JP2013041418A - Consistency check auxiliary device for consistent structure design and design three-dimensional cad - Google Patents

Consistency check auxiliary device for consistent structure design and design three-dimensional cad Download PDF

Info

Publication number
JP2013041418A
JP2013041418A JP2011177859A JP2011177859A JP2013041418A JP 2013041418 A JP2013041418 A JP 2013041418A JP 2011177859 A JP2011177859 A JP 2011177859A JP 2011177859 A JP2011177859 A JP 2011177859A JP 2013041418 A JP2013041418 A JP 2013041418A
Authority
JP
Japan
Prior art keywords
software
structural
data
design
design calculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011177859A
Other languages
Japanese (ja)
Inventor
Toshimasa Yoshizawa
俊正 吉沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011177859A priority Critical patent/JP2013041418A/en
Publication of JP2013041418A publication Critical patent/JP2013041418A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide means for reducing exchange of information and data among designers between three-dimensional software for architectural design and consistent structure design calculation software performing strength and safety evaluation according to strength criteria of a building determined by law.SOLUTION: When performing the conversion from data for the three-dimensional software into data for the consistent structure design calculation software, it is desirable to fully automatically convert all data on cross-sectional dimensions, axes, etc., of structure elements needed for consistent structure design calculation by a PC, but it is difficult. Then automatically convertible portions are extracted and converted with data that the three-dimensional software has, and displayed on a PC screen by the consistent structure design calculation software to be visualized, and structure designers determine and correct deficient data so as to reduce generation of a structure design drawing that the structure designers generates before by conversion and input while looking at a three-dimensional CAD drawing.

Description

本発明は、法で決められた建築物の強度基準に則り建築物の強度安全評価を行う際、電子計算機(以後、周辺機器を含め電子計算機の規模の大小にかかわらずPCと記す)を用い3次元CADソフトで設計された建築物の3次元CADソフト意匠データから建築物の構造を構成する床、壁、天井、柱、梁、筋交い等(以後、建築物の構造を構成する床、壁、天井、柱、梁、筋交い等を構造要素と記す)の構造要素データを抽出し、一貫構造設計計算ソフトのデータとして読み込み可能なデータに変換し、3次元CADソフトによる建築物の意匠設計から一貫構造設計計算ソフトによる強度安全性確認までの一連の作業負担を軽減することを目的とした一貫構造設計計算ソフトの整合チェック補助装置に関するものである。 The present invention uses an electronic computer (hereinafter referred to as “PC” regardless of the size of the electronic computer including peripheral devices) when performing the safety evaluation of the building in accordance with the strength standard of the building determined by law. Floors, walls, ceilings, columns, beams, braces, etc. that constitute the structure of the building from the 3D CAD software design data of the building designed with 3D CAD software (hereinafter referred to as the floor, wall that constitutes the structure of the building) , Ceiling, columns, beams, bracing, etc. are described as structural elements) and converted into data that can be read as data for integrated structural design calculation software. From design design of buildings using 3D CAD software The present invention relates to a consistency check auxiliary device for consistent structure design calculation software for the purpose of reducing a series of work burdens until strength safety confirmation by the consistent structure design calculation software.

近年建築業界ではBIM(Building Inormation Modeling)と言うことで3次元の形状情報と建築設計、施工の全行程を通した属性情報を合わせもつ建物情報モデルへの移行に努力を重ねている。この様な時代背景の中、建築設計者は、PCの3次元CADソフトを用い建築物の意匠と使用時の機能を考慮して建築物の設計を行い(以後、3次元CADソフトを用い建築物の意匠と使用時の機能を考慮して建築物の設計を行う段階を意匠設計と記す)、意匠設計後、設計された建築物は、建築物が法に基づいた強度安全性を持ったものか否かを設計条件、部材設定、部材配置、室用途指定、荷重設定、応力解析、断面算定、保有耐力計算を一連で処理する一貫構造設計計算ソフトで評価している(以後、建築物が法に基づいた強度安全性を持ったものか否かを荷重設定、応力解析、断面算定、保有耐力計算を一連で行う一貫構造設計計算ソフトで評価する段階を構造設計と記す)。
3次元CADソフトで設計された建築物の強度安全性を一貫構造設計計算ソフトで評価する場合、3次元CADソフトで設計された建築構造物の床、壁、天井、柱、梁、筋交い等の構造要素データを抽出し一貫構造設計計算ソフトで計算可能な構造要素データに変換しなくてはならないが、現在このデータの変換作業は、構造設計者が、意匠設計図面(PC表示装置画面上の図を含む)を参照しながら一貫構造設計計算ソフト用の構造図面として技術的に適切であるか技術的な判断を加え入力変換作業を行っている。
In recent years, the building industry has been making efforts to shift to a building information model that combines three-dimensional shape information and attribute information through the whole process of building design and construction by saying BIM (Building Information Modeling). Against this background of the times, architects use 3D CAD software on PCs to design buildings in consideration of the design of the building and the functions at the time of use (hereinafter referred to as architecture using 3D CAD software). The stage of designing a building in consideration of the design of the object and the function at the time of use is described as design design). After the design, the building designed has strength and safety based on the law. It is evaluated by integrated structural design calculation software that processes a series of design conditions, member setting, member placement, room usage specification, load setting, stress analysis, cross section calculation, and holding strength calculation (hereinafter referred to as building) The stage of evaluating with the integrated structural design calculation software that performs a series of load setting, stress analysis, cross-section calculation, and possession strength calculation is described as structural design.
When evaluating the strength and safety of buildings designed with 3D CAD software using integrated structural design calculation software, floors, walls, ceilings, columns, beams, braces, etc. of building structures designed with 3D CAD software The structural element data must be extracted and converted into structural element data that can be calculated by the integrated structural design calculation software. Currently, this data conversion work is performed by the structural designer on the design design drawing (on the PC display device screen). The input conversion work is performed with technical judgment as to whether it is technically appropriate as a structural drawing for the integrated structural design calculation software with reference to the figure.

平成12年建設省告示1358号 第22000 Ministry of Construction Notification No. 1358 No. 2

この構造設計者による3次元CADソフトのデータから一貫構造設計計算ソフトのデータへの入力変換作業を完全にPCを用い自動で行うことができれば構造設計者の作業が軽減されるが、現在のところ、3次元CADソフトメーカごとにデータ保存の方法が異なること、および、3次元CADソフトと一貫構造設計計算ソフトとの構造要素に対する寸法基準位置の決め方が異なること等により3次元CADソフトから一貫構造設計計算ソフトへ構造要素データの完全な形での自動変換は、難しい状況にある。 If the input conversion work from the 3D CAD software data to the data of the consistent structural design calculation software by this structural designer can be done completely automatically using a PC, the work of the structural designer will be reduced. Consistent structure from 3D CAD software due to different data storage methods for each 3D CAD software maker and different dimensional reference positions for structural elements between 3D CAD software and consistent structure design calculation software. Automatic conversion of structural element data to design calculation software in a complete form is difficult.

さらに建築設計においては、しばしば起きることであるが、なんらかの理由により意匠設計に設計変更が生じた場合、一貫構造設計計算ソフトの構造図面を全面的に入力し直し建築物の強度安全性を再計算しなくてはならないことが発生する。現実の建築業界では、外観的な美観や建築物の居住環境を考慮し自由な発想で建築物の設計を行う意匠設計者と意匠設計された建築物に対して法で決められた建築物の強度基準に則り強度安全性確認を行う構造設計者は、分業化されており意匠設計が先行され、その後に構造設計を行う手順から、構造設計段階で意匠設計に強度不足が生じた場合、意匠設計者と構造設計者が調整を行うことが必要となり、この工程間の調整や設計変更等による労力を極力最小限におさえる必要性に迫られている。そこで本発明は、上記課題を解決するため構造設計者が意匠設計図面を参照し入力変換しなくてはならない労力を最小限におさえて作業が軽減でき、かつ構造設計者と意匠設計者とのコミュニケーションツールとなるような一貫構造設計と意匠3次元CADの整合チェック補助装置の提供にある。 Furthermore, as is often the case in architectural design, if a design change occurs for any reason, the structural drawing of the integrated structural design calculation software will be re-calculated and the strength and safety of the building will be recalculated. There are things that must be done. In the actual building industry, design designers who design buildings with free ideas in consideration of the exterior aesthetics and the living environment of the buildings, Structural designers who confirm strength safety in accordance with strength standards are divided into divisions of labor, and design design is preceded, and if design design lacks strength at the structural design stage from the procedure for structural design after that, design Designers and structural designers need to make adjustments, and there is an urgent need to minimize the labor involved in adjustments and design changes between processes. Therefore, the present invention can reduce the work by minimizing the labor that the structural designer must refer to the design design drawing and convert the input in order to solve the above-mentioned problems, and the structural designer and the design designer can The aim is to provide a consistency check auxiliary device for integrated structural design and design 3D CAD that can be used as a communication tool.

