic transparent conductive films, such as polyaniline and its derivative (s), polythiophene, and its derivative (s) as an electrode material. Furthermore, as an electrode material, a metal, a conductive polymer, or the like can be used. Preferably, one of the pair of electrodes is preferably a material having a small work function. For example, metals such as lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and the like Two or more alloys, or one or more of these metals and an alloy of one or more of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, tin, graphite or graphite interlayer A compound or the like is used. Examples of the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, calcium-aluminum alloy and the like.

本発明の光電変換素子に用いる電極は、一方に仕事関数の大きな導電性素材、もう一方に仕事関数の小さな導電性素材を使用することが好ましく、このとき、仕事関数の大きな導電性素材を用いた電極は正極となり、仕事関数の小さな導電性素材を用いた電極は負極となる。   For the electrode used in the photoelectric conversion element of the present invention, it is preferable to use a conductive material having a high work function on one side and a conductive material having a low work function on the other side. The electrode using the conductive material having a small work function becomes the negative electrode.

本発明の光電変換素子は、必要に応じて正極と活性層との間に正孔輸送層を設けてもよい。正孔輸送層を形成する材料としては、p型半導体特性を有するものであれば特に限定されないが、ポリチオフェン系重合体、ポリアニリン系重合体、ポリ−p−フェニレンビニレン系重合体、ポリフルオレン系重合体等の導電性高分子や、フタロシアニン誘導体(HPc、CuPc、ZnPc等)、ポルフィリン誘導体等のp型半導体特性を示す低分子有機化合物、酸化モリブデン、酸化亜鉛、酸化バナジウム等の金属酸化物が好ましく用いられる。特に、ポリチオフェン系重合体であるポリエチレンジオキシチオフェン(PEDOT)やPEDOTにポリスチレンスルホネート(PSS)が添加されたものが好ましく用いられる。正孔輸送層は1nmから600nmの厚さが好ましく、より好ましくは20nmから300nmである。 The photoelectric conversion element of this invention may provide a positive hole transport layer between a positive electrode and an active layer as needed. The material for forming the hole transport layer is not particularly limited as long as it has p-type semiconductor characteristics. However, polythiophene polymers, polyaniline polymers, poly-p-phenylene vinylene polymers, polyfluorene polymers are not limited. Conductive polymers such as coalescence, low molecular organic compounds exhibiting p-type semiconductor properties such as phthalocyanine derivatives (H 2 Pc, CuPc, ZnPc, etc.), porphyrin derivatives, metal oxides such as molybdenum oxide, zinc oxide, vanadium oxide Is preferably used. In particular, polyethylenedioxythiophene (PEDOT), which is a polythiophene polymer, or PEDOT to which polystyrene sulfonate (PSS) is added is preferably used. The thickness of the hole transport layer is preferably 1 nm to 600 nm, more preferably 20 nm to 300 nm.

本発明の光電変換素子は、必要に応じて負極と活性層との間に電子輸送層を設けてもよい。電子輸送層を形成する材料としては、n型半導体特性を有するものであれば特に限定されないが、NTCDA、PTCDA、PTCDI−C8H、オキサゾール誘導体、トリアゾール誘導体、フェナントロリン誘導体、フラーレン誘導体、CNT、CN−PPV等の電子受容性有機材料等が好ましく用いられる。電子輸送層は1nmから600nmの厚さが好ましく、より好ましくは5nmから100nmである。   The photoelectric conversion element of this invention may provide an electron carrying layer between a negative electrode and an active layer as needed. The material for forming the electron transport layer is not particularly limited as long as it has n-type semiconductor characteristics. However, NTCDA, PTCDA, PTCDI-C8H, oxazole derivatives, triazole derivatives, phenanthroline derivatives, fullerene derivatives, CNT, CN-PPV An electron-accepting organic material such as is preferably used. The thickness of the electron transport layer is preferably 1 nm to 600 nm, more preferably 5 nm to 100 nm.

本発明の光電変換素子は必要に応じ、電極と活性層の間や、正孔または電子輸送材料と活性層との間に電荷移動を円滑にするバッファー層として金属フッ化物を設けてもよい。金属フッ化物としては、フッ化リチウム、フッ化ナトリウム、フッ化カリウム、フッ化マグネシウム、フッ化カルシウム、フッ化セシウム等が挙げられるが、特にフッ化リチウムが好ましく用いられる。バッファー層は0.1nmから50nmの厚さが好ましく、より好ましくは0.5nmから20nmである。   In the photoelectric conversion element of the present invention, a metal fluoride may be provided as a buffer layer for facilitating charge transfer between the electrode and the active layer or between the hole or electron transport material and the active layer, if necessary. Examples of the metal fluoride include lithium fluoride, sodium fluoride, potassium fluoride, magnesium fluoride, calcium fluoride, cesium fluoride, and lithium fluoride is particularly preferably used. The buffer layer preferably has a thickness of 0.1 nm to 50 nm, more preferably 0.5 nm to 20 nm.

次に、本発明の光電変換素子の製造工程について例を挙げて示す。ガラス上にITO等の透明電極が形成された基板上に、本発明の有機半導体用組成物を前記の方法で調製し、該透明電極上に製膜した後、乾燥して活性層を形成する。   Next, an example is given and shown about the manufacturing process of the photoelectric conversion element of this invention. The composition for an organic semiconductor of the present invention is prepared by the above-described method on a substrate on which a transparent electrode such as ITO is formed on glass. After forming the film on the transparent electrode, the active layer is formed by drying. .

活性層の形成には、浸漬コーティング法、スプレーコーティング法、インクジェット法、エアロゾルジェット法、スピンコーティング法、ビードコーティング法、ワイヤーバーコーティング法、ブレードコーティング法、ローラーコーティング法、カーテンコーティング法、スリットダイコーター法、グラビアコーター法、スリットリバースコーター法、マイクログラビア法、コンマコーター法等何れの方法を用いることができ、塗膜厚さ制御や配向制御等、得ようとする塗膜特性に応じて塗布方法を選択すればよい。例えば、厚さ10〜200nmの均質な塗膜を得るためには、前記成分Aと成分Bの重量の和が前記成分Cと成分D100重量部に対して0.5〜3重量部のコーティング液をスピンコーティング法により作製すれば良い。このとき、必要に応じて不活性ガス雰囲気下で製膜することにより、材料の変性を抑制し、素子特性に優れる光電変換素子を作製することができる。次いで、形成した塗膜から溶媒を除去するために、減圧下または不活性ガス雰囲気下(窒素やアルゴン雰囲気下)で乾燥する。   For the formation of the active layer, dip coating method, spray coating method, inkjet method, aerosol jet method, spin coating method, bead coating method, wire bar coating method, blade coating method, roller coating method, curtain coating method, slit die coater Any method can be used such as coating method, gravure coater method, slit reverse coater method, micro gravure method, comma coater method, etc. Should be selected. For example, in order to obtain a uniform coating film having a thickness of 10 to 200 nm, the coating liquid in which the sum of the weights of component A and component B is 0.5 to 3 parts by weight with respect to 100 parts by weight of component C and component D May be prepared by spin coating. At this time, by forming a film in an inert gas atmosphere as necessary, it is possible to produce a photoelectric conversion element that suppresses material modification and has excellent element characteristics. Next, in order to remove the solvent from the formed coating film, the film is dried under reduced pressure or under an inert gas atmosphere (nitrogen or argon atmosphere).

本発明の光電変換素子は、さらに必要に応じて熱または溶媒アニールを行っても良い。アニール処理を施すことで、活性層材料の結晶性と、成分Aの電子供与性材料と成分Bの電子受容性材料のとの相分離構造を変化させ、光電変換特性に優れる素子を得ることができる。尚、このアニール処理は、負極の形成後に行ってもよい。   The photoelectric conversion element of the present invention may be further subjected to heat or solvent annealing as necessary. By applying the annealing treatment, the crystallinity of the active layer material and the phase separation structure of the electron donating material of component A and the electron accepting material of component B can be changed to obtain an element having excellent photoelectric conversion characteristics. it can. In addition, you may perform this annealing process after formation of a negative electrode.

前記の熱アニールは、本発明の有機薄膜を製膜した基板を所望の温度で保持して行う。熱アニールは減圧下または不活性ガス雰囲気下で行っても良く、好ましい温度は40℃〜300℃、より好ましくは70℃〜200℃である。温度が低いと十分な効果が得られず、温度が高すぎると有機薄膜が酸化及び/または分解し、十分な光電変換特性を得ることができない。   The thermal annealing is performed by holding the substrate on which the organic thin film of the present invention is formed at a desired temperature. Thermal annealing may be performed under reduced pressure or in an inert gas atmosphere, and a preferable temperature is 40 ° C to 300 ° C, more preferably 70 ° C to 200 ° C. If the temperature is low, a sufficient effect cannot be obtained. If the temperature is too high, the organic thin film is oxidized and / or decomposed, and sufficient photoelectric conversion characteristics cannot be obtained.

前記の溶媒アニールは、本発明の有機薄膜を製膜した基板を該有機薄膜に対する良溶媒雰囲気下で所望の時間保持することで行う。このときのアニール溶媒は、該有機薄膜に対する良溶媒であれば特に限定されない。   The solvent annealing is performed by holding the substrate on which the organic thin film of the present invention is formed in a good solvent atmosphere for the organic thin film for a desired time. The annealing solvent at this time is not particularly limited as long as it is a good solvent for the organic thin film.

次に、活性層上にAl等の金属電極(この場合負極に相当)を真空蒸着法やスパッタ法により形成する。   Next, a metal electrode such as Al (corresponding to the negative electrode in this case) is formed on the active layer by vacuum deposition or sputtering.

正極と活性層の間に正孔輸送層を設ける場合には、所望のp型有機半導体材料(PEDOT等)を正極上にスピンコート法、バーコーティング法、ブレードによるキャスト法等で塗布した後、真空乾燥機、ホットプレート等を用いて溶媒を除去し、正孔輸送層を形成する。フタロシアニン誘導体やポルフィリン誘導体等の低分子有機材料を使用する場合には、真空蒸着機を用いた蒸着法を適用することも可能である。電子輸送層についても同様にして設けることができる。   When providing a hole transport layer between the positive electrode and the active layer, after applying a desired p-type organic semiconductor material (such as PEDOT) on the positive electrode by spin coating, bar coating, blade casting, etc. A solvent is removed using a vacuum dryer, a hot plate, etc., and a positive hole transport layer is formed. In the case of using a low molecular organic material such as a phthalocyanine derivative or a porphyrin derivative, a vapor deposition method using a vacuum vapor deposition machine can be applied. The electron transport layer can be provided in the same manner.

このように形成された光電変換素子は、タンデム型光電変換素子として用いることができる。本発明におけるタンデム型光電変換素子は、文献公知の方法、例えば、サイエンス(Science)、2007年、第317巻、222頁に記載の方法を用いて作製することができる。具体的には、電荷再結合層を本発明の有機半導体用組成物を用いて作製された長波長側(〜1100nm)まで光電変換可能な活性層(1)と紫外〜可視光領域(190〜650nm)の光電変換が可能な活性層(2)とで挟み込んだ構造を有するタンデム型光電変換素子である。この活性層(1)と活性層(2)との接続順は逆であってもよい。紫外〜可視光領域(190〜650nm)の光電変換が可能な活性層(2)には、公知の活性層を用いることが可能で、例えば、ポリ(3−ヘキシルチオフェン)とPC61BMとのフレンド体等が例示される。 The photoelectric conversion element thus formed can be used as a tandem photoelectric conversion element. The tandem photoelectric conversion element in the present invention can be produced by a method known in the literature, for example, the method described in Science, 2007, Vol. 317, page 222. Specifically, the charge recombination layer is formed using the organic semiconductor composition of the present invention, and the active layer (1) capable of photoelectric conversion to the long wavelength side (up to 1100 nm) and the ultraviolet to visible light region (190 to 190). It is a tandem photoelectric conversion element having a structure sandwiched between an active layer (2) capable of photoelectric conversion (650 nm). The order of connection between the active layer (1) and the active layer (2) may be reversed. As the active layer (2) capable of photoelectric conversion in the ultraviolet to visible light region (190 to 650 nm), a known active layer can be used. For example, poly (3-hexylthiophene) and PC 61 BM A friend body etc. are illustrated.

