JP2013041864A - Solar battery, method of manufacturing semiconductor device, and transcription mold - Google Patents

Solar battery, method of manufacturing semiconductor device, and transcription mold Download PDF

Info

Publication number
JP2013041864A
JP2013041864A JP2011175937A JP2011175937A JP2013041864A JP 2013041864 A JP2013041864 A JP 2013041864A JP 2011175937 A JP2011175937 A JP 2011175937A JP 2011175937 A JP2011175937 A JP 2011175937A JP 2013041864 A JP2013041864 A JP 2013041864A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
catalyst material
substrate
dimensional distribution
template
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011175937A
Other languages
Japanese (ja)
Inventor
Hikari Kobayashi
光 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011175937A priority Critical patent/JP2013041864A/en
Publication of JP2013041864A publication Critical patent/JP2013041864A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve a solar battery having a low optical reflectance and high-performance characteristics.SOLUTION: By making an Si substrate contact in processing liquid for oxidation and dissolution for a short time in a state that a mold having a catalyst material scattered in a two-dimensional distribution is contacted, point-like fine concavities are formed on the Si substrate surface in such a configuration that point-like portions of the catalyst material of the mold are transcribed. Next, when chemical etching is performed from the whole surface of the Si substrate, an uneven surface comprising bowl-like concave surface parts extended using the fine concavities of the two-dimensional distribution as start points and a convex rising part formed by the rest of the substrate surface is formed on the Si substrate surface. Then, an impurity source is introduced from the surface to form PN junction, and thereby, the PN junction surface becomes a stable bonding structure along the uneven surface. A solar battery obtained by this way can achieve a low optical reflectance and high-performance characteristics.

Description

本発明は、半導体基板の表面に微細な碗状凹部を二次元分布で有する太陽電池及び半導体装置とその製造方法、並びに転写用型版に関するものである。   The present invention relates to a solar cell, a semiconductor device, a manufacturing method thereof, and a transfer template that have a fine ridge-shaped recess on a surface of a semiconductor substrate in a two-dimensional distribution.

従来から、結晶系太陽電池において、例えばシリコン基板における平面状の表面を凹凸状に変形させることにより、いわゆる「光閉じ込め効果」を利用したエネルギー変換効率の向上が図られている。これは、基板表面が平面である場合に比べて、凸凹の斜面で一旦反射した光をも隣接する凸凹の斜面で受光して取込むことにより、実質的に表面からの反射率を低減させることが可能となるためである。その結果、入射光の総量が増大することになるため、光電効果の増加が実現される。   2. Description of the Related Art Conventionally, in a crystalline solar cell, for example, an energy conversion efficiency utilizing a so-called “light confinement effect” has been improved by deforming a planar surface of a silicon substrate into an uneven shape. Compared to the case where the substrate surface is flat, the light reflected once by the uneven slope is received and taken in by the adjacent uneven slope, thereby substantially reducing the reflectance from the surface. This is because it becomes possible. As a result, since the total amount of incident light increases, an increase in photoelectric effect is realized.

上記の凹凸構造を形成する際に、室温の溶液を用いる化学的処理方法としては、例えば、金属イオンを含有する,シリコンに対する酸化剤と溶解剤との混合水溶液内にシリコン基板を浸漬する方法が提案されている(特許文献1)。これによれば、その基板の表面に金属イオンの浸透によるとみられる微細孔を多数有する多孔質状のシリコン層、いわゆるポーラス層が形成されて、表面での光の反射率を低減できるとされている。   As a chemical treatment method using a room temperature solution when forming the above concavo-convex structure, for example, there is a method of immersing a silicon substrate in a mixed aqueous solution of an oxidizer and a solubilizer for silicon containing metal ions. It has been proposed (Patent Document 1). According to this, a porous silicon layer having a large number of micropores, which is considered to be due to the penetration of metal ions, is formed on the surface of the substrate, so-called porous layer, and the reflectance of light on the surface can be reduced. Yes.

特開2005‐183505号公報Japanese Patent Laying-Open No. 2005-183505

しかしながら、上述の,いわゆるポーラス層による凹凸構造の形成方法は、凹凸形状の形成に関する制御性が十分とはいえない。具体的には、上記の方法では、まず、混合水溶液中での金属イオンから金属がシリコン基板表面に析出することにより、その金属が還元触媒として機能するが、その際の金属の析出や分布が溶液の機能に依存することになって、その反応を自在に制御できるものではないため、形成される凹凸の大きさや分布の一様性を確保することが甚だ困難であり、またそれらの再現性にも乏しく、それの反映として、いわゆるポーラス層における微細孔の密度や深さも安定したものではない。   However, the above-described method for forming a concavo-convex structure using a so-called porous layer does not have sufficient controllability regarding the formation of the concavo-convex shape. Specifically, in the above method, first, metal precipitates on the surface of the silicon substrate from metal ions in the mixed aqueous solution, so that the metal functions as a reduction catalyst. Since it depends on the function of the solution and the reaction cannot be freely controlled, it is very difficult to ensure the size and distribution of the irregularities that are formed, and their reproducibility. As a reflection of this, the density and depth of the micropores in the so-called porous layer are not stable.

