JP2013039553A - Weakly acidic hypochlorous acid aqueous solution of long life and method for producing the same - Google Patents

Weakly acidic hypochlorous acid aqueous solution of long life and method for producing the same Download PDF

Info

Publication number
JP2013039553A
JP2013039553A JP2011187954A JP2011187954A JP2013039553A JP 2013039553 A JP2013039553 A JP 2013039553A JP 2011187954 A JP2011187954 A JP 2011187954A JP 2011187954 A JP2011187954 A JP 2011187954A JP 2013039553 A JP2013039553 A JP 2013039553A
Authority
JP
Japan
Prior art keywords
hypochlorous acid
aqueous solution
water
concentration
acid aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011187954A
Other languages
Japanese (ja)
Inventor
Shoji Kubota
昌治 久保田
Eisuke Arai
英輔 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ADAPTON JAPAN CO Ltd
TTN JAPAN KK
VIIDA KK
WATER DESIGN KENKYUSHO KK
Original Assignee
ADAPTON JAPAN CO Ltd
TTN JAPAN KK
VIIDA KK
WATER DESIGN KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ADAPTON JAPAN CO Ltd, TTN JAPAN KK, VIIDA KK, WATER DESIGN KENKYUSHO KK filed Critical ADAPTON JAPAN CO Ltd
Priority to JP2011187954A priority Critical patent/JP2013039553A/en
Publication of JP2013039553A publication Critical patent/JP2013039553A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hypochlorous acid aqueous solution which can be used at a low concentration and further can suppress production amount of harmful organic chlorine compound since hypochlorous acid, to which attention has been recently paid, has far more excellent sterilizing deodorizing power than sodium hypochlorite, has weak acidity, can be used as a sterilizing deodorizing agent that is soft to a human body, reacts with impurities in city water or underground water used as dilution water to produce the organic chlorine compound, and is consumed also by self-decomposition to make high concentration.SOLUTION: About 12% of sodium hypochlorite is added and diluted to ultrapure water with specific resistance of 18 MΩ cm or more, about 9% of hydrochloric acid is added and diluted to the similar ultrapure water, and then the hypochlorous acid aqueous solution is obtained by blending both of them with each other. The hypochlorous acid aqueous solution, which has effective chlorine concentration of 50 to 15 mg/L and about pH 5, is prepared. Thus the hypochlorous acid aqueous solution, which is soft to an environment and the human body and which hardly decreases in the effect of the sterilizing deodorizing power, can be obtained.

Description

本発明は、長寿命の弱酸性次亜塩素酸水溶液とその製造方法に関する。The present invention relates to a long-life weakly acidic hypochlorous acid aqueous solution and a method for producing the same.

ここで取り上げる殺菌消毒剤の弱酸性次亜塩素酸水溶液(HClO)は、良く知られている食塩水を電気分解して製造する強電解酸性酸化水ではなく、次の化学反応により次亜塩素酸ソーダ(NaClO)と塩酸(HCl)の反応により製造する弱酸性次亜塩素酸水溶液(HClO)を意味する。
NaClO + HCl = HClO + NaCl
The weakly acidic hypochlorous acid aqueous solution (HClO) of the sterilizing disinfectant taken up here is not a strongly electrolyzed acidic oxidized water produced by electrolyzing a well-known saline solution, but hypochlorous acid by the following chemical reaction. It means weakly acidic hypochlorous acid aqueous solution (HClO) produced by the reaction of soda (NaClO) and hydrochloric acid (HCl).
NaClO + HCl = HClO + NaCl

具体的には原水の希釈水に次亜塩素酸ソーダを添加・希釈し、次に同様の希釈水に希塩酸を添加・希釈し、両者を混合または同様の希釈水でさらに希釈して製造されたpH5前後の弱酸性次亜塩素酸水溶液である。Specifically, it was manufactured by adding and diluting sodium hypochlorite to dilution water of raw water, then adding and diluting dilute hydrochloric acid to the same dilution water, and mixing or further diluting with the same dilution water. It is a weakly acidic hypochlorous acid aqueous solution having a pH of around 5.

従来より次亜塩素酸ソーダは殺菌剤や漂白剤として広く用いられており、その酸化力に基づく優れた殺菌、漂白、消臭力があることは公知の事実である。一方最近注目されてきた弱酸性次亜塩素酸は次亜塩素酸ソーダよりもはるかに優れた酸化力に基づく殺菌、漂白、消臭力があり、同一濃度で比較すると次亜塩素酸ソーダの少なくとも10倍以上の酸化力があり、しかも低濃度で殺菌効果がある。その上酸性であることから特に人体に対して次亜塩素酸ソーダよりはるかに優しいのである。Conventionally, sodium hypochlorite has been widely used as a bactericidal agent and a bleaching agent, and it is a known fact that it has excellent bactericidal, bleaching and deodorizing power based on its oxidizing power. On the other hand, weakly acidic hypochlorous acid, which has recently attracted attention, has sterilization, bleaching, and deodorizing power based on oxidation power far superior to that of sodium hypochlorite. It has an oxidizing power of 10 times or more and has a bactericidal effect at a low concentration. In addition, it is acidic and is much gentler to the human body than sodium hypochlorite.

一般的に次亜塩素酸ソーダの使用濃度が100mg/L以上であるため、次亜塩素酸水溶液も100mg/Lという非常に高い濃度での使用が試みられており、次亜塩素酸の持つ優れた特性が十分生かされていないのが現状である。次亜塩素酸ソーダはもちろんのこと次亜塩素酸の場合も高濃度での使用は人体を傷つけまた有害な有機塩素化合物の生成を加速する。Since the use concentration of sodium hypochlorite is generally 100 mg / L or more, use of hypochlorous acid aqueous solution at an extremely high concentration of 100 mg / L has been attempted. The current characteristics are not fully utilized. In the case of hypochlorous acid as well as sodium hypochlorite, the use of high concentrations damages the human body and accelerates the generation of harmful organochlorine compounds.

したがって人体や環境のことを考慮すれば可能な限り低濃度で使用することが極めて重要なことである。これが出来ない最大の理由の一つは、低濃度にすると次亜塩素酸水溶液の寿命が短くなるという事象のためである。Therefore, considering the human body and the environment, it is extremely important to use it at the lowest possible concentration. One of the biggest reasons why this is not possible is due to the phenomenon that the life of the hypochlorous acid aqueous solution is shortened at a low concentration.

次亜塩素酸ソーダや次亜塩素酸のような塩素系の殺菌剤の製造時や使用時には有効な塩素と水中や空気中に必ず存在する有機物が反応して有機塩素化合物が生成する。有機塩素化合物は低濃度で毒性が強くかつ発がん性のものが多い。このことは、かつての代表的な農薬であり、現在製造禁止や使用禁止になっているDDTやBHC、その他近年問題になっているダイオキシンなどいずれも有機塩素化合物であることからも明らかである。有機塩素化合物は現在の土壌汚染、河川水や地下水汚染、海洋汚染など地球環境問題発生の一つの大きな元凶になっている。When producing or using a chlorine-based disinfectant such as sodium hypochlorite or hypochlorous acid, effective chlorine reacts with organic substances present in water or air to produce an organic chlorine compound. Organochlorine compounds are highly toxic and carcinogenic at low concentrations. This is apparent from the fact that these are typical agricultural chemicals in the past, and DDT and BHC, which are currently banned for production and use, and dioxins, which have recently become problematic, are organochlorine compounds. Organochlorine compounds are one of the major causes of global environmental problems such as soil pollution, river water and groundwater pollution, and marine pollution.