電荷再結合層は、正極側の活性層で生じた電子と負極側の活性層で生じた正孔とを再結合させる働きをする。各活性層で電荷分離して生じた正孔及び電子は、活性層中の内部電場によってそれぞれ正極及び負極方向へと移動する。このとき、正極側の活性層で生じた正孔と負極側の活性層で生じた電子とは、それぞれ正極及び負極へ取り出され、正極側の活性層で生じた電子と負極側の活性層で生じた正孔とが再結合することによって、各活性層が電気的に直列に接続された電池として機能し開放電圧が増大する。   The charge recombination layer functions to recombine electrons generated in the active layer on the positive electrode side and holes generated in the active layer on the negative electrode side. Holes and electrons generated by charge separation in each active layer move toward the positive electrode and the negative electrode, respectively, by an internal electric field in the active layer. At this time, holes generated in the active layer on the positive electrode side and electrons generated in the active layer on the negative electrode side are taken out to the positive electrode and the negative electrode, respectively, and are generated in the active layer on the positive electrode side and the active layer on the negative electrode side. When the generated holes are recombined, each active layer functions as a battery electrically connected in series, and the open circuit voltage is increased.

電荷再結合層は、複数の活性層が光吸収できるようにするため、光透過性を有することが好ましい。また、電荷再結合層は、十分に正孔及び電子が再結合するように設計されていればよいので、必ずしも膜である必要はなく、例えば活性層上に一様に形成された金属クラスターであってもかまわない。従って、該電荷再結合層には、金、白金、クロム、ニッケル、リチウム、マグネシウム、カルシウム、錫、銀、アルミニウム等からなる数nm以下程度の光透過性を有する非常に薄い金属膜や金属クラスター(合金を含む)、ITO、IZO、AZO、GZO、FTO、酸化チタンや酸化モリブデン等の光透過性の高い金属酸化物膜及びクラスター、PSSが添加されたPEDOT等の導電性有機材料膜、またはこれらの複合体等が用いられる。例えば、銀を、真空蒸着法を用いて水晶振動子膜厚モニター上で数nm以下となるように蒸着すれば、一様な銀クラスターが形成できる。その他にも、酸化チタン膜を形成するならば、例えば、アドバンスト マテリアルズ(Advanced Materials)、2006年、第18巻、572頁に記載のゾルゲル法を用いればよい。ITO、IZO等の複合金属酸化物であるならば、スパッタリング法を用いて製膜すればよい。これら電荷再結合層形成法や種類は、電荷再結合層形成時の活性層への非破壊性や、次に積層される活性層の形成法等を考慮して適当に選択すればよい。   The charge recombination layer preferably has optical transparency so that a plurality of active layers can absorb light. In addition, the charge recombination layer only needs to be designed so that holes and electrons are sufficiently recombined. Therefore, the charge recombination layer does not necessarily have to be a film. For example, the charge recombination layer is a metal cluster uniformly formed on the active layer. It does not matter. Therefore, the charge recombination layer includes a very thin metal film or metal cluster made of gold, platinum, chromium, nickel, lithium, magnesium, calcium, tin, silver, aluminum or the like and having a light transmittance of several nm or less. (Including alloys), ITO, IZO, AZO, GZO, FTO, highly light-transmitting metal oxide films and clusters such as titanium oxide and molybdenum oxide, conductive organic material films such as PEDOT to which PSS is added, or These composites and the like are used. For example, uniform silver clusters can be formed by depositing silver so as to be several nm or less on a quartz oscillator film thickness monitor using a vacuum deposition method. In addition, when a titanium oxide film is formed, for example, a sol-gel method described in Advanced Materials, 2006, Vol. 18, page 572 may be used. If it is a composite metal oxide such as ITO or IZO, the film may be formed by sputtering. These charge recombination layer formation methods and types may be appropriately selected in consideration of the non-destructiveness to the active layer when forming the charge recombination layer, the formation method of the active layer to be laminated next, and the like.

本発明の光電変換素子は、光電変換機能、光整流機能等を利用した種々の光電変換デバイスへの応用が可能である。例えば、光電池(太陽電池等)、電子素子(光センサ、光スイッチ、フォトトランジスタ等)、光記録材(光メモリ等)等に有用である。   The photoelectric conversion element of the present invention can be applied to various photoelectric conversion devices using a photoelectric conversion function, an optical rectification function, and the like. For example, it is useful for photocells (solar cells, etc.), electronic elements (photosensors, optical switches, phototransistors, etc.), optical recording materials (optical memory, etc.) and the like.

以下、本発明の実施例を詳細に説明するが、本発明の範囲はこれらの形態に限定されるものではない。   Examples of the present invention will be described in detail below, but the scope of the present invention is not limited to these forms.

本発明の有機半導体用組成物の電子供与性成分として含有される重合体(A)であるジケトピロロピロール骨格を有する有機半導体高分子の製造工程を合成例1〜6、また別のジケトピロロピロール骨格を有する有機半導体高分子について合成例7に示す。   The production steps of an organic semiconductor polymer having a diketopyrrolopyrrole skeleton, which is a polymer (A) contained as an electron donating component of the composition for organic semiconductors of the present invention, are described in Synthesis Examples 1 to 6, and another diketo An organic semiconductor polymer having a pyrrolopyrrole skeleton is shown in Synthesis Example 7.

(合成例1)

Figure 2013042085
窒素雰囲気下、1000mL三口フラスコに2−シアノチオフェン(18.80g、172.2mmol)とtert−アミルアルコール(150mL)とカリウム−tert−ブトキシド(25.8g、229.9mmol)を加え120℃で加熱した。こはく酸ジエチル(10.0g,57.4mmol)を1時間以上かけ滴下した。1時間撹拌した後、ディーンスタークを用いて生成してくるエタノールを除去するため2時間撹拌した。65℃まで冷却しながらゆっくりとメタノール(350mL)を加えた後、酢酸(15mL)を加え中和し、10分間還流撹拌した。0〜5℃まで冷却し、ろ過を行った。冷メタノールにて固体を洗浄、乾燥することにより、赤黒い固体として化学式(4)で示される3,6−ジ(チオフェン−2−イル)ピロロ[3,4−c]ピロール−1,4(2H,5H)−ジオンを得た。(12.53g,72.6%) (Synthesis Example 1)
Figure 2013042085
Under a nitrogen atmosphere, 2-cyanothiophene (18.80 g, 172.2 mmol), tert-amyl alcohol (150 mL) and potassium tert-butoxide (25.8 g, 229.9 mmol) were added to a 1000 mL three-necked flask and heated at 120 ° C. did. Diethyl succinate (10.0 g, 57.4 mmol) was added dropwise over 1 hour. After stirring for 1 hour, the mixture was stirred for 2 hours in order to remove ethanol produced using Dean Stark. After slowly adding methanol (350 mL) while cooling to 65 ° C., the mixture was neutralized by adding acetic acid (15 mL) and stirred at reflux for 10 minutes. It cooled to 0-5 degreeC and filtered. By washing and drying the solid with cold methanol, 3,6-di (thiophen-2-yl) pyrrolo [3,4-c] pyrrole-1,4 (2H represented by the chemical formula (4) as a red-black solid was obtained. , 5H) -dione was obtained. (12.53g, 72.6%)

得られた化合物(単量体)の分子構造について、H−NMR(核磁気共鳴)測定を行い、テトラメチルシラン(TMS)を内部標準物質とした場合の化学シフト値から構造を同定した。測定条件の詳細を以下に示す。
<測定条件>
装置 :超伝導核磁気共鳴装置 GSX−270(日本電子社製)
溶媒 :0.05v/v%TMS含有重クロロホルム(和光純薬工業社製)
濃度 :30mg/mL
温度 :25℃
積算回数:256回(H測定時)
得られた化合物のH−NMR測定結果は、下記の通りであり、前記化学式(4)の化学構造を支持する。
H−NMR:δ=11.15(s、2H)、8.21(d、J=3.2Hz、2H)、7.94(d、J=4.6Hz、2H)、7.32−7.26(m、2H)
About the molecular structure of the obtained compound (monomer), < 1 > H-NMR (nuclear magnetic resonance) measurement was performed, and the structure was identified from the chemical shift value when tetramethylsilane (TMS) was used as an internal standard substance. Details of the measurement conditions are shown below.
<Measurement conditions>
Apparatus: Superconducting nuclear magnetic resonance apparatus GSX-270 (manufactured by JEOL Ltd.)
Solvent: 0.05v / v% TMS-containing heavy chloroform (manufactured by Wako Pure Chemical Industries, Ltd.)
Concentration: 30 mg / mL
Temperature: 25 ° C
Integration count: 256 times (at the time of 1 H measurement)
1 H-NMR measurement results of the obtained compound are as follows and support the chemical structure of the chemical formula (4).
1 H-NMR: δ = 11.15 (s, 2H), 8.21 (d, J = 3.2 Hz, 2H), 7.94 (d, J = 4.6 Hz, 2H), 7.32- 7.26 (m, 2H)

(合成例2)

Figure 2013042085
窒素雰囲気下、200mL三口フラスコに前記化学式(4)で示される3,6−ジ(チオフェン−2−イル)ピロロ[3,4−c]ピロール−1,4(2H,5H)−ジオン(3.6g、11.99mmol)とジメチルホルムアミド(75mL)と炭酸カリウム(6.63g、47.9mmol)を加え155℃で加熱した。2−エチルヘキシルブロミド(10.42g、53.9mmol)を加え、18時間撹拌した。室温まで戻し、水(150mL)とトルエン(200mL)とを加え分液した。水層をトルエンにて3回抽出を行った後、有機層を硫酸ナトリウムにて乾燥した後、減圧下にて溶媒を留去することにより赤黒い固体を得た。粗精製物をカラムクロマトグラフィー(ヘキサン:酢酸エチル=10:1)により精製することで赤黒い固体として前記化学式(5)で示される2,5−ビス(2−エチルヘキシル)−3,6−ジ(チオフェン−2−イル)ピロロ[3,4−c]ピロール−1,4(2H,5H)−ジオンを得た。(4.87g、77%) (Synthesis Example 2)
Figure 2013042085
Under a nitrogen atmosphere, a 3,6-di (thiophen-2-yl) pyrrolo [3,4-c] pyrrole-1,4 (2H, 5H) -dione (3) represented by the chemical formula (4) was added to a 200 mL three-necked flask. .6 g, 11.99 mmol), dimethylformamide (75 mL) and potassium carbonate (6.63 g, 47.9 mmol) were added and heated at 155 ° C. 2-Ethylhexyl bromide (10.42 g, 53.9 mmol) was added and stirred for 18 hours. It returned to room temperature, water (150 mL) and toluene (200 mL) were added and liquid-separated. The aqueous layer was extracted three times with toluene, the organic layer was dried over sodium sulfate, and the solvent was distilled off under reduced pressure to obtain a red-black solid. The crude product was purified by column chromatography (hexane: ethyl acetate = 10: 1) to give 2,5-bis (2-ethylhexyl) -3,6-di (2) represented by the above chemical formula (5) as a red-black solid. Thiophen-2-yl) pyrrolo [3,4-c] pyrrole-1,4 (2H, 5H) -dione was obtained. (4.87 g, 77%)

