JP2013037841A - Specimen cooling holder for transmission electron microscope - Google Patents

Specimen cooling holder for transmission electron microscope Download PDF

Info

Publication number
JP2013037841A
JP2013037841A JP2011171688A JP2011171688A JP2013037841A JP 2013037841 A JP2013037841 A JP 2013037841A JP 2011171688 A JP2011171688 A JP 2011171688A JP 2011171688 A JP2011171688 A JP 2011171688A JP 2013037841 A JP2013037841 A JP 2013037841A
Authority
JP
Japan
Prior art keywords
sample
cooling
electron microscope
transmission electron
cooling holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011171688A
Other languages
Japanese (ja)
Other versions
JP5690243B2 (en
Inventor
Seiichi Suzuki
清一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TSL SOLUTIONS KK
Original Assignee
TSL SOLUTIONS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TSL SOLUTIONS KK filed Critical TSL SOLUTIONS KK
Priority to JP2011171688A priority Critical patent/JP5690243B2/en
Publication of JP2013037841A publication Critical patent/JP2013037841A/en
Application granted granted Critical
Publication of JP5690243B2 publication Critical patent/JP5690243B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a specimen cooling holder for a transmission electron microscope capable of rotating a specimen freely by 360 degrees in a microscope while cooling the specimen with a cooling medium without dissipating the cooling medium, and to provide a specimen cooling holder which inhibits adhesion of frost to the specimen surface.SOLUTION: The specimen cooling holder for a transmission electron microscope comprises a refrigerant tank, a cooling section which penetrates the refrigerant tank and whose inner wall has a cylindrical cavity, and a heat conduction rod fitted movably in the cavity of the cooling section while sandwiching a good heat conductivity material layer from and to the inner wall of the cavity. The specimen cooling holder includes a pipe for housing the heat conduction rod, and the heat conduction rod has a specimen attachment part at the tip thereof for attaching a specimen.

Description

本発明は、透過型電子顕微鏡用の試料冷却ホルダーに関する。また、冷却された試料への霜の付着を効果的に抑制する透過型電子顕微鏡用の試料冷却ホルダーに関する。   The present invention relates to a sample cooling holder for a transmission electron microscope. The present invention also relates to a sample cooling holder for a transmission electron microscope that effectively suppresses frost adhesion to a cooled sample.

透過型電子顕微鏡により試料を観察する際に、試料を液体窒素等の冷媒で凍結し、冷却しながら観察することにより、水分を多く含んだ生物試料等の観察において電子線による試料ダメージを抑えることが期待できる。しかし、試料を凍結し、試料冷却ホルダーに装着し、透過型電子顕微鏡にセットするという一連の操作過程において試料表面に霜が付着しやすく、試料の観察が困難になるという問題がある。   When observing a sample with a transmission electron microscope, the sample is frozen with liquid refrigerant such as liquid nitrogen and observed while cooling to suppress sample damage caused by electron beams in observing biological samples that contain a lot of moisture. Can be expected. However, there is a problem that frost tends to adhere to the sample surface in a series of operation processes in which the sample is frozen, mounted on the sample cooling holder, and set on the transmission electron microscope, making it difficult to observe the sample.

そこで、従来より霜の付着を抑えるための試料冷却ホルダーが提案されている。図3は、従来の透過型電子顕微鏡用の試料冷却ホルダーの構造を示す断面図である(特許文献1参照)。この試料冷却ホルダーは、図3(a)に示すように、冷媒槽38と、冷媒槽38に固定され、冷媒槽38により冷却される熱伝導棒37を備える。また、熱伝導棒37を内部に収容するパイプ部36を有し、冷媒槽38には、注入口39により液体窒素等の冷媒を供給する。   Therefore, a sample cooling holder for suppressing frost adhesion has been proposed. FIG. 3 is a cross-sectional view showing the structure of a conventional sample cooling holder for a transmission electron microscope (see Patent Document 1). As shown in FIG. 3A, the sample cooling holder includes a refrigerant tank 38 and a heat conduction rod 37 that is fixed to the refrigerant tank 38 and is cooled by the refrigerant tank 38. Moreover, it has a pipe part 36 for accommodating the heat conducting rod 37 therein, and a refrigerant such as liquid nitrogen is supplied to the refrigerant tank 38 through an inlet 39.