上記課題を解決するために、請求項1では、構造設計者が意匠設計図面を参照し入力変換しなくてはならない労力を最小限におさえ作業を軽減することに対しては、PCで3次元CADソフトを用いて設計された3次元CADソフト建築図面データから柱、梁、壁等の構造要素ごとに記録あるいは定義されている通り、構造要素の寸法、配置基準、基点を抽出し、抽出した3次元CADソフト建築図面データを3次元CADソフトの絶対座標のデータのまま一貫構造設計計算ソフトの躯体ファイルの一部として保存し、柱、梁、壁等の構造要素の断面データは、一貫構造設計計算ソフトの構造要素の断面を定義している断面表の形式に変換して一貫構造設計計算の躯体データファイルの一部として変換保存し、一貫構造設計計算ソフトの躯体ファイルに取り込まれた3次元CADソフトのデータから一貫構造設計計算ソフトのPC表示用データを生成し、構造図面としてどの程度の情報が、取り込めたかを設計者がPC画面上に表示した伏図や軸組図で確認し、伏図や軸組図の柱、梁等の軸芯のずれ等、自動で変換修正できる部分は、自動で変換修正し、PC画面上に表示された3次元CADソフトのデータから一貫構造設計計算ソフト用データに変換されたPCに表示された伏図や軸組図の不十分な部分を設計者が検討しながら追加修正を加え、一貫構造設計計算ソフトの計算用の構造図面として完成させ、その後一貫構造設計計算を行うこととした。 In order to solve the above-mentioned problem, according to claim 1, in order to reduce the work by minimizing the labor that the structural designer has to refer to the design design drawing and convert the input, it is possible to reduce the work by using a three-dimensional computer. Extracted and extracted the dimensions, placement criteria, and base points of the structural elements as recorded or defined for each structural element such as columns, beams, walls, etc. from the 3D CAD software architectural drawing data designed using CAD software 3D CAD software Architectural drawing data is saved as part of the 3D CAD software absolute coordinate data as part of the structural file of the integrated structural design calculation software, and the cross-sectional data of structural elements such as columns, beams and walls is consistent. Convert to a section table format that defines the cross-section of the structural element of the design calculation software, and convert and save it as part of the integrated structural design calculation chassis data file. Generates the data for PC display of the integrated structural design calculation software from the 3D CAD software data imported to the file, and the designer displays on the PC screen how much information has been captured as a structural drawing 3D CAD software that is automatically converted and corrected for parts that can be automatically converted and corrected, such as misalignment of shafts such as pillars and beams in floor plans and beams, etc. For the calculation of the consistent structure design calculation software, the designer makes additional corrections while examining insufficient portions of the plan and axis drawings displayed on the PC converted from the previous data to the data for the consistent structure design calculation software It was decided to complete the structural design calculation after that.

さらに請求項2では、3次元CADソフトの建築図面データから一貫構造設計計算ソフトが読み込み可能な表示用データに変換し一貫構造設計計算ソフトの構造図面としてPC画面に表示した伏図、軸組図に構造設計者が追加修正を加え一貫構造設計計算ソフトの計算用の構造図面として完成させた伏図、軸組図と一貫構造設計計算ソフトの計算結果をPC画面に表示した伏図、軸組図を重ね合せ、一貫構造設計計算結果と3次元CADソフトの意匠設計建築図面との図面の相違あるいは断面不整合をPC画面に上で確認検討し、一貫構造設計計算の結果を3次元CADソフトの建築図面へフードバックする情報を検討でき、3次元CADソフトから一貫構造設計計算ソフトにデータ変換する過程で作成する各段階で作成される各種伏図、軸組図相互を重ね合せ表示し3次元CADソフトの建築図面へのフードバック情報を検討でき、さらに、一貫構造設計計算結果の断面不整合アラームを構造要素ごとに一覧表に表示し参照しながら3次元CADソフトの建築図面へのフードバック情報を検討できる方法とした。 Further, in claim 2, the floor plan and the axis diagram are converted from the architectural drawing data of the 3D CAD software into display data that can be read by the integrated structural design calculation software and displayed on the PC screen as the structural drawing of the consistent structural design calculation software. Fifth drawing, axis structure and calculation result of the consistent structure design calculation software displayed on the PC screen, the shaft structure figure and the result of the calculation of the consistent structure design calculation software. Overlapping the figures, check the PC screen for differences or cross-sectional inconsistencies between the consistent structural design calculation results and the 3D CAD software design design and architectural drawings, and the consistent structural design calculation results on the 3D CAD software Various plans and axes created at each stage created in the process of converting data from 3D CAD software to integrated structural design calculation software 3D CAD software can be reviewed for food back information on architectural drawings, and cross-sectional inconsistency alarms of consistent structural design calculation results can be displayed in a list for each structural element for reference. This is a method that can examine food back information on architectural drawings of CAD software.

次に、請求項3では、請求項1および請求項2を一貫構造設計計算ソフト内の一連の手順に組み込むことにより、法で定められた建築物の強度安全性確認と3次元CADへのフィードバック情報検討を一連の行為として行うことができる方法とした。 Next, in claim 3, by incorporating claims 1 and 2 into a series of procedures in the integrated structure design calculation software, the strength safety confirmation of the building and the feedback to the three-dimensional CAD as required by law. Information was considered as a series of actions.

本発明により構造設計者が意匠設計図面を参照し入力変換しなくてはならない労力を最小限におさえ、構造設計者の作業軽減でき、かつ構造設計者と意匠設計者とのコミュニケーションツールとすることができるようになった。 According to the present invention, it is possible to reduce the work of the structural designer while minimizing the labor that the structural designer has to refer to the design design drawing and convert the input, and to make it a communication tool between the structural designer and the design designer. Can now.

本発明の一貫構造設計と意匠3次元CADの整合チェック補助装置フローの説明図。Explanatory drawing of the consistency check auxiliary | assistant apparatus flow of the consistent structure design and design three-dimensional CAD of this invention. 本発明の実施するための形態における一貫構造設計計算ソフト配置基準の層、通り、節点の説明図。Explanatory drawing of the layer of the consistent structure design calculation software arrangement | positioning reference | standard in the form for implementing this invention, a street, and a node. 同じ実施するための形態における3次元CADソフトデータから取り込まれて一貫構造設計計算ソフトの画面に表示された3次元CAD未加工画像の説明図。Explanatory drawing of the three-dimensional CAD unprocessed image taken in from the three-dimensional CAD software data in the form for carrying out the same, and displayed on the screen of the consistent structure design calculation software. 同じ実施するための形態における一貫構造設計計算ソフト用に柱、梁等の軸芯を合わせるよう一部自動変換した構造図の説明図。Explanatory drawing of the structural drawing partially converted automatically so that axial centers, such as a column and a beam, may be matched for the consistent structural design calculation software in the form for carrying out the same. 同じ実施するための形態における一貫構造設計計算ソフトの計算データとして完成した構造図の説明図。Explanatory drawing of the structural drawing completed as calculation data of the consistent structural design calculation software in the form for carrying out the same. 同じ実施するための形態における一貫構造設計計算ソフトの計算結果を表示した構造図の設計図。The design drawing of the structure figure which displayed the calculation result of the consistent structure design calculation software in the form for carrying out the same. 同じ実施するための形態における図5と図6を重ね合せ表示し比較検討のための説明図。FIG. 5 is an explanatory diagram for comparison and examination by superimposing FIGS. 5 and 6 in the same embodiment. 同じ実施するための形態における図3と図6重ね合せ表示し3次元CADの未加工構造図と一貫構造設計計算結果の構造図を比較検討のための説明図。FIGS. 3 and 6 in the form for carrying out the same embodiment are explanatory views for comparing and examining the unprocessed structure diagram of the three-dimensional CAD and the structure diagram of the consistent structure design calculation result.