得られた化合物を合成例1と同様の方法及び条件で測定したH−NMR測定結果は、下記の通りであり、前記化学式(5)の化学構造を支持する。
H−NMR:δ=8.88(d、J=4.1Hz、2H)、7.62(d、J=5.1Hz、2H)、7.27(m、2H)、4.02(dd、J=3.0、7.8、4H)、2.00−1.80(m、2H)、1.46−1.20(m、16H)、1.00−0.80(m、12H)
1 H-NMR measurement results obtained by measuring the obtained compound by the same method and conditions as in Synthesis Example 1 are as follows, and support the chemical structure of the chemical formula (5).
1 H-NMR: δ = 8.88 (d, J = 4.1 Hz, 2H), 7.62 (d, J = 5.1 Hz, 2H), 7.27 (m, 2H), 4.02 ( dd, J = 3.0, 7.8, 4H), 2.00-1.80 (m, 2H), 1.46-1.20 (m, 16H), 1.00-0.80 (m , 12H)

(合成例3)

Figure 2013042085
300mL三口フラスコに前記化学式(5)で表される2,5−ビス(2−エチルヘキシル)−3,6−ジ(チオフェン−2−イル)ピロロ[3,4−c]ピロール−1,4(2H,5H)−ジオン(2.60g、4.95mmol)とクロロホルム(130mL)を加え0℃まで冷却した後に、反応溶液を0℃に保ったままNBS(1.94g、10.9mmol)をゆっくりと加えた。0℃で1時間攪拌した後に、水(100mL)を加え反応を停止させた。酢酸エチル(100mL×3)で抽出し、水(100mL×3)で洗浄した後に、硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後に、再度酢酸エチル(100mL)に溶解させ、メタノール(1L)で再沈殿させてから、析出した固体を濾取し、メタノール(300mL)で洗浄した。その後、減圧下で乾燥させることで紫色固体として前記化学式(6)で表される3,6−ビス(5−ブロモチオフェン−2−イル)−2,5−ビス(2−エチルヘキシル)ピロロ[3,4−c]ピロール−1,4(2H,5H)−ジオンを得た(2.47g、73%)。 (Synthesis Example 3)
Figure 2013042085
In a 300 mL three-neck flask, 2,5-bis (2-ethylhexyl) -3,6-di (thiophen-2-yl) pyrrolo [3,4-c] pyrrole-1,4 represented by the chemical formula (5) 2H, 5H) -dione (2.60 g, 4.95 mmol) and chloroform (130 mL) were added and cooled to 0 ° C., and then NBS (1.94 g, 10.9 mmol) was slowly added while maintaining the reaction solution at 0 ° C. And added. After stirring at 0 ° C. for 1 hour, water (100 mL) was added to stop the reaction. The mixture was extracted with ethyl acetate (100 mL × 3), washed with water (100 mL × 3), and dried over magnesium sulfate. After the solvent was distilled off under reduced pressure, the residue was dissolved again in ethyl acetate (100 mL) and reprecipitated with methanol (1 L), and the precipitated solid was collected by filtration and washed with methanol (300 mL). Then, it is dried under reduced pressure to give 3,6-bis (5-bromothiophen-2-yl) -2,5-bis (2-ethylhexyl) pyrrolo represented by the chemical formula (6) as a purple solid [3 , 4-c] pyrrole-1,4 (2H, 5H) -dione was obtained (2.47 g, 73%).

得られた化合物を合成例1と同様の方法及び条件で測定したH−NMR測定結果は、下記の通りであり、前記化学式(6)の化学構造を支持する。
H−NMR:δ=8.63(d、J=4.3、2H)、7.22(d、J=4.3Hz、2H)、3.93(dd、J=2.7、7.6Hz、4H)、1.92−1.78(m、2H)、1.45−1.22(m、16H)、1.00−0.82(m、12H)
1 H-NMR measurement results obtained by measuring the obtained compound by the same method and conditions as in Synthesis Example 1 are as follows, and support the chemical structure of the chemical formula (6).
1 H-NMR: δ = 8.63 (d, J = 4.3, 2H), 7.22 (d, J = 4.3 Hz, 2H), 3.93 (dd, J = 2.7, 7 1.6 Hz, 4H), 1.92-1.78 (m, 2H), 1.45-1.22 (m, 16H), 1.00-0.82 (m, 12H)

(合成例4)

Figure 2013042085
前記化学式(7)で示される2,6−ビス(トリメチルスタニル)−4,4−ビス(2−エチルヘキシル)シクロペンタ[2,1−b:3,4−b’]ジチオフェンは、アドバンスト マテリアルズ(Advanced Materials)、2007年、第17巻、632頁を参考にして合成を行った。
具体的には、3−ブロモチオフェンと3−チオフェンアルデヒドより合成した4H−シクロペンタ[2,1−b:3,4−b‘]ジチオフェンにエチルヘキシルブロミドを反応させ、4,4−ビス(2−エチルヘキシル)シクロペンタ[2,1−b:3,4−b’]ジチオフェンとした。次いで、ブチルリチウムとトリメチルスズ誘導体を反応させ、前記化学式(7)で示される2,6−ビス(トリメチルスタニル)−4,4−ビス(2−エチルヘキシル)シクロペンタ[2,1−b:3,4−b’]ジチオフェンを得た。 (Synthesis Example 4)
Figure 2013042085
2,6-bis (trimethylstannyl) -4,4-bis (2-ethylhexyl) cyclopenta [2,1-b: 3,4-b ′] dithiophene represented by the chemical formula (7) is an advanced material. (Advanced Materials), 2007, Vol. 17, p. 632, synthesis was performed.
Specifically, 4H-cyclopenta [2,1-b: 3,4-b ′] dithiophene synthesized from 3-bromothiophene and 3-thiophenaldehyde is reacted with ethylhexyl bromide to give 4,4-bis (2- Ethylhexyl) cyclopenta [2,1-b: 3,4-b ′] dithiophene. Next, butyllithium and a trimethyltin derivative are reacted, and 2,6-bis (trimethylstannyl) -4,4-bis (2-ethylhexyl) cyclopenta [2,1-b: 3 represented by the above chemical formula (7) is obtained. , 4-b ′] dithiophene was obtained.

(合成例5)

Figure 2013042085
前記化学式(8)で示される2,6−ジ(トリメチルスタニル)−N−[1−(2’−エチルヘキシル)−3−エチルヘプタニル]ジチエノ[3,2−b:2’,3’−d]ピロールは、マクロモレキュルズ(Macromolecules)、2008年、第41巻、8302頁を参考にして合成を行った。
具体的には、エチルフォルメートと1−ブロモ−2−エチルヘキサンより合成した1−(2’−エチルヘキシル)−3−エチルヘプタノールを、トリフェニルフォスフィンとフタルイミドを用いてN−[1−(2’−エチルヘキシル)−3−エチルヘプタニル]フタルイミドとし、ヒドラジンで還元して1−(2’−エチルヘキシル)−3−エチルヘプチルアミンを得た。得られた1−(2’−エチルヘキシル)−3−エチルヘプチルアミンをパラジウム触媒下で3,3’−ジブロモー2,2’−ビチオフェンと反応させ、N−[1−(2’−エチルヘキシル)−3−エチルヘプタニル]−ジチエノ[3,2−b:2’、3’−d]ピロールとし、ブチルリチウムとトリメチルスズ誘導体を反応させ、前記化学式(8)で示される2,6−ジ(トリメチルスタニル)−N−[1−(2’−エチルヘキシル)−3−エチルヘプタニル]ジチエノ[3,2−b:2’,3’−d]ピロールを得た。 (Synthesis Example 5)
Figure 2013042085
2,6-di (trimethylstannyl) -N- [1- (2′-ethylhexyl) -3-ethylheptanyl] dithieno [3,2-b: 2 ′, 3′-d represented by the chemical formula (8) The pyrrole was synthesized with reference to Macromolecules, 2008, Vol. 41, 8302.
Specifically, 1- (2′-ethylhexyl) -3-ethylheptanol synthesized from ethyl formate and 1-bromo-2-ethylhexane is converted to N- [1- using triphenylphosphine and phthalimide. (2′-Ethylhexyl) -3-ethylheptanyl] phthalimide was reduced with hydrazine to obtain 1- (2′-ethylhexyl) -3-ethylheptylamine. The obtained 1- (2′-ethylhexyl) -3-ethylheptylamine is reacted with 3,3′-dibromo-2,2′-bithiophene under a palladium catalyst to give N- [1- (2′-ethylhexyl)- 3-ethylheptanyl] -dithieno [3,2-b: 2 ′, 3′-d] pyrrole is reacted with butyllithium and a trimethyltin derivative to give 2,6-di (trimethylsta) represented by the chemical formula (8). Nyl) -N- [1- (2′-ethylhexyl) -3-ethylheptanyl] dithieno [3,2-b: 2 ′, 3′-d] pyrrole was obtained.

(合成例6)

Figure 2013042085
窒素雰囲気下、10mL三口フラスコに化学式(4)で示される2,6−ビス(トリメチルスタニル)−4,4−ビス(2−エチルヘキシル)シクロペンタ[2,1−b:3,4−b’]ジチオフェン(150mg、0.21mmol)と、化学式(6)で示される3,6−ビス(5−ブロモチオフェン−2−イル)−2,5−ビス(2−エチルヘキシル)ピロロ[3,4−c]ピロール−1,4(2H,5H)−ジオン(141mg、0.21mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)(5.95mg、5.15μmol)、トルエン(1.5mL)、DMF(1.5mL)を加え、100℃で18時間攪拌した。反応終了後、反応溶液を室温まで冷却しメタノール(30mL)に注いで、析出した固体を濾取し、減圧下で乾燥することで紫色の固体として粗生成物を得た。その後、ソックスレー抽出器を用いてアセトン(100mL)、ヘキサン(100mL)の順に洗浄を行った後に、クロロホルム(100mL)で抽出を行い、得られた抽出液を濃縮した後にメタノール(100mL)に注ぎ再沈殿を行った。析出した固体を濾取し、減圧下で乾燥させることで紫色固体として前記化学式(9)で示されるポリ(4,4−ビス(2−エチルヘキシル)シクロペンタ[2,1−b:3,4−b’]ジチオフェン)−2,6−ジイル−アルト−(2,5−ビス(2−エチルヘキシル)−3,6−ジ(チオフェン−2−イル)ピロロ[3,4−c]ピロール−1,4(2H,5H)−ジオン)−2,5−ジイルを得た。(190mg、35%) (Synthesis Example 6)
Figure 2013042085
Under a nitrogen atmosphere, 2,6-bis (trimethylstannyl) -4,4-bis (2-ethylhexyl) cyclopenta [2,1-b: 3,4-b ′ represented by the chemical formula (4) was added to a 10 mL three-necked flask. ] Dithiophene (150 mg, 0.21 mmol) and 3,6-bis (5-bromothiophen-2-yl) -2,5-bis (2-ethylhexyl) pyrrolo represented by chemical formula (6) c] pyrrole-1,4 (2H, 5H) -dione (141 mg, 0.21 mmol), tetrakis (triphenylphosphine) palladium (0) (5.95 mg, 5.15 μmol), toluene (1.5 mL), DMF (1.5 mL) was added and stirred at 100 ° C. for 18 hours. After completion of the reaction, the reaction solution was cooled to room temperature and poured into methanol (30 mL), and the precipitated solid was collected by filtration and dried under reduced pressure to obtain a crude product as a purple solid. After washing with acetone (100 mL) and hexane (100 mL) in this order using a Soxhlet extractor, extraction with chloroform (100 mL) was performed, and the resulting extract was concentrated and poured into methanol (100 mL). Precipitation was performed. The precipitated solid was collected by filtration and dried under reduced pressure to give a poly (4,4-bis (2-ethylhexyl) cyclopenta [2,1-b: 3,4- (4) represented by the chemical formula (9) as a purple solid. b ′] dithiophene) -2,6-diyl-alt- (2,5-bis (2-ethylhexyl) -3,6-di (thiophen-2-yl) pyrrolo [3,4-c] pyrrole-1, 4 (2H, 5H) -dione) -2,5-diyl was obtained. (190 mg, 35%)