図3(b)は、図3(a)におけるIIIBの部分拡大図である。また、図3(c)は、図3(b)におけるIIIC−IIICによる断面図である。熱伝導棒37の先端には、図3(b)に示すように、試料35を装着する試料装着部31がある。熱伝導棒37は試料冷却ホルダーに基本的に固定されているため、熱伝導棒37の先端にある試料35の位置も固定されている。試料装着部31の周囲には、図3(c)に示すように、スライドキャップ32が配置し、スライドキャップ32は、試料装着部31上を自在に摺動する。   FIG.3 (b) is the elements on larger scale of IIIB in Fig.3 (a). Moreover, FIG.3 (c) is sectional drawing by IIIC-IIIC in FIG.3 (b). At the tip of the heat conduction rod 37, there is a sample mounting portion 31 for mounting the sample 35, as shown in FIG. Since the heat conducting rod 37 is basically fixed to the sample cooling holder, the position of the sample 35 at the tip of the heat conducting rod 37 is also fixed. As shown in FIG. 3C, a slide cap 32 is disposed around the sample mounting portion 31, and the slide cap 32 freely slides on the sample mounting portion 31.

スライドキャップ32は、内部のスプリング32bにより矢印Aの方向に付勢され、止具34により最も矢印A寄りに配置している。スライドキャップ32は、電子線が通過する窓部32aを上下に備えているが、スプリング32bによりスライドキャップ32が最も矢印A寄りの位置にあるときは、試料装着部31はスライドキャップ32により外気から遮断されている。このため、試料35への霜の付着が抑制される。   The slide cap 32 is urged in the direction of arrow A by an internal spring 32b, and is arranged closest to the arrow A by a stopper 34. The slide cap 32 includes upper and lower windows 32a through which electron beams pass. However, when the slide cap 32 is positioned closest to the arrow A by the spring 32b, the sample mounting portion 31 is exposed from the outside air by the slide cap 32. Blocked. For this reason, the adhesion of frost to the sample 35 is suppressed.

この試料冷却ホルダーを透過型電子顕微鏡にセットし、スライドキャップ32の先端が図3(b)に示す矢印Bの方向に押されると、スライドキャップ32は、試料装着部31上をスライドし、電子線通過用の窓部32aが試料35の上下に配置すると、電子顕微鏡観察が可能となる。   When the sample cooling holder is set in a transmission electron microscope and the tip of the slide cap 32 is pushed in the direction of arrow B shown in FIG. 3B, the slide cap 32 slides on the sample mounting portion 31 and the electron When the line passing window portions 32a are arranged above and below the sample 35, observation with an electron microscope becomes possible.

特開平6−76777号公報JP-A-6-76777

透過型電子顕微鏡により試料を観察するときに、顕微鏡内で試料を試料ホルダー軸回りに回転移動し、電子線に対して試料を傾斜させることにより、試料を異なった方向から観察することが可能となる。しかし、特許文献1に記載された試料冷却ホルダーでは、図3(a)に示すように、熱伝導棒37が冷媒槽38に固定されているため、試料35を冷却しながら、冷媒槽38から冷媒を散逸することなく傾斜するには、おのずと制限が生じる。   When observing a sample with a transmission electron microscope, it is possible to observe the sample from different directions by rotating the sample around the sample holder axis in the microscope and tilting the sample with respect to the electron beam. Become. However, in the sample cooling holder described in Patent Document 1, the heat conducting rod 37 is fixed to the refrigerant tank 38 as shown in FIG. Naturally, there is a limit to tilting without dissipating the refrigerant.

本発明の課題は、冷媒により試料を冷却しながら、冷媒を散逸することなく、顕微鏡内で試料を360度自在に回転させることができる透過型電子顕微鏡用の試料冷却ホルダーを提供することにある。また、凍結した試料を試料冷却ホルダーに取り付け、透過型電子顕微鏡にセットする過程で、試料表面への霜の付着を抑制する透過型電子顕微鏡用の試料冷却ホルダーを提供することを課題とする。   An object of the present invention is to provide a sample cooling holder for a transmission electron microscope that can rotate a sample 360 degrees freely in a microscope without dissipating the refrigerant while cooling the sample with the refrigerant. . It is another object of the present invention to provide a sample cooling holder for a transmission electron microscope that suppresses the attachment of frost to the sample surface in the process of attaching a frozen sample to the sample cooling holder and setting the sample on a transmission electron microscope.

本発明の透過型電子顕微鏡用の試料冷却ホルダーは、冷媒槽と、冷媒槽を貫通し、内壁が円筒状の空洞を有する冷却部と、冷却部の空洞内に、空洞の内壁との間に熱良導性材料層を挟んで移動自在に嵌合する熱伝導棒とを有する。また、この試料冷却ホルダーは、熱伝導棒を内部に収容するパイプ部を備え、熱伝導棒は、先端に、試料を装着する試料装着部を有する。使用する熱良導性材料層は、銅とアルミニウムのうち少なくとも1種を含む金属製の繊維層とする態様が好ましい。   A sample cooling holder for a transmission electron microscope according to the present invention includes a refrigerant tank, a cooling part that penetrates the refrigerant tank and has an inner wall having a cylindrical cavity, and a cavity between the cooling part and the inner wall of the cavity. And a heat conduction rod that is movably fitted with the heat conductive material layer interposed therebetween. In addition, the sample cooling holder includes a pipe portion that accommodates the heat conducting rod therein, and the heat conducting rod has a sample mounting portion for mounting the sample at the tip. The heat conductive material layer to be used is preferably a metal fiber layer containing at least one of copper and aluminum.