また、Si基板の表面に、いわゆるポーラス層があると、表面反射率の低減化を実現できるものの、一方で、上記の,いわゆるポーラス層を介しての,例えばP型基板の同面にN型不純物を導入してPN接合を均一に形成して太陽電池を形成する場合の,その不純物導入の過程には経験的な困難性のあることがわかった。   Further, if there is a so-called porous layer on the surface of the Si substrate, the surface reflectance can be reduced. On the other hand, for example, the N-type is formed on the same surface of the P-type substrate via the so-called porous layer. It has been found that there is an empirical difficulty in the process of introducing impurities when forming a solar cell by uniformly forming a PN junction by introducing impurities.

本発明は、上述の課題を解消することにあり、被処理半導体基板の表面に対して、まず、二次元分布に点在の触媒材を備えた型版を接触あるいは近接した状態で、同被処理半導体基板を、酸化剤と溶解剤とを含む混合水溶液、たとえばフッ化水素(HF)と過酸化水素(H)とを含む(HF+H)混合水溶液中において短時間処理することにより、この半導体基板表面には,上記点在の触媒材の面形状に依存した微細な凹状部が、上記型版の触媒材の部位を反転転写したような形態で二次元分布の位置に点在して形成され、同時にその転写部位では上述のポーラス層ができる。ついで、この半導体基板表面全面を酸化性エッチング液で処理すると、前記ポーラス層のあるくぼみ部分からエッチングが起こり、微細な凹状部が拡張されてほぼ碗状の凹面になる。その結果、同Si基板表面には、二次元分布の碗状の凹面と残余の平面が凸部で残った部分とでなる凹凸面が形成される。そこで、その表面から、PN接合形成のための不純物源導入を行っても、そのPN接合の先端面(接合面)は前記凹凸面に沿う構造の安定な接合面になる。すなわち、本発明によると、Si基板は、表面に二次元分布した凹凸面を持ち、かつ、内部に前記凹凸面に沿う安定なPN接合構造をもつことになり、この半導体基板を用いることにより、表面の光反射抑制の望まれる,太陽電池をはじめとする各種の半導体装置で、安定した高性能、高機能の実現に大きく貢献することができる。 The present invention is to solve the above-described problem. First, a template having a catalyst material scattered in a two-dimensional distribution is brought into contact with or close to the surface of a semiconductor substrate to be processed. The treated semiconductor substrate is treated for a short time in a mixed aqueous solution containing an oxidizing agent and a solubilizing agent, for example, a (HF + H 2 O 2 ) mixed aqueous solution containing hydrogen fluoride (HF) and hydrogen peroxide (H 2 O 2 ). As a result, fine concave portions depending on the surface shape of the scattered catalyst material are formed on the surface of the semiconductor substrate at the position of the two-dimensional distribution in such a manner that the portion of the catalyst material of the template is inverted and transferred. The porous layer described above is formed at the transfer site at the same time. Then, when the entire surface of the semiconductor substrate is treated with an oxidizing etchant, etching occurs from the recessed portion where the porous layer is formed, and the fine concave portion is expanded to become a substantially bowl-shaped concave surface. As a result, a concavo-convex surface is formed on the surface of the Si substrate. Therefore, even if an impurity source is introduced for forming a PN junction from the surface, the tip surface (joint surface) of the PN junction becomes a stable joint surface along the uneven surface. That is, according to the present invention, the Si substrate has an uneven surface distributed two-dimensionally on the surface, and has a stable PN junction structure along the uneven surface inside, and by using this semiconductor substrate, Various semiconductor devices, such as solar cells, for which surface light reflection suppression is desired, can greatly contribute to the realization of stable high performance and high functionality.

本発明の1つの太陽電池は、触媒材が点在的に存する転写用型版を半導体基板の平面に対向させて、その触媒材が前述の平面に接触するように配置し、その配置状態で、同半導体基板を上述の酸化剤と溶解剤とを含む混合水溶液で処理して、この半導体基板表面に,上記点在の触媒材の面形状に依存した,微細な凹状部を、上記型版の触媒材の部位に対応して反転転写したような形態で、二次元分布の位置に点在して形成し、ついで、この半導体基板表面の全面を酸化性エッチング液で処理することで上記微細な凹状部はほほ碗状の凹面に拡張された形状になる。すなわち、これにより、上記微細な凹状部が速い速度でエッチング除去されて、前記二次元分布の位置に点在の転写部位に碗状の凹面部が形成されて全面が凹凸面になる。そこで、その半導体基板の表面上から内部へ不純物源を導入すると、前述の凹凸面となった半導体基板表面に沿ったPN接合面構造を形成することができる。こうして、表面に凹凸形状を持ち、内部にその凹凸面に沿う均一なPN接合面を持つ安定、かつ再現性の良い太陽電池が実現可能である。   One solar cell of the present invention is arranged such that a transfer template on which a catalyst material is scattered is opposed to a plane of a semiconductor substrate so that the catalyst material is in contact with the above-described plane, The semiconductor substrate is treated with a mixed aqueous solution containing the above-described oxidizing agent and solubilizing agent, and fine concave portions depending on the surface shape of the dotted catalyst material are formed on the surface of the semiconductor substrate. In the form of reverse transfer corresponding to the parts of the catalyst material, it is formed by being scattered at the position of the two-dimensional distribution, and then the entire surface of the semiconductor substrate is treated with an oxidizing etchant to obtain the fineness described above. The concave portion has a shape expanded into a roughly concave surface. That is, by this, the fine concave portions are etched away at a high speed, so that the ridge-shaped concave portions are formed at the transfer sites scattered at the positions of the two-dimensional distribution, and the entire surface becomes an uneven surface. Therefore, when an impurity source is introduced from the surface of the semiconductor substrate to the inside, a PN junction surface structure along the surface of the semiconductor substrate having the uneven surface can be formed. In this way, a stable and reproducible solar cell having an uneven shape on the surface and a uniform PN junction surface along the uneven surface inside can be realized.