有機塩素化合物は有機物であり本来なら土壌に投棄すれば土壌中の微生物が食べて分解してくれるはずのものである。ところが有毒な有機塩素化合物を食べると微生物がやられてしまうため食べてくれない。そのため、いつまでも土壌中に残ることになり、雨が降れば河川に流れ出て河川水汚染、地下に浸透して地下水汚染を引き起こす。現状では一旦有機塩素化合物になると放射性元素より質が悪い。放射性元素には半減期があるが有機塩素化合物にはない。Organochlorine compounds are organic substances that would normally be eaten and decomposed by microorganisms in the soil if discarded into the soil. However, if you eat toxic organochlorine compounds, microorganisms will be killed and you will not eat them. Therefore, it will remain in the soil indefinitely, and if it rains, it will flow into the river and pollute the river water and penetrate into the underground, causing groundwater pollution. At present, once an organochlorine compound is used, the quality is worse than that of radioactive elements. Radioactive elements have a half-life, but organochlorine compounds do not.

このような有機塩素化合物の生成量は塩素の濃度、すなわち次亜塩素酸ソーダや次亜塩素酸の濃度に比例して生成する。したがって製造や使用に当たっては塩素系殺菌剤の濃度は低いほど望ましいのである。このことからも低濃度で殺菌効果の高い次亜塩素酸の方が次亜塩素酸ソーダより有毒な有機塩素化合物の生成量が少なく出来る点でも優れている。さらに使用する次亜塩素酸の濃度を低く出来れば申し分ないのである。The amount of such organic chlorine compound produced is proportional to the chlorine concentration, that is, the concentration of sodium hypochlorite or hypochlorous acid. Therefore, the lower the concentration of the chlorine-based disinfectant is, the more desirable for production and use. For this reason, hypochlorous acid having a low concentration and a high bactericidal effect is superior in that the amount of toxic organochlorine compound produced can be reduced compared to sodium hypochlorite. Furthermore, it would be satisfactory if the concentration of hypochlorous acid used could be lowered.

図1の『pHによる次亜塩素酸の変化』に示すように、pH5前後で次亜塩素酸の割合が最大になる。As shown in “Change of hypochlorous acid due to pH” in FIG. 1, the ratio of hypochlorous acid becomes maximum around pH 5.

ところで従来の弱酸性次亜塩素酸水溶液の製造に当っては原水の希釈水に水道水を使用していた。しかし通常の水道水にはミネラル、有機物、微粒子、細菌やその死骸、窒素、酸素、炭酸ガスなど多くのものが含まれている。次亜塩素酸は次亜塩素酸ソーダに比べ酸化力が強いため水中の有機物などと反応し有機塩素化合物を作り易かったり、ミネラル類は次亜塩素酸の自己分解の触媒になったりするため次亜塩素酸の寿命が短くなってしまう。特にこの傾向は次亜塩素酸の濃度が低くなればなるほど顕著になってくる。そのためどうしても高濃度の次亜塩素酸水溶液にせざるを得なかった。図3に『希釈水の種類と次亜塩素酸濃度の経時変化』を示すように、原水である希釈水の純度が水道水、純水、超純水と高くなるほど次亜塩素酸の寿命が長くなる。By the way, in the manufacture of the conventional weakly acidic hypochlorous acid aqueous solution, tap water was used as dilution water of raw water. However, ordinary tap water contains many things such as minerals, organic matter, fine particles, bacteria and their dead bodies, nitrogen, oxygen and carbon dioxide. Hypochlorous acid has a stronger oxidizing power than sodium hypochlorite, so it reacts easily with organic substances in water to make organochlorine compounds, and minerals act as a catalyst for self-decomposition of hypochlorous acid. The life of chlorous acid will be shortened. In particular, this tendency becomes more pronounced as the concentration of hypochlorous acid decreases. Therefore I had to just a high concentration of aqueous solution of hypochlorous acid. As shown in Fig. 3 "Dilution Water Type and Hypochlorous Acid Concentration Changes with Time", the lifetime of hypochlorous acid increases as the purity of the dilution water as raw water increases with tap water, pure water, and ultrapure water. become longer.

ここで取り上げる希釈水の『水道水』、『純水』、『超純水』の一般的な定義を表1および表2に示す。ところで「純水」は製造方法に特別な規定はない。つまり、「蒸留水」、「イオン交換水」、「RO水」のいずれも「純水」である。当然製法により水質は異なるが、一般的には比抵抗値で1MΩ・cm以上のように定義されており、これまで電解質以外の特別な規定はない。一方「超純水」は、表2に一例を示すように、比抵抗値で18MΩ・cm(25℃)以上のほかに溶解や分散している有機物(TOC)、微粒子、細菌類、ミネラル類、酸素や窒素等のガス成分なども徹底的に除去し限りなく純度100%の水に近づけた超高純度水を意味する。尚、「超純水」は通常図2『超純水の製造フロー』のような方法で得られる。Tables 1 and 2 show general definitions of “tap water”, “pure water”, and “ultra pure water” of the dilution water taken up here. By the way, “pure water” has no special provision in the manufacturing method. That is, “distilled water”, “ion exchange water”, and “RO water” are all “pure water”. Of course, the water quality differs depending on the production method, but in general, the specific resistance value is defined as 1 MΩ · cm or more, and there is no special provision other than the electrolyte so far. On the other hand, as shown in Table 2, “ultra-pure water” is a specific resistance value of 18 MΩ · cm (25 ° C.) or higher, dissolved or dispersed organic matter (TOC), fine particles, bacteria, minerals. It means ultra-high-purity water that has been completely removed from gas components such as oxygen and nitrogen, and has been brought close to 100% pure water. The “ultra pure water” is usually obtained by the method shown in FIG.

図4に希釈水に水道水を使用した場合の初期次亜塩素酸濃度の違いによる次亜塩素酸の経時変化を示した。初期次亜塩素酸濃度が低いほど保存中にその濃度が激減してしまうことが分かる。このため低濃度の次亜塩素酸水溶液を保管し使用出来ない問題があった。FIG. 4 shows the temporal change of hypochlorous acid due to the difference in initial hypochlorous acid concentration when tap water is used as dilution water. It can be seen that the lower the initial hypochlorous acid concentration, the more drastically the concentration decreases during storage. Therefore, there is a problem that a low concentration hypochlorous acid aqueous solution cannot be stored and used.