得られた重合体の分子量を、サイズ排除クロマトグラフィー(SEC)を用いて測定を行い、ポリスチレン換算分子量として算出した。測定条件の詳細を以下に示す。
<測定条件>
装置:高速液体クロマトグラフィー LC−10(島津製作所社製)
カラム:K−806L(Shodex)を2本連結(カラム温度:40℃)
移動相:クロロホルム(高速液体クロマトグラフィー用、和光純薬工業社製)
流速:1.0mL/分
検出器:RI
濾過:0.45μmフィルター
濃度:0.5mg/mL
注入量:55μL
標品:ポリスチレンスタンダードキット(VARIAN社製)
得られた重合体の数平均分子量(Mn)は、27,000であった。
The molecular weight of the obtained polymer was measured using size exclusion chromatography (SEC) and calculated as a polystyrene-equivalent molecular weight. Details of the measurement conditions are shown below.
<Measurement conditions>
Apparatus: High performance liquid chromatography LC-10 (manufactured by Shimadzu Corporation)
Column: Two K-806L (Shodex) connected (column temperature: 40 ° C.)
Mobile phase: Chloroform (for high performance liquid chromatography, Wako Pure Chemical Industries, Ltd.)
Flow rate: 1.0 mL / min Detector: RI
Filtration: 0.45 μm Filter concentration: 0.5 mg / mL
Injection volume: 55 μL
Standard: Polystyrene standard kit (Varian)
The number average molecular weight (Mn) of the obtained polymer was 27,000.

(合成例7)

Figure 2013042085
前記化学式(10)で示されるポリ{N−[1−(2−エチルヘキシル)−3−エチルヘプタニル]−ジチエノ[3,2−b:2’,3’−d]ピロール−3,6−ジチエン2−イル−2,5−ジ(2−エチルヘキシル)−ピロロ[3,4−c]ピロール−1,4−ジオン−5’,5”−ジイル(PDTPDTPP)は、ケミストリー オブ マテリアルズ(Chemistry of Materials)、2009年、第21巻、4055頁を参考にして合成を行った。
具体的には、前記化学式(6)で示される2,5−ビス(2−エチルヘキシル)−3,6−ジ(チオフェン−2−イル)ピロロ[3,4−c]ピロール−1,4(2H,5H)−ジオンと前記化学式(8)で示される2,6−ジ(トリメチルスタニル)−N−[1−(2’−エチルヘキシル)−3−エチルヘプタニル]ジチエノ[3,2−b:2’,3’−d]ピロールをパラジウム触媒下Stilleクロスカップリング反応により重合した。
得られた重合体の数平均分子量(Mn)は、10,000であった。 (Synthesis Example 7)
Figure 2013042085
Poly {N- [1- (2-ethylhexyl) -3-ethylheptanyl] -dithieno [3,2-b: 2 ′, 3′-d] pyrrole-3,6-dithien 2 represented by the chemical formula (10) -Ile-2,5-di (2-ethylhexyl) -pyrrolo [3,4-c] pyrrole-1,4-dione-5 ', 5 "-diyl (PDTPDTPP) is a Chemistry of Materials. ), 2009, Vol. 21, p. 4055.
Specifically, 2,5-bis (2-ethylhexyl) -3,6-di (thiophen-2-yl) pyrrolo [3,4-c] pyrrole-1,4 (2) represented by the chemical formula (6) is used. 2H, 5H) -dione and 2,6-di (trimethylstannyl) -N- [1- (2′-ethylhexyl) -3-ethylheptanyl] dithieno [3,2-b represented by the chemical formula (8): 2 ′, 3′-d] pyrrole was polymerized by a Stille cross coupling reaction under a palladium catalyst.
The number average molecular weight (Mn) of the obtained polymer was 10,000.

(実施例1)(PCTi8DTPP:PC71BM=1:2、DIO2.5%)
(有機半導体用組成物の調製)
合成例6で得られた重合体(PCTi8DTPP)(Mn=27,000、本発明における成分Aに相当)と[6,6]−フェニル C71 ブチリックアシッドメチルエステル(PC71BM)(E−110:フロンティアカーボン社製、本発明における成分B)とを重量比1:2で秤量し、体積分率で2.5%のジヨードオクタン(DIO)(東京化成工業社製、本発明における成分D)を含むo−ジクロロベンゼン(DCBz)(鹿特級:関東化学社製、本発明における成分C)を添加して固形分濃度4.3重量%の溶液を調製し、40℃で5時間加熱攪拌して均一に溶解させた。溶解後の溶液を0.45μmのポリテトラフルオロエチレン(PTFE)製フィルター(Whatman社製)でろ過して本発明の有機半導体用組成物を得た。
(Example 1) (PCTi8DTPP: PC 71 BM = 1: 2, DIO 2.5%)
(Preparation of composition for organic semiconductor)
Polymer (PCTi8DTPP) obtained in Synthesis Example 6 (Mn = 27,000, corresponding to component A in the present invention) and [6,6] -phenyl C 71 butyric acid methyl ester (PC 71 BM) (E- 110: manufactured by Frontier Carbon Co., Component B) in the present invention was weighed at a weight ratio of 1: 2, and 2.5% by volume of diiodooctane (DIO) (manufactured by Tokyo Chemical Industry Co., Ltd., component in the present invention) D) -containing o-dichlorobenzene (DCBz) (deer grade: manufactured by Kanto Chemical Co., Component C in the present invention) is added to prepare a solution having a solid content concentration of 4.3% by weight and heated at 40 ° C. for 5 hours. Stir to dissolve evenly. The solution after dissolution was filtered through a 0.45 μm polytetrafluoroethylene (PTFE) filter (Whatman) to obtain the organic semiconductor composition of the present invention.

(基板洗浄)
150nmのインジウム・スズ・オキサイド(ITO)が0.7mmのガラス上に製膜された基板(ジオマテック社製)を、セミコクリーン(フルウチ化学社製)、超純水、アセトン(試薬特級:和光純薬工業社製)イソプロパノール(試薬特級:和光純薬工業社製)の順で10分間超音波洗浄し、乾燥した後、UV−Oクリーナー(フィルジェン社製)を用いて20分間オゾンクリーニングした。
(Substrate cleaning)
A substrate (manufactured by Geomatech Co., Ltd.) with 150 nm indium tin oxide (ITO) formed on a 0.7 mm glass, semi-clean (Furuuchi Chemical Co., Ltd.), ultrapure water, acetone (special reagent grade: Wako Jun) Yaku Kogyo Co., Ltd.) Isopropanol (reagent grade: Wako Pure Chemical Industries, Ltd.) in the order of ultrasonic cleaning for 10 minutes, dried, and then ozone-cleaned for 20 minutes using a UV-O 3 cleaner (manufactured by Filgen). .

(ホール輸送層の製膜)
大気下にて、ポリエチレンジオキシチオフェン:ポリスチレンスルホネート添加物(PEDOT:PSS)(CLEVIOS PH 500:H.C.スタルク社製)を洗浄済みのITO基板に滴下し、4000rpmで60秒間スピンコートした。製膜後の基板を140℃で10分間ベーキングした。このときのPEDOT:PSSの膜厚は40nmであった。
(Hole transport layer deposition)
Under the atmosphere, polyethylenedioxythiophene: polystyrene sulfonate additive (PEDOT: PSS) (CLEVIOS PH 500: manufactured by HC Starck Co., Ltd.) was dropped onto the cleaned ITO substrate and spin-coated at 4000 rpm for 60 seconds. The substrate after film formation was baked at 140 ° C. for 10 minutes. The film thickness of PEDOT: PSS at this time was 40 nm.

(活性層の製膜)
PEDOT:PSSを製膜したITO基板に本発明の有機半導体用組成物を窒素雰囲気で満たされたグローブボックス(美和製作所社製)に導入し、窒素雰囲気下にて、2500rpmで120秒間スピンコートした。
(Formation of active layer)
The organic semiconductor composition of the present invention was introduced into an ITO substrate on which PEDOT: PSS was formed into a glove box (Miwa Seisakusho Co., Ltd.) filled with a nitrogen atmosphere, and spin-coated at 2500 rpm for 120 seconds in a nitrogen atmosphere. .

得られた有機薄膜である活性層の膜厚について、接触式段差計を用いて、下記測定条件により測定した。
<測定条件>
装置:接触式段差計 DEKTAK8(Veeco社製)
走査距離:500μm
触針圧:3mg
測定レンジ:50kÅ
About the film thickness of the active layer which is the obtained organic thin film, it measured on the following measurement conditions using the contact-type level difference meter.
<Measurement conditions>
Apparatus: Contact-type step meter DEKTAK8 (Veeco)
Scanning distance: 500 μm
Stylus pressure: 3mg
Measurement range: 50kÅ

また、この活性層の吸収スペクトルについて、分光光度計を用いて、下記測定条件により紫外−可視−近赤外領域の吸光度の測定をした。
<測定条件>
装置:紫外−可視−近赤外分光光度計 Solid Spec 3700(島津製作所社製)
測定波長域:300〜1000nm
スリット幅:5nm
Moreover, about the absorption spectrum of this active layer, the light absorbency of the ultraviolet-visible-near infrared region was measured on the following measurement conditions using the spectrophotometer.
<Measurement conditions>
Apparatus: Ultraviolet-visible-near infrared spectrophotometer Solid Spec 3700 (manufactured by Shimadzu Corporation)
Measurement wavelength range: 300 to 1000 nm
Slit width: 5nm

これらの測定により、有機半導体用組成物により形成された活性層の膜厚は、80nmで、吸収スペクトル測定より得られた吸収端は900nmであった。   From these measurements, the film thickness of the active layer formed from the composition for organic semiconductor was 80 nm, and the absorption edge obtained from the absorption spectrum measurement was 900 nm.

(電極の製膜)
活性層を製膜した基板を大気に触れさせることなく抵抗加熱式真空蒸着装置(EO−5:エイコーエンジニアリング社製)に導入し、5.0×10−5Paの減圧条件下にて0.5nmのフッ化リチウム(LiF)(純度99.99%:フルウチ化学社製)を真空蒸着した。次いで、80nmのアルミニウム(Al)(純度99.995%:ニラコ社製)を真空蒸着し、光電変換素子を作製した。作製した光電変換素子の受光面積は0.25cmであった。
(Electrode deposition)
The substrate on which the active layer was formed was introduced into a resistance heating type vacuum vapor deposition apparatus (EO-5: manufactured by Eiko Engineering Co., Ltd.) without being exposed to the atmosphere, and was reduced under a reduced pressure condition of 5.0 × 10 −5 Pa. 5 nm of lithium fluoride (LiF) (purity 99.99%: manufactured by Furuuchi Chemical Co., Ltd.) was vacuum deposited. Subsequently, 80 nm of aluminum (Al) (purity 99.995%: manufactured by Niraco) was vacuum-deposited to prepare a photoelectric conversion element. The light receiving area of the produced photoelectric conversion element was 0.25 cm 2 .