本発明の太陽電池の製造に使用する転写用型版は、二次元分布に点在の触媒材の形状が、処理対象となる半導体基板の表面に反映されるように、所定面の型版に触媒材を二次元分布に点在させて配置されている。すなわち、転写用型板は、表面に触媒材を適切な高い面密度の二次元分布に点在して配置形成したもので、その転写用型版面を処理対象となる半導体基板表面上に対向させて、その触媒材が前述の半導体基板の表面に接触するように配置された状態で、同半導体基板を前述の酸化剤と溶解剤とを含む混合水溶液中で処理して、同半導体基板面に,その転写用型版の触媒材の面形状が同じ位置対応で反転した,二次元分布に点在の微細な凹状部を安定的に製造するためのものである。この転写用型版の着眼点の一つは、上述の従来技術とは異なり、所定形状の定まった転写用型版を半導体装置の製造治具として利用して、半導体基板表面に二次元分布に点在の微細な凹状部を形成すること及びその凹状部がポーラス層で化学的エッチングの容易な性質であることを利用してそのポーラス層を除去して、その部位にほぼ碗状の凹面部を形成して、基板全面を低反射特性の凹凸面に形成すること、さらに、その半導体基板の内部にその表面の凹凸面に沿うPN接合面を形成できるようにしたことであり、これにより、安定な諸電気特性の太陽電池を製造し得るところにある。   The template for transfer used in the production of the solar cell of the present invention is a template on a predetermined surface so that the shape of the catalyst material scattered in the two-dimensional distribution is reflected on the surface of the semiconductor substrate to be processed. The catalyst materials are arranged in a two-dimensional distribution. That is, the transfer template is formed by arranging catalyst materials on the surface in a two-dimensional distribution with an appropriate high surface density, and the transfer template is opposed to the surface of the semiconductor substrate to be processed. Then, in a state where the catalyst material is disposed so as to contact the surface of the semiconductor substrate, the semiconductor substrate is treated in a mixed aqueous solution containing the oxidizing agent and the dissolving agent to form the surface of the semiconductor substrate. In order to stably manufacture fine concave portions scattered in a two-dimensional distribution in which the surface shape of the catalyst material of the template for transfer is inverted corresponding to the same position. One of the points of interest for this transfer template is that, unlike the above-described conventional technique, a transfer template having a predetermined shape is used as a manufacturing jig for a semiconductor device, and a two-dimensional distribution is provided on the surface of the semiconductor substrate. The porous layer is removed utilizing the fact that the fine concave portions are scattered and the concave portions are easily etched by chemical etching. To form a concavo-convex surface having a low reflection characteristic on the entire surface of the substrate, and to allow a PN junction surface along the concavo-convex surface of the surface to be formed inside the semiconductor substrate. It exists in the place which can manufacture the solar cell of stable various electrical characteristics.

また、本発明の1つの半導体装置の製造方法は、転写用型版の表面に設けられた二次元分布に点在の触媒材の実態的な面形状に基づいて、前述の酸化性及び溶解性を有する処理液中で、半導体基板表面に対して、同触媒材が対向し、かつその触媒材の点状面部が接触するような状態で配置されて、その転写用型版上の触媒材の点状面部が反映された,二次元分布に点在の微細な凹状部を形成して、さらに全面を酸化性のエッチング溶液で化学的エッチングを行って、その凹状部をほぼ碗状の深い凹状部に拡張して、半導体基板表面に凹凸面をもち、その半導体基板の内部にその表面の凹凸面に沿うPN接合面を形成して、光学的低反射特性で、かつ安定な諸電気特性の半導体装置を実現できるようにしたことである。   Also, the manufacturing method of one semiconductor device according to the present invention is based on the actual surface shape of the catalyst material scattered in the two-dimensional distribution provided on the surface of the transfer mold, and the above-described oxidation and solubility properties. The catalyst material is disposed in such a manner that the catalyst material faces the surface of the semiconductor substrate and the dotted surface portion of the catalyst material is in contact with the surface of the semiconductor substrate. A fine concave portion scattered in a two-dimensional distribution reflecting the point-like surface portion is formed, and the entire surface is further chemically etched with an oxidizing etching solution, and the concave portion is substantially a bowl-like deep concave shape. The surface of the semiconductor substrate has an uneven surface, and a PN junction surface along the uneven surface of the semiconductor substrate is formed inside the semiconductor substrate so that it has low optical reflection characteristics and stable electrical characteristics. This means that a semiconductor device can be realized.