以下、本発明の一貫構造設計と意匠3次元CADの整合チェック補助装置を具体化した実施形態について図1から図8に基づいて説明する。図1は、一貫構造設計と意匠3次元CADの整合チェック補助装置の手順をフローにしたもので、最初にフロー全体の流れを説明し、その後に各々の流れのステップに従い詳しく説明を行う。
本発明は、図1のStp1で作業を開始し、Stp2で意匠設計者は、建築物の3次元CADソフト図面を作成する。Step3でその3次元CADソフト図面データから柱、梁、壁等の構造要素ごとに3次元CADソフトで定義されている通り、構造要素の寸法、配置基準、基点を抽出し、Stp4では、抽出した3次元CADソフト図面データを3次元CADソフトの絶対座標のデータのまま一貫構造設計計算ソフトの躯体ファイルの一部として保存するが、構造要素の断面データは、一貫構造設計計算ソフトの構造要素の断面を定義し保管している断面表の形式に変換して一貫構造設計計算の躯体データファイルの一部として変換保存する。Stp5では、Stp4で一貫構造設計計算ソフトの3次元CADソフト図面データとして躯体ファイルの一部として保存された座標データを読み出し、一貫構造設計計算ソフト特有の構造要素の位置を指定する層、通り、(層、通り等については、後に詳述する)柱の軸芯のずれ等を自動で修正する指示をPCに与え一貫構造設計計算ソフトの計算形式に近い未完成の躯体モデルのPC表示用データを生成する。次に、Stp6では、Stp5で作成された未完成の躯体モデルのPC表示用データを表示参照しながら構造設計者は、一貫構造設計計算ソフトの構造図面として計算可能なデータ、すなわち層、通り、節点を定義し、構造図面を手直し入力し躯体モデルを完成させる。Stp6で作成された一貫構造設計計算ソフトの躯体モデルデータをStp7で一貫構造設計計算を開始し、Stp8で一貫構造設計計算行うための構造要素の設定、室用途指定、荷重設定等一貫構造設計計算に必要な条件設定を追加し構造設計計算を行う。一貫構造設計計算ソフトは一貫構造設計計算の結果である応力解析、断面算定、保有耐力計算が設計条件を満たすまでStp7からStp9が繰り返され,Stp9の判定で一貫構造設計計算が設計条件を満たすとStp10に進む。Stp10においては、ステップのStp6で作成された一貫構造設計計算ソフトの躯体モデルデータと一貫構造設計計算結果のデータを用いPCの画面に重ね合せ描画表示し、視覚的に矛盾を把握できるとともにStp11で一貫構造設計計算結果とStp6で作成された一貫構造設計計算ソフトの躯体モデルデータとの矛盾点である構造要素の寸法不足等の断面等不整合アラームを一覧表で表示する。Stp12では、一貫構造設計計算結果に不都合がある場合には、Stp2に戻り、一貫構造設計計算ソフトで不都合が生じた部分を意匠設計者にフィードバックし、意匠設計者は、フードバックされた情報をもとに3次元CADソフト図面に変更を加えることが繰り返され、Stp12の判定で不都合がなくなればStp13の終了となる。
Hereinafter, an embodiment in which the consistent structure design and design three-dimensional CAD matching check auxiliary device of the present invention is embodied will be described with reference to FIGS. FIG. 1 is a flowchart of the procedure of the consistency check auxiliary device for consistent structure design and design three-dimensional CAD. First, the flow of the entire flow will be described, and then detailed description will be given according to the steps of each flow.
The present invention starts the work at Stp1 in FIG. 1, and at Stp2, the design designer creates a three-dimensional CAD software drawing of the building. At Step 3, the dimensions, placement criteria, and base points of the structural elements are extracted from the 3D CAD software drawing data as defined by the 3D CAD software for each structural element such as a column, beam, wall, etc. The 3D CAD software drawing data is saved as part of the 3D CAD software absolute coordinate data as part of the structural file of the consistent structural design calculation software. Convert the cross-section into the format of the stored cross-section table and convert and save it as a part of the frame data file for the consistent structural design calculation. In Stp5, the coordinate data stored as part of the chassis file is read out as the 3D CAD software drawing data of the consistent structure design calculation software in Stp4, and the layer for designating the position of the structural element unique to the consistent structure design calculation software, (Details of layers, streets, etc. will be described later.) PC display data for an unfinished chassis model that is close to the calculation format of the integrated structural design calculation software by giving instructions to the PC to automatically correct misalignment of the column axis. Is generated. Next, in Stp6, while displaying and referring to the PC display data of the unfinished chassis model created in Stp5, the structural designer can calculate data that can be calculated as a structural drawing of the integrated structural design calculation software, that is, layer, street, Define the nodes and re-enter the structural drawing to complete the chassis model. Consistent structural design calculation such as setting of structural elements, room use specification, load setting, etc. for consistent structural design calculation is started in Stp8. Add necessary condition settings to perform structural design calculation. The consistent structural design calculation software repeats Stp7 to Stp9 until the stress analysis, cross-section calculation, and holding strength calculation, which are the results of the consistent structural design calculation, satisfy the design conditions. If the consistent structural design calculation satisfies the design conditions in the determination of Stp9 Proceed to Stp10. In Stp10, the chassis model data of the consistent structure design calculation software created in Step Stp6 and the data of the consistent structure design calculation result are used to be overlaid and displayed on the screen of the PC to visually grasp the contradiction and in Stp11 Inconsistency alarms such as cross sections such as insufficient dimensions of structural elements, which are inconsistencies between the consistent structural design calculation results and the chassis model data of the consistent structural design calculation software created in Stp6, are displayed in a list. In Stp12, if there is an inconvenience in the consistent structure design calculation result, the process returns to Stp2 and the part where the inconvenience occurred in the consistent structure design calculation software is fed back to the design designer. The process of repeatedly changing the three-dimensional CAD software drawing is repeated, and when there is no problem in the determination of Stp12, the process ends in Stp13.

以上が、大きな流れである。以下に図1のStp1から各ステップを追って詳細を説明する。Stp1は、フロー上の開始であるから実質的な作業、動作はない。Stp2は、意匠設計者が外観的な美観を考慮した意匠および建築物の居住環境を考慮し自由な発想で建築物の設計を行う意匠設計段階を示しており、意匠設計者は、デザイン性が要求されるため描画性に重点が置かれた3次元CADソフトを使用し意匠設計を行う。しかしながら、建築物は、意匠設計された建築物に対して法で決められた建築物の強度基準に則り強度安全性確認を行う一貫構造設計計算を行わなくてはならない。現在、意匠設計と構造設計とは分業化されており意匠設計が先行され、その後に構造設計者が構造設計計算ソフトを使い強度安全性確認を行う手順となっている。 The above is a big flow. Details will be described below step by step from Step 1 of FIG. Since Stp1 is the start on the flow, there is no substantial work or operation. Stp2 shows a design design stage in which a design designer designs a building with a free idea in consideration of the design and the living environment of the building in consideration of the external appearance. Because it is required, design design is performed using 3D CAD software with emphasis on drawing performance. However, the building must perform an integrated structural design calculation for confirming the strength and safety in accordance with the strength standard of the building determined by law for the design-designed building. At present, design design and structural design are divided, and design design is preceded, followed by a procedure in which a structural designer uses a structural design calculation software to confirm strength safety.