特許第4570922号 『殺菌水の製造方法及びその装置』Japanese Patent No. 4570922 “Method and apparatus for producing sterilizing water” 特許第4388550号 『殺菌水製造装置』Patent No. 4388550 “Sterilized water production device”

本発明は、以上のような従来の欠点に鑑み、超純水で希釈した次亜塩素酸ソーダに、同様に超純水で希釈した希塩酸を混合して得られた溶液を更に必要に応じ超純水で希釈し、その殺菌消臭力の効能を長期間永続させる最適な濃度の水溶液を生成することを目的としている。In view of the conventional drawbacks as described above, the present invention further adds a solution obtained by mixing dilute hydrochloric acid similarly diluted with ultrapure water to sodium hypochlorite diluted with ultrapure water. The purpose is to produce an aqueous solution with an optimal concentration that is diluted with pure water and maintains the effectiveness of its sterilizing and deodorizing power for a long period of time.

本発明には、比抵抗18MΩ・cm以上の超純水に約12%の次亜塩素酸ソーダを添加・希釈した溶液と同様の超純水に約9%の塩酸を添加・希釈して得られる溶液を混合、またはさらに超純水で希釈して、その有効塩素濃度が50mg/L、かつpH5前後の次亜塩素酸水溶液を生成する。The present invention is obtained by adding and diluting about 9% hydrochloric acid to ultrapure water similar to a solution obtained by adding and diluting about 12% sodium hypochlorite to ultrapure water having a specific resistance of 18 MΩ · cm or more. The resulting solution is mixed or further diluted with ultrapure water to produce an aqueous hypochlorous acid solution having an effective chlorine concentration of 50 mg / L and a pH of around 5.

一方、比抵抗18MΩ・cm以上の超純水に約6%の次亜塩素酸ソーダを添加・希釈した溶液と同様の超純水に約4.5%の塩酸を添加・希釈して得られる溶液を混合、またはさらに超純水で希釈して、その有効塩素濃度が25mg/L、かつpH5前後の次亜塩素酸水溶液を生成する。On the other hand, it is obtained by adding and diluting about 4.5% hydrochloric acid to ultrapure water similar to a solution obtained by adding and diluting about 6% sodium hypochlorite to ultrapure water having a specific resistance of 18 MΩ · cm or more. The solution is mixed or further diluted with ultrapure water to produce an aqueous hypochlorous acid solution having an effective chlorine concentration of 25 mg / L and a pH of around 5.

図5に『弱酸性次亜塩素酸水溶液の製造フロー』を示すように、先ず比抵抗18MΩ・cm以上の超純水製造装置により製造した超純水に、約12%の次亜塩素酸ソーダを添加・希釈する。一方同様の超純水に約9%の塩酸を添加・希釈し、両者を混合、必要に応じさらに超純水で希釈して有効塩素濃度120mg/L以下の次亜塩素酸水溶液を生成する。有効塩素濃度が60mg/L以下の次亜塩素酸水の製造には約6%の次亜塩素酸ソーダと約4.5%の塩酸から製造する。有効塩素濃度30mg/L以下の次亜塩素酸水溶液の製造には約4%の次亜塩素酸ソーダと約3%の塩酸を用いて製造する。As shown in “Flow of production of weakly acidic hypochlorous acid aqueous solution” in FIG. 5, about 12% sodium hypochlorite is first added to ultrapure water produced by an ultrapure water production apparatus having a specific resistance of 18 MΩ · cm or more. Add and dilute. On the other hand, about 9% hydrochloric acid is added and diluted in the same ultrapure water, and both are mixed and further diluted with ultrapure water as necessary to produce a hypochlorous acid aqueous solution having an effective chlorine concentration of 120 mg / L or less. Hypochlorous acid water having an effective chlorine concentration of 60 mg / L or less is produced from about 6% sodium hypochlorite and about 4.5% hydrochloric acid. A hypochlorous acid aqueous solution having an effective chlorine concentration of 30 mg / L or less is produced by using about 4% sodium hypochlorite and about 3% hydrochloric acid.

これまでの説明から明らかなように、本発明により次に列挙する効果が得られる。
(1)pH5前後でかつ比抵抗が18MΩ・cm以上の超純水で希釈することにより、その殺菌消臭力の有効期限を永続させることができる。
(2)希釈水に超純水を使用する関係上、調製した次亜塩素酸水溶液中の有機塩素化合物が極めて少なく、かつ次亜塩素酸濃度がたとえば30mg/Lと低い関係上、殺菌消毒に使用しても有機塩素化合物の生成量が少なく環境にも優しい。
As is clear from the above description, the present invention provides the following effects.
(1) By diluting with ultrapure water having a pH of about 5 and a specific resistance of 18 MΩ · cm or more, the expiration date of the sterilizing and deodorizing power can be made permanent.
(2) Due to the use of ultrapure water as dilution water, the amount of organochlorine compound in the prepared hypochlorous acid aqueous solution is extremely small and the concentration of hypochlorous acid is as low as 30 mg / L. Even if it is used, the amount of organic chlorine compounds produced is small and environmentally friendly.

pHによる次亜塩素酸割合の変化Change in hypochlorous acid ratio with pH 超純水の製造フローProduction flow of ultrapure water 希釈水の種類と次亜塩素酸濃度の経時変化Time course of dilution water type and hypochlorous acid concentration 水道水を用いた場合の濃度の違いによる次亜塩素酸濃度の経時変化Temporal change of hypochlorous acid concentration due to difference in concentration when using tap water 弱酸性次亜塩素酸水溶液の製造フローManufacturing flow of weakly acidic hypochlorous acid aqueous solution

以下、本発明の実施形態を図5『弱酸性次亜塩素酸水溶液の製造フロー』に基づいて説明する。Hereinafter, an embodiment of the present invention will be described with reference to FIG. 5 “Flow for producing weakly acidic hypochlorous acid aqueous solution”.

図3に、図5に示す次亜塩素酸水溶液を製造する装置を用い希釈水として水道水、純水、比抵抗18MΩ・cm(25℃)の超純水を用いた場合の有効塩素濃度30mg/Lの次亜塩素酸水溶液の経時変化を示した。水道水に比べ純水、さらに超純水では次亜塩素酸の持ちがはるかに良いことが分かる。FIG. 3 shows an effective chlorine concentration of 30 mg when tap water, pure water, and ultrapure water having a specific resistance of 18 MΩ · cm (25 ° C.) are used as dilution water using the apparatus for producing the hypochlorous acid aqueous solution shown in FIG. The time course of the / L hypochlorous acid aqueous solution was shown. It can be seen that pure water and ultrapure water have much better hypochlorous acid than tap water.

図4に、図5に示す次亜塩素酸ソーダと塩酸から次亜塩素酸水溶液を製造する装置を用い原水である希釈水に水道水を使用した場合の次亜塩素酸の有効塩素濃度を10、20,30,50mg/Lと変えた時の次亜塩素酸濃度の経時変化を示した。濃度が低いほど寿命が顕著に短くなることが分かる。FIG. 4 shows the effective chlorine concentration of hypochlorous acid when tap water is used as dilution water as raw water using the apparatus for producing a hypochlorous acid aqueous solution from sodium hypochlorite and hydrochloric acid shown in FIG. , Changes with time of hypochlorous acid concentration when changed to 20, 30, 50 mg / L. It can be seen that the lower the concentration, the significantly shorter the lifetime.