本発明の試料冷却ホルダーは、パイプ部を試料冷却ホルダーに固定し、先端に電子線が通過する窓部を備える態様が好適である。かかる態様において、熱伝導棒をパイプ部内で長手方向に前進または後進することにより、試料を観察するときは、パイプ部の窓部を通過して電子線が試料に照射するように熱伝導棒を配置し、この熱伝導棒はパイプ部内で自在に回転させることができる。一方、試料を観察しないときは、パイプ部により試料を外気から遮断するように熱伝導棒を配置する。また、試料冷却ホルダーが、試料装着部を取り付けるカートリッジを備え、試料装着部を取り付けたカートリッジを冷却した状態で熱伝導棒に装着する態様が好ましい。   The sample cooling holder of the present invention preferably has a mode in which a pipe portion is fixed to the sample cooling holder and a window portion through which an electron beam passes is provided at the tip. In such an embodiment, when the sample is observed by moving the heat conduction rod forward or backward in the longitudinal direction in the pipe portion, the heat conduction rod is irradiated so that the sample is irradiated with the electron beam through the window portion of the pipe portion. Arranged and this heat conducting rod can be freely rotated in the pipe section. On the other hand, when not observing the sample, a heat conducting rod is arranged so that the sample is cut off from the outside air by the pipe portion. Further, it is preferable that the sample cooling holder includes a cartridge to which the sample mounting portion is attached, and the cartridge to which the sample mounting portion is attached is attached to the heat conducting rod in a cooled state.

本発明の透過型電子顕微鏡用の試料冷却ホルダーは、冷媒により試料を冷却しながら、冷媒を散逸することなく、顕微鏡内で試料を360度自在に回転させることができるため、360度連続的に試料傾斜角を変えながら試料の観察が可能になる。また、凍結した試料を試料冷却ホルダーに装着し、透過型電子顕微鏡にセットする過程で、試料表面への霜の付着を抑制することができる。   The sample cooling holder for the transmission electron microscope of the present invention can rotate the sample 360 degrees freely in the microscope without dissipating the refrigerant while cooling the sample with the refrigerant. The sample can be observed while changing the sample inclination angle. Further, in the process of mounting the frozen sample on the sample cooling holder and setting it on the transmission electron microscope, it is possible to suppress frost adhesion to the sample surface.

本発明の透過型電子顕微鏡用の試料冷却ホルダーの断面図である。It is sectional drawing of the sample cooling holder for transmission electron microscopes of this invention. 本発明の透過型電子顕微鏡用の試料冷却ホルダーにおける冷却部の配置を示す部分断面図である。It is a fragmentary sectional view which shows arrangement | positioning of the cooling part in the sample cooling holder for transmission electron microscopes of this invention. 従来の透過型電子顕微鏡用の試料冷却ホルダーの構造を示す断面図である。It is sectional drawing which shows the structure of the sample cooling holder for the conventional transmission electron microscopes. 図1におけるパイプ部6の先端の部分拡大図である。It is the elements on larger scale of the front-end | tip of the pipe part 6 in FIG. 本発明の透過型電子顕微鏡用の試料冷却ホルダーが、カートリッジを備える態様を示す断面図である。It is sectional drawing which shows the aspect in which the sample cooling holder for transmission electron microscopes of this invention is equipped with a cartridge.

図1は、本発明の透過型電子顕微鏡用の試料冷却ホルダーの断面図であり、図1(a)は、電子顕微鏡により試料を観察しているときの状態を示し、図1(b)は、試料を観察していないときの状態、すなわちシャッターを閉じ、試料を外気から遮断している状態を示す。図1に示すように、この試料冷却ホルダーは、冷媒槽8と、冷媒槽8を貫通して配置する冷却部1と、冷却部に嵌合する熱伝導棒7と、熱伝導棒7を内部に収容するパイプ部6を備える。   FIG. 1 is a cross-sectional view of a sample cooling holder for a transmission electron microscope of the present invention. FIG. 1 (a) shows a state when a sample is observed with an electron microscope, and FIG. The state when the sample is not observed, that is, the state where the shutter is closed and the sample is shielded from the outside air is shown. As shown in FIG. 1, the sample cooling holder includes a refrigerant tank 8, a cooling unit 1 disposed through the refrigerant tank 8, a heat conduction rod 7 fitted into the cooling unit, and a heat conduction rod 7. The pipe part 6 accommodated in is provided.