3次元CADソフトで意匠設計された3次元CADソフトの意匠データが完全にPCを用い一貫構造設計計算ソフトのデータに自動変換できれば理想的であるが、現在のところ、3次元CADソフトのメーカごとにデータ保存の方法が異なること、および、3次元CADソフトと一貫構造設計計算ソフトとの構造要素に対する寸法基準位置の取り方が異なること等により完全な形での自動変換が難しい状況にある。3次元CADソフトと一貫構造設計計算ソフトの大きな違いは、3次元CADソフトは、デザイン性を要求されるため描画機能に重点が置かれ、建築物の構造要素等を含めた全ての部材は、3次元CADソフトの絶対座標軸原点からの各XYZ軸方向への座標で描画配置されるために座標数値を入力すれば寸法指定上配置の制限がなく描画できる。 It would be ideal if the design data of the 3D CAD software designed by 3D CAD software could be automatically converted to the data of the integrated structural design calculation software completely using a PC, but at present, each manufacturer of 3D CAD software However, there is a situation where automatic conversion in a complete form is difficult due to different data storage methods and different dimension reference positions for the structural elements of the 3D CAD software and the consistent structural design calculation software. The major difference between 3D CAD software and integrated structural design calculation software is that 3D CAD software requires design, so emphasis is placed on the drawing function, and all members including structural elements of buildings are Since the drawing is arranged with the coordinates in the XYZ axis directions from the absolute coordinate axis origin of the three-dimensional CAD software, if the coordinate numerical value is input, the drawing can be drawn without limitation on the dimension designation.

一方、3次元CADソフトに対し一貫構造設計計算ソフトは、建築構造物の強度計算に重点を置ことから、建築物躯体モデルにおける構造要素相互の接合関係を明確化する目的で
構造要素の配置に際して絶対座標を使わず、一貫構造設計計算ソフト特有の構造要素の位置を指定する層、通り、節点を定義して配置する制限を加えている。以下に一貫構造設計計算ソフトの構造要素の位置を指定する層、通り、節点について図2を用い簡単に説明を加える。図2に示すXYZ軸座標において地面に平行な面をXY軸が含まれる平面とし、そのXY軸が含まれる平面と平行な面を層と呼び、層Z0と定義する。その層Z0平面上に構造要素等を配置する基準となるY軸に平行でY軸のプラスマイナス無限大方向まで伸びている軸X1、軸X2等を構造要素の配置上必要な数、配置上必要なX軸方向の座標間隔で定義し、通りX1、通りX2等と呼ぶ。さらに、層Z0平面上に構造要素等を配置する基準となるX軸に平行でX軸のプラスマイナス無限大方向まで伸びている軸Y1、軸Y2等を構造要素の配置上必要な数、配置上必要なY軸方向の座標間隔で定義し、通りY1、通りY2等と呼ぶ。この結果として、層Z0上には通りX1、X2等と通りY1、Y2等の直交交差する碁盤の目が構成される。この通りX1、X2等と通りY1、Y2等の交差する交点を節点と呼ぶ。さらに、Z軸方向に床、天井を配置するために層Z0から設計者が望む間隔で層Z0に平行な面としての層Z1、層Z2等、層を定義する。この定義された層Z1、Z2等には、層Z0で定義した通りX1、X2等と通りY1、Y2等の交差する碁盤の目が構成される。層Z0、Z1、Z2等の通りは、自動でコピー構成しても、各層で設計者が定義し直しても良い。例えば、Z0を1階の床、Z1を2階の床(1階の天井)、Z2を3階の床(2階の天井)とかんがえればよい。その結果XYZ座標上の立体に層と通りと節点が作る立体の格子状の網目が構成される。この図2に示した層Z0と層Z1のX1とY1の通りには、壁、梁、筋交い等が配置され、層Z0のX1とY1の交点の節点と層Z1のX1とY1の交点の節点間に、層Z0、層Z1に垂直な柱に相当するものが配置出来ることになる。基本的には一貫構造設計計算ソフトは、層上に作られた通り、節点以外に構造要素等を配置できないソフトとなっている。層、通りは、当然のことながら一貫構造設計計算ソフトの作業中どの時点でも追加できる。一貫構造設計計算ソフトの中には、X1、X2等の間隔、Y1、Y2等の間隔およびZ0、Z1等の間隔を等間隔に決め、その決められた間隔で配置されるソフトとX、Yの通りとZ間の間隔が、自由な寸法が定義できるソフトがあるが、基本的な問題ではない。したがって、3次元CADソフトから一貫構造設計計算ソフトへのデータ変換は、絶対座標から格子状の層、通り、節点へのデータ形式の変換と考えてよい。
On the other hand, the integrated structural design calculation software focuses on the strength calculation of the building structure compared to the 3D CAD software. Therefore, in order to clarify the joint relationship between the structural elements in the building frame model, There is a restriction to define and arrange nodes, streets and nodes that specify the position of structural elements unique to the integrated structural design calculation software without using absolute coordinates. The layer, street, and node for designating the position of the structural element of the integrated structural design calculation software will be briefly described below with reference to FIG. A plane parallel to the ground in the XYZ axis coordinates shown in FIG. 2 is a plane including the XY axis, a plane parallel to the plane including the XY axis is called a layer, and is defined as a layer Z0. The number of axes X1, X2, etc. necessary for arrangement of the structural elements is parallel to the Y axis that is the reference for arranging the structural elements on the layer Z0 plane and extends in the direction of plus or minus infinity of the Y axis. It is defined by a necessary coordinate interval in the X-axis direction and is called street X1, street X2, etc. Furthermore, the number of Y, Y2, etc. necessary for the arrangement of the structural elements are arranged in parallel to the X axis that is the reference for arranging the structural elements on the layer Z0 plane and extend in the plus or minus infinity direction of the X axis. It is defined by the necessary coordinate interval in the Y-axis direction and is called street Y1, street Y2, etc. As a result, grids such as streets X1, X2, etc. and streets Y1, Y2, etc. that intersect perpendicularly are formed on the layer Z0. The intersecting points of X1, X2, etc., and Y1, Y2, etc. are called nodes. Furthermore, in order to arrange a floor and a ceiling in the Z-axis direction, layers such as a layer Z1 and a layer Z2 are defined as planes parallel to the layer Z0 at intervals desired by the designer from the layer Z0. In the defined layers Z1, Z2, etc., crossed grids such as X1, X2, etc., and Y1, Y2, etc. are formed as defined in the layer Z0. The layers Z0, Z1, Z2, etc. may be automatically configured for copying, or the designer may redefine each layer. For example, Z0 may be considered the first floor, Z1 the second floor (the first floor ceiling), and Z2 the third floor (the second floor ceiling). As a result, a three-dimensional lattice network formed by the layers and the nodes in the solid on the XYZ coordinates is formed. As shown in FIG. 2, walls, beams, braces, and the like are arranged along the X1 and Y1 of the layer Z0 and the layer Z1, and the intersection of the X1 and Y1 of the layer Z0 and the intersection of the X1 and Y1 of the layer Z1. Between the nodes, a layer corresponding to a column perpendicular to the layers Z0 and Z1 can be arranged. Basically, the integrated structural design calculation software is software that cannot arrange structural elements other than nodes as it is created on the layer. Layers and streets can of course be added at any point during the work of the integrated structural design calculation software. In the consistent structure design calculation software, the intervals such as X1, X2, etc., the intervals such as Y1, Y2, and the intervals such as Z0, Z1, etc. are determined as equal intervals, and the software that is arranged at the determined intervals and X, Y There is software that can define a free dimension between the street and Z, but this is not a basic problem. Therefore, the data conversion from the three-dimensional CAD software to the consistent structure design calculation software may be considered as the conversion of the data format from the absolute coordinates to the grid layers, the nodes, and the nodes.

次にStp3で3次元CADソフトを用いて設計された3次元CADソフト図面データから柱、梁、壁等の構造要素ごとに定義されている通り、構造要素の寸法、配置基準、基点を抽出する。3次元CADソフト図面データでも3次元CADソフトのメーカにより柱、梁、壁等の構造要素ごとに定義された通り、構造要素の寸法、配置基準、基点のデータの並びに相違があり、通りの定義のできるもの、通りの定義できないもの様々であり、通りが定義できる3次元CADソフトにもかかわらず設計者によっては、通りを定義せずに描画している場合もあるが、同一メーカの3次元CADソフトデータ内は、同一の配置規則で配列されているので3次元CADメーカごとの対応は必要となるが、構造要素ごとに定義されている通り、構造要素の寸法、配置基準、基点を抽出することができる。 Next, as defined for each structural element such as a column, beam, wall, etc., the dimensions, arrangement reference, and base point of the structural element are extracted from the three-dimensional CAD software drawing data designed using the three-dimensional CAD software in Stp3. . 3D CAD software drawing data, as defined by each 3D CAD software manufacturer for each structural element such as a column, beam, wall, etc. There are a variety of things that can be defined and those that cannot be defined. Some 3D CAD software can define streets, but some designers may draw without defining streets. Since the CAD software data is arranged according to the same arrangement rule, it is necessary to deal with each 3D CAD manufacturer. However, as defined for each structure element, the dimensions, arrangement reference, and base point of the structure element are extracted. can do.