この半導体装置の製造方法によれば、転写用型版面に備えた触媒材の形状に基づいて処理対象となる半導体基板の表面に所望の凹形状が形成されて、転写用型版の形状を反映させた凹形状を有する半導体基板が得られること、加えて、前記凹形状ないし碗状部の半導体基板面に沿うPN接合面を形成することで、その諸電気特性の安定したPN接合半導体装置を製造することができる。すなわち、転写用基板の面に触媒材を適切な微細な形状になして二次元分布の高い面密度で点在させて形成しておけば、これを用いて、酸化性及び溶解性を有する処理液中での半導体基板の処理及び凹部形成の表面のエッチング処理並びにPN接合形成工程を経て、安定したPN接合半導体装置を製造することができる。   According to this method for manufacturing a semiconductor device, a desired concave shape is formed on the surface of the semiconductor substrate to be processed based on the shape of the catalyst material provided on the transfer template, and reflects the shape of the transfer template. In addition, a PN junction semiconductor device having stable electrical characteristics can be obtained by forming a PN junction surface along the semiconductor substrate surface of the concave shape or the bowl-shaped portion. Can be manufactured. In other words, if the catalyst material is formed on the surface of the transfer substrate in an appropriate fine shape and scattered with a high surface density with a two-dimensional distribution, a treatment having oxidizing properties and solubility can be used. A stable PN junction semiconductor device can be manufactured through the treatment of the semiconductor substrate in the liquid, the etching treatment of the surface for forming the recesses, and the PN junction formation step.

また、本発明の1つの転写用型版は、表面上に二次元分布の高い面密度で点在の触媒材を有する、もしくは表面上に二次元分布で点在の突起の頂に触媒材を有したものであり、この転写用型版を用いて、その触媒材が接触するように半導体基板の表面に対向させて配置した状態で、その間隙に、酸化性及び溶解性を有する処理液を導入して処理することにより、前述の半導体基板の表面に、その転写用型版上の触媒材を反映させたポーラス層を持った微細な凹状部を二次元分布に点在させて形成し、ついでその半導体基板を室温程度の低温、短時間の酸化性エッチング等の化学的処理により、そのポーラス層の領域を全面的に除去して,ポーラス層のない,ほぼ碗状の深い凹状部に形成し、さらに半導体基板面に沿うPN接合面を形成することで、半導体基板面にほぼ碗状の深い凹状部をもって
光学的低反射率特性を実現し、かつPN接合面がその表面形状に沿う,均等な深さの面に形成されることによる,安定な電気特性を持った半導体装置が得られる。
In addition, one transfer template according to the present invention has a catalyst material scattered at a high surface density with a two-dimensional distribution on the surface, or a catalyst material at the top of the projections scattered in a two-dimensional distribution on the surface. Using this transfer template, a treatment liquid having oxidizing and dissolving properties is placed in the gap in a state where it is placed facing the surface of the semiconductor substrate so that the catalyst material comes into contact therewith. By introducing and processing, fine concave portions having a porous layer reflecting the catalyst material on the transfer template are scattered on the surface of the semiconductor substrate, and are scattered in a two-dimensional distribution, Next, the porous substrate region is completely removed by chemical treatment such as low-temperature and short-time oxidative etching at room temperature, and the semiconductor substrate is formed into a substantially bowl-like deep concave portion without the porous layer. In addition, a PN junction surface along the semiconductor substrate surface is formed. In the semiconductor substrate surface, the optically low reflectivity characteristic is realized by having a substantially bowl-shaped deep concave portion, and the PN junction surface is formed on a surface of uniform depth along the surface shape, thereby being stable. A semiconductor device having electrical characteristics can be obtained.

この転写用型版による利点は、転写用型版が備える,高い面密度で二次元分布に点在の触媒材の面形状に基づいて、処理対象となる半導体基板上にも、転写用型版表面の触媒材の面形状を対応的に反映させた,高い面密度で二次元分布に点在の凹形状を得て、高密度の凹凸形状表面をそなえた半導体基板を安定的に製造できること、加えて、この半導体基板上の凹凸形状を内部のPN接合面形成にそのまま反映できることである。この転写用型版の着眼点は、上述の従来技術とは異なり、高い面密度で二次元分布に点在の触媒材の面形状を持った転写用型版を、半導体装置の製造治具として利用して、光学的低反射率特性を持ち、かつPN接合面が均等な深さの面に形成されることによる,安定な電気特性を持った半導体装置を実現できるところにある。   The advantage of the transfer template is that the transfer template is provided on the semiconductor substrate to be processed on the basis of the surface shape of the catalyst material scattered in the two-dimensional distribution with high surface density. It is possible to stably manufacture a semiconductor substrate having a high-density uneven surface by obtaining a concave shape scattered in a two-dimensional distribution with a high surface density, reflecting the surface shape of the catalyst material on the surface, In addition, the uneven shape on the semiconductor substrate can be directly reflected in the formation of the internal PN junction surface. The focus of this transfer template is different from the above-mentioned conventional technology, and a transfer template having a high surface density and a surface shape of a catalyst material scattered in a two-dimensional distribution is used as a semiconductor device manufacturing jig. Utilizing this, it is possible to realize a semiconductor device having a low electrical reflectance characteristic and having a stable electrical characteristic by forming a PN junction surface on a surface having a uniform depth.