ウイルスなどを感染させた細胞を用いて有効塩素濃度を100mg/Lの次亜塩素酸で実験するとウイルスだけでなく肝心の細胞まで破壊されてしまい殺菌消毒試験が上手くいかない。次亜塩素酸の濃度を半分の50mg/Lにすると試験が可能になり、20mg/Lでも容易に殺菌できた。一方次亜塩素酸の濃度が10mg/Lになると細菌の存在環境の汚染状況により汚染物に次亜塩素酸が食われてしまい十分殺菌が行われない場合が多かった。Experiments with hypochlorous acid having an effective chlorine concentration of 100 mg / L using cells infected with viruses or the like destroys not only the virus but also the essential cells, and the sterilization test is not successful. The test became possible when the concentration of hypochlorous acid was reduced to 50 mg / L, which was half, and even 20 mg / L could be sterilized easily. On the other hand, when the concentration of hypochlorous acid was 10 mg / L, hypochlorous acid was eaten by the contaminants due to the contamination of the environment where bacteria existed, and sterilization was not often performed.

表3に各種細菌に対する次亜塩素酸水溶液の殺菌効果の試験結果をまとめた。表3中VIV水は今回開発した弱酸性次亜塩素酸水溶液を意味する。有効塩素濃度25mg/Lの次亜塩素酸水溶液で大腸菌を始め通常の細菌は極めて容易に殺菌される。枯草菌のような芽胞を持つ菌は外の殺菌剤でも殺菌し難い菌であるが次亜塩素酸水溶液ではかなり容易に殺菌が進む特性がある。Table 3 summarizes the test results of the bactericidal effect of hypochlorous acid aqueous solution on various bacteria. In Table 3, VIV water means the weakly acidic hypochlorous acid aqueous solution developed this time. Normal bacteria such as Escherichia coli are sterilized very easily with a hypochlorous acid aqueous solution having an effective chlorine concentration of 25 mg / L. Bacteria having spores such as Bacillus subtilis are difficult to sterilize even with other bactericides, but have the property that sterilization proceeds fairly easily with hypochlorous acid aqueous solution.

次亜塩素酸の濃度が高くなると殺菌と同時に菌が存在する環境に必ず存在する有機物と次亜塩素酸が反応して有機塩素化合物を生成する。したがって殺菌が可能なレベルで次亜塩素酸の濃度は低い方が望ましい。一般的には上限濃度は35mg/Lくらいが適当と思われる。一方濃度が低過ぎると有機物などに次亜塩素酸が食われてしまい殺菌が不完全になる可能性が出てくる。したがって下限は15mg/Lくらいが適当と予想される。When the concentration of hypochlorous acid becomes high, organic substances that are always present in the environment where bacteria are present simultaneously with sterilization react with hypochlorous acid to produce an organic chlorine compound. Therefore, it is desirable that the concentration of hypochlorous acid be low so that sterilization is possible. In general, the upper limit concentration seems to be about 35 mg / L. On the other hand, if the concentration is too low, hypochlorous acid may be eaten by organic matter and the sterilization may become incomplete. Therefore, the lower limit is expected to be about 15 mg / L.

本発明は、長寿命の弱酸性殺菌消臭水溶液であるため水溶液の形で運搬して利用することができる。またある期間保管や保存し利用することも可能である。したがって高価な製造装置を持たなくても次亜塩素酸水溶液を使用することが出来て多くの病院、介護施設、学校、企業などでの消毒や消臭、また最近社会問題化してきたウイルスに起因する口蹄疫、鳥インフルエンザを始めとした動物の疫病対策や飼育環境の消毒分野でも利用出来る。Since the present invention is a weakly acidic sterilizing and deodorizing aqueous solution having a long life, it can be transported and used in the form of an aqueous solution. It can also be stored and stored for a certain period. Therefore, it is possible to use hypochlorous acid aqueous solution without having expensive manufacturing equipment, resulting in disinfection and deodorization in many hospitals, nursing homes, schools, companies, etc., and due to viruses that have recently become a social problem It can also be used in the field of animal epidemic countermeasures such as foot-and-mouth disease and avian influenza and the disinfection of breeding environments.

表の簡単な説明Brief description of the table

[表1]水の純度による分類
[表2]超純水水質の一例
[表3]次亜塩素酸水溶液による殺菌試験結果
[Table 1] Classification by water purity [Table 2] Example of ultrapure water quality [Table 3] Sterilization test results with hypochlorous acid aqueous solution

本発明は、長寿命の弱酸性次亜塩素酸水溶液とその製造方法に関する。The present invention relates to a long-life weakly acidic hypochlorous acid aqueous solution and a method for producing the same.

ここで取り上げる殺菌消毒剤の弱酸性次亜塩素酸水溶液(HClO)は、良く知られている食塩水を電気分解して製造する強電解酸性酸化水ではなく、次の化学反応により次亜塩素酸ソーダ(NaClO)と塩酸(HCl)の反応により製造する弱酸性次亜塩素酸水溶液(HClO)を意味する。
NaClO + HCl = HClO + NaCl
The weakly acidic hypochlorous acid aqueous solution (HClO) of the sterilizing disinfectant taken up here is not a strongly electrolyzed acidic oxidized water produced by electrolyzing a well-known saline solution, but hypochlorous acid by the following chemical reaction. It means weakly acidic hypochlorous acid aqueous solution (HClO) produced by the reaction of soda (NaClO) and hydrochloric acid (HCl).
NaClO + HCl = HClO + NaCl

具体的には原水の希釈水に次亜塩素酸ソーダを添加・希釈し、次に同様の希釈水に希塩酸を添加・希釈し、両者を混合または同様の希釈水でさらに希釈して製造されたpH5前後の弱酸性次亜塩素酸水溶液である。Specifically, it was manufactured by adding and diluting sodium hypochlorite to dilution water of raw water, then adding and diluting dilute hydrochloric acid to the same dilution water, and mixing or further diluting with the same dilution water. It is a weakly acidic hypochlorous acid aqueous solution having a pH of around 5.

従来より次亜塩素酸ソーダは殺菌剤や漂白剤として広く用いられており、その酸化力に基づく優れた殺菌、漂白、消臭力があることは公知の事実である。一方最近注目されてきた弱酸性次亜塩素酸は次亜塩素酸ソーダよりもはるかに優れた酸化力に基づく殺菌、漂白、消臭力があり、同一濃度で比較すると次亜塩素酸ソーダの少なくとも10倍以上の酸化力があり、しかも低濃度で殺菌効果がある。その上酸性であることから特に人体に対して次亜塩素酸ソーダよりはるかに優しいのである。Conventionally, sodium hypochlorite has been widely used as a bactericidal agent and a bleaching agent, and it is a known fact that it has excellent bactericidal, bleaching and deodorizing power based on its oxidizing power. On the other hand, weakly acidic hypochlorous acid, which has recently attracted attention, has sterilization, bleaching, and deodorizing power based on oxidation power far superior to that of sodium hypochlorite. It has an oxidizing power of 10 times or more, and has a bactericidal effect at a low concentration. In addition, it is acidic and is much gentler to the human body than sodium hypochlorite.