冷媒槽8には、液体窒素または液体ヘリウム等の冷媒9を注入する。冷媒槽8は、耐圧性容器18内に収容し、冷媒槽8を低温に保持するため、耐圧性容器18内は真空に調整する。この冷媒槽8を貫通した状態で冷却部1を配置し、冷却部1内に熱伝導棒7を嵌合することにより熱伝導棒7を冷却し、熱伝導棒7の先端に装着する試料を低温に維持する。熱伝導棒7は、内部を真空に保ち、断熱性を保持したパイプ部6の内部に収容することにより、低温に保持するとともに、試料の装着時や試料冷却ホルダーの電子顕微鏡へのセット時に、試料と熱伝導棒を機械的に保護する。   A refrigerant 9 such as liquid nitrogen or liquid helium is injected into the refrigerant tank 8. The refrigerant tank 8 is accommodated in the pressure-resistant container 18, and the pressure-resistant container 18 is adjusted to a vacuum in order to keep the refrigerant tank 8 at a low temperature. The cooling unit 1 is disposed in a state of penetrating the refrigerant tank 8, the heat conducting rod 7 is fitted into the cooling unit 1 to cool the heat conducting rod 7, and a sample attached to the tip of the heat conducting rod 7 is attached. Keep it cool. The heat conducting rod 7 is kept at a low temperature by keeping the inside in a vacuum and keeping the heat insulating property inside the pipe portion 6, and at the time of mounting the sample or setting the sample cooling holder on the electron microscope, Mechanically protect the sample and heat transfer rod.

図2は、本発明の透過型電子顕微鏡用の試料冷却ホルダーにおける冷却部の配置を示す部分断面図である。図2に示すように、冷却部1は、冷媒槽8を貫通し、内壁1aが円筒状の空洞を有する。冷却部1の円筒状の空洞内には、円柱状の熱伝導棒7が嵌合し、熱伝導棒7の外壁と空洞の内壁1aとの間に、熱良導性材料層3を備える。このため、極低温の冷媒9により冷却部1が冷却され、熱良導性材層3を通して熱伝導棒7が極低温に冷却される。図2に示す例では、冷却部1は、内壁が円筒状の空洞を有するブロック状の部材であるが、ブロック状の部材の代わりに、図1に示すように、内壁が円筒状のパイプを使用することもできる。   FIG. 2 is a partial cross-sectional view showing the arrangement of the cooling unit in the sample cooling holder for the transmission electron microscope of the present invention. As shown in FIG. 2, the cooling part 1 penetrates the refrigerant tank 8, and the inner wall 1a has a cylindrical cavity. A cylindrical heat conduction rod 7 is fitted in the cylindrical cavity of the cooling unit 1, and the heat conductive material layer 3 is provided between the outer wall of the heat conduction rod 7 and the inner wall 1 a of the cavity. For this reason, the cooling unit 1 is cooled by the cryogenic refrigerant 9, and the heat conducting rod 7 is cooled to an extremely low temperature through the thermally conductive material layer 3. In the example shown in FIG. 2, the cooling unit 1 is a block-shaped member whose inner wall has a cylindrical cavity, but instead of the block-shaped member, a pipe whose inner wall is cylindrical as shown in FIG. 1. It can also be used.

金属は、熱伝導率が大きい点で、熱良導性材料層3に好ましく使用することができる。また、金属の中でも、銅(Cu)とアルミニウム(Al)のうち少なくとも1種を含む金属が、熱伝導棒7の冷却効率が大きい点で、より好ましい。すなわち、熱良導性材料層3には、Cu、またはAl、またはCuとAlとの合金を含有する金属が好適である。Cuの熱伝導率は398W/mKであり、Alの熱伝導率は236W/mKであり、金属の中でも熱伝導率が大きく、比較的高価でない点で、熱良導性材料層に好ましく使用できる。熱良導性材料層には、必要に応じて、銀、金、鉄などの他の金属を含めることができる。熱良導性材料層3は、綿状の繊維層とすることにより、クッション性が改善し、冷却部1の空洞内に嵌合する熱伝導棒7の滑り性を高め、熱伝導棒7を回転自在に保持し、長手方向への移動も容易化する。綿状の熱良導性材料層3は、たとえば、材料としてCuを使用する場合には、線径20μm程度の繊維からなる層を好ましく使用することができる。   A metal can be preferably used for the heat conductive material layer 3 in terms of high thermal conductivity. Further, among metals, a metal containing at least one of copper (Cu) and aluminum (Al) is more preferable because the cooling efficiency of the heat conducting rod 7 is high. That is, a metal containing Cu, Al, or an alloy of Cu and Al is suitable for the thermally conductive material layer 3. The thermal conductivity of Cu is 398 W / mK, the thermal conductivity of Al is 236 W / mK, and it can be preferably used for a heat conductive material layer because it has a large thermal conductivity among metals and is relatively inexpensive. . The thermally conductive material layer can contain other metals such as silver, gold, and iron as required. The heat conductive material layer 3 is made of a cotton-like fiber layer, so that the cushioning property is improved, the sliding property of the heat conducting rod 7 fitted in the cavity of the cooling unit 1 is improved, and the heat conducting rod 7 is It is held rotatably and facilitates movement in the longitudinal direction. For example, when Cu is used as the material, the layer made of fibers having a wire diameter of about 20 μm can be preferably used as the cotton-like heat conductive material layer 3.