なお、上述の各発明において、転写用型版は、触媒材を含めて、処理対象となる半導体基板に対して酸化性及び溶解性を有する処理液での処理中及び半導体にエッチング処理過程で、そのような処理液を供給しかつ同溶液に対する耐性、詳しくは、エッチング耐性又は不溶性のある材質であることが好ましい。転写用型版の素材としては、特に限定されないが、例えば、白金めっきを施したSUS等の耐性素材のメッシュ又は白金製のメッシュなどが使用可能である。   In each of the above-described inventions, the template for transfer includes a catalyst material, during the treatment with a treatment liquid having oxidation property and solubility with respect to the semiconductor substrate to be treated, and in the etching treatment process on the semiconductor, A material which supplies such a treatment liquid and is resistant to the solution, specifically, an etching resistant or insoluble material is preferable. The material of the transfer template is not particularly limited, but for example, a resistant material mesh such as SUS plated with platinum or a mesh made of platinum can be used.

さらに、転写用型版の凹凸は、前述のような湿式化学的エッチングを用いて形成される場合に限定されない。例えば、半導体技術あるいはMEMS技術による等方性又は異方性ドライエッチングや、インプリント法によって形成される微細な凹凸形状も適用され得る。   Furthermore, the unevenness of the transfer template is not limited to the case where it is formed using wet chemical etching as described above. For example, isotropic or anisotropic dry etching using semiconductor technology or MEMS technology, or fine uneven shapes formed by imprinting can be applied.

半導体基板の凹形状の形成メカニズムは次のように想定できる。まず、転写用型版の表面のテクスチャー構造等の凹凸面上に存在する触媒材を半導体基板面に接触させたとき、その触媒材が半導体基板表面において処理液中の酸化剤の還元触媒として働いて、その酸化材から生成される酸化種が半導体基板表面を酸化する。そうすると、その酸化部位は上述の処理液中の溶解剤によって溶解される。そして、半導体基板の表面の酸化と溶解とが繰り返されることにより、概ね転写用型版の表面の形状が反映された、換言すれば転写用型版の表面形状,とりわけ触媒材の面形状で半導体基板表面のエッチングが生じる。したがって、上述の各々の発明において、触媒材は、上述の処理液中において酸化触媒として働くものであれば特に限定されない。触媒材の好適な代表例は、白金(Pt)、銀(Ag)、銅(Cu)、ニッケル(Ni)、パラジウム(Pd)、及び金(Au)及びそれらの合金の群から選ばれる。なお、これらの好適な材質は、公知のスパッタリング法によって形成される膜、CVD等による蒸着膜、あるいは上記群の金属化合物の塗布被膜等から還元生成された金属膜などで形成されていても、実態的に二次元分布で点在する形状であれば好ましい。   The formation mechanism of the concave shape of the semiconductor substrate can be assumed as follows. First, when a catalyst material existing on an irregular surface such as a texture structure on the surface of a transfer template is brought into contact with the semiconductor substrate surface, the catalyst material acts as a reduction catalyst for the oxidizing agent in the processing solution on the semiconductor substrate surface. Thus, the oxidizing species generated from the oxidizing material oxidizes the surface of the semiconductor substrate. Then, the oxidation site is dissolved by the above-described dissolving agent in the processing liquid. By repeating the oxidation and dissolution of the surface of the semiconductor substrate, the shape of the surface of the transfer template is generally reflected, in other words, the surface shape of the transfer template, especially the surface shape of the catalyst material. Etching of the substrate surface occurs. Therefore, in each of the above-described inventions, the catalyst material is not particularly limited as long as it functions as an oxidation catalyst in the above-described processing liquid. Suitable representative examples of the catalyst material are selected from the group of platinum (Pt), silver (Ag), copper (Cu), nickel (Ni), palladium (Pd), gold (Au), and alloys thereof. These suitable materials may be formed by a film formed by a known sputtering method, a deposited film by CVD or the like, or a metal film formed by reduction from a coating film of a metal compound of the above group, etc. A shape that is actually scattered in a two-dimensional distribution is preferable.