Stp4では、Stp3で抽出された柱、梁、壁等の構造要素ごとに定義されている通り、構造要素の寸法、配置基準、基点の抽出データは、Stp3で抽出した3次元CADソフト図面データを3次元CADソフトの絶対座標のデータのまま一貫構造設計計算ソフトの躯体ファイルの一部として保存するが、構造要素の断面データは、一貫構造設計計算ソフトの構造要素の断面を定義している断面表の形式に変換して一貫構造設計計算の躯体データファイルの一部として変換保存される。Stp3で抽出された柱、梁、壁等の構造要素ごとに定義されている通り、構造要素の寸法、配置基準、基点の抽出データが、3次元CADソフトの絶対座標のデータのまま一貫構造設計計算ソフトの躯体ファイルの一部として保存する理由は、後述するStp10等で、一貫構造設計計算の結果と3次元CADソフトの図と重ねて表示する際、一貫構造設計計算結果を絶対座標表示に変換し表示するため、3次元CADソフトから抽出したデータを変換する必要がないためである。同様に、構造要素の断面データが、一貫構造設計計算ソフトの構造要素の断面を定義している断面表の形式に変換して一貫構造設計計算の躯体データファイルの一部として変換保存される理由は、Stp11で断面不整合のアラームを出すために一貫構造設計計算結果と比較する際、断面表の形式と合わせることにより比較が容易になるからである。 In Stp4, as defined for each structural element such as a column, beam, wall, etc. extracted in Stp3, the extracted data of the dimension, arrangement reference, and base point of the structural element is the 3D CAD software drawing data extracted in Stp3. The absolute coordinate data of the 3D CAD software is saved as part of the frame file of the consistent structural design calculation software, but the cross section data of the structural element defines the cross section of the structural element of the consistent structural design calculation software. It is converted into a table format and saved as a part of the frame data file for consistent structure design calculation. As defined for each structural element such as pillars, beams, walls, etc. extracted in Stp3, the structural data of the structural element dimensions, placement standard, and base point extraction data remains the same as the absolute coordinate data of 3D CAD software The reason for saving as a part of the calculation software frame file is Stp10, etc., which will be described later. When displaying the result of the consistent structure design calculation and the 3D CAD software image, the consistent structure design calculation result is displayed in absolute coordinates. This is because it is not necessary to convert the data extracted from the three-dimensional CAD software because it is converted and displayed. Similarly, the reason why the structural element cross-section data is converted and saved as part of the structural data file of the consistent structural design calculation by converting it to the form of the cross-section table defining the cross-section of the structural element of the integrated structural design calculation software. This is because the comparison is facilitated by combining with the form of the cross-section table when comparing with the consistent structural design calculation result in order to issue the cross-section mismatch alarm at Stp11.

Stp5では、先ずStp4で一貫構造設計計算ソフトの躯体ファイルに取り込まれた3次元CADソフトのデータから一貫構造設計計算ソフトの表示用データを生成し、一貫構造設計計算用の構造図面としてどの程度の情報が、取り込めたかをPC画面上に表示して確認する。例えば、Stp4で取り込まれStp5で一貫構造設計計算ソフトの表示用データとして生成された表示結果が、図3の示す図であるとする。図3は、Stp5で一貫構造設計計算ソフトの表示用データを生成された後は、一貫構造設計計算ソフト使用時のどの段階でも図3を呼び出すことができ、3次元CADソフトの原データとして構造要素の相互距離、構造要素の寸法を確認することができる。また図3は、灰色の太線で描かれているが、これは、以後構造設計結果の各種伏図と重ね合わせた場合に灰色の太線中に黒色の細線を重ね合せて説明する説明の都合上便利なように灰色の太線で描かれている。実際のPC画面上では、色分け等も考えられるし、図3の様に太線で描き細線と区別する等の方法がある。以後、他の灰色の太線で描かれている図については、同様の解釈と考えて説明する。 In Stp5, first, the display data of the consistent structure design calculation software is generated from the data of the 3D CAD software captured in the chassis file of the consistent structure design calculation software in Stp4, and how much as the structure drawing for the consistent structure design calculation Check if the information has been imported by displaying it on the PC screen. For example, it is assumed that the display result taken in Stp4 and generated as display data for the consistent structure design calculation software in Stp5 is the diagram shown in FIG. 3, after the display data of the consistent structure design calculation software is generated in Stp5, FIG. 3 can be called at any stage when the consistent structure design calculation software is used, and the structure is the original data of the 3D CAD software. The mutual distance of elements and the dimensions of structural elements can be confirmed. In addition, FIG. 3 is drawn with a thick gray line, but this is for convenience of explanation in which a black thin line is superimposed on a thick gray line when superimposed on various plans of the structural design results. It is drawn with a gray thick line for convenience. On an actual PC screen, color coding or the like can be considered, and there are methods such as drawing with bold lines and distinguishing from thin lines as shown in FIG. In the following, other diagrams drawn with a thick gray line will be described as being interpreted in the same manner.

図3の柱1aの中心は、通りXbとは一致しているが通りYaとはずれており、柱1bの中心は、通りXbとは一致しているが通りYbとはずれており、柱1cの中心は、通りXaとずれているが通りYbとは一致している場合、各柱の中心と通りのずれの修正範囲の量を構造設計者が寸法数値することにより構造設計者の指定寸法範囲内であれば、あるいは通りを指定することによってPCの命令により、図3に示す中心のずれた柱1a、1b、1cは、図4に示す柱1a4、1b4、1c4に移動し、柱と通りXa、Xb、Ya、Ybが一致するような構造図に自動変更が可能である。この自動修正の際、図3の梁2aと梁2bは、柱1a4、1b4、1c4に移動により柱間距離が変わるために一貫構造設計計算ソフトの規則に基づき従来の柱に接した形で自動的に長さを変え図4の梁2a4と梁2b4に書き換えられる。この修正命令は、柱の中心を合わせるだけでなく必要に応じ、全ての柱の外壁面を合わせる等構造設計者の要望により柱が通りと一致させない方法も可能であり構造設計者が修正された図4に相当する図を見ながら判断する場合に役に立つ。 The center of the pillar 1a in FIG. 3 is coincident with the street Xb but off the street Ya, and the center of the pillar 1b is coincident with the street Xb but off the street Yb. When the center is shifted from the street Xa but coincides with the street Yb, the structural designer designates the amount of the correction range of the displacement of the center and the street of each column as a dimension value by the structural designer. If it is within, or by designating a street, the center-shifted pillars 1a, 1b, and 1c shown in FIG. 3 are moved to the pillars 1a4, 1b4, and 1c4 shown in FIG. It is possible to automatically change the structure diagram so that Xa, Xb, Ya, and Yb match. In this automatic correction, the beam 2a and the beam 2b in FIG. 3 are automatically in contact with the conventional column based on the rules of the integrated structure design calculation software because the distance between the columns changes due to the movement to the columns 1a4, 1b4, 1c4. Therefore, the length is changed to the beam 2a4 and the beam 2b4 in FIG. This modification instruction can be used not only to align the center of the column, but also to align the outer wall surface of all the columns as necessary. This is useful when making a decision while looking at the diagram corresponding to FIG.