一般的に次亜塩素酸ソーダの使用濃度が100mg/L以上であるため、次亜塩素酸水溶液も100mg/Lという非常に高い濃度での使用が試みられており、次亜塩素酸の持つ優れた特性が十分生かされていないのが現状である。次亜塩素酸ソーダはもちろんのこと次亜塩素酸の場合も高濃度での使用は人体を傷つけまた有害な有機塩素化合物の生成を加速する。Since the use concentration of sodium hypochlorite is generally 100 mg / L or more, use of hypochlorous acid aqueous solution at an extremely high concentration of 100 mg / L has been attempted. The current characteristics are not fully utilized. In the case of hypochlorous acid as well as sodium hypochlorite, the use of high concentrations damages the human body and accelerates the generation of harmful organochlorine compounds.

したがって人体や環境のことを考慮すれば可能な限り低濃度で使用することが極めて重要なことである。これが出来ない最大の理由の一つは、低濃度にすると次亜塩素酸水溶液の寿命が短くなるという事象のためである。Therefore, considering the human body and the environment, it is extremely important to use it at the lowest possible concentration. One of the biggest reasons why this is not possible is due to the phenomenon that the life of the hypochlorous acid aqueous solution is shortened at a low concentration.

次亜塩素酸ソーダや次亜塩素酸のような塩素系の殺菌剤の製造時や使用時には有効な塩素と水中や空気中に必ず存在する有機物が反応して有機塩素化合物が生成する。有機塩素化合物は低濃度で毒性が強くかつ発がん性のものが多い。このことは、かつての代表的な農薬であり、現在製造禁止や使用禁止になっているDDTやBHC、その他近年問題になっているダイオキシンなどいずれも有機塩素化合物であることからも明らかである。有機塩素化合物は現在の土壌汚染、河川水や地下水汚染、海洋汚染など地球環境問題発生の一つの大きな元凶になっている。When producing or using a chlorine-based disinfectant such as sodium hypochlorite or hypochlorous acid, effective chlorine reacts with organic substances present in water or air to produce an organic chlorine compound. Organochlorine compounds are highly toxic and carcinogenic at low concentrations. This is apparent from the fact that these are typical agricultural chemicals in the past, and DDT and BHC, which are currently banned for production and use, and dioxins, which have recently become problematic, are organochlorine compounds. Organochlorine compounds are one of the major causes of global environmental problems such as soil pollution, river water and groundwater pollution, and marine pollution.

有機塩素化合物は有機物であり本来なら土壌に投棄すれば土壌中の微生物が食べて分解してくれるはずのものである。ところが有毒な有機塩素化合物を食べると微生物がやられてしまうため食べてくれない。そのため、いつまでも土壌中に残ることになり、雨が降れば河川に流れ出て河川水汚染、地下に浸透して地下水汚染を引き起こす。現状では一旦有機塩素化合物になると放射性元素より質が悪い。放射性元素には半減期があるが有機塩素化合物にはない。Organochlorine compounds are organic substances that would normally be eaten and decomposed by microorganisms in the soil if discarded into the soil. However, if you eat toxic organochlorine compounds, microorganisms will be killed and you will not eat them. Therefore, it will remain in the soil indefinitely, and if it rains, it will flow into the river and pollute the river water and penetrate into the underground, causing groundwater pollution. At present, once an organochlorine compound is used, the quality is worse than that of radioactive elements. Radioactive elements have a half-life, but organochlorine compounds do not.

このような有機塩素化合物の生成量は塩素の濃度、すなわち次亜塩素酸ソーダや次亜塩素酸の濃度に比例して生成する。したがって製造や使用に当たっては塩素系殺菌剤の濃度は低いほど望ましいのである。このことからも低濃度で殺菌効果の高い次亜塩素酸の方が次亜塩素酸ソーダより有毒な有機塩素化合物の生成量が少なく出来る点でも優れている。さらに使用する次亜塩素酸の濃度を低く出来れば申し分ないのである。The amount of such organic chlorine compound produced is proportional to the chlorine concentration, that is, the concentration of sodium hypochlorite or hypochlorous acid. Therefore, the lower the concentration of the chlorine-based disinfectant is, the more desirable for production and use. For this reason, hypochlorous acid having a low concentration and a high bactericidal effect is superior in that the amount of toxic organochlorine compound produced can be reduced compared to sodium hypochlorite. Furthermore, it would be satisfactory if the concentration of hypochlorous acid used could be lowered.

図1の『pHによる次亜塩素酸の変化』に示すように、pH5前後で次亜塩素酸の割合が最大になる。As shown in “Change of hypochlorous acid due to pH” in FIG. 1, the ratio of hypochlorous acid becomes maximum around pH 5.

ところで従来の弱酸性次亜塩素酸水溶液の製造に当っては原水の希釈水に水道水を使用していた。しかし通常の水道水にはミネラル、有機物、微粒子、細菌やその死骸、窒素、酸素、炭酸ガスなど多くのものが含まれている。次亜塩素酸は次亜塩素酸ソーダに比べ酸化力が強いため水中の有機物などと反応し有機塩素化合物を作り易かったり、ミネラル類は次亜塩素酸の自己分解の触媒になったりするため次亜塩素酸の寿命が短くなってしまう。特にこの傾向は次亜塩素酸の濃度が低くなればなるほど顕著になってくる。そのためどうしても高濃度の次亜塩素酸水溶液にせざるを得なかった。図3に『希釈水の種類と次亜塩素酸濃度の経時変化』を示すように、原水である希釈水の純度が水道水、純水、超純水と高くなるほど次亜塩素酸の寿命が長くなる。By the way, in the manufacture of the conventional weakly acidic hypochlorous acid aqueous solution, tap water was used as dilution water of raw water. However, ordinary tap water contains many things such as minerals, organic matter, fine particles, bacteria and their dead bodies, nitrogen, oxygen and carbon dioxide. Hypochlorous acid has a stronger oxidizing power than sodium hypochlorite, so it reacts easily with organic substances in water to make organochlorine compounds, and minerals act as a catalyst for self-decomposition of hypochlorous acid. The life of chlorous acid will be shortened. In particular, this tendency becomes more pronounced as the concentration of hypochlorous acid decreases. Therefore I had to just a high concentration of aqueous solution of hypochlorous acid. As shown in Fig. 3 "Dilution Water Type and Hypochlorous Acid Concentration Changes with Time", the lifetime of hypochlorous acid increases as the purity of the dilution water as raw water increases with tap water, pure water, and ultrapure water. become longer.