半導体基板の表面に、二次元分布の点状の触媒金属を配置した型版を接触させて、この型版からの転写に類似の技術で、このSi基板表面に点状に配置した微細な凹部を形成し、ついで、この半導体基板全面を化学的にエッチング処理することで、同半導体基板には点状に配置された凹部を起点とする二次元分布のほぼ碗状の深い凹状部を持った起伏面が形成される。このとき、その半導体基板の表面の,初めの点状凹部に前記触媒金属の影響により形成されたポーラス層が化学的エッチングで除去され、その凹部がほぼ碗状の深い凹状部として拡張された形状となる。そこで、同面に対して、PN接合を形成する不純物導入処理を行うことにより、表面の凹凸面に沿うPN接合面を安定に形成することができる。   Fine concave portions placed on the surface of the Si substrate in a technique similar to transfer from the template by contacting a plate with a two-dimensional distribution of point-like catalyst metal on the surface of the semiconductor substrate. Then, the entire surface of the semiconductor substrate is chemically etched, so that the semiconductor substrate has a substantially bowl-shaped deep concave portion with a two-dimensional distribution starting from the concave portions arranged in a dot shape. An undulating surface is formed. At this time, the porous layer formed by the influence of the catalytic metal on the surface of the semiconductor substrate at the first point-like recess is removed by chemical etching, and the recess is expanded as a deep recess having a substantially bowl shape. It becomes. Therefore, by performing an impurity introduction process for forming a PN junction on the same surface, a PN junction surface along the uneven surface can be stably formed.

第1の実施形態におけるSi基板表面の転写処理後の光学顕微鏡写真である。It is an optical microscope photograph after the transfer process of the Si substrate surface in 1st Embodiment. 第1の実施形態におけるSi基板表面の拡張されたほぼ碗状の深い凹状部の光学顕微鏡写真である。It is an optical microscope photograph of the expanded substantially bowl-shaped deep concave part of the Si substrate surface in 1st Embodiment.

つぎに、本発明の実施形態を、添付する図面に基づいて詳細に述べる。尚、この説明に際し、全図にわたり、特に言及がない限り、共通する部分には共通する参照符号が付されている。なお、図中、本実施形態の要素は必ずしも互いの縮尺を保って記載されるものではない。   Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In this description, common parts are denoted by common reference symbols throughout the drawings unless otherwise specified. In the drawings, elements of the present embodiment are not necessarily described with each other kept to scale.

予め、SUSメッシュにめっきを施した型版を形成しておき、この型版面をHF(12.35モル))およびH(4.9モル)の(HF+H)の混合水溶液中で数秒の短時間、室温で接触させることにより、このSi基板の表面には 図1の転写後の光学顕微鏡写真(図)のように、点状の微細な凹部が二次元分布で形成される。
なお、図示しないが、この過程で、Si基板の表面部には上述の点状の微細な凹部には、ポーラス層が形成されている。
A stencil plated stencil was previously formed, and this stencil surface was a few seconds in a mixed aqueous solution of HF (12.35 mol)) and H 2 O 2 (4.9 mol) (HF + H 2 O 2 ). By making contact at room temperature for a short time, fine spot-like concave portions are formed in a two-dimensional distribution on the surface of the Si substrate as shown in the optical micrograph (FIG. 1) after transfer in FIG.
Although not shown, in this process, a porous layer is formed on the surface portion of the Si substrate in the fine dot-like recesses described above.

次に、上述の点状の微細な凹部のあるSi基板の表面を、硝酸(HNO:11.3モル):フッ酸(HF:0.6モル):酢酸(CHCOOH:1.44モル)組成の酸エッチング水溶液で、室温、3〜5分間の化学的エッチングを行うことにより、図2のように、Si基板の表面部には、図1に示す点状の微細な凹部と同じところに、碗状の凹状部を形成することができた。この碗状の凹状部は、化学的エッチングの際に図1に示す点状の微細な凹部を起点として、拡張生成されたほぼ碗状の深い凹状部である。この現象の実態は、同Si基板の母体部の初めに形成された微細な凹部にできたポーラス層が全面的に高速でエッチング除去されるというエッチング速度差により拡張形成された表面領域として理解される。 Next, the surface of the Si substrate having the above-described fine dot-like recesses is mixed with nitric acid (HNO 3 : 11.3 mol): hydrofluoric acid (HF: 0.6 mol): acetic acid (CH 3 COOH: 1.44). 2) By performing chemical etching for 3 to 5 minutes at room temperature with an acid etching aqueous solution having a composition, the surface portion of the Si substrate is the same as the dot-like fine recesses shown in FIG. 1 as shown in FIG. However, a bowl-shaped concave portion could be formed. The saddle-like concave portion is a substantially bowl-like deep concave portion that is expanded and generated starting from the fine spot-like concave portion shown in FIG. 1 during chemical etching. The actual state of this phenomenon is understood as an extended surface region due to the etching rate difference in which the porous layer formed in the fine concave portion formed at the beginning of the base part of the Si substrate is etched and removed at a high speed on the entire surface. The

その後は、同面に対して、例えば、イオン注入法など、通常のPN接合を形成する不純物導入処理を行うことにより、表面からは所定の深さで、上記深い凹形状ないし碗状凹部をもつ凹凸面に沿う碗状のPN接合面を安定に形成することができた。かかるPN接合を持つ太陽電池では、最適の高い面密度で形成の上記深い凹形状ないし碗状凹部をもつ凹凸面による表面での低反射率特性が実現できると共に、同凹凸面沿うPN接合面が好適に安定であり、接合特性も良好である。   After that, for example, by performing an impurity introduction process for forming a normal PN junction such as an ion implantation method on the same surface, the surface has the above-described deep concave shape or bowl-shaped concave portion at a predetermined depth. A bowl-shaped PN junction surface along the uneven surface could be formed stably. In a solar cell having such a PN junction, low reflectivity characteristics can be realized on the surface by the concave / convex surface having the above-described deep concave shape or bowl-shaped concave portion formed at an optimal high surface density, and a PN junction surface along the concave / convex surface It is preferably stable and has good bonding characteristics.