(光電変換特性評価)
作製した光電変換素子の分光感度について、分光感度測定装置を用いて、下記測定条件により測定した。測定時の特定波長における照射強度は、フォトダイオード(S1337−66BQ、浜松フォトニクス社製)を用いて校正した。測定時には、光電変換素子の受光面積と同じ面積の照射光マスクを着用し、余剰な光の入射を排除した。
<測定条件>
装置:分光感度測定装置 SM−250型(分光計器社製)
光源:キセノン150W オゾンレス型
分光放射照度:5mW/cm以上(470nm)
有効照射面積:10×10mm以上
受光面積:0.25cm
面内不均一性:±10%以内(550nm)
ソースメーター:ケースレー2400(KEITHLEY社製)
(Photoelectric conversion characteristics evaluation)
About the spectral sensitivity of the produced photoelectric conversion element, it measured on the following measurement conditions using the spectral sensitivity measuring apparatus. The irradiation intensity at a specific wavelength at the time of measurement was calibrated using a photodiode (S1337-66BQ, manufactured by Hamamatsu Photonics). At the time of measurement, an irradiation light mask having the same area as the light receiving area of the photoelectric conversion element was worn to eliminate excessive light incidence.
<Measurement conditions>
Apparatus: Spectral sensitivity measuring device SM-250 type (manufactured by Spectrometer Co., Ltd.)
Light source: Xenon 150W Ozone-less spectral irradiance: 5 mW / cm 2 or more (470 nm)
Effective irradiation area: 10 × 10 mm or more Light receiving area: 0.25 cm 2
In-plane non-uniformity: within ± 10% (550 nm)
Source meter: Keithley 2400 (manufactured by KEITHLEY)

また、作製した光電変換素子の光電変換効率について、ソーラーシミュレーター及びソースメーターを用いて、下記測定条件により測定した。測定時の照射強度は、フォトダイオード(BS−520、分光計器社製)を用い、太陽電池評価基準となるように調節した。測定時には、光電変換素子の受光面積と同じ面積の照射光マスクを着用し、余剰な光の入射を排除した。
<測定条件>
ソーラーシミュレーター:PEC−L11(ペクセルテクノロジー社製)
ソースメーター:KEITHLEY2400(KEITHLEY社製)
照射スペクトル:AM1.5
照射強度:100mW/cm
バイアス電圧:±1.0V
有効照射面積:50×50mm
受光面積:0.25cm
Moreover, the photoelectric conversion efficiency of the produced photoelectric conversion element was measured under the following measurement conditions using a solar simulator and a source meter. The irradiation intensity at the time of measurement was adjusted to be a solar cell evaluation standard using a photodiode (BS-520, manufactured by Spectrometer Co., Ltd.). At the time of measurement, an irradiation light mask having the same area as the light receiving area of the photoelectric conversion element was worn to eliminate excessive light incidence.
<Measurement conditions>
Solar simulator: PEC-L11 (Peccell Technology)
Source meter: KEITHLEY2400 (manufactured by KEITHLEY)
Irradiation spectrum: AM1.5
Irradiation intensity: 100 mW / cm 2
Bias voltage: ± 1.0V
Effective irradiation area: 50 x 50 mm
Light receiving area: 0.25 cm 2

作製した光電変換素子の分光感度を測定したところ、900nm以下の波長域において光電変換していることが明らかとなった。作製した光電変換素子の光電変換効率を測定したところ、短絡電流密度=8.38mA/cm、開放電圧=0.61V、曲線因子=0.55、光電変換効率=2.81%(平均2.7%)であった。 When the spectral sensitivity of the produced photoelectric conversion element was measured, it was revealed that photoelectric conversion was performed in a wavelength region of 900 nm or less. When the photoelectric conversion efficiency of the produced photoelectric conversion element was measured, the short-circuit current density = 8.38 mA / cm 2 , the open circuit voltage = 0.61 V, the fill factor = 0.55, the photoelectric conversion efficiency = 2.81% (average 2) 0.7%).

(実施例2)(PCTi8DTPP:PC71BM=1:3、DIO2.5%)
PCTi8DTPPとPC71BMとの重量比を1:3、固形分濃度を4.5重量%に変更したこと以外は、実施例1と同様の方法にて本発明の有機半導体用組成物を調製し、PEDOT:PSSを40nm製膜したITO基板に2000rpmで120秒間スピンコートした。実施例1と同様の測定条件により得られた有機薄膜である活性層の膜厚及び吸収スペクトルを測定した結果、有機半導体用組成物により形成された活性層の膜厚は86nmで、吸収スペクトル測定より得られた吸収端は900nmであった。
Example 2 (PCTi8DTPP: PC 71 BM = 1: 3, DIO 2.5%)
The organic semiconductor composition of the present invention was prepared in the same manner as in Example 1 except that the weight ratio of PCTi8DTPP and PC 71 BM was changed to 1: 3 and the solid content concentration was changed to 4.5% by weight. , PEDOT: PSS film-formed ITO substrate was spin-coated at 2000 rpm for 120 seconds. As a result of measuring the film thickness and absorption spectrum of the active layer, which is an organic thin film obtained under the same measurement conditions as in Example 1, the film thickness of the active layer formed from the composition for organic semiconductor was 86 nm, and the absorption spectrum was measured. The absorption edge obtained was 900 nm.

製膜した活性層に実施例1と同様の方法でLiF及びAlを蒸着して光電変換素子を作製した。作製した光電変換素子の受光面積は0.25cmであった。実施例1と同様の測定条件により、作製した光電変換素子の分光感度を測定したところ、900nm以下の波長域において光電変換していることが明らかとなった。同じく、作製した光電変換素子の光電変換効率を測定したところ、短絡電流密度=7.17mA/cm、開放電圧=0.62V、曲線因子=0.55、光電変換効率=2.44%(平均2.4%)であった。 LiF and Al were vapor-deposited on the formed active layer in the same manner as in Example 1 to produce a photoelectric conversion element. The light receiving area of the produced photoelectric conversion element was 0.25 cm 2 . When the spectral sensitivity of the produced photoelectric conversion element was measured under the same measurement conditions as in Example 1, it was revealed that photoelectric conversion was performed in a wavelength region of 900 nm or less. Similarly, when the photoelectric conversion efficiency of the produced photoelectric conversion element was measured, the short-circuit current density = 7.17 mA / cm 2 , the open circuit voltage = 0.62 V, the fill factor = 0.55, and the photoelectric conversion efficiency = 2.44% ( The average was 2.4%).

(実施例3)(PCTi8DTPP:PC71BM=1:2、DIO2.5%)
本発明の成分Cをクロロベンゼン(CBz)とし、固形分濃度を3.5重量%に変更したこと以外は、実施例1と同様の方法にて本発明の有機半導体用組成物を調製し、PEDOT:PSSを40nm製膜したITO基板に2000rpmで120秒間スピンコートした。実施例1と同様の測定条件により得られた有機薄膜である活性層の膜厚及び吸収スペクトルを測定した結果、有機半導体用組成物により形成された活性層の膜厚は85nmで、吸収スペクトル測定より得られた吸収端は900nmであった。
(Example 3) (PCTi8DTPP: PC 71 BM = 1: 2, DIO 2.5%)
A composition for an organic semiconductor of the present invention was prepared in the same manner as in Example 1 except that the component C of the present invention was chlorobenzene (CBz) and the solid content concentration was changed to 3.5% by weight, and PEDOT : Spin-coated at 2000 rpm for 120 seconds on an ITO substrate on which PSS was formed to 40 nm. As a result of measuring the film thickness and absorption spectrum of the active layer, which is an organic thin film obtained under the same measurement conditions as in Example 1, the film thickness of the active layer formed from the composition for organic semiconductor was 85 nm, and the absorption spectrum was measured. The absorption edge obtained was 900 nm.

製膜した活性層に実施例1と同様の方法でLiF及びAlを蒸着して光電変換素子を作製した。作製した光電変換素子の受光面積は0.25cmであった。実施例1と同様の測定条件により、作製した光電変換素子の分光感度を測定したところ、900nm以下の波長域において光電変換していることが明らかとなった。同じく、作製した光電変換素子の光電変換効率を測定したところ、短絡電流密度=6.17mA/cm、開放電圧=0.62V、曲線因子=0.55、光電変換効率=2.10%(平均2.0%)であった。 LiF and Al were vapor-deposited on the formed active layer in the same manner as in Example 1 to produce a photoelectric conversion element. The light receiving area of the produced photoelectric conversion element was 0.25 cm 2 . When the spectral sensitivity of the produced photoelectric conversion element was measured under the same measurement conditions as in Example 1, it was revealed that photoelectric conversion was performed in a wavelength region of 900 nm or less. Similarly, when the photoelectric conversion efficiency of the produced photoelectric conversion element was measured, the short-circuit current density = 6.17 mA / cm 2 , the open circuit voltage = 0.62 V, the fill factor = 0.55, and the photoelectric conversion efficiency = 2.10% ( Average 2.0%).

(実施例4)(PCTi8DTPP:PC71BM=1:2、DIO5%)
本発明における可溶解溶媒を体積分率で5.0%のDIO(本発明における成分D)を含むDCBzに変更したこと以外は、実施例1と同様の方法にて本発明の有機半導体用組成物を調製し、PEDOT:PSSを40nm製膜したITO基板に2200rpmで120秒間スピンコートした。実施例1と同様の測定条件により得られた有機薄膜である活性層の膜厚及び吸収スペクトルを測定した結果、有機半導体用組成物により形成された活性層の膜厚は89nmで、吸収スペクトル測定より得られた吸収端は900nmであった。
(Example 4) (PCTi8DTPP: PC 71 BM = 1: 2, DIO 5%)
The composition for an organic semiconductor of the present invention was obtained in the same manner as in Example 1 except that the soluble solvent in the present invention was changed to DCBz containing DIO (component D in the present invention) of 5.0% in volume fraction. The product was prepared and spin-coated at 2200 rpm for 120 seconds on an ITO substrate having a PEDOT: PSS film of 40 nm. As a result of measuring the film thickness and absorption spectrum of the active layer, which is an organic thin film obtained under the same measurement conditions as in Example 1, the film thickness of the active layer formed from the composition for organic semiconductor was 89 nm, and the absorption spectrum was measured. The absorption edge obtained was 900 nm.

製膜した活性層に実施例1と同様の方法でLiF及びAlを蒸着して光電変換素子を作製した。作製した光電変換素子の受光面積は0.25cmであった。実施例1と同様の測定条件により、作製した光電変換素子の分光感度を測定したところ、900nm以下の波長域において光電変換していることが明らかとなった。同じく、作製した光電変換素子の光電変換効率を測定したところ、短絡電流密度=7.82mA/cm、開放電圧=0.62V、曲線因子=0.55、光電変換効率=2.67%(平均2.5%)であった。 LiF and Al were vapor-deposited on the formed active layer in the same manner as in Example 1 to produce a photoelectric conversion element. The light receiving area of the produced photoelectric conversion element was 0.25 cm 2 . When the spectral sensitivity of the produced photoelectric conversion element was measured under the same measurement conditions as in Example 1, it was revealed that photoelectric conversion was performed in a wavelength region of 900 nm or less. Similarly, when the photoelectric conversion efficiency of the produced photoelectric conversion element was measured, the short-circuit current density = 7.82 mA / cm 2 , the open circuit voltage = 0.62 V, the fill factor = 0.55, and the photoelectric conversion efficiency = 2.67% ( Average 2.5%).