図1に示すように、熱伝導棒7は、先端に、試料を装着する試料装着部13を有する。本発明の透過型電子顕微鏡用の試料冷却ホルダーでは、熱伝導棒7は、冷却部1の空洞内に回転自在に保持されている。したがって、熱伝導棒7を冷媒9で冷却することにより、熱伝導棒7の先端に装着する試料を冷却しながら、駆動部17により熱伝導棒7を回転移動すると、冷媒9を散逸することなく、顕微鏡内で試料を360度自在に回転させることができる。このため、電子線に対して試料を任意に傾斜させることにより、試料の観察方向を360度変えることができ、試料の微細な断層構造あるいは三次元構造を詳細に観察することができる。   As shown in FIG. 1, the heat conducting rod 7 has a sample mounting portion 13 for mounting a sample at the tip. In the sample cooling holder for the transmission electron microscope of the present invention, the heat conducting rod 7 is rotatably held in the cavity of the cooling unit 1. Therefore, by cooling the heat conducting rod 7 with the refrigerant 9 and cooling the sample mounted on the tip of the heat conducting rod 7 while rotating the heat conducting rod 7 by the driving unit 17, the refrigerant 9 is not dissipated. The sample can be freely rotated 360 degrees in the microscope. Therefore, by arbitrarily tilting the sample with respect to the electron beam, the observation direction of the sample can be changed by 360 degrees, and the fine tomographic structure or three-dimensional structure of the sample can be observed in detail.

本発明の試料冷却ホルダーを図1に例示する。図1に示す例では、試料冷却ホルダーにおいて、パイプ部6は試料冷却ホルダー(本体)に固定されている。図4は、図1におけるパイプ部6の先端の部分拡大図であり、図4(a)は、図1(a)におけるIVAの部分拡大図であり、図4(b)は図1(b)におけるIVBの部分拡大図である。図4に示すように、熱伝導棒7は、先端に、試料11を装着する試料装着部13を有し、パイプ部6は、先端に電子線が通過する窓部12を備える。パイプ部6は試料冷却ホルダー(本体)に固定されているため、試料冷却ホルダー(本体)における窓部12の位置も固定されている。   The sample cooling holder of the present invention is illustrated in FIG. In the example shown in FIG. 1, in the sample cooling holder, the pipe portion 6 is fixed to the sample cooling holder (main body). 4 is a partially enlarged view of the tip of the pipe portion 6 in FIG. 1, FIG. 4 (a) is a partially enlarged view of IVA in FIG. 1 (a), and FIG. 4 (b) is FIG. 4 is a partially enlarged view of IVB in FIG. As shown in FIG. 4, the heat conducting rod 7 has a sample mounting portion 13 for mounting the sample 11 at the tip, and the pipe portion 6 includes a window portion 12 through which an electron beam passes. Since the pipe portion 6 is fixed to the sample cooling holder (main body), the position of the window portion 12 in the sample cooling holder (main body) is also fixed.

図1(a)は、電子顕微鏡により試料を観察しているときの状態を示し、図1(b)は、試料を観察していないときの状態を示す。したがって、図4(a)は、電子顕微鏡により試料を観察しているときのパイプ部6の先端の状態を示し、図4(b)は、試料を観察していないときのパイプ部6の先端の状態を示す。   FIG. 1A shows a state when the sample is observed with an electron microscope, and FIG. 1B shows a state when the sample is not observed. Accordingly, FIG. 4A shows the state of the tip of the pipe portion 6 when the sample is observed with an electron microscope, and FIG. 4B shows the tip of the pipe portion 6 when the sample is not observed. Shows the state.