次にStp6では、Stp5で修正された図4の不十分な部分を検討し、構造設計者が修正する。例えば図4の柱1eの場合、どこの梁ともつながらず孤立している。一貫構造設計計算ソフトにおいては、柱は層と層の間を結び立っており、何がしかの梁で他の柱あるいは梁と連結していなくてはならないことになっている。そこで、構造設計者は、図4において図5で示す柱1eの中心を通る通りXcと通りYcを定義し柱1eを梁2dと連結させる梁2e5を加え修正を行い一貫構造設計計算用の躯体モデルの構造図として完成させる。図5の柱、梁等の構造要素の断面寸法は、3次元CADソフトで設計された意匠図面の断面寸法と変えておらず、3次元CADソフトで設計された意匠図面の強度に関する構造部分を保存したデータと考えてよいように構造設計者は変更を加える。ここまでのStp2からStp6までの説明では、建築物の平面図に相当する伏図のみで説明したが、Stp2からStp6までの検討を側面図に相当する軸組図においても行うことによって立体としての一貫構造設計計算用の躯体モデルの構造図として完成させる。 Next, in Stp6, the insufficient part of FIG. 4 corrected in Stp5 is examined, and the structural designer corrects it. For example, in the case of the pillar 1e in FIG. 4, it is isolated without being connected to any beam. In the integrated structural design calculation software, columns are connected between layers, and some beams must be connected to other columns or beams. Therefore, the structural designer defines a passage Xc and a passage Yc passing through the center of the column 1e shown in FIG. 5 in FIG. 4, adds a beam 2e5 for connecting the column 1e to the beam 2d, and modifies the frame for a consistent structural design calculation. Complete as a model structure diagram. The cross-sectional dimensions of the structural elements such as columns and beams in FIG. 5 are not changed from the cross-sectional dimensions of the design drawings designed with the three-dimensional CAD software. The structural designer makes changes so that it can be considered as stored data. In the description from Stp2 to Stp6 so far, only the plan corresponding to the plan view of the building has been described, but the examination from Stp2 to Stp6 is also performed in the axis diagram corresponding to the side view as a solid. It is completed as a structural diagram of the chassis model for consistent structural design calculation.

完成した構造図のデータをもとにStp7からStp9にかけて建築物の法に基づいた安全が満足されるまで、建築物の構造要素の断面寸法等を自動的に変更し一貫構造設計計算が繰り返し行われる。その建築物の計算結果は、躯体データとして保管され、その計算結果はPC画面表示用の絶対座標に変換されPC画面上に表示された図が、図6であるとする。図6は、本来実線で表すところであるが、説明の都合上、柱、梁を破線で表示している。実際のPC画面表示は、破線表示に限らず線の色を変えるとか、柱、梁の矩形の内側を色分けするとかの見やすい方法が考えられる。この一貫構造設計計算は、本発明に関するだけでなく一般の建築構造物においても行われる法に基づいた建築物の安全評価で一般的なものであるので本文で詳述しない。 Based on the data of the completed structural drawing, the structural dimensions of the building structural elements are automatically changed and the consistent structural design calculation is repeated until the safety based on the building law is satisfied from Stp7 to Stp9. Is called. The calculation result of the building is stored as frame data, and the calculation result is converted into absolute coordinates for PC screen display and displayed on the PC screen is shown in FIG. Although FIG. 6 is originally represented by a solid line, for convenience of explanation, columns and beams are represented by broken lines. The actual PC screen display is not limited to the broken line display, and an easy-to-see method such as changing the color of the line or color-coding the inside of the column or beam rectangle can be considered. The integrated structural design calculation is not limited to the text because it is common in building safety assessments based on laws not only related to the present invention but also in general building structures.

次にStp10では、Stp6で完成させた一貫構造設計計算用の躯体モデルの構造図の図5と一貫構造設計計算の計算結果を反映した図6をPC画面上に重ねて表示した図7を表示し、3次元CADソフトで設計された意匠設計図が、法に基づいた一貫構造設計計算上も安全であるか否か比較検討を行い、安全であることを確認する。例えば、図7において灰色太実線で表示された柱1a4は、3次元CADソフトで描かれた柱と考えてよく、破線で表示された柱1a6は、一貫構造設計計算の結果であるが、柱1a4の面積が、柱1a6より大きく描かれていると言うことは、3次元CADソフトで意匠設計された図面が、安全側に設計されていると言うことが分かる。一方、同様に図7において灰色太実線で表示された柱1b4は、3次元CADソフトで描かれた柱と考えてよく、破線で表示された柱1b6は、一貫構造設計計算の結果であるが、柱1b4の断面積が、柱1b6より小さく描かれていると言うことは、3次元CADソフトで意匠設計された図面が、強度を満たしておらず、計算の結果柱1b4断面積を柱1b6の断面積まで大きくするように読み取れる。このように図から読み取れると同時に、Stp11では、構造要素ごとに一覧表に表示し、断面寸法が小さく強度不足の構造要素については赤字で表示する等、断面不整合アラームを出し表示する。さらに、3次元CADソフトの図の状態を保持しているStp5で生成した表示用データ図3と一貫構造設計計算の計算結果を反映した図6をPC画面上に重ねて表示した図8を表示することにより、一貫構造設計計算を行うために3次元CADソフトの図面位置からある程度の距離移動した柱、梁等の移動量や安全評価のために柱、梁等の断面変更を総合的に比較検討することができる。 Next, in Stp10, FIG. 5 of the structural diagram of the chassis model for the consistent structural design calculation completed in Stp6 and FIG. 7 in which FIG. 6 reflecting the calculation result of the consistent structural design calculation is displayed on the PC screen is displayed. Then, the design blueprints designed with the 3D CAD software are compared with each other to confirm whether they are safe in terms of the consistent structural design calculation based on the law. For example, in FIG. 7, the column 1a4 displayed with a gray solid line may be considered as a column drawn with three-dimensional CAD software, and the column 1a6 displayed with a broken line is the result of the consistent structure design calculation. The fact that the area of 1a4 is drawn larger than the pillar 1a6 indicates that the drawing designed by the three-dimensional CAD software is designed on the safe side. On the other hand, in FIG. 7, the column 1b4 displayed with a gray solid line may be considered as a column drawn with three-dimensional CAD software, and the column 1b6 displayed with a broken line is the result of the consistent structure design calculation. The fact that the cross-sectional area of the column 1b4 is drawn smaller than that of the column 1b6 means that the drawing designed by the three-dimensional CAD software does not satisfy the strength, and the calculated cross-sectional area of the column 1b4 is the column 1b6. It can be read to increase the cross-sectional area. At the same time as reading from the figure in this way, at Stp11, a structural mismatch alarm is displayed and displayed, for example, in a list for each structural element, and structural elements with small cross-sectional dimensions and insufficient strength are displayed in red. In addition, the display data generated in Stp5 that holds the state of the 3D CAD software diagram and FIG. 8 in which FIG. 6 reflecting the calculation result of the consistent structural design calculation is superimposed on the PC screen are displayed. By doing this, a comprehensive comparison is made of the amount of movement of columns and beams that have moved a certain distance from the drawing position of the 3D CAD software to perform integrated structural design calculations, and the cross-sectional changes of columns and beams for safety evaluation. Can be considered.

Stp12で断面不整合アラームが出た場合には、構造設計者は、意匠設計者と調整し、Stp2に戻り意匠設計者が3次元CADソフトの図面で不整合部分の構造要素の断面寸法を大きくする等の必要な変更を行い、あるいは、あまりにもむだに太い柱を細くする等の処置を行い、再度Stp2からStp12を繰り返しStp12の断面不整合アラームが問題なくなるまで繰り返し3次元CADソフトの意匠図面と一貫構造設計計算ソフトの安全性評価の一連の設計作業がStp13で終了となる。 If a cross-section mismatch alarm is issued at Stp12, the structural designer adjusts with the design designer, returns to Stp2, and the design designer increases the cross-sectional dimension of the structural element of the non-matching portion in the drawing of the 3D CAD software. Make necessary changes such as to make a thick pillar too thin, repeat Step 2 to Step 12 again, and repeat until the Stp12 cross-section misalignment alarm is no longer a problem. Design drawing of 3D CAD software A series of design work for safety evaluation of the integrated structure design calculation software is completed at Stp13.

一貫構造設計計算ソフト Integrated structure design calculation software

建築物の構造計算に関するソフトおよび建築物の構造計算ソフトを利用する建築設計業務。 Architectural design work using software related to structural calculation of buildings and structural calculation software of buildings.