(実施例5)(PCTi8DTPP:PC61BM=1:2、DIO2.5%)
本発明における電子受容性有機半導体である成分Bを[6,6]−フェニル C61 ブチリックアシッドメチルエステル(PC61BM)(E−100H:フロンティアカーボン社製)に変更したこと以外は、実施例1と同様の方法にて本発明の有機半導体用組成物を調製し、PEDOT:PSSを40nm製膜したITO基板に2500rpmで120秒間スピンコートした。実施例1と同様の測定条件により得られた有機薄膜である活性層の膜厚及び吸収スペクトルを測定した結果、有機半導体用組成物により形成された活性層の膜厚は78nmで、吸収スペクトル測定より得られた吸収端は900nmであった。
(Example 5) (PCTi8DTPP: PC 61 BM = 1: 2, DIO2.5%)
Implementation was performed except that component B, which is an electron-accepting organic semiconductor in the present invention, was changed to [6,6] -phenyl C 61 butyric acid methyl ester (PC 61 BM) (E-100H: manufactured by Frontier Carbon Co.). A composition for an organic semiconductor of the present invention was prepared in the same manner as in Example 1, and spin-coated at 2500 rpm for 120 seconds on an ITO substrate on which PEDOT: PSS was formed to a thickness of 40 nm. As a result of measuring the film thickness and absorption spectrum of the active layer, which is an organic thin film obtained under the same measurement conditions as in Example 1, the film thickness of the active layer formed from the composition for organic semiconductor was 78 nm, and the absorption spectrum was measured. The absorption edge obtained was 900 nm.

製膜した活性層に実施例1と同様の方法でLiF及びAlを蒸着して光電変換素子を作製した。作製した光電変換素子の受光面積は0.25cmであった。実施例1と同様の測定条件により、作製した光電変換素子の分光感度を測定したところ、900nm以下の波長域において光電変換していることが明らかとなった。同じく、作製した光電変換素子の光電変換効率を測定したところ、短絡電流密度=5.59mA/cm、開放電圧=0.61V、曲線因子=0.57、光電変換効率=1.94%(平均1.7%)であった。 LiF and Al were vapor-deposited on the formed active layer in the same manner as in Example 1 to produce a photoelectric conversion element. The light receiving area of the produced photoelectric conversion element was 0.25 cm 2 . When the spectral sensitivity of the produced photoelectric conversion element was measured under the same measurement conditions as in Example 1, it was revealed that photoelectric conversion was performed in a wavelength region of 900 nm or less. Similarly, when the photoelectric conversion efficiency of the produced photoelectric conversion element was measured, the short-circuit current density = 5.59 mA / cm 2 , the open circuit voltage = 0.61 V, the fill factor = 0.57, and the photoelectric conversion efficiency = 1.94% ( The average was 1.7%).

(実施例6)(PCTi8DTPP:PC71BM=1:2、ODT2.5%)
本発明における溶解性添加物である成分Dをオクタンジチオール(ODT)に変更したこと以外は、実施例1と同様の方法にて本発明の組成物を調製し、PEDOT:PSSを40nm製膜したITO基板に2500rpmで120秒間スピンコートした。実施例1と同様の測定条件により得られた有機薄膜である活性層の膜厚及び吸収スペクトルを測定した結果、有機半導体用組成物により形成された活性層の膜厚は83nmで、吸収スペクトル測定より得られた吸収端は900nmであった。
(Example 6) (PCTi8DTPP: PC 71 BM = 1: 2, ODT2.5%)
A composition of the present invention was prepared in the same manner as in Example 1 except that component D, which is a soluble additive in the present invention, was changed to octanedithiol (ODT), and PEDOT: PSS was formed into a film of 40 nm. The ITO substrate was spin-coated at 2500 rpm for 120 seconds. As a result of measuring the film thickness and absorption spectrum of the active layer, which is an organic thin film obtained under the same measurement conditions as in Example 1, the film thickness of the active layer formed from the composition for organic semiconductor was 83 nm, and the absorption spectrum was measured. The absorption edge obtained was 900 nm.

製膜した活性層に実施例1と同様の方法でLiF及びAlを蒸着して光電変換素子を作製した。作製した光電変換素子の受光面積は0.25cmであった。実施例1と同様の測定条件により、作製した光電変換素子の分光感度を測定したところ、900nm以下の波長域において光電変換していることが明らかとなった。同じく、作製した光電変換素子の光電変換効率を測定したところ、短絡電流密度=7.93mA/cm、開放電圧=0.61V、曲線因子=0.54、光電変換効率=2.61%(平均2.5%)であった。 LiF and Al were vapor-deposited on the formed active layer in the same manner as in Example 1 to produce a photoelectric conversion element. The light receiving area of the produced photoelectric conversion element was 0.25 cm 2 . When the spectral sensitivity of the produced photoelectric conversion element was measured under the same measurement conditions as in Example 1, it was revealed that photoelectric conversion was performed in a wavelength region of 900 nm or less. Similarly, when the photoelectric conversion efficiency of the produced photoelectric conversion element was measured, the short-circuit current density = 7.93 mA / cm 2 , the open circuit voltage = 0.61 V, the fill factor = 0.54, and the photoelectric conversion efficiency = 2.61% ( Average 2.5%).

(実施例7)(PDTPDTPP:PC71BM=1:2、DIO2.5%)
本発明における成分Aを合成例7で得られた重合体(PDTPDTPP、Mn=10,000)にし、固形分濃度を5.0重量%に変更したこと以外は、実施例1と同様の方法にて本発明の有機半導体用組成物を調製し、PEDOT:PSSを40nm製膜したITO基板に1000rpmで120秒間スピンコートした。実施例1と同様の測定条件により得られた有機薄膜である活性層の膜厚及び吸収スペクトルを測定した結果、有機半導体用組成物により形成された活性層の膜厚は76nmで、吸収スペクトル測定より得られた吸収端は1100nmであった。
(Example 7) (PDTPDTPP: PC 71 BM = 1: 2, DIO 2.5%)
In the same manner as in Example 1 except that the component A in the present invention was changed to the polymer obtained in Synthesis Example 7 (PDTPDTTPP, Mn = 10,000) and the solid content concentration was changed to 5.0% by weight. The composition for organic semiconductor of the present invention was prepared, and spin-coated at 1000 rpm for 120 seconds on an ITO substrate having a PEDOT: PSS film of 40 nm. As a result of measuring the film thickness and absorption spectrum of the active layer, which is an organic thin film obtained under the same measurement conditions as in Example 1, the film thickness of the active layer formed from the composition for organic semiconductor was 76 nm, and the absorption spectrum was measured. The absorption edge obtained was 1100 nm.

製膜した活性層に実施例1と同様の方法でLiF及びAlを蒸着して光電変換素子を作製した。作製した光電変換素子の受光面積は0.25cmであった。実施例1と同様の測定条件により、作製した光電変換素子の分光感度を測定したところ、1100nm以下の波長域において光電変換していることが明らかとなった。同じく、作製した光電変換素子の光電変換効率を測定したところ、短絡電流密度=7.23mA/cm、開放電圧=0.45V、曲線因子=0.50、光電変換効率=1.63%(平均1.6%)であった。 LiF and Al were vapor-deposited on the formed active layer in the same manner as in Example 1 to produce a photoelectric conversion element. The light receiving area of the produced photoelectric conversion element was 0.25 cm 2 . When the spectral sensitivity of the produced photoelectric conversion element was measured under the same measurement conditions as in Example 1, it was revealed that photoelectric conversion was performed in a wavelength region of 1100 nm or less. Similarly, when the photoelectric conversion efficiency of the produced photoelectric conversion element was measured, the short-circuit current density = 7.23 mA / cm 2 , the open circuit voltage = 0.45 V, the fill factor = 0.50, the photoelectric conversion efficiency = 1.63% ( The average was 1.6%).

(比較例1)(PCTi8DTPP:PC71BM=1:2、添加物なし)
本発明における溶解性添加物である成分Dを含有しないこと以外は、実施例1と同様の方法にて比較組成物を調製し、PEDOT:PSSを40nm製膜したITO基板に2500rpmで120秒間スピンコートした。実施例1と同様の測定条件により得られた有機薄膜である活性層の膜厚及び吸収スペクトルを測定した結果、比較組成物により形成された活性層の膜厚は87nmで、吸収スペクトル測定より得られた吸収端は800nmであった。
(Comparative Example 1) (PCTi8DTPP: PC 71 BM = 1: 2, no additive)
A comparative composition was prepared in the same manner as in Example 1 except that it did not contain component D, which is a soluble additive in the present invention, and was spun at 2500 rpm for 120 seconds on an ITO substrate having a PEDOT: PSS film of 40 nm. Coated. As a result of measuring the film thickness and absorption spectrum of the active layer, which is an organic thin film obtained under the same measurement conditions as in Example 1, the film thickness of the active layer formed by the comparative composition was 87 nm, which was obtained from the absorption spectrum measurement. The absorption edge obtained was 800 nm.

製膜した活性層に実施例1と同様の方法でLiF及びAlを蒸着して光電変換素子を作製した。作製した光電変換素子の受光面積は0.25cmであった。実施例1と同様の測定条件により、作製した光電変換素子の分光感度を測定したところ、800nm以下の波長域において光電変換していることが明らかとなった。同じく、作製した光電変換素子の光電変換効率を測定したところ、短絡電流密度=3.69mA/cm、開放電圧=0.61V、曲線因子=0.40、光電変換効率=0.90%(平均0.8%)であった。 LiF and Al were vapor-deposited on the formed active layer in the same manner as in Example 1 to produce a photoelectric conversion element. The light receiving area of the produced photoelectric conversion element was 0.25 cm 2 . When the spectral sensitivity of the produced photoelectric conversion element was measured under the same measurement conditions as in Example 1, it was revealed that photoelectric conversion was performed in a wavelength region of 800 nm or less. Similarly, when the photoelectric conversion efficiency of the produced photoelectric conversion element was measured, the short-circuit current density = 3.69 mA / cm 2 , the open circuit voltage = 0.61 V, the fill factor = 0.40, and the photoelectric conversion efficiency = 0.90% ( The average was 0.8%).

(比較例2)(PCTi8DTPP:PC61BM=1:2、添加物なし)
本発明における溶解性添加物である成分Dを含有しないこと以外は、実施例5と同様の方法にて比較組成物を調製し、PEDOT:PSSを40nm製膜したITO基板に2500rpmで120秒間スピンコートした。実施例1と同様の測定条件により得られた有機薄膜である活性層の膜厚及び吸収スペクトルを測定した結果、比較組成物により形成された活性層の膜厚は70nmで、吸収スペクトル測定より得られた吸収端は800nmであった。
(Comparative Example 2) (PCTi8DTPP: PC 61 BM = 1: 2, no additive)
A comparative composition was prepared in the same manner as in Example 5 except that it did not contain component D, which is a soluble additive in the present invention, and was spun at 2500 rpm for 120 seconds on an ITO substrate having a PEDOT: PSS film of 40 nm. Coated. As a result of measuring the film thickness and absorption spectrum of the active layer which is an organic thin film obtained under the same measurement conditions as in Example 1, the film thickness of the active layer formed by the comparative composition was 70 nm, which was obtained from the absorption spectrum measurement. The absorption edge obtained was 800 nm.