また本実施形態では、二次元分布の点状の触媒金属を配置した型版からの転写で点状の微細な凹部を形成する際の酸化性及び溶解性を有する処理液として、フッ化水素酸(HF)と過酸化水素水(H)との混合水溶液を用いたが、この処理液にはフッ化水素酸(HF)と過酸化水素水(H)との混合水溶液に限定されない。例えば、フッ化水素酸(HF)と過酸化水(H)素の代わりに、硝酸、硫酸等の酸化性溶液、さらには、酸素又はオゾン等を適宜付加溶解させた溶液を用いることも可能である。 In the present embodiment, hydrofluoric acid is used as a treatment liquid having oxidation and solubility properties when forming fine dot-like recesses by transfer from a template on which a two-dimensional distribution of dot-like catalyst metal is arranged. A mixed aqueous solution of (HF) and hydrogen peroxide solution (H 2 O 2 ) was used. This treatment solution was a mixed aqueous solution of hydrofluoric acid (HF) and hydrogen peroxide solution (H 2 O 2 ). It is not limited to. For example, instead of hydrofluoric acid (HF) and hydrogen peroxide (H 2 O 2 ), an oxidizing solution such as nitric acid and sulfuric acid, and a solution in which oxygen or ozone is added and dissolved as appropriate are used. Is also possible.

加えて、点状の微細な凹部を起点とする碗状の凹状部の形成に用いる酸エッチングの組成は、硝酸、フッ酸、酢酸の混合水溶液に限らず、通常の硝酸/フッ酸系水溶液でも可能であり、酸エッチングに代えて、アルカリエッチングを用いることも可能である。 In addition, the composition of the acid etching used for forming the bowl-shaped concave portion starting from the fine point-shaped concave portion is not limited to a mixed aqueous solution of nitric acid, hydrofluoric acid, and acetic acid, but also a normal nitric acid / hydrofluoric acid aqueous solution. It is possible to use alkaline etching instead of acid etching.

また、上述の実施形態において、処理対象Si基板が単結晶シリコン基板である場合のみならず、多結晶シリコン基板や、アモルファスシリコン基板等に適用されることは他の好ましい一態様である。加えて、半導体装置として太陽電池を製造することを例示したが、、半導体装置の例は太陽電池に限定されない。例えば、受光素子等の光デバイスのような半導体装置についても、上述の実施形態の転写用の型版を用いた凹凸形状の形成が各種デバイスの性能の向上に大きく貢献し得る。   In the above-described embodiment, it is another preferable aspect that the Si substrate to be processed is applied not only to a single crystal silicon substrate but also to a polycrystalline silicon substrate, an amorphous silicon substrate, or the like. In addition, although a solar cell is illustrated as a semiconductor device, the example of the semiconductor device is not limited to the solar cell. For example, also in a semiconductor device such as an optical device such as a light receiving element, the formation of the concavo-convex shape using the transfer template according to the above-described embodiment can greatly contribute to the improvement of the performance of various devices.

なお、上述の実施形態の開示は、それらの実施形態の説明のために記載したものであって、本発明では実施例に記載の条件に限定されるものではない。加えて、実施形態の他の組合せを含む本発明の範囲内に存在する変形例もまた、請求の範囲に含まれるものである。   Note that the disclosure of the above-described embodiments is described for explaining the embodiments, and the present invention is not limited to the conditions described in the examples. In addition, modifications within the scope of the present invention including other combinations of the embodiments are also included in the scope of the claims.

本発明は、転写用の型版を用いて処理対象基板、ひいてはかかる処理対象基板を用いて製造される太陽電池の性能向上、高機能化の実現に大きく貢献し得る。したがって、半導体装置や受光素子等の光デバイスに代表されるデバイスの分野で広く利用され得る。   INDUSTRIAL APPLICABILITY The present invention can greatly contribute to the improvement in performance and high functionality of a substrate to be processed using a template for transfer, and thus a solar cell manufactured using the substrate to be processed. Therefore, it can be widely used in the field of devices typified by optical devices such as semiconductor devices and light receiving elements.