Stp1 開始
Stp2 3次元CAD図面を作成
Stp3 柱、梁、壁等構造部材ごとに3次元CADで定義されている通り、構造要素の配置基準、基点を抽出
Stp4 抽出した3次元CADデータを座標データのまま、 および断面データは一貫構造設計計算ソフトの 形式に変換して躯体ファイルの一部として変換保存
Stp5 保存した座標データから通り、軸芯のずれ、等を作り出す指示を 与え一貫構造設計計算ソフト表示用のデータを生成
Stp6 生成データを画面に表示し表示された図を 参照し一貫構造設計計算データを作成
Stp7 構造計算開始
Stp8 一貫構造設計計算
Stp9 判定
Stp10 一貫構造設計計算結果と3次元表示データを重ねて表示し確認
Stp11 断面等不整合アラーム表示
Stp12 判定
Stp13 終了
X 座標軸X
Y 座標軸Y
Z 座標軸Z
X1 層上のY軸に平行な通り
X2 層上のY軸に平行な通り
Y1 層上のX軸に平行な通り
Y2 層上のX軸に平行な通り
Z0 地表に平行な層
Z1 地表に平行なZ0とある間隔離れた層
Z2 地表に平行なZ1とある間隔離れた層
X0,Y0,Z0 層Z0上の通りX0と通りY0との交点の節点
X0,Y0,Z1 層Z1上の通りX0と通りY0との交点の節点
X0,Y0,Z2 層Z2上の通りX0と通りY0との交点の節点
1a 3次元CADソフト変換位置データのままの構造図の柱
1b 3次元CADソフト変換位置データのままの構造図の柱
1c 3次元CADソフト変換位置データのままの構造図の柱
1d 3次元CADソフト変換位置データのままの構造図の柱
1e 3次元CADソフト変換位置データのままの構造図の柱
2a 3次元CADソフト変換位置データのままの構造図の梁
2b 3次元CADソフト変換位置データのままの構造図の梁
2c 3次元CADソフト変換位置データのままの構造図の梁
2d 3次元CADソフト変換位置データのままの構造図の梁
Xa 3次元CADソフト変換位置データのままの構造図の通り
Xb 3次元CADソフト変換位置データのままの構造図の通り
Ya 3次元CADソフト変換位置データのままの構造図の通り
Yb 3次元CADソフト変換位置データのままの構造図の通り
1a4 3次元CADソフト変換データの軸芯位置を自動で通りに一致させた柱
1b4 3次元CADソフト変換データの軸芯位置を自動で通りに一致させた柱
1c4 3次元CADソフト変換データの軸芯位置を自動で通りに一致させた柱
2a4 1a4、1b4の柱の移動に伴って移動した梁
2b4 1b4、1c4の柱の移動に伴って移動した梁
2e5 3次元CADソフト変換データの孤立した柱1eに構造設計者が設けた梁
Xc 3次元CADソフト変換データの孤立した柱1eの中心を設けるためと柱1eに架けた梁2e5を設けるために定義した通り
Yc 3次元CADソフト変換データの孤立した柱1eの中心を設けるために定義した通り
1a6 一貫構造設計計算の結果、断面が変化した柱
1b6 一貫構造設計計算の結果、断面が変化した柱
2a6 一貫構造設計計算の結果、梁長が変化した梁
2b6 一貫構造設計計算の結果、梁長が変化した梁
2d6 一貫構造設計計算の結果、梁長が変化した梁

Stp1 Start Stp2 Create a 3D CAD drawing Stp3 Extract structural element placement standards and base points as defined in 3D CAD for each structural member such as columns, beams, walls, etc. Stp4 Extract the extracted 3D CAD data into the coordinate data As it is, the cross-section data is converted to the format of the consistent structure design calculation software and converted as part of the frame file. Saved Stp5 The instruction to create the axis misalignment, etc. is given through the saved coordinate data, and the consistent structure design calculation software display Generate data for use Stp6 Display the generated data on the screen and refer to the displayed figure to create the consistent structure design calculation data Stp7 Start the structure calculation Stp8 Consistent structure design calculation
Stp9 Judgment Stp10 Consistent structural design calculation result and three-dimensional display data are displayed in an overlapping manner and confirmed Stp11 Cross section misalignment alarm display Stp12 Judgment Stp13 End X Coordinate axis X
Y coordinate axis Y
Z coordinate axis Z
X1 layer parallel to the Y axis X2 layer parallel to the Y axis Y1 layer parallel to the X axis Y2 layer parallel to the X axis Z0 layer parallel to the ground surface Z1 parallel to the ground surface Z0 and a layer Z2 spaced apart by a distance Z1 parallel to the ground surface and a layer X0, Y0, Z0 spaced apart by a distance X0, Y0, Z1 at the intersection of street X0 and street Y0 on layer Z0 Street X0 on layer Z1 Nodes X0, Y0, Z2 at the intersection with Y0 and Y0 Node 1a at the intersection between X0 and Y0 on the layer Z2 Column 1b of the structure diagram as it is with the three-dimensional CAD software conversion position data Three-dimensional CAD software conversion position data Pillar 1c of the structure diagram as it is Column 1d of the structure diagram as it is as the 3D CAD software conversion position data Pillar 1e of the structure diagram as it is as the 3D CAD software conversion position data Structure diagram as it is as the 3D CAD software conversion position data Pillar 2a 3D CA Beam 2b of the structure diagram as it is the D software conversion position data Beam 2c of the structure diagram as it is the 3D CAD software conversion position data Beam 2d of the structure diagram as it is the 3D CAD software conversion position data 3D CAD software conversion position data Beam Xa in the same structure diagram Xa As in the structure diagram as it is in the 3D CAD software conversion position data Xb As in the structure diagram as it is in the 3D CAD software conversion position data Ya As a structure diagram as it is in the 3D CAD software conversion position data As shown Yb 3d CAD software conversion position data as it is Structured as 1a4 3D CAD software conversion data axis center position is automatically matched to the column 1b4 3D CAD software conversion data axis position automatically Column 1c4 matched in the street of the column 2a4 1a4, 1b4 in which the axial center position of the three-dimensional CAD software conversion data is automatically matched in the street Beam 2c4 moved along with the movement of the beam 2e5 moved along with the movement of the column of the beam 1c4 Beam Xc of the 3D CAD software conversion data provided by the structural designer on the isolated column 1e of the 3D CAD software conversion data As defined to provide the center of the isolated column 1e and to provide the beam 2e5 spanning the column 1e, as defined to provide the center of the isolated column 1e of Yc 3D CAD software conversion data 1a6 Consistent structural design calculation As a result, the column 1b6 whose cross-section has been changed As a result of the integrated structure design calculation, the column 2a6 whose cross-section has been changed As a result of the consistent structure design calculation, the beam 2b6 whose beam length has changed As a result of the consistent structure design calculation, the beam 2d6 whose beam length has changed Beam with changed beam length as a result of consistent structural design calculation

Claims (3)