製膜した活性層に実施例1と同様の方法でLiF及びAlを蒸着して光電変換素子を作製した。作製した光電変換素子の受光面積は0.25cmであった。実施例1と同様の測定条件により、作製した光電変換素子の分光感度を測定したところ、800nm以下の波長域において光電変換していることが明らかとなった。同じく、作製した光電変換素子の光電変換効率を測定したところ、短絡電流密度=1.52mA/cm、開放電圧=0.58V、曲線因子=0.35、光電変換効率=0.31%(平均0.3%)であった。 LiF and Al were vapor-deposited on the formed active layer in the same manner as in Example 1 to produce a photoelectric conversion element. The light receiving area of the produced photoelectric conversion element was 0.25 cm 2 . When the spectral sensitivity of the produced photoelectric conversion element was measured under the same measurement conditions as in Example 1, it was revealed that photoelectric conversion was performed in a wavelength region of 800 nm or less. Similarly, when the photoelectric conversion efficiency of the produced photoelectric conversion element was measured, the short-circuit current density = 1.52 mA / cm 2 , the open circuit voltage = 0.58 V, the fill factor = 0.35, and the photoelectric conversion efficiency = 0.31% ( Average 0.3%).

(比較例3)(PCTi8DTPP:PC71BM=1:2、低沸点添加物)
本発明における溶解性添加物である成分Dをメタノール(MeOH)(試薬特級、和光純薬工業社製)以外は、実施例1と同様の方法にて比較組成物を調製し、PEDOT:PSSを40nm製膜したITO基板に2500rpmで120秒間スピンコートした。実施例1と同様の測定条件により得られた有機薄膜である活性層の膜厚及び吸収スペクトルを測定した結果、比較組成物により形成された活性層の膜厚は84nmで、吸収スペクトル測定より得られた吸収端は800nmであった。
(Comparative Example 3) (PCTi8DTPP: PC71BM = 1: 2, low boiling point additive)
A comparative composition was prepared in the same manner as in Example 1 except that component D, which is a soluble additive in the present invention, was methanol (MeOH) (special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.), and PEDOT: PSS was changed. A 40 nm-thick ITO substrate was spin-coated at 2500 rpm for 120 seconds. As a result of measuring the film thickness and absorption spectrum of the active layer, which is an organic thin film obtained under the same measurement conditions as in Example 1, the film thickness of the active layer formed by the comparative composition was 84 nm, which was obtained from the absorption spectrum measurement. The absorption edge obtained was 800 nm.

製膜した活性層に実施例1と同様の方法でLiF及びAlを蒸着して光電変換素子を作製した。作製した光電変換素子の受光面積は0.25cmであった。実施例1と同様の測定条件により、作製した光電変換素子の分光感度を測定したところ、800nm以下の波長域において光電変換していることが明らかとなった。同じく、作製した光電変換素子の光電変換効率を測定したところ、短絡電流密度=2.28mA/cm、開放電圧=0.60V、曲線因子=0.38、光電変換効率=0.52%(平均0.4%)であった。 LiF and Al were vapor-deposited on the formed active layer in the same manner as in Example 1 to produce a photoelectric conversion element. The light receiving area of the produced photoelectric conversion element was 0.25 cm 2 . When the spectral sensitivity of the produced photoelectric conversion element was measured under the same measurement conditions as in Example 1, it was revealed that photoelectric conversion was performed in a wavelength region of 800 nm or less. Similarly, when the photoelectric conversion efficiency of the produced photoelectric conversion element was measured, the short-circuit current density = 2.28 mA / cm 2 , the open circuit voltage = 0.60 V, the fill factor = 0.38, the photoelectric conversion efficiency = 0.52% ( Average 0.4%).

(比較例4)(P3HT:PC71BM=1:0.8、DIO2.5%)
本発明における成分Aを市販のポリ(3−ヘキシルチオフェン)(P3HT)(Mn=20,000、Rieke社製)とし、成分Aと成分Bとの混合比を1:0.8に、固形分濃度を4.0重量%に変更した以外は、実施例1と同様の方法で比較組成物を調製し、PEDOT:PSSを40nm製膜したITO基板に1500rpmで120秒間スピンコートした。実施例1と同様の測定条件により得られた有機薄膜である活性層の膜厚及び吸収スペクトルを測定した結果、比較組成物により形成された活性層の膜厚は90nmで、吸収スペクトル測定より得られた吸収端は650nmであった。
(Comparative Example 4) (P3HT: PC 71 BM = 1: 0.8, DIO2.5%)
Component A in the present invention is commercially available poly (3-hexylthiophene) (P3HT) (Mn = 20,000, manufactured by Rieke), the mixing ratio of Component A and Component B is 1: 0.8, and the solid content A comparative composition was prepared in the same manner as in Example 1 except that the concentration was changed to 4.0% by weight, and spin-coated at 1500 rpm for 120 seconds on an ITO substrate on which PEDOT: PSS was formed to a thickness of 40 nm. As a result of measuring the film thickness and absorption spectrum of the active layer which is an organic thin film obtained under the same measurement conditions as in Example 1, the film thickness of the active layer formed by the comparative composition was 90 nm, which was obtained from the absorption spectrum measurement. The absorption edge obtained was 650 nm.

製膜した活性層に実施例1と同様の方法でLiF及びAlを蒸着して光電変換素子を作製した。作製した光電変換素子の受光面積は0.25cmであった。実施例1と同様の測定条件により、作製した光電変換素子の分光感度を測定したところ、650nm以下の波長域において光電変換していることが明らかとなった。同じく、作製した光電変換素子の光電変換効率を測定したところ、短絡電流密度=6.28mA/cm、開放電圧=0.60V、曲線因子=0.43、光電変換効率=1.62%(平均1.5%)であった。 LiF and Al were vapor-deposited on the formed active layer in the same manner as in Example 1 to produce a photoelectric conversion element. The light receiving area of the produced photoelectric conversion element was 0.25 cm 2 . When the spectral sensitivity of the produced photoelectric conversion element was measured under the same measurement conditions as in Example 1, it was revealed that photoelectric conversion was performed in a wavelength region of 650 nm or less. Similarly, when the photoelectric conversion efficiency of the produced photoelectric conversion element was measured, the short-circuit current density = 6.28 mA / cm 2 , the open circuit voltage = 0.60 V, the fill factor = 0.43, and the photoelectric conversion efficiency = 1.62% ( Average 1.5%).

実施例1〜7及び比較例1〜4の作製条件を表1に、それらの各種測定結果を表2に纏めて示す。   The production conditions of Examples 1 to 7 and Comparative Examples 1 to 4 are summarized in Table 1, and the various measurement results are summarized in Table 2.

Figure 2013042085
Figure 2013042085

Figure 2013042085
Figure 2013042085

表1及び表2から明らかであるように、本発明の有機半導体用組成物より形成された光電変換素子は、実施例4に示されるように成分Dである溶解性添加物の添加量が変わっても、また実施例6に示されるように成分Dである溶解性添加物の種類が変わっても、高い光電変換効率を有することがわかった。また実施例5より、成分Bである電子受容性有機半導体の種類が変わってもよいことがわかった。一方、比較例1より成分Dである溶解性添加物を含有しなければ高い光電変換効率を得ることができず、また比較例2のように成分Bである電子受容性有機半導体の種類が変わったとしても成分Dである溶解性添加物を含有しなければならないことが明らかとなった。さらに、比較例4より成分Aである重合体は、前記化学式(1)で示される分子構造を含有する重合体であるTPP系ポリマーでなければならないことが明らかとなった。   As is apparent from Tables 1 and 2, the photoelectric conversion element formed from the composition for organic semiconductor of the present invention has a different additive amount of the soluble additive as component D as shown in Example 4. However, as shown in Example 6, it was found that even if the type of the soluble additive as Component D was changed, the photoelectric conversion efficiency was high. Moreover, from Example 5, it turned out that the kind of the electron-accepting organic semiconductor which is the component B may change. On the other hand, a high photoelectric conversion efficiency cannot be obtained unless the soluble additive as component D is contained in Comparative Example 1, and the type of the electron-accepting organic semiconductor as Component B is changed as in Comparative Example 2. It became clear that the soluble additive which is the component D must be contained. Further, from Comparative Example 4, it was revealed that the polymer as component A must be a TPP polymer that is a polymer containing the molecular structure represented by the chemical formula (1).

本発明の有機半導体用組成物は、ジケトピロロピロール骨格を有する有機半導体高分子である重合体(A)、電子受容性有機半導体(B)、可溶解溶媒(C)、沸点が可溶解溶媒(C)より高く、ジケトピロロピロール骨格を有する有機半導体高分子である重合体(A)に対して貧溶媒且つ電子受容性有機半導体(B)に対して良溶媒である溶解性添加物(D)を含む均一溶液であって、従来の有機薄膜光電変換素子が利用できなかった可視〜近赤外領域の光電変換に優れる有機薄膜太陽電池として好適に用いることができる。また、本発明の光電変換素子は、可視光領域の光電変換特性に優れる光電変換素子と組み合わせてタンデム型太陽電池とすることで、より光電変換効率に優れる有機薄膜太陽電池として好適に用いることができる。   The composition for an organic semiconductor of the present invention includes a polymer (A) that is an organic semiconductor polymer having a diketopyrrolopyrrole skeleton, an electron-accepting organic semiconductor (B), a soluble solvent (C), and a solvent having a boiling point that is soluble. (C) a soluble additive that is higher than the polymer (A), which is an organic semiconductor polymer having a diketopyrrolopyrrole skeleton, and is a good solvent for the electron-accepting organic semiconductor (B) ( It is a homogeneous solution containing D), and can be suitably used as an organic thin film solar cell that excels in photoelectric conversion in the visible to near infrared region where conventional organic thin film photoelectric conversion elements could not be used. In addition, the photoelectric conversion element of the present invention can be suitably used as an organic thin film solar cell having further excellent photoelectric conversion efficiency by combining with a photoelectric conversion element having excellent photoelectric conversion characteristics in the visible light region to form a tandem solar cell. it can.

Claims (7)