本発明の試料冷却ホルダーにおいて、熱伝導棒7は冷却部1の空洞内に移動自在に嵌合する。したがって、熱伝導棒7がパイプ部6内において長手方向に移動自在に保持されている。試料を観察するときは、駆動部17により熱伝導棒7を後進し、熱伝導棒7を図1(a)に示すように配置する。熱伝導棒7を矢印Cの方向に後進し、図1(a)のように配置すると、図4(a)に示すように、熱伝導棒7の先端の試料装着部13にある試料11が、パイプ部の先端の窓部12の部位に配置するため、窓部12を通過する電子線が試料11に照射し、試料11を観察することができる。この熱伝導棒は、パイプ部内で自在に回転させることができる。   In the sample cooling holder of the present invention, the heat conducting rod 7 is movably fitted into the cavity of the cooling unit 1. Therefore, the heat conduction rod 7 is held in the pipe portion 6 so as to be movable in the longitudinal direction. When observing the sample, the heat conducting rod 7 is moved backward by the driving unit 17 and the heat conducting rod 7 is arranged as shown in FIG. When the heat conducting rod 7 is moved backward in the direction of arrow C and arranged as shown in FIG. 1A, the sample 11 in the sample mounting portion 13 at the tip of the heat conducting rod 7 is moved as shown in FIG. 4A. Since it arrange | positions in the site | part of the window part 12 of the front-end | tip of a pipe part, the electron beam which passes the window part 12 irradiates the sample 11, and the sample 11 can be observed. This heat conducting rod can be freely rotated in the pipe portion.

一方、試料を観察しないときは、駆動部17により熱伝導棒7を前進し、熱伝導棒7を図1(b)に示すように配置する。熱伝導棒7を矢印Dの方向に前進し、図1(b)に示すように配置すると、図4(b)に示すように、試料11と試料装着部13は、パイプ部6の先端の部屋に入り、密閉されるため、パイプ部6により試料11は外気から遮断される。したがって、外気による試料11への霜の付着を効果的に抑制することができる。   On the other hand, when the sample is not observed, the heat conduction rod 7 is advanced by the drive unit 17 and the heat conduction rod 7 is arranged as shown in FIG. When the heat conducting rod 7 is advanced in the direction of the arrow D and arranged as shown in FIG. 1B, the sample 11 and the sample mounting portion 13 are placed at the tip of the pipe portion 6 as shown in FIG. Since it enters and is sealed in the room, the sample 11 is blocked from the outside air by the pipe portion 6. Therefore, the adhesion of frost to the sample 11 due to the outside air can be effectively suppressed.

図5は、本発明の透過型電子顕微鏡用の試料冷却ホルダーがカートリッジを備える態様を示す断面図である。図5(a)は、熱伝導棒7の先端に試料11を装着する前の状態を示し、図5(b)は、熱伝導棒7の先端に試料11を装着した後の状態を示す。図5に示す例では、試料11を装着する試料装着部13と熱伝導棒7のほかに、カートリッジ14を備え、熱伝導棒7の先端をカートリッジ14の形状に合わせて成形し、板バネ等の弾性部材15を備える。   FIG. 5 is a cross-sectional view showing an aspect in which a sample cooling holder for a transmission electron microscope of the present invention includes a cartridge. FIG. 5A shows a state before the sample 11 is attached to the tip of the heat conduction rod 7, and FIG. 5B shows a state after the sample 11 is attached to the tip of the heat conduction rod 7. In the example shown in FIG. 5, in addition to the sample mounting portion 13 for mounting the sample 11 and the heat conducting rod 7, a cartridge 14 is provided, and the tip of the heat conducting rod 7 is molded according to the shape of the cartridge 14, and a leaf spring or the like The elastic member 15 is provided.

図5(a)に示すように、試料11を装着する試料装着部13をカートリッジ14にセットした後、矢印Eの方向に移動することにより、図5(b)に示すように、試料11を熱伝導棒7に取り付けることができる。このように試料11を試料装着部13に装着した後、試料装着部13を取り付けたカートリッジ14を冷却した状態で熱伝導棒7に取り付けると、極低温下での試料の取り扱いが容易化して、試料の取り付けに要する時間を短縮することができるため、試料への霜の付着をより一層抑制することができる。   As shown in FIG. 5 (a), after the sample mounting portion 13 for mounting the sample 11 is set on the cartridge 14, the sample 11 is moved in the direction of the arrow E, as shown in FIG. 5 (b). It can be attached to the heat conduction rod 7. After mounting the sample 11 to the sample mounting portion 13 in this way, if the cartridge 14 to which the sample mounting portion 13 is mounted is attached to the heat conducting rod 7 in a cooled state, the sample can be easily handled at extremely low temperatures, Since the time required for attaching the sample can be shortened, adhesion of frost to the sample can be further suppressed.

水分を多く含んだ生物試料等を冷却することで電子線によるダメージを軽減しながら、試料の微細な断層構造あるいは三次元構造等を詳細に観察できる透過型電子顕微鏡用の試料冷却ホルダーを提供することができる。また、試料表面への霜の付着を効果的に防止できる試料冷却ホルダーを提供することができる。   Providing a specimen cooling holder for a transmission electron microscope that can observe the minute tomographic structure or three-dimensional structure of a specimen in detail while reducing the damage caused by electron beams by cooling biological specimens containing a lot of water be able to. Further, it is possible to provide a sample cooling holder that can effectively prevent frost from adhering to the sample surface.