ここで取り上げる希釈水の『水道水』、『純水』、『超純水』の一般的な定義を表1および表2に示す。ところで「純水」は製造方法に特別な規定はない。つまり、「蒸留水」、「イオン交換水」、「RO水」のいずれも「純水」である。当然製法により水質は異なるが、一般的には比抵抗値で1MΩ・cm以上のように定義されており、これまで電解質以外の特別な規定はない。一方「超純水」は、表2に一例を示すように、比抵抗値で18MΩ・cm(25℃)以上のほかに溶解や分散している有機物(TOC)、微粒子、細菌類、ミネラル類、酸素や窒素等のガス成分なども徹底的に除去し限りなく純度100%の水に近づけた超高純度水を意味する。尚、「超純水」は通常図2『超純水の製造フロー』のような方法で得られる。Tables 1 and 2 show general definitions of “tap water”, “pure water”, and “ultra pure water” of the dilution water taken up here. By the way, “pure water” has no special provision in the manufacturing method. That is, “distilled water”, “ion exchange water”, and “RO water” are all “pure water”. Of course, the water quality differs depending on the production method, but in general, the specific resistance value is defined as 1 MΩ · cm or more, and there is no special provision other than the electrolyte so far. On the other hand, as shown in Table 2, “ultra-pure water” is a specific resistance value of 18 MΩ · cm (25 ° C.) or higher, dissolved or dispersed organic matter (TOC), fine particles, bacteria, minerals. It means ultra-high-purity water that has been completely removed from gas components such as oxygen and nitrogen, and has been brought close to 100% pure water. The “ultra pure water” is usually obtained by the method shown in FIG.

(表1を描きます。)

Figure 2013039553
(Draw Table 1)
Figure 2013039553

(表2を描きます。)

Figure 2013039553
(Draw Table 2)
Figure 2013039553

図4に希釈水に水道水を使用した場合の初期次亜塩素酸濃度の違いによる次亜塩素酸の経時変化を示した。初期次亜塩素酸濃度が低いほど保存中にその濃度が激減してしまうことが分かる。このため低濃度の次亜塩素酸水溶液を保管し使用出来ない問題があった。FIG. 4 shows the temporal change of hypochlorous acid due to the difference in initial hypochlorous acid concentration when tap water is used as dilution water. It can be seen that the lower the initial hypochlorous acid concentration, the more drastically the concentration decreases during storage. Therefore, there is a problem that a low concentration hypochlorous acid aqueous solution cannot be stored and used.

特許第4570922号 『殺菌水の製造方法及びその装置』Japanese Patent No. 4570922 “Method and apparatus for producing sterilizing water” 特許第4388550号 『殺菌水製造装置』Patent No. 4388550 “Sterilized water production device”

本発明は、以上のような従来の欠点に鑑み、超純水で希釈した次亜塩素酸ソーダに、同様に超純水で希釈した希塩酸を混合して得られた溶液を更に必要に応じ超純水で希釈し、その殺菌消臭力の効能を長期間永続させる最適な濃度の水溶液を生成することを目的としている。In view of the conventional drawbacks as described above, the present invention further adds a solution obtained by mixing dilute hydrochloric acid similarly diluted with ultrapure water to sodium hypochlorite diluted with ultrapure water. The purpose is to produce an aqueous solution with an optimal concentration that is diluted with pure water and maintains the effectiveness of its sterilizing and deodorizing power for a long period of time.

本発明には、比抵抗18MΩ・cm以上の超純水に約12%の次亜塩素酸ソーダを添加・希釈した溶液と同様の超純水に約9%の塩酸を添加・希釈して得られる溶液を混合、またはさらに超純水で希釈して、その有効塩素濃度が50mg/L、かつpH5前後の次亜塩素酸水溶液を生成する。The present invention is obtained by adding and diluting about 9% hydrochloric acid to ultrapure water similar to a solution obtained by adding and diluting about 12% sodium hypochlorite to ultrapure water having a specific resistance of 18 MΩ · cm or more. The resulting solution is mixed or further diluted with ultrapure water to produce an aqueous hypochlorous acid solution having an effective chlorine concentration of 50 mg / L and a pH of around 5.

一方、比抵抗18MΩ・cm以上の超純水に約6%の次亜塩素酸ソーダを添加・希釈した溶液と同様の超純水に約4.5%の塩酸を添加・希釈して得られる溶液を混合、またはさらに超純水で希釈して、その有効塩素濃度が25mg/L、かつpH5前後の次亜塩素酸水溶液を生成する。On the other hand, it is obtained by adding and diluting about 4.5% hydrochloric acid to ultrapure water similar to a solution obtained by adding and diluting about 6% sodium hypochlorite to ultrapure water having a specific resistance of 18 MΩ · cm or more. The solution is mixed or further diluted with ultrapure water to produce an aqueous hypochlorous acid solution having an effective chlorine concentration of 25 mg / L and a pH of around 5.

図5に『弱酸性次亜塩素酸水溶液の製造フロー』を示すように、先ず比抵抗18MΩ・cm以上の超純水製造装置により製造した超純水に、約12%の次亜塩素酸ソーダを添加・希釈する。一方同様の超純水に約9%の塩酸を添加・希釈し、両者を混合、必要に応じさらに超純水で希釈して有効塩素濃度120mg/L以下の次亜塩素酸水溶液を生成する。有効塩素濃度が60mg/L以下の次亜塩素酸水の製造には約6%の次亜塩素酸ソーダと約4.5%の塩酸から製造する。有効塩素濃度30mg/L以下の次亜塩素酸水溶液の製造には約4%の次亜塩素酸ソーダと約3%の塩酸を用いて製造する。As shown in “Flow of production of weakly acidic hypochlorous acid aqueous solution” in FIG. 5, about 12% sodium hypochlorite is first added to ultrapure water produced by an ultrapure water production apparatus having a specific resistance of 18 MΩ · cm or more. Add and dilute. On the other hand, about 9% hydrochloric acid is added and diluted in the same ultrapure water, and both are mixed and further diluted with ultrapure water as necessary to produce a hypochlorous acid aqueous solution having an effective chlorine concentration of 120 mg / L or less. Hypochlorous acid water having an effective chlorine concentration of 60 mg / L or less is produced from about 6% sodium hypochlorite and about 4.5% hydrochloric acid. A hypochlorous acid aqueous solution having an effective chlorine concentration of 30 mg / L or less is produced by using about 4% sodium hypochlorite and about 3% hydrochloric acid.