PCを用い3次元CADソフトで設計された3次元CADソフト建築図面データから柱、梁、壁等の構造要素ごとに記録あるいは定義されている通り、構造要素の寸法、配置基準、基点を抽出し、抽出した3次元CADソフト建築図面データを3次元CADソフトの絶対座標のデータのまま一貫構造設計計算ソフトの躯体ファイルの一部として保存し、柱、梁、壁等の構造要素の断面データは、一貫構造設計計算ソフトの構造要素の断面を定義している断面表の形式に変換して一貫構造設計計算の躯体データファイルの一部として変換保存し、一貫構造設計計算ソフトの躯体ファイルに取り込まれた3次元CADソフトのデータから一貫構造設計計算ソフトのPC表示用データを生成し、構造図面としてどの程度の情報が、取り込めたかを設計者がPC画面上に表示した伏図や軸組図で確認し、伏図や軸組図の柱、梁等の軸芯のずれ等、自動で変換修正できる部分は、自動で変換修正し、PC画面上に表示された3次元CADソフトのデータから一貫構造設計計算ソフト用データに変換されたPCに表示された伏図や軸組図の不十分な部分を設計者が検討しながら追加修正を加え一貫構造設計計算ソフトの構造図面として完成させることができる一貫構造設計と意匠3次元CADの整合チェック補助装置。 Extract the dimensions, placement standards, and base points of the structural elements as recorded or defined for each structural element such as columns, beams and walls from the 3D CAD software architectural drawing data designed with 3D CAD software using a PC The extracted 3D CAD software architectural drawing data is saved as part of the structural file of the integrated structural design calculation software as the absolute coordinate data of the 3D CAD software, and the cross section data of structural elements such as columns, beams, walls, etc. , Convert to a cross-section format that defines the cross-section of the structural element of the integrated structural design calculation software, convert and save it as part of the integrated structural design calculation body data file, and import it into the integrated structural design calculation software body file The PC display data of the integrated structural design calculation software is generated from the 3D CAD software data, and how much information is captured as the structural drawing is set. The parts that can be automatically converted and corrected, such as misalignment of the axes of the pillars and beams of the plan and beam, are automatically converted and corrected. Additional corrections are made while the designer examines inadequate portions of the sketches and axis drawings displayed on the PC converted from the 3D CAD software data displayed on the PC screen to the data for the integrated structural design calculation software. Alignment structure design and design 3D CAD matching check auxiliary device that can be completed as a structural drawing of consistent structure design calculation software. 3次元CADソフトの建築図面データから一貫構造設計計算ソフトが読み込み可能な表示用データに変換し、一貫構造設計計算ソフトの構造図面としてPC画面に表示した伏図、軸組図に構造設計者が、追加修正を加え一貫構造設計計算ソフトの計算用の構造図面として完成させた伏図、軸組図と一貫構造設計計算ソフトの計算結果をPC画面に表示した伏図、軸組図を重ね合せ、一貫構造設計計算結果と3次元CADソフトの意匠設計建築図面との図面の相違あるいは断面不整合をPC画面に上で確認検討し、一貫構造設計計算の結果を3次元CADソフトの建築図面へフードバックする情報を検討でき、3次元CADソフトから一貫構造設計計算ソフトにデータ変換する過程で作成する各段階で作成される各種伏図、軸組図相互を重ね合せ表示し3次元CADソフトの建築図面へのフードバック情報を検討でき、さらに、一貫構造設計計算結果の断面不整合アラームを構造要素ごとに一覧表に表示し参照しながら3次元CADソフトの建築図面へのフードバック情報を検討できる一貫構造設計と意匠3次元CADの整合チェック補助装置。 The structural designer converts the architectural drawing data of the 3D CAD software into display data that can be read by the integrated structural design calculation software, and displays it on the PC screen as the structural drawing of the integrated structural design calculation software. In addition, with the addition of modifications, the completed drawings and shaft diagrams that have been completed as structural drawings for the calculation of the integrated structural design calculation software are superimposed on the PC plan screen and the basic drawings that show the calculation results of the consistent structural design calculation software. Check the PC screen for differences or cross-sectional inconsistencies between the consistent structural design calculation results and the 3D CAD software design design architectural drawings, and convert the consistent structural design calculation results to the 3D CAD software architectural drawings. The information to be food-backed can be examined, and various floor plans and axis diagrams created in each stage created in the process of data conversion from 3D CAD software to integrated structure design calculation software are superimposed on each other. 3D CAD software architectural drawings can be examined by displaying and referring to the information on the cross-sectional inconsistency of the result of consistent structural design calculation in the list for each structural element. Consistent structural design and design 3D CAD alignment check assisting device that can examine food back information on the design. 請求項1および請求項2を一貫構造設計計算ソフト内の一連の手順に組み込むことにより、法で定められた建築物の強度安全性確認と3次元CADへのフィードバック情報検討を一連の行為として行うことができる装置。
By incorporating Claims 1 and 2 into a series of procedures in the integrated structural design calculation software, the strength safety confirmation of buildings and the feedback information examination to the three-dimensional CAD specified by law are performed as a series of actions. A device that can.
JP2011177859A 2011-08-16 2011-08-16 Consistency check auxiliary device for consistent structure design and design three-dimensional cad Withdrawn JP2013041418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011177859A JP2013041418A (en) 2011-08-16 2011-08-16 Consistency check auxiliary device for consistent structure design and design three-dimensional cad

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011177859A JP2013041418A (en) 2011-08-16 2011-08-16 Consistency check auxiliary device for consistent structure design and design three-dimensional cad

Publications (1)

Publication Number Publication Date
JP2013041418A true JP2013041418A (en) 2013-02-28

Family

ID=47889755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011177859A Withdrawn JP2013041418A (en) 2011-08-16 2011-08-16 Consistency check auxiliary device for consistent structure design and design three-dimensional cad

Country Status (1)

Country Link
JP (1) JP2013041418A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015179347A (en) * 2014-03-19 2015-10-08 住友林業株式会社 Structural design apparatus, structural design method, structural design program and recording medium therefor
JP2016071818A (en) * 2014-10-02 2016-05-09 株式会社フジタ Method and program for creating structure analysis data using three-dimensional drawing data
CN112084544A (en) * 2020-09-07 2020-12-15 上海华筑信息科技有限公司 BIM model and drawing comparison method and system based on completion files
CN112257137A (en) * 2019-07-22 2021-01-22 成都笔木智绘科技有限公司 Building structure BIM forward automatic design method based on Revit
CN112699507A (en) * 2021-01-05 2021-04-23 中广核工程有限公司 Rule-driven three-dimensional model data quality inspection method and device
CN115544594A (en) * 2022-09-20 2022-12-30 杭州宏深科技有限公司 General automatic batch three-dimensional CAD modeling scoring method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015179347A (en) * 2014-03-19 2015-10-08 住友林業株式会社 Structural design apparatus, structural design method, structural design program and recording medium therefor
JP2016071818A (en) * 2014-10-02 2016-05-09 株式会社フジタ Method and program for creating structure analysis data using three-dimensional drawing data
CN112257137A (en) * 2019-07-22 2021-01-22 成都笔木智绘科技有限公司 Building structure BIM forward automatic design method based on Revit
CN112257137B (en) * 2019-07-22 2022-11-29 成都笔木智绘科技有限公司 BIM (building information modeling) forward automatic design method of building structure based on Revit
CN112084544A (en) * 2020-09-07 2020-12-15 上海华筑信息科技有限公司 BIM model and drawing comparison method and system based on completion files
CN112699507A (en) * 2021-01-05 2021-04-23 中广核工程有限公司 Rule-driven three-dimensional model data quality inspection method and device
CN115544594A (en) * 2022-09-20 2022-12-30 杭州宏深科技有限公司 General automatic batch three-dimensional CAD modeling scoring method
CN115544594B (en) * 2022-09-20 2023-06-23 杭州宏深科技有限公司 Universal automatic batch three-dimensional CAD modeling scoring method

Similar Documents

Publication Publication Date Title
JP2013041418A (en) Consistency check auxiliary device for consistent structure design and design three-dimensional cad
KR101224627B1 (en) Design and material calculation method of construction building using structure bim
CN108763710A (en) A kind of assembled architecture forward direction Deepen Design method based on BIM
CN109543233A (en) A kind of electromechanical pipeline assembly construction method based on BIM technology
JP2007066284A (en) Method of creating piping drawing
JP6496583B2 (en) Temporary scaffolding planning support system
CN112651057A (en) Automatic building system and method for railway concrete filled steel tube tied arch bridge BIM model
JP2007299238A (en) Cad system, and design/analysis method
US10846444B2 (en) Systems and methods for generating computer-aided design model views based on product and manufacturing information data
JP6429380B2 (en) Building planning and design system and method
KR101359273B1 (en) Auto modeling conversion process program from 3-dimensional cad modeling to 2-dimensional cad drawings
JP2022155087A (en) Integrated data generation system, construction plan management system, integrated data generation method, construction plan management method, and program
JP7332318B2 (en) Component comparison device for different BIM models, BIM model sharing system, component comparison method for different BIM models, and component comparison program for different BIM models
WO2022010374A1 (en) Method of computer-aided process planning for the machining of high-precision parts
CN112380602B (en) High-precision construction method for space curved surface reticulated shell in limited environment
US20080172207A1 (en) Semi-automated generation of frame structures in cad models
KR101052672B1 (en) Mechanical parts automatic design method
KR20120019537A (en) Ship hull outfitting hole structure modeling automation method
JP7144181B2 (en) Design support device, structure production method and program
JP2022003490A (en) Design user terminal, design support system, and design support method
KR20100024573A (en) A process of accessories for 3d basis construction of ship design
KR20150000078A (en) Method for operating pin jig based on 3D simulation
TWI782591B (en) The method of the pipeline project design
Lawson Comparing Analytical and Portability Functions of Structural Analysis Programs in Relation to BIM Tools and Applications
Lim A framework of CAD/CAM design and construction process for freeform architecture: a case study

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104