1 冷却部
1a 内壁
3 熱良導性材料層
6 パイプ部
7 熱伝導棒
8 冷媒槽
9 冷媒
11 試料
12 窓部
13 試料装着部
14 カートリッジ
15 弾性部材
17 駆動部
18 耐圧性容器
31 試料装着部
32 スライドキャップ
32a 窓部
32b スプリング
34 止具
35 試料
36 パイプ部
37 熱伝導棒
38 冷媒槽
DESCRIPTION OF SYMBOLS 1 Cooling part 1a Inner wall 3 Thermally conductive material layer 6 Pipe part 7 Thermal conduction rod 8 Refrigerant tank 9 Refrigerant 11 Sample 12 Window part 13 Sample mounting part 14 Cartridge 15 Elastic member 17 Drive part 18 Pressure-resistant container 31 Sample mounting part 32 Slide cap 32a Window portion 32b Spring 34 Stopper 35 Sample 36 Pipe portion 37 Heat conduction rod 38 Refrigerant tank

Claims (4)

冷媒槽と、
該冷媒槽を貫通し、内壁が円筒状の空洞を有する冷却部と、
該冷却部の空洞内に、空洞の内壁との間に熱良導性材料層を挟んで移動自在に嵌合する熱伝導棒と、
該熱伝導棒を内部に収容するパイプ部と
を備え、
前記熱伝導棒は、先端に、試料を装着する試料装着部を有する透過型電子顕微鏡用の試料冷却ホルダー。
A refrigerant tank;
A cooling section that penetrates the refrigerant tank and has an inner wall having a cylindrical cavity;
In the cavity of the cooling part, a heat conduction rod that is movably fitted with a thermally conductive material layer sandwiched between the inner wall of the cavity, and
A pipe portion for accommodating the heat conducting rod therein,
The heat conducting rod is a sample cooling holder for a transmission electron microscope having a sample mounting portion for mounting a sample at the tip.
前記熱良導性材料層は、銅とアルミニウムのうち少なくとも1種を含む金属製の繊維層である請求項1に記載の透過型電子顕微鏡用の試料冷却ホルダー。   The sample cooling holder for a transmission electron microscope according to claim 1, wherein the thermally conductive material layer is a metal fiber layer containing at least one of copper and aluminum. 前記パイプ部は、試料冷却ホルダーに固定され、前記パイプ部は、先端に電子線が通過する窓部を備え、
前記熱伝導棒をパイプ部内で長手方向に前進または後進することにより、
試料を観察するときは、パイプ部の前記窓部を通過して電子線が試料に照射するように前記熱伝導棒を配置し、該熱伝導棒はパイプ部内で自在に回転させることができ、
試料を観察しないときは、パイプ部により試料を外気から遮断するように前記熱伝導棒を配置する
請求項1または2に記載の透過型電子顕微鏡用の試料冷却ホルダー。
The pipe part is fixed to a sample cooling holder, and the pipe part includes a window part through which an electron beam passes,
By advancing or reversing the heat conducting rod longitudinally within the pipe section,
When observing the sample, the heat conduction rod is arranged so that the electron beam irradiates the sample through the window portion of the pipe portion, and the heat conduction rod can be freely rotated in the pipe portion,
The sample cooling holder for a transmission electron microscope according to claim 1 or 2, wherein when the sample is not observed, the heat conducting rod is arranged so as to block the sample from the outside air by a pipe portion.
試料装着部を取り付けるカートリッジを備え、試料装着部を取り付けたカートリッジを冷却した状態で熱伝導棒に装着する請求項1〜3のいずれかに記載の透過型電子顕微鏡用の試料冷却ホルダー。   The sample cooling holder for a transmission electron microscope according to any one of claims 1 to 3, further comprising a cartridge to which the sample mounting portion is attached, and the cartridge to which the sample mounting portion is attached is mounted on the heat conducting rod in a cooled state.
JP2011171688A 2011-08-05 2011-08-05 Sample cooling holder for transmission electron microscope Active JP5690243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011171688A JP5690243B2 (en) 2011-08-05 2011-08-05 Sample cooling holder for transmission electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011171688A JP5690243B2 (en) 2011-08-05 2011-08-05 Sample cooling holder for transmission electron microscope

Publications (2)

Publication Number Publication Date
JP2013037841A true JP2013037841A (en) 2013-02-21
JP5690243B2 JP5690243B2 (en) 2015-03-25

Family

ID=47887290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011171688A Active JP5690243B2 (en) 2011-08-05 2011-08-05 Sample cooling holder for transmission electron microscope

Country Status (1)