これまでの説明から明らかなように、本発明により次に列挙する効果が得られる。
(1)pH5前後でかつ比抵抗が18MΩ・cm以上の超純水で希釈することにより、その殺菌消臭力の有効期限を永続させることができる。
(2)希釈水に超純水を使用する関係上、調製した次亜塩素酸水溶液中の有機塩素化合物が極めて少なく、かつ次亜塩素酸濃度がたとえば30mg/Lと低い関係上、殺菌消毒に使用しても有機塩素化合物の生成量が少なく環境にも優しい。
As is clear from the above description, the present invention provides the following effects.
(1) By diluting with ultrapure water having a pH of about 5 and a specific resistance of 18 MΩ · cm or more, the expiration date of the sterilizing and deodorizing power can be made permanent.
(2) Due to the use of ultrapure water as dilution water, the amount of organochlorine compound in the prepared hypochlorous acid aqueous solution is extremely small and the concentration of hypochlorous acid is as low as 30 mg / L. Even if it is used, the amount of organic chlorine compounds produced is small and environmentally friendly.

pHによる次亜塩素酸割合の変化Change in hypochlorous acid ratio with pH 超純水の製造フローProduction flow of ultrapure water 希釈水の種類と次亜塩素酸濃度の経時変化Time course of dilution water type and hypochlorous acid concentration 水道水を用いた場合の濃度の違いによる次亜塩素酸濃度の経時変化Temporal change of hypochlorous acid concentration due to difference in concentration when using tap water 弱酸性次亜塩素酸水溶液の製造フローManufacturing flow of weakly acidic hypochlorous acid aqueous solution

以下、本発明の実施形態を図5『弱酸性次亜塩素酸水溶液の製造フロー』に基づいて説明する。Hereinafter, an embodiment of the present invention will be described with reference to FIG. 5 “Flow for producing weakly acidic hypochlorous acid aqueous solution”.

図3に、図5に示す次亜塩素酸水溶液を製造する装置を用い希釈水として水道水、純水、比抵抗18MΩ・cm(25℃)の超純水を用いた場合の有効塩素濃度30mg/Lの次亜塩素酸水溶液の経時変化を示した。水道水に比べ純水、さらに超純水では次亜塩素酸の持ちがはるかに良いことが分かる。FIG. 3 shows an effective chlorine concentration of 30 mg when tap water, pure water, and ultrapure water having a specific resistance of 18 MΩ · cm (25 ° C.) are used as dilution water using the apparatus for producing the hypochlorous acid aqueous solution shown in FIG. The time course of the / L hypochlorous acid aqueous solution was shown. It can be seen that pure water and ultrapure water have much better hypochlorous acid than tap water.

図4に、図5に示す次亜塩素酸ソーダと塩酸から次亜塩素酸水溶液を製造する装置を用い原水である希釈水に水道水を使用した場合の次亜塩素酸の有効塩素濃度を10、20,30,50mg/Lと変えた時の次亜塩素酸濃度の経時変化を示した。濃度が低いほど寿命が顕著に短くなることが分かる。FIG. 4 shows the effective chlorine concentration of hypochlorous acid when tap water is used as dilution water as raw water using the apparatus for producing a hypochlorous acid aqueous solution from sodium hypochlorite and hydrochloric acid shown in FIG. , Changes with time of hypochlorous acid concentration when changed to 20, 30, 50 mg / L. It can be seen that the lower the concentration, the significantly shorter the lifetime.

ウイルスなどを感染させた細胞を用いて有効塩素濃度を100mg/Lの次亜塩素酸で実験するとウイルスだけでなく肝心の細胞まで破壊されてしまい殺菌消毒試験が上手くいかない。次亜塩素酸の濃度を半分の50mg/Lにすると試験が可能になり、20mg/Lでも容易に殺菌できた。一方次亜塩素酸の濃度が10mg/Lになると細菌の存在環境の汚染状況により汚染物に次亜塩素酸が食われてしまい十分殺菌が行われない場合が多かった。Experiments with hypochlorous acid having an effective chlorine concentration of 100 mg / L using cells infected with viruses or the like destroys not only the virus but also the essential cells, and the sterilization test is not successful. The test became possible when the concentration of hypochlorous acid was reduced to 50 mg / L, which was half, and even 20 mg / L could be sterilized easily. On the other hand, when the concentration of hypochlorous acid was 10 mg / L, hypochlorous acid was eaten by the contaminants due to the contamination of the environment where bacteria existed, and sterilization was not often performed.

表3に各種細菌に対する次亜塩素酸水溶液の殺菌効果の試験結果をまとめた。表3中VIV水は今回開発した弱酸性次亜塩素酸水溶液を意味する。有効塩素濃度25mg/Lの次亜塩素酸水溶液で大腸菌を始め通常の細菌は極めて容易に殺菌される。枯草菌のような芽胞を持つ菌は外の殺菌剤でも殺菌し難い菌であるが次亜塩素酸水溶液ではかなり容易に殺菌が進む特性がある。Table 3 summarizes the test results of the bactericidal effect of hypochlorous acid aqueous solution on various bacteria. In Table 3, VIV water means the weakly acidic hypochlorous acid aqueous solution developed this time. Normal bacteria such as Escherichia coli are sterilized very easily with a hypochlorous acid aqueous solution having an effective chlorine concentration of 25 mg / L. Bacteria having spores such as Bacillus subtilis are difficult to sterilize even with other bactericides, but have the property that sterilization proceeds fairly easily with hypochlorous acid aqueous solution.

(表3を描きます。)

Figure 2013039553
(Draw Table 3)
Figure 2013039553

次亜塩素酸の濃度が高くなると殺菌と同時に菌が存在する環境に必ず存在する有機物と次亜塩素酸が反応して有機塩素化合物を生成する。したがって殺菌が可能なレベルで次亜塩素酸の濃度は低い方が望ましい。一般的には上限濃度は35mg/Lくらいが適当と思われる。一方濃度が低過ぎると有機物などに次亜塩素酸が食われてしまい殺菌が不完全になる可能性が出てくる。したがって下限は15mg/Lくらいが適当と予想される。When the concentration of hypochlorous acid becomes high, organic substances that are always present in the environment where bacteria are present simultaneously with sterilization react with hypochlorous acid to produce an organic chlorine compound. Therefore, it is desirable that the concentration of hypochlorous acid be low so that sterilization is possible. In general, the upper limit concentration seems to be about 35 mg / L. On the other hand, if the concentration is too low, hypochlorous acid may be eaten by organic matter and the sterilization may become incomplete. Therefore, the lower limit is expected to be about 15 mg / L.

本発明は、長寿命の弱酸性殺菌消臭水溶液であるため水溶液の形で運搬して利用することができる。またある期間保管や保存し利用することも可能である。したがって高価な製造装置を持たなくても次亜塩素酸水溶液を使用することが出来て多くの病院、介護施設、学校、企業などでの消毒や消臭、また最近社会問題化してきたウイルスに起因する口蹄疫、鳥インフルエンザを始めとした動物の疫病対策や飼育環境の消毒分野でも利用出来る。Since the present invention is a weakly acidic sterilizing and deodorizing aqueous solution having a long life, it can be transported and used in the form of an aqueous solution. It can also be stored and stored for a certain period. Therefore, it is possible to use hypochlorous acid aqueous solution without having expensive manufacturing equipment, resulting in disinfection and deodorization in many hospitals, nursing homes, schools, companies, etc., and due to viruses that have recently become a social problem It can also be used in the field of animal epidemic countermeasures such as foot-and-mouth disease and avian influenza and the disinfection of breeding environments.

Claims (3)

比抵抗18MΩ・cm(25℃)以上の超純水に約12%の次亜塩素酸ソーダを添加・希釈する。一方同様の超純水に約9%の塩酸を添加・希釈し、両者を混合または更に超純水で希釈することにより調製された有効塩素濃度150〜50mg/L、pH4〜6の次亜塩素酸水溶液とその製造方法。About 12% sodium hypochlorite is added and diluted in ultrapure water with a specific resistance of 18 MΩ · cm (25 ° C.) or higher. On the other hand, hypochlorite having an effective chlorine concentration of 150 to 50 mg / L and pH 4 to 6 prepared by adding and diluting about 9% hydrochloric acid to the same ultrapure water and mixing or further diluting with ultrapure water. Acid aqueous solution and its production method. 比抵抗18MΩ・cm(25℃)以上の超純水に約6%の次亜塩素酸ソーダを添加・希釈する。一方同様の超純水に約4.5%の塩酸を添加・希釈し、両者を混合または更に超純水で希釈することにより調製された有効塩素濃度50〜20mg/L、pH4〜6の次亜塩素酸水溶液とその製造方法About 6% sodium hypochlorite is added and diluted in ultrapure water having a specific resistance of 18 MΩ · cm (25 ° C.) or higher. On the other hand, after adding approximately 4.5% hydrochloric acid to the same ultrapure water and diluting them, mixing them together or further diluting with ultrapure water, the effective chlorine concentration is 50 to 20 mg / L, pH 4 to 6 Chlorous acid aqueous solution and method for producing the same 比抵抗18MΩ・cm(25℃)以上の超純水に約4%の次亜塩素酸ソーダを添加・希釈する。一方同様の超純水に約3%の塩酸を添加・希釈し、両者を混合または更に超純水で希釈することにより調製された有効塩素濃度30〜10mg/L、pH4〜6の次亜塩素酸水溶液とその製造方法About 4% sodium hypochlorite is added and diluted in ultrapure water having a specific resistance of 18 MΩ · cm (25 ° C.) or higher. On the other hand, hypochlorite having an effective chlorine concentration of 30 to 10 mg / L and a pH of 4 to 6 prepared by adding and diluting about 3% hydrochloric acid to the same ultrapure water and mixing or further diluting them with ultrapure water. Acid aqueous solution and method for producing the same
JP2011187954A 2011-08-12 2011-08-12 Weakly acidic hypochlorous acid aqueous solution of long life and method for producing the same Withdrawn JP2013039553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011187954A JP2013039553A (en) 2011-08-12 2011-08-12 Weakly acidic hypochlorous acid aqueous solution of long life and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011187954A JP2013039553A (en) 2011-08-12 2011-08-12 Weakly acidic hypochlorous acid aqueous solution of long life and method for producing the same

Publications (1)

Publication Number Publication Date
JP2013039553A true JP2013039553A (en) 2013-02-28

Family

ID=47888464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011187954A Withdrawn JP2013039553A (en) 2011-08-12 2011-08-12 Weakly acidic hypochlorous acid aqueous solution of long life and method for producing the same

Country Status (1)

Country Link
JP (1) JP2013039553A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018183082A (en) * 2017-04-25 2018-11-22 株式会社東芝 Method for treating garden stuff using electrolytic water
JP2019023207A (en) * 2015-09-16 2019-02-14 株式会社フリーキラ製薬 Antimicrobial agent containing hypochlorite
WO2019225599A1 (en) 2018-05-22 2019-11-28 株式会社トクヤマデンタル Method for producing weakly acidic hypochlorous acid aqueous solution
JP2021053546A (en) * 2019-09-27 2021-04-08 合同会社Fmc Manufacturing equipment and manufacturing method for carbonic acid-containing hypochlorous acid water
WO2022138427A1 (en) * 2020-12-23 2022-06-30 株式会社トクヤマ Hypochlorite water
CN116709922A (en) * 2020-12-23 2023-09-05 株式会社德山 Hypochlorous acid water

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019023207A (en) * 2015-09-16 2019-02-14 株式会社フリーキラ製薬 Antimicrobial agent containing hypochlorite
JP2018183082A (en) * 2017-04-25 2018-11-22 株式会社東芝 Method for treating garden stuff using electrolytic water
WO2019225599A1 (en) 2018-05-22 2019-11-28 株式会社トクヤマデンタル Method for producing weakly acidic hypochlorous acid aqueous solution
JP2021053546A (en) * 2019-09-27 2021-04-08 合同会社Fmc Manufacturing equipment and manufacturing method for carbonic acid-containing hypochlorous acid water
WO2022138427A1 (en) * 2020-12-23 2022-06-30 株式会社トクヤマ Hypochlorite water
KR20220128451A (en) 2020-12-23 2022-09-20 가부시끼가이샤 도꾸야마 hypochlorous acid water
JP7164767B1 (en) * 2020-12-23 2022-11-01 株式会社トクヤマ Hypochlorous acid water
KR102519332B1 (en) 2020-12-23 2023-04-10 가부시끼가이샤 도꾸야마 hypochlorous acid water
CN116709922A (en) * 2020-12-23 2023-09-05 株式会社德山 Hypochlorous acid water

Similar Documents

Publication Publication Date Title
JP2013039553A (en) Weakly acidic hypochlorous acid aqueous solution of long life and method for producing the same
US20100189805A1 (en) Electrochemically treated water, method and device for the production thereof, and the use thereof as a disinfection agent
JP3219698B2 (en) Manufacturing method of disinfectant solution
CN102616895A (en) Electrolyzed oxidizing water and preparation method thereof
CN108041073A (en) Potassium peroxymonosulfate disinfectant
CN104719336A (en) Low-corrosion potassium peroxymonosulfate disinfector
US20140302168A1 (en) Microbiocidal Solution with Ozone and Methods
CN106342884A (en) Disinfection powder of drinking water
CN103503922A (en) Disinfection powder for hospital wastewater disinfection
JP3554749B2 (en) Disinfectant
CN107410353B (en) Potassium monopersulfate composite disinfectant for hospital sewage treatment
Oliveira et al. Chlorinated cyanurates and potassium salt of peroxymonosulphate as antimicrobial and antibiofilm agents for drinking water disinfection
JP2009136814A (en) Preparation method of weak acidic electrolytic water
CN113068712B (en) Stabilizing synergist of hypochlorous acid solution and application
Katayose et al. Safety of electrolyzed seawater for use in aquaculture
Delgado-Vargas et al. An efficient simultaneous degradation of sulfamethoxazole and trimethoprim by photoelectro-Fenton process under non-modified pH using a natural citric acid source: study of biodegradability, ecotoxicity, and antibacterial activity
CN106689194A (en) Sustained-release disinfectant fluid
JP2007031374A (en) Method for producing germicidal disinfectant solution
Chen et al. Comparison study on hospital wastewater disinfection technology
CN203646397U (en) Device for producing stable acidic electrolyzed oxidizing water disinfectant
KR20170118442A (en) Composition of chlorine disinfections free of chlorine smell
JP5729399B2 (en) Slime control method in pulp and paper water system
CN108013072B (en) High-efficiency sterilizing disinfectant and preparation method thereof
JP3992614B2 (en) Disinfectant and water-based disinfecting method using the disinfectant
JP5281465B2 (en) Bactericidal algicide composition, water-based bactericidal algicide method, and method for producing bactericidal algicide composition

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104