Claims (5)

半導体基板の表面に配した二次元分布の碗状の凹状部及び同半導体基板の内部に前記碗状の凹状部に沿う碗状のPN接合面をそなえた太陽電池。   A solar cell comprising a two-dimensionally distributed bowl-shaped concave portion disposed on a surface of a semiconductor substrate and a bowl-shaped PN junction surface along the bowl-shaped concave portion inside the semiconductor substrate. 半導体基板を、二次元分布の点状に触媒材の配された型版の前記触媒材面を接触する状態で酸化剤及び溶解剤を有する処理液中において処理する工程、同半導体基板を全面エッチングする工程をそなえた半導体装置の製造方法。   A process of processing a semiconductor substrate in a processing solution having an oxidant and a solubilizing agent in a state where the catalyst material surface of the template on which the catalyst material is arranged in a two-dimensional distribution of dots is in contact, etching the entire surface of the semiconductor substrate A method for manufacturing a semiconductor device, comprising the steps of: 表面に触媒材が二次元分布の点状に配された転写用型版を使用して、前記触媒材面を被処理半導体基板に接触する状態で酸化剤及び溶解剤の存する処理液中において処理して、前記半導体基板上に凹凸面を形成する半導体装置の製造方法。   Using a template for transfer in which the catalyst material is arranged in a two-dimensional distribution on the surface, the surface of the catalyst material is in contact with the semiconductor substrate to be processed in a processing solution containing an oxidizing agent and a dissolving agent. And the manufacturing method of the semiconductor device which forms an uneven surface on the said semiconductor substrate. 触媒材が、白金(Pt)、銀(Ag)、銅(Cu)、ニッケル(Ni)、パラジウム(Pd)、及び金(Au)の群から選ばれる少なくとも1種である請求項2又は請求項3に記載の半導体装置の製造方法。   The catalyst material is at least one selected from the group consisting of platinum (Pt), silver (Ag), copper (Cu), nickel (Ni), palladium (Pd), and gold (Au). 4. A method for manufacturing a semiconductor device according to 3. 半導体エッチングに際しての触媒材が所定型版上に二次元分布で点状に配設されて有する転写用型板。   A transfer template having catalyst materials for semiconductor etching arranged in a two-dimensional distribution in a dot pattern on a predetermined mold.
JP2011175937A 2011-08-11 2011-08-11 Solar battery, method of manufacturing semiconductor device, and transcription mold Withdrawn JP2013041864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011175937A JP2013041864A (en) 2011-08-11 2011-08-11 Solar battery, method of manufacturing semiconductor device, and transcription mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011175937A JP2013041864A (en) 2011-08-11 2011-08-11 Solar battery, method of manufacturing semiconductor device, and transcription mold

Publications (1)

Publication Number Publication Date
JP2013041864A true JP2013041864A (en) 2013-02-28

Family

ID=47890034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011175937A Withdrawn JP2013041864A (en) 2011-08-11 2011-08-11 Solar battery, method of manufacturing semiconductor device, and transcription mold

Country Status (1)

Country Link
JP (1) JP2013041864A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014142304A1 (en) * 2013-03-15 2017-02-16 小林 光 Silicon substrate surface treatment method, semiconductor device manufacturing method, semiconductor manufacturing device, transfer member and manufacturing method thereof, solar cell, and solar cell manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014142304A1 (en) * 2013-03-15 2017-02-16 小林 光 Silicon substrate surface treatment method, semiconductor device manufacturing method, semiconductor manufacturing device, transfer member and manufacturing method thereof, solar cell, and solar cell manufacturing method

Similar Documents

Publication Publication Date Title
JP5763709B2 (en) Anti-reflective etching of silicon surfaces catalyzed with ionic metal solutions
JP5866477B2 (en) Copper assisted anti-reflective etching of silicon surfaces
JP4610669B2 (en) Manufacturing method of solar cell
JP4049329B2 (en) Method for producing polycrystalline silicon substrate for solar cell
US9076916B2 (en) Method and device for manufacturing semiconductor devices, semiconductor device and transfer member
Vinzons et al. Unraveling the morphological evolution and etching kinetics of porous silicon nanowires during metal-assisted chemical etching
Lu et al. Nanopore-type black silicon anti-reflection layers fabricated by a one-step silver-assisted chemical etching
WO2012150627A1 (en) Method for cleaning silicon substrate, and method for producing solar cell
JP6120172B2 (en) Semiconductor device manufacturing method, semiconductor device manufacturing apparatus, semiconductor device, semiconductor device manufacturing program, semiconductor processing agent, and transfer member
TW201038779A (en) Silicon substrate with periodical structure
JP2005183505A (en) Method of manufacturing silicon substrate with porous layer
TW201121085A (en) Method of fabricating solar cell
JP2014531757A (en) Electrical contacts for nanostructured regions
CN105967139A (en) Method for etching holes on silicon substrate, silicon substrate with holes and semiconductor device
JP4263124B2 (en) Manufacturing method of semiconductor device
JP2013093537A (en) Manufacturing method of solar cell
Ju et al. A new vapor texturing method for multicrystalline silicon solar cell applications
JP2013041864A (en) Solar battery, method of manufacturing semiconductor device, and transcription mold
Yan et al. Facile fabrication of wafer-scale, micro-spacing and high-aspect-ratio silicon microwire arrays
TW201236049A (en) Wafer for solar cell and fabricating method thereof
JPWO2012150669A1 (en) Method for cleaning silicon substrate and method for manufacturing solar cell
US20120156585A1 (en) Process for forming silver films on silicon
TW201222653A (en) Method of forming micro-pore structure or recess structure on silicon chip substrate surface
JP2014146712A (en) Solar cell and method of manufacturing solar cell
TWI555077B (en) A manufacturing method of a semiconductor device, a manufacturing apparatus for a semiconductor device, and a semiconductor device Body device, and transfer element

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104