Country Link
JP (1) JP5690243B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013127445A (en) * 2011-12-19 2013-06-27 Korea Basic Science Institute Cryo transfer holder for transmission type transmission electron microscope with novel structure
KR101529145B1 (en) * 2014-08-05 2015-06-16 한국기초과학지원연구원 Work stationcomprising sample holder for cryogenic electron microscopy for correlative imaging detection apparatus in combination of optical microscopy and electron microscopy, correlative imaging detection including said work station, imaging detection method and imaging system by using said work station
EP3032564A1 (en) * 2014-12-11 2016-06-15 FEI Company Improved cryogenic specimen holder for a charged particle microscope
US9449784B2 (en) 2013-10-28 2016-09-20 Jeol Ltd. Charged particle beam instrument and sample container
JP6279692B1 (en) * 2016-11-07 2018-02-14 株式会社メルビル Sample holder
CN113335767A (en) * 2020-02-18 2021-09-03 中国科学院物理研究所 Low-temperature container

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676777A (en) * 1992-08-25 1994-03-18 Jeol Ltd Sample cooling holder for electron microscope and the like
JP2000251819A (en) * 1999-03-04 2000-09-14 Hitachi Ltd Sample cooling holder
JP2000513135A (en) * 1997-03-12 2000-10-03 ガタン・インコーポレーテッド Ultra-high tilt specimen cold transfer holder for electron microscope

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676777A (en) * 1992-08-25 1994-03-18 Jeol Ltd Sample cooling holder for electron microscope and the like
JP2000513135A (en) * 1997-03-12 2000-10-03 ガタン・インコーポレーテッド Ultra-high tilt specimen cold transfer holder for electron microscope
JP2000251819A (en) * 1999-03-04 2000-09-14 Hitachi Ltd Sample cooling holder

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013127445A (en) * 2011-12-19 2013-06-27 Korea Basic Science Institute Cryo transfer holder for transmission type transmission electron microscope with novel structure
US9449784B2 (en) 2013-10-28 2016-09-20 Jeol Ltd. Charged particle beam instrument and sample container
KR101529145B1 (en) * 2014-08-05 2015-06-16 한국기초과학지원연구원 Work stationcomprising sample holder for cryogenic electron microscopy for correlative imaging detection apparatus in combination of optical microscopy and electron microscopy, correlative imaging detection including said work station, imaging detection method and imaging system by using said work station
EP3032564A1 (en) * 2014-12-11 2016-06-15 FEI Company Improved cryogenic specimen holder for a charged particle microscope
JP6279692B1 (en) * 2016-11-07 2018-02-14 株式会社メルビル Sample holder
JP2018077953A (en) * 2016-11-07 2018-05-17 株式会社メルビル Specimen holder
CN113335767A (en) * 2020-02-18 2021-09-03 中国科学院物理研究所 Low-temperature container

Also Published As

Publication number Publication date
JP5690243B2 (en) 2015-03-25

Similar Documents

Publication Publication Date Title
JP5690243B2 (en) Sample cooling holder for transmission electron microscope
JP6008965B2 (en) Improved low temperature sample holder
KR101665221B1 (en) Cryogenic specimen holder and cooling source container
JP3605119B2 (en) Ultra-high tilt specimen cold transfer holder for electron microscope
US9417166B2 (en) System and method for increased cooling rates in rapid cooling of small biological samples
JP5947296B2 (en) Low temperature sample holder
JP6498273B2 (en) Optical microscope with sample stage for cryomicroscopy
JP2013156218A (en) Capillary for minute sample
JP5522546B2 (en) Cryotransfer holder for transmission electron microscope with new structure
JP6317900B2 (en) Capillary capillaries and caps for use in high pressure refrigerators
JP2015068832A (en) Preparation of ultralow sample for electric charge particle microscope
JP2004508661A (en) Side entry sample cryo transfer holder for electron microscope
Pawley et al. A chamber attached to the SEM for fracturing and coating frozen biological samples
JP5703492B2 (en) Microtome and cryostat
JP5204592B2 (en) Thin film sample observation system, cooling sample holder, and thin film sample observation method
US20120286175A1 (en) Cooled manipulator tip for removal of frozen material
JP6312811B2 (en) Cryo station system
US20040012217A1 (en) End effector
US7518125B2 (en) Processing apparatus using focused charged particle beam
CN105474348A (en) Anti-contamination trap, and vacuum application device
CN104181335A (en) Scanning tunneling microscope scanning probe head
CN111413133A (en) Freezing slicer
US10111419B2 (en) Multi-modal biopsy storage device and methods
US20230045007A1 (en) Method and manipulation device for handling samples
Wang et al. Design of a multi-axis cryogenic sample manipulator for soft X-ray and VUV spectroscopy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140625

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140625

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150130

R150 Certificate of patent or registration of utility model

Ref document number: 5690243

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250