下記化学式(1)
Figure 2013042085
(式中、R及びRはそれぞれ独立して同一または異なる置換基を有してもよい炭素数1〜20のアルキル基であり、Ar、Ar及びArはそれぞれ独立して同一または異なる2価のアリーレン基またはヘテロアリーレン基であり、nは2〜100,000の数である)
で示される分子構造を含有する重合体(A)と、電子受容性有機半導体(B)と、前記重合体(A)及び前記電子受容性有機半導体(B)の可溶解溶媒(C)と、沸点が前記可溶解溶媒(C)より高く前記重合体(A)に対する溶解性よりも前記電子受容性有機半導体(B)に対する溶解性が高い溶解性添加物(D)とを含有することを特徴とする有機半導体用組成物。
The following chemical formula (1)
Figure 2013042085
(Wherein R 1 and R 2 are each independently an alkyl group having 1 to 20 carbon atoms which may have the same or different substituents, and Ar 1 , Ar 2 and Ar 3 are each independently the same. Or a different divalent arylene group or heteroarylene group, and n is a number from 2 to 100,000)
A polymer (A) containing a molecular structure represented by: an electron-accepting organic semiconductor (B); a soluble solvent (C) of the polymer (A) and the electron-accepting organic semiconductor (B); And a soluble additive (D) having a higher boiling point than the dissolvable solvent (C) and higher solubility in the electron-accepting organic semiconductor (B) than in the polymer (A). An organic semiconductor composition.
前記可溶解溶媒(C)及び前記溶解性添加物(D)の合計量100重量部に対して、前記重合体(A)と前記電子受容性有機半導体(B)とを1〜99:99〜1の重量分率としつつそれらの合計量で0.1〜10.0重量部とすることを特徴とする請求項1に記載の有機半導体用組成物。   The polymer (A) and the electron-accepting organic semiconductor (B) are 1 to 99:99 to 100 parts by weight of the total amount of the dissolvable solvent (C) and the soluble additive (D). The organic semiconductor composition according to claim 1, wherein the total amount is 0.1 to 10.0 parts by weight while the weight fraction is 1. 前記溶解性添加物(D)が、ジヨードオクタン、オクタンジチオール、ジブロモオクタン、またはこれらのうちの何れかの混合物であることを特徴とする請求項1または2に記載の有機半導体用組成物。   The organic semiconductor composition according to claim 1 or 2, wherein the soluble additive (D) is diiodooctane, octanedithiol, dibromooctane, or a mixture of any of these. 前記電子受容性有機半導体(B)が、C70またはC60フラーレン誘導体であることを特徴とする請求項1〜3の何れかに記載の有機半導体用組成物。 The electron-accepting organic semiconductor (B) is an organic semiconductor composition according to claim 1, characterized in that the C 70 or C 60 fullerene derivatives. 前記重合体(A)が、下記化学式(2)
Figure 2013042085
(式中、R及びRはそれぞれ独立して置換基を有してもよい炭素数1〜20のアルキル基であり、nは2〜100,000の数である)
で示されることを特徴とする請求項1〜4の何れかに記載の有機半導体用組成物。
The polymer (A) has the following chemical formula (2)
Figure 2013042085
(Wherein R 1 and R 2 are each independently an alkyl group having 1 to 20 carbon atoms which may have a substituent, and n is a number of 2 to 100,000)
It is shown by these, The composition for organic semiconductors in any one of Claims 1-4 characterized by the above-mentioned.
少なくとも一方が光透過性を有する第1電極及び第2電極の間に、請求項1〜5の何れかに記載の有機半導体用組成物を乾燥硬化してなる有機薄膜が、挟まれていることを特徴とする光電変換素子。   An organic thin film formed by drying and curing the composition for organic semiconductor according to any one of claims 1 to 5 is sandwiched between a first electrode and a second electrode, at least one of which is light transmissive. A photoelectric conversion element characterized by the above. 請求項6に記載の光電変換素子を含有することを特徴とするタンデム型光電変換素子。   A tandem photoelectric conversion element comprising the photoelectric conversion element according to claim 6.
JP2011179719A 2011-08-19 2011-08-19 Composition for organic semiconductor and photoelectric conversion element using the same Expired - Fee Related JP5658633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011179719A JP5658633B2 (en) 2011-08-19 2011-08-19 Composition for organic semiconductor and photoelectric conversion element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011179719A JP5658633B2 (en) 2011-08-19 2011-08-19 Composition for organic semiconductor and photoelectric conversion element using the same

Publications (2)

Publication Number Publication Date
JP2013042085A true JP2013042085A (en) 2013-02-28
JP5658633B2 JP5658633B2 (en) 2015-01-28

Family

ID=47890190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011179719A Expired - Fee Related JP5658633B2 (en) 2011-08-19 2011-08-19 Composition for organic semiconductor and photoelectric conversion element using the same

Country Status (1)

Country Link
JP (1) JP5658633B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101514207B1 (en) * 2013-04-15 2015-06-05 한국과학기술연구원 Low band gap polymers, the organic photovoltaic cell comprising the same, and the synthesis thereof
JP2016113574A (en) * 2014-12-17 2016-06-23 住友化学株式会社 Composition and organic semiconductor element using the same
JPWO2015092909A1 (en) * 2013-12-19 2017-03-16 リンテック株式会社 Polymer compound, organic photoelectric conversion element, and method for producing the element
WO2017073672A1 (en) * 2015-10-29 2017-05-04 凸版印刷株式会社 Method for producing polymer electrolyte
US10468616B2 (en) 2015-03-30 2019-11-05 Kabushiki Kaisha Toshiba Photoelectric conversion device and method of manufacturing the same
JP2019535136A (en) * 2016-09-26 2019-12-05 住友化学株式会社 Solvent system for the preparation of photosensitive organic electronic devices
JP2021086876A (en) * 2019-11-26 2021-06-03 東洋インキScホールディングス株式会社 Thermoelectric conversion material and thermoelectric conversion element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010512005A (en) * 2006-12-01 2010-04-15 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Improved performance characteristics of organic semiconductor films by improved solution processing methods
WO2010136353A1 (en) * 2009-05-27 2010-12-02 Basf Se Diketopyrrolopyrrole polymers for use in organic semiconductor devices
JP2011502363A (en) * 2007-10-31 2011-01-20 コナルカ テクノロジーズ インコーポレイテッド Processing additives for manufacturing organic photovoltaic cells
JP2011124470A (en) * 2009-12-14 2011-06-23 Konica Minolta Holdings Inc Organic photoelectric conversion element, solar cell, and optical sensor array
JP2014512100A (en) * 2011-03-29 2014-05-19 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Electro-optic device active material and electro-optic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010512005A (en) * 2006-12-01 2010-04-15 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Improved performance characteristics of organic semiconductor films by improved solution processing methods
JP2011502363A (en) * 2007-10-31 2011-01-20 コナルカ テクノロジーズ インコーポレイテッド Processing additives for manufacturing organic photovoltaic cells
WO2010136353A1 (en) * 2009-05-27 2010-12-02 Basf Se Diketopyrrolopyrrole polymers for use in organic semiconductor devices
JP2011124470A (en) * 2009-12-14 2011-06-23 Konica Minolta Holdings Inc Organic photoelectric conversion element, solar cell, and optical sensor array
JP2014512100A (en) * 2011-03-29 2014-05-19 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Electro-optic device active material and electro-optic device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JOHAN C. BIJILEVELD, R. A. MELANIE VERSTRIJDEN, MARTIJN M. WIENK, RENE A. J. JANSSEN: "Copolymers of diketopyrrolopyrrole and thienothiophene for photovoltaic cells", JOURNAL OF MATERIALS CHEMISTRY, vol. Volume 21, Issue 25, JPN6014036284, 26 May 2011 (2011-05-26), pages 9224 - 9231, ISSN: 0002885409 *
LIJUN HUO, JIANHUI HOU, HSIANG-YU CHEN, SHAOQING ZHANG, YANG JIANG, TERESA L. CHEN, AND YANG YANG: "Bandgap and Molecular Level Control of the Low-Bandgap PolymersBased on 3,6-Dithiophen-2-yl-2,5-dihy", MACROMOLECULES, vol. Volume 42, Issue 17, JPN6014036286, 6 August 2009 (2009-08-06), pages 6564 - 6571, ISSN: 0002885410 *
LIN CHEN, DAN DENG, YAXIONG NAN, MINMIN SHI, PADDY K. L. CHAN, AND HONGZHENG CHEN: "Diketo-pyrrolo-pyrrole-Based Medium Band Gap Copolymers for Efficient Plastic Solar Cells: Morpholog", THE JOURNAL OF PHYSICAL CHEMISTRY C, vol. Volume 115, Issue 22, JPN6014036288, 17 May 2011 (2011-05-17), pages 11282 - 11292, ISSN: 0002885411 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101514207B1 (en) * 2013-04-15 2015-06-05 한국과학기술연구원 Low band gap polymers, the organic photovoltaic cell comprising the same, and the synthesis thereof
JPWO2015092909A1 (en) * 2013-12-19 2017-03-16 リンテック株式会社 Polymer compound, organic photoelectric conversion element, and method for producing the element
JP2016113574A (en) * 2014-12-17 2016-06-23 住友化学株式会社 Composition and organic semiconductor element using the same
US10468616B2 (en) 2015-03-30 2019-11-05 Kabushiki Kaisha Toshiba Photoelectric conversion device and method of manufacturing the same
WO2017073672A1 (en) * 2015-10-29 2017-05-04 凸版印刷株式会社 Method for producing polymer electrolyte
JP2019535136A (en) * 2016-09-26 2019-12-05 住友化学株式会社 Solvent system for the preparation of photosensitive organic electronic devices
US11152572B2 (en) 2016-09-26 2021-10-19 Sumitomo Chemical Company Limited Solvent systems for the preparation of photosensitive organic electronic devices
JP7164518B2 (en) 2016-09-26 2022-11-01 住友化学株式会社 Solvent system for the preparation of photosensitive organic electronic devices
JP2021086876A (en) * 2019-11-26 2021-06-03 東洋インキScホールディングス株式会社 Thermoelectric conversion material and thermoelectric conversion element
JP7400396B2 (en) 2019-11-26 2023-12-19 東洋インキScホールディングス株式会社 Thermoelectric conversion materials and thermoelectric conversion elements

Also Published As

Publication number Publication date
JP5658633B2 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
Lin et al. Regio-specific selenium substitution in non-fullerene acceptors for efficient organic solar cells
JP5685778B2 (en) Organic electronic devices and polymers, including photovoltaic cells and diketone-based polymers
Tsai et al. New two-dimensional thiophene− acceptor conjugated copolymers for field effect transistor and photovoltaic cell applications
JP5482973B1 (en) Conjugated polymer, electron donating organic material, photovoltaic device material and photovoltaic device using the same
Keshtov et al. New conjugated alternating benzodithiophene-containing copolymers with different acceptor units: synthesis and photovoltaic application
JP5658633B2 (en) Composition for organic semiconductor and photoelectric conversion element using the same
JP5721824B2 (en) Composition for organic semiconductor and photoelectric conversion element using the same
Lee et al. Medium-bandgap conjugated polymers containing fused dithienobenzochalcogenadiazoles: Chalcogen atom effects on organic photovoltaics
JP2014512100A (en) Electro-optic device active material and electro-optic device
Jiang et al. Impact of the siloxane-terminated side chain on photovoltaic performances of the dithienylbenzodithiophene–difluorobenzotriazole-based wide band gap polymer donor in non-fullerene polymer solar cells
Bianchi et al. New Benzo [1, 2-d: 4, 5-d′] bis ([1, 2, 3] thiadiazole)(iso-BBT)-Based Polymers for Application in Transistors and Solar Cells
JP5664200B2 (en) Conjugated polymer, electron donating organic material, photovoltaic device material and photovoltaic device using the same
JP6280208B2 (en) Polymer and solar cell using the same
WO2014042091A1 (en) Conjugated polymer, and electron-donating organic material, photovoltaic element material and photovoltaic element comprising same
Patil et al. Synthesis and photovoltaic properties of narrow band gap copolymers of dithieno [3, 2-b: 2′, 3′-d] thiophene and diketopyrrolopyrrole
Wu et al. Low-band gap copolymers of ethynylfluorene and 3, 6-dithiophen-2-yl-2, 5-dihydropyrrolo [3, 4-c] pyrrole-1, 4-dione synthesized under microwave irradiation for polymer photovoltaic cells
JP2013199590A (en) Electron-donating organic material, material for photovoltaic element using the same, and photovoltaic element
Kim et al. Synthesis and characterization of indeno [1, 2-b] fluorene-based low bandgap copolymers for photovoltaic cells
Hu et al. Synthesis and photovoltaic properties of n-type conjugated polymers alternating 2, 7-carbazole and arylene diimides
Mikroyannidis et al. Efficient bulk heterojunction solar cells based on a broadly absorbing phenylenevinylene copolymer containing thiophene and pyrrole rings
Kim et al. Characterization of push-pull type of conjugated polymers containing 8H-thieno [2, 3-b] indole for organic photovoltaics
JP2012009814A (en) Material for photovoltaic element and photovoltaic element
WO2014038526A1 (en) Block copolymer and photoelectric conversion element using same
Lee et al. Synthesis and characterization of low‐bandgap cyclopentadithiophene‐biselenophene copolymer and its use in field‐effect transistor and polymer solar cells
Wang et al. Incorporating trialkylsilylethynyl-substituted head-to-head bithiophene unit into copolymers for efficient non-fullerene organic solar cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141128

R150 Certificate of patent or registration of utility model

Ref document number: 5658633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees