JP2013036211A - Vibration-proof floor structure and vibration-proof material - Google Patents

Vibration-proof floor structure and vibration-proof material Download PDF

Info

Publication number
JP2013036211A
JP2013036211A JP2011172407A JP2011172407A JP2013036211A JP 2013036211 A JP2013036211 A JP 2013036211A JP 2011172407 A JP2011172407 A JP 2011172407A JP 2011172407 A JP2011172407 A JP 2011172407A JP 2013036211 A JP2013036211 A JP 2013036211A
Authority
JP
Japan
Prior art keywords
vibration
synthetic resin
flat plate
resin foam
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011172407A
Other languages
Japanese (ja)
Other versions
JP5894390B2 (en
Inventor
Hiroshi Yamazaki
浩 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP2011172407A priority Critical patent/JP5894390B2/en
Publication of JP2013036211A publication Critical patent/JP2013036211A/en
Application granted granted Critical
Publication of JP5894390B2 publication Critical patent/JP5894390B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Floor Finish (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vibration-proof floor capable of effectively isolating vibration over a wide range of frequencies.SOLUTION: A vibration-proof floor structure is composed of a floor base 5a of a structure, a vibration-proof material 1 laid on the floor base, and a face material 5b such as concrete floor disposed on the vibration-proof material 1. The vibration-proof material 1 includes at least one sheet of a synthetic resin foam flat plate part 2 and a plurality of synthetic resin foam protrusions 3a and 3b arranged on the plate face of the flat plate part 2. The foam protrusions 3a and 3b include a first type of protrusion 3a which is disposed on the upper plate face of the flat plate part 2 and a second type of protrusion 3b which is disposed on the lower plate face of the flat plate part 2. The foam protrusions 3a and 3b are arranged on the plate faces of the flat plate part 2 such that the position of the upper plate face of the flat plate part 2 on which the first type of foam protrusion 3a is disposed and the position of the lower plate face of the flat plate part 2 on which the second type of foam protrusion 3b is disposed are different, and the areas and the like of the foam protrusions 3a and 3b and the flat plate part 2 are designed to satisfy a predetermined relation.

Description

本発明は、防振性能に優れる防振床構造および防振材に関するものである。   The present invention relates to a vibration-proof floor structure and a vibration-proof material having excellent vibration-proof performance.

防振材として、ポリスチレン系樹脂発泡粒子成形板やグラスウール製ボードが知られている。
しかし、ポリスチレン系樹脂発泡粒子成形板には、発泡倍率にもよるが柔軟性が乏しいため、発泡板をあらかじめ圧縮処理して気泡を座屈させるなどして柔軟性を付与したものが防振材として使用されており、生産性、上載荷重制限における課題がある。一方、グラスウール製ボードには、施工性に課題があり、また水分を吸収したり長期に亘るクリープによって厚みの減少が生じ、その結果、必要な防振効果を維持できなくなる虞もある。
As vibration-proof materials, polystyrene-based resin foam particle molded plates and glass wool boards are known.
However, the polystyrene resin foamed particle molded plate has poor flexibility depending on the expansion ratio. Therefore, a material that has been given flexibility by compressing the foamed plate in advance to buckle bubbles is a vibration-proof material. There are problems in productivity and limiting the upper load. On the other hand, glass wool boards have problems in workability, and the thickness may be reduced by absorbing moisture or creeping over a long period of time, and as a result, the necessary vibration-proofing effect may not be maintained.

そこで、本発明者等は、先に前記課題を解決するための防振材を提案した(特許文献1および特許文献2)。   Therefore, the present inventors have previously proposed a vibration isolating material for solving the above problems (Patent Document 1 and Patent Document 2).

特許文献1の防振材は、複数の防振ゴムが所定の間隔部分を設けて配設され、間隔部分には合成樹脂発泡体と板材または網材とが積層されて配設されており、合成樹脂発泡体と防振ゴムと、板材または網材とを一体化した構成の防振材である。
この特許文献1の防振材は、工場生産が可能であると共に軽量性に優れ、施工現場での取り付け、施工が簡単に行なうことができるものである。また、発泡体と防振ゴムとを組み合わせたものであり、要求される振動減衰量、耐荷重に対し、比較的自由に対応することができるものである。さらに、合成樹脂発泡体としてポリオレフィン系樹脂発泡体を選択した場合には、圧縮回復性、耐水性に優れているため、住宅用防振材としても好適なものであった。
The anti-vibration material of Patent Document 1 is provided with a plurality of anti-vibration rubbers provided with a predetermined interval portion, and the interval portion is provided by laminating a synthetic resin foam and a plate material or a net material, This is a vibration isolating material in which a synthetic resin foam, a vibration isolating rubber, and a plate material or a net material are integrated.
The anti-vibration material of this Patent Document 1 can be produced in a factory and is excellent in light weight, and can be easily installed and installed at a construction site. Further, it is a combination of a foam and a vibration-proof rubber, and can cope with the required vibration attenuation amount and load resistance relatively freely. Furthermore, when a polyolefin resin foam is selected as the synthetic resin foam, it is suitable as a vibration-proof material for a house because it is excellent in compression recovery and water resistance.

特許文献2の防振材は、合成樹脂発泡体平板部と、該平板部の片面に所定の間隔を設けて配設された複数のポリオレフィン系樹脂発泡体凸部とからなり、該凸部の形状が柱状であり、該凸部の高さが防振材の厚みの25%以上である防振材である。
この特許文献2に開示された防振材は、合成樹脂発泡体平板部と特定のポリオレフィン系樹脂発泡体凸部とが組み合わされた形状のものからなるので、該防振材を基礎コンクリート床と浮きコンクリート床との間にポリオレフィン系樹脂発泡体凸部を下側に向けて敷設することにより、該凸部の周囲に空気層による空間を形成することができ、防振特性に優れる簡易的な浮床式の防振床構造を容易に施工することができるものであった。
The anti-vibration material of Patent Document 2 is composed of a synthetic resin foam flat plate portion and a plurality of polyolefin resin foam convex portions arranged at predetermined intervals on one surface of the flat plate portion. The vibration-proof material has a columnar shape, and the height of the convex portion is 25% or more of the thickness of the vibration-proof material.
Since the vibration isolator disclosed in Patent Document 2 is composed of a combination of a synthetic resin foam flat plate portion and a specific polyolefin resin foam convex portion, the vibration isolator is a basic concrete floor. By laying the polyolefin resin foam convex part downward with the floating concrete floor, a space by an air layer can be formed around the convex part, and a simple and excellent anti-vibration property The floating floor type anti-vibration floor structure could be easily constructed.

特開平9−242314号公報Japanese Patent Laid-Open No. 9-242314 実用新案登録3159295号公報Utility Model Registration No. 3159295

しかしながら、上記した特許文献1,2等に開示された防振材は、いずれも合成樹脂発泡体の圧縮変形を利用して振動を減衰させるものであり、例えば、減衰対象の振動数が低くなって来ると圧縮強度との兼ね合いから防振設計が難しいものであった。即ち、従来は、防振材の弾性率を小さくすることにより、防振性能を改善する努力もなされてきたが、材料の弾性率を小さくすることには圧縮強度との兼ね合いから限界があり、十分な防振性能を有するものとすることは困難であった。   However, all of the vibration-damping materials disclosed in Patent Documents 1 and 2 described above attenuate vibration by using compression deformation of the synthetic resin foam. For example, the vibration frequency to be attenuated is reduced. When it came, it was difficult to design anti-vibration because of the balance with compressive strength. That is, in the past, efforts have been made to improve the vibration isolation performance by reducing the elastic modulus of the vibration isolator, but there is a limit to reducing the elastic modulus of the material from the viewpoint of compressive strength, It was difficult to have sufficient vibration-proof performance.

本発明は、上述した背景技術が有する課題に鑑みなされたものであって、その目的は、優れた防振性能が発現される防振床構造および防振材を提供することにある。   The present invention has been made in view of the problems of the background art described above, and an object thereof is to provide a vibration-proof floor structure and a vibration-proof material that exhibit excellent vibration-proof performance.

上記した目的を達成するため、本発明は、次の〔1〕〜〔7〕の防振床構造および防振材とした。
〔1〕構造物の床基盤と、該床基盤の上に敷設された防振材と、該防振材の上に配置された面材とからなる防振床構造であって、上記防振材が、少なくとも一枚の合成樹脂発泡体平板部と、該平板部の板面に配設される複数の合成樹脂発泡体凸部を備え、上記複数の合成樹脂発泡体凸部は上記平板部の上板面に当接或いは固定されて配置される第1種の発泡体凸部と上記平板部の下板面に当接或いは固定されて配置される第2種の発泡体凸部とにより構成され、上記第1種の発泡体凸部が上記平板部の上板面に配置されている位置と上記第2種の発泡体凸部が上記平板部の下板面に配置されている位置とが平面視で重ならないように、上記合成樹脂発泡体凸部が上記平板部の板面に配設されており、上記合成樹脂発泡体平板部の板面の面積Sに対する、該平板部の上板面に配置される第1種の発泡体凸部の凸部上面の面積s1の合計面積S1と該平板部の下板面に配置される第2種の発泡体凸部の凸部上面の面積s2の合計面積S2との合計面積の割合((S1+S2)/S)が0.15以上であり、かつs1とs2との比(s1/s2)が0.3〜3.5であることを特徴とする、防振床構造。
〔2〕上記合成樹脂発泡体平板部の上板面に当接或いは固定されて配置される上記第1種の発泡体凸部が正方形格子点を形成するように配設され、上記平板部の下板面に当接或いは固定されて配置される上記第2種の発泡体凸部が上記正方形の対角線の交点の位置に配設されていることを特徴とする、上記〔1〕に記載の防振床構造。
〔3〕上記合成樹脂発泡体平板部の適所に、該平板部を貫通した状態で防振ゴムが取り付けられていることを特徴とする、上記〔1〕または〔2〕に記載の防振床構造。
〔4〕上記合成樹脂発泡体平板部と上記第1種および第2種の発泡体凸部とが、ポリオレフィン系樹脂発泡粒子型内成形体であることを特徴とする、上記〔1〕〜〔3〕のいずれかに記載の防振床構造。
〔5〕上記合成樹脂発泡体平板部と上記第1種および第2種の発泡体凸部とが、架橋ポリエチレン系樹脂発泡粒子型内成形体であることを特徴とする、上記〔1〕〜〔3〕のいずれかに記載の防振床構造。
〔6〕少なくとも一枚の合成樹脂発泡体平板部と、該平板部の板面に配設される複数の合成樹脂発泡体凸部を備え、上記複数の合成樹脂発泡体凸部は上記平板部の上板面に当接或いは固定されて配置される第1種の発泡体凸部と上記平板部の下板面に当接或いは固定されて配置される第2種の発泡体凸部とにより構成され、上記第1種の発泡体凸部が上記平板部の上板面に配置されている位置と上記第2種の発泡体凸部が上記平板部の下板面に配置されている位置とが平面視で重ならないように、上記合成樹脂発泡体凸部が上記平板部の板面に配設されており、上記合成樹脂発泡体平板部の板面の面積Sに対する、該平板部の上板面に配置される第1種の発泡体凸部の凸部上面の面積s1の合計面積S1と該平板部の下板面に配置される第2種の発泡体凸部の凸部上面の面積s2の合計面積S2との合計面積の割合((S1+S2)/S)が0.15以上であり、かつs1とs2との比(s1/s2)が0.75〜1.25であることを特徴とする、防振材。
〔7〕上記合成樹脂発泡体平板部の上板面に当接或いは固定されて配置される上記第1種の発泡体凸部が正方形格子点を形成するように配設され、上記平板部の下板面に当接或いは固定されて配置される上記第2種の発泡体凸部が上記正方形の対角線の交点の位置に配設されていることを特徴とする、上記〔6〕に記載の防振材。
In order to achieve the above-described object, the present invention provides the following vibration-proof floor structure and vibration-proof material [1] to [7].
[1] A vibration-proof floor structure comprising a floor base of a structure, a vibration-proof material laid on the floor base, and a face material disposed on the vibration-proof material. The material includes at least one synthetic resin foam flat plate portion and a plurality of synthetic resin foam convex portions disposed on a plate surface of the flat plate portion, and the plurality of synthetic resin foam convex portions are the flat plate portions. A first type of foam convex portion arranged in contact with or fixed to the upper plate surface of the first plate and a second type of foam convex portion arranged in contact with or fixed to the lower plate surface of the flat plate portion. The position where the first type foam protrusion is arranged on the upper plate surface of the flat plate portion and the position where the second type foam protrusion is arranged on the lower plate surface of the flat plate portion. The synthetic resin foam convex portions are arranged on the plate surface of the flat plate portion so that they do not overlap with each other in plan view, and the area S of the plate surface of the synthetic resin foam flat plate portion is On the other hand, the total area S1 of the area s1 of the upper surface of the convex portion of the first type foam convex portion disposed on the upper plate surface of the flat plate portion and the second type foam disposed on the lower plate surface of the flat plate portion. The ratio ((S1 + S2) / S) of the total area to the total area S2 of the area s2 of the convex upper surface of the convex part is 0.15 or more, and the ratio (s1 / s2) between s1 and s2 is 0.3. An anti-vibration floor structure characterized by being -3.5.
[2] The first type foam protrusions arranged in contact with or fixed to the upper plate surface of the synthetic resin foam flat plate portion are disposed so as to form square lattice points, The above-mentioned second type foam convex part arranged in contact with or fixed to the lower plate surface is arranged at the position of the intersection of the diagonal lines of the square. Anti-vibration floor structure.
[3] The anti-vibration floor according to [1] or [2], wherein an anti-vibration rubber is attached to an appropriate position of the flat plate portion of the synthetic resin so as to penetrate the flat plate portion. Construction.
[4] The above synthetic resin foam flat plate portion and the first and second type foam convex portions are molded polyolefin resin foam particles, and the above-mentioned [1] to [ 3].
[5] The above synthetic resin foam flat plate portion and the first and second type foam protrusions are cross-linked polyethylene resin foamed in-mold molded articles, [3] The vibration-proof floor structure according to any one of [3].
[6] It includes at least one synthetic resin foam flat plate portion and a plurality of synthetic resin foam convex portions disposed on the plate surface of the flat plate portion, and the plurality of synthetic resin foam convex portions are the flat plate portions. A first type of foam convex portion arranged in contact with or fixed to the upper plate surface of the first plate and a second type of foam convex portion arranged in contact with or fixed to the lower plate surface of the flat plate portion. The position where the first type foam protrusion is arranged on the upper plate surface of the flat plate portion and the position where the second type foam protrusion is arranged on the lower plate surface of the flat plate portion. The synthetic resin foam convex portions are disposed on the plate surface of the flat plate portion so that they do not overlap with each other in plan view, and the flat plate portion has an area S of the plate surface of the synthetic resin foam flat plate portion. The total area S1 of the area s1 of the upper surface of the convex portion of the first type of foam convex portion disposed on the upper plate surface and the second surface disposed on the lower plate surface of the flat plate portion. The ratio of the total area to the total area S2 of the area s2 of the convex upper surface of the foam convex part ((S1 + S2) / S) is 0.15 or more, and the ratio (s1 / s2) between s1 and s2 is An anti-vibration material characterized by being 0.75 to 1.25.
[7] The first type foam protrusions arranged in contact with or fixed to the upper plate surface of the synthetic resin foam flat plate portion are disposed so as to form square lattice points, The above-mentioned second type foam convex part arranged in contact with or fixed to the lower plate surface is arranged at the position of the intersection of the diagonal lines of the square. Anti-vibration material.

上記した本発明の防振床構造によれば、合成樹脂発泡体凸部を合成樹脂発泡体平板部の上下板面にそれぞれ配設した防振材が床基盤上に敷設され、該防振材の上にコンクリート床などの面材が配置されたものであって、上記防振材は、合成樹脂発泡体平板部の上板面と下板面で合成樹脂発泡体凸部が該平板部に配置される位置が異なる位置に配設されていると共に、該発泡体凸部と該平板部の面積等が所定の関係を満足するものに設計されているため、振動に対して合成樹脂発泡体平板部の圧縮変形のみならず効果的な撓み変形によっても振動を減衰させることができ、より広い範囲の周波数域の振動を効果的に防振し得るものとなる。   According to the above-described vibration-proof floor structure of the present invention, the vibration-proof material having the synthetic resin foam convex portions respectively disposed on the upper and lower plate surfaces of the synthetic resin foam flat plate portion is laid on the floor base, and the vibration-proof material. A surface material such as a concrete floor is disposed on the surface, and the vibration isolating material has a synthetic resin foam convex portion on the flat plate portion on the upper plate surface and the lower plate surface of the synthetic resin foam flat plate portion. Synthetic resin foam against vibration because it is arranged at different positions and designed so that the area of the foam convex part and the flat plate part satisfies a predetermined relationship. Vibration can be damped not only by compressive deformation of the flat plate portion but also by effective bending deformation, and vibration in a wider frequency range can be effectively prevented.

本発明の防振床構造に係る防振材の第1の実施形態を示した図であって、(a)は平面図、(b)は正面図、(c)は右側面図である。It is the figure which showed 1st Embodiment of the vibration isolator which concerns on the vibration isolator floor structure of this invention, Comprising: (a) is a top view, (b) is a front view, (c) is a right view. 図1の防振材を用いて構築した本発明の防振床構造を示した図であって、(a)は図1のA−A線に沿う部分に相当する防振床部分の概念的な断面図、(b)は(a)図のB部分の拡大断面図である。It is the figure which showed the anti-vibration floor structure of this invention constructed | assembled using the anti-vibration material of FIG. 1, Comprising: (a) is notional of the anti-vibration floor part equivalent to the part in alignment with the AA of FIG. (B) is an expanded sectional view of B part of (a) figure. 本発明の防振床構造に係る防振材の第2の実施形態において用いる第1の合成樹脂発泡体板を示した図であって、(a)は平面図、(b)は正面図、(c)は右側面図である。It is the figure which showed the 1st synthetic resin foam board used in 2nd Embodiment of the vibration isolator which concerns on the vibration-proof floor structure of this invention, (a) is a top view, (b) is a front view, (C) is a right side view. 本発明の防振床構造に係る防振材の第2の実施形態において用いる第2の合成樹脂発泡体板を示した図であって、(a)は平面図、(b)は正面図、(c)は右側面図である。It is the figure which showed the 2nd synthetic resin foam board used in 2nd Embodiment of the vibration isolator which concerns on the vibration-proof floor structure of this invention, Comprising: (a) is a top view, (b) is a front view, (C) is a right side view. 図3、図4に示した合成樹脂発泡体板を組み合わせて形成した本発明の防振床構造に係る防振材の第2の実施形態を示した図であって、(a)は平面図、(b)は正面図、(c)は右側面図である。It is the figure which showed 2nd Embodiment of the vibration-proof material based on the vibration-proof floor structure of this invention formed combining the synthetic resin foam board shown in FIG. 3, FIG. 4, Comprising: (a) is a top view (B) is a front view, (c) is a right side view. 図3〜図5の防振材を用いて構築した本発明の防振床構造を示した図であって、図5のC−C線に沿う部分に相当する防振床部分の概念的な断面図である。It is the figure which showed the anti-vibration floor structure of this invention constructed | assembled using the anti-vibration material of FIGS. 3-5, Comprising: The conceptual of the anti-vibration floor part corresponded to the part in alignment with CC line of FIG. It is sectional drawing. 防振材の振動伝達率の測定方法を概念的に示した正面図である。It is the front view which showed notionally the measuring method of the vibration transmissibility of a vibration isolator. 強制加振の振動数を変えたときの理論に基づく振動伝達率の変化を示した図である。It is the figure which showed the change of the vibration transmissibility based on the theory when the frequency of forced excitation is changed. 本発明の防振床構造に係る防振材の第1の実施形態の一例として作製した実施例の試験体を示した図であって、(a)は平面図、(b)は正面図である。It is the figure which showed the test body of the Example produced as an example of 1st Embodiment of the vibration isolator which concerns on the vibration isolator floor structure of this invention, Comprising: (a) is a top view, (b) is a front view. is there. 図9の実施例の試験体に対して圧縮変形のみを生じさせる従来技術の一例として作製した比較例の試験体を示した図であって、(a)は平面図、(b)は正面図である。It is the figure which showed the test body of the comparative example produced as an example of the prior art which produces only a compressive deformation with respect to the test body of the Example of FIG. 9, Comprising: (a) is a top view, (b) is a front view It is. 本発明の防振床構造に係る防振材の第2の実施形態の一例として作製した実施例の試験体を示した図であって、(a)は平面図、(b)は正面図である。It is the figure which showed the test body of the Example produced as an example of 2nd Embodiment of the vibration isolator which concerns on the vibration-proof floor structure of this invention, Comprising: (a) is a top view, (b) is a front view. is there. 図11の実施例の試験体に対して圧縮変形のみを生じさせる従来技術の一例として作製した比較例の試験体を示した図であって、(a)は平面図、(b)は正面図である。It is the figure which showed the test body of the comparative example produced as an example of the prior art which produces only a compressive deformation with respect to the test body of the Example of FIG. 11, Comprising: (a) is a top view, (b) is a front view It is. 本発明の防振床構造に係る防振材の第1の実施形態の他の例として作製した実施例の試験体を示した図であって、(a)は平面図、(b)は正面図である。It is the figure which showed the test body of the Example produced as another example of 1st Embodiment of the vibration isolator which concerns on the vibration-proof floor structure of this invention, (a) is a top view, (b) is a front view FIG. 図13の実施例の試験体に対して上面の面積が小さな第1種の発泡体凸部が形成されている一例として作製した実施例の試験体を示した図であって、(a)は平面図、(b)は正面図である。It is the figure which showed the test body of the Example produced as an example by which the 1st type foam convex part with a small upper surface area was formed with respect to the test body of the Example of FIG. 13, (a) A top view and (b) are front views.

以下、上記した本発明の防振床構造に係る防振材の実施形態を、図面を示して詳細に説明する。   Hereinafter, embodiments of the vibration isolator according to the above-described vibration isolator floor structure of the present invention will be described in detail with reference to the drawings.

図1は、本発明の防振床構造に係る防振材の第1の実施形態を示した図である。
この例では、防振材1は、一枚の合成樹脂発泡体平板部2を備えている。そして、該合成樹脂発泡体平板部2の上板面と下板面に、多数の合成樹脂発泡体凸部3a,3bが正方形格子点を形成するようにそれぞれ配設されている。
FIG. 1 is a view showing a first embodiment of a vibration isolating material according to the vibration isolating floor structure of the present invention.
In this example, the vibration isolator 1 includes a single synthetic resin foam flat plate portion 2. And many synthetic resin foam convex parts 3a and 3b are each arrange | positioned so that a square lattice point may be formed in the upper-plate surface and lower-plate surface of this synthetic resin foam flat plate part 2. FIG.

合成樹脂発泡体平板部2の上下板面に配設された上記合成樹脂発泡体凸部3a,3bは、図1に示されているように、上板面に合成樹脂発泡体凸部(第1種の発泡体凸部)3aが配設されている箇所の下板面には合成樹脂発泡体凸部(第2種の発泡体凸部)3bがなく、下板面に合成樹脂発泡体凸部(第2種の発泡体凸部)3bが配設されている箇所の上板面には合成樹脂発泡体凸部(第1種の発泡体凸部)3aがなく、上下板面で平面視で重ならないように配設されている。具体的には、上板面の合成樹脂発泡体凸部(第1種の発泡体凸部)3aが配設されている正方形格子点の各正方形の中心(対角線の交点)が作る格子点の位置に、下板面の合成樹脂発泡体凸部(第2種の発泡体凸部)3bが配設されている。そして好ましくは、上記合成樹脂発泡体凸部3a,3bは、上記合成樹脂発泡体平板部2に接着或いは一体成型等により固定されており、図示した実施形態のものにあっては、合成樹脂発泡体平板部2と合成樹脂発泡体凸部3a,3bとが、合成樹脂発泡粒子の型内成型にて一体的に形成されている。また、この例では、4個の防振ゴム4が、荷重負担ができるだけ均等になるような位置で合成樹脂発泡体平板部2を貫通して設けられている。この防振ゴム4は、合成樹脂発泡体平板部2に現場で固定されても、或いは予め工場で固定されてもよい。   As shown in FIG. 1, the synthetic resin foam convex portions 3a and 3b arranged on the upper and lower plate surfaces of the synthetic resin foam flat plate portion 2 are formed on the upper plate surface. There is no synthetic resin foam convex portion (second type foam convex portion) 3b on the lower plate surface where the one type of foam convex portion 3a is disposed, and the synthetic resin foam is provided on the lower plate surface. There is no synthetic resin foam convex part (first type foam convex part) 3a on the upper plate surface where the convex part (second type foam convex part) 3b is disposed. It arrange | positions so that it may not overlap by planar view. Specifically, the lattice point formed by the center of each square (intersection of diagonal lines) of the square lattice point on which the synthetic resin foam convex portion (first type foam convex portion) 3a on the upper plate surface is disposed. The synthetic resin foam convex part (2nd type foam convex part) 3b of the lower board surface is arrange | positioned in the position. Preferably, the synthetic resin foam convex portions 3a and 3b are fixed to the synthetic resin foam flat plate portion 2 by adhesion or integral molding. In the illustrated embodiment, the synthetic resin foam convex portions 3a and 3b are fixed. The body flat plate portion 2 and the synthetic resin foam convex portions 3a and 3b are integrally formed by in-mold molding of synthetic resin foam particles. Moreover, in this example, the four anti-vibration rubbers 4 are provided so as to penetrate the synthetic resin foam flat plate portion 2 at a position where the load burden becomes as uniform as possible. The anti-vibration rubber 4 may be fixed to the synthetic resin foam flat plate portion 2 at the site or may be fixed in advance at the factory.

上記合成樹脂発泡体凸部(第1種と第2種の発泡体凸部)3a,3bは、均等に分布するように合成樹脂発泡体平板部2の上下板面にそれぞれ配設されていればよく、ここでは正方形格子点を形成するように配設した例を示したが、長方形格子点、或いは三角形格子点、六角形格子点を形成するように配設してもよい。また、合成樹脂発泡体平板部2の上下板面で、合成樹脂発泡体凸部3a,3bが該合成樹脂発泡体平板部2に配置される位置が平面視で重ならないものであれば、一見乱雑に見えるような配置であってもよい。   The synthetic resin foam convex portions (first and second type foam convex portions) 3a and 3b are respectively disposed on the upper and lower plate surfaces of the synthetic resin foam flat plate portion 2 so as to be evenly distributed. Here, an example in which square lattice points are formed is shown here, but rectangular lattice points, triangular lattice points, or hexagonal lattice points may be formed. Also, if the positions where the synthetic resin foam convex portions 3a and 3b are arranged on the synthetic resin foam flat plate portion 2 on the upper and lower plate surfaces of the synthetic resin foam flat plate portion 2 do not overlap in a plan view, An arrangement that looks messy may be used.

図2は、図1の防振材を用いて浮き床構造の防振床を構築した状態を示した図である。
この防振床10は、基礎コンクリート床5a上に上記した防振材1を敷設し、その上方に合板6を介してコンクリートを打設しコンクリート床からなる面材を形成し、浮きコンクリート床5bを構築したものである。この場合、荷重分布が均等になるように防振材1に防振ゴム4が配設されているので、合成樹脂発泡体凸部(第1種と第2種の発泡体凸部)3a,3bだけで上部からの荷重を支えるとき、一部の合成樹脂発泡体凸部が潰れたり、振動吸収力が低下することがあるが、防振ゴム4は、これを防止する効果を有する。また、防振ゴム4の振動吸収周波数帯は、防振材1の他の部分を構成する合成樹脂発泡体平板部2などの合成樹脂発泡体のそれとは異なるので、防振ゴム4を適所に設けることは、広い周波数帯域で振動を吸収することができる効果も期待できる。
FIG. 2 is a diagram showing a state in which a vibration-isolating floor having a floating floor structure is constructed using the vibration-isolating material of FIG.
This anti-vibration floor 10 lays the above-described anti-vibration material 1 on the foundation concrete floor 5a, and casts concrete over the plywood 6 above it to form a face material made of a concrete floor. The floating concrete floor 5b Is built. In this case, since the anti-vibration rubber 4 is disposed on the anti-vibration material 1 so that the load distribution is uniform, the synthetic resin foam convex portions (first type and second type foam convex portions) 3a, When supporting the load from the upper part only with 3b, some synthetic resin foam convex parts may be crushed or the vibration absorbing power may be reduced, but the anti-vibration rubber 4 has an effect of preventing this. Further, since the vibration absorption frequency band of the vibration isolating rubber 4 is different from that of the synthetic resin foam such as the synthetic resin foam flat plate portion 2 constituting the other part of the vibration isolating material 1, the vibration isolating rubber 4 is put in place. Providing it can also be expected to have the effect of absorbing vibration in a wide frequency band.

また、上記構造の防振床10において振動を受けた場合、合成樹脂発泡体凸部3a,3bが圧縮変形すると共に合成樹脂発泡体平板部2が撓み変形し、振動を吸収する。即ち、上方の浮きコンクリート床5aの振動は、防振ゴム4および上方の合成樹脂発泡体凸部(第1種の発泡体凸部)3aの圧縮変形を生じさせると共に、下方の合成樹脂発泡体凸部(第2種の発泡体凸部)3bは上方の合成樹脂発泡体凸部(第1種の発泡体凸部)3aの直下ではない箇所で合成樹脂発泡体平板部2を支えるため、図2(b)に拡大して示すような剪断力による合成樹脂発泡体平板部2の撓み変形を生じさせ、さらに合成樹脂発泡体平板部2を支える合成樹脂発泡体凸部(第2種の発泡体凸部)3bに圧縮変形を生じさせる。そのため、振動は、合成樹脂発泡体の圧縮変形のみならず撓み変形によっても吸収される。   When vibration is received in the vibration-isolating floor 10 having the above structure, the synthetic resin foam convex portions 3a and 3b are compressed and deformed, and the synthetic resin foam flat plate portion 2 is deformed and absorbs vibration. That is, the vibration of the upper floating concrete floor 5a causes compressive deformation of the anti-vibration rubber 4 and the upper synthetic resin foam convex portion (first type foam convex portion) 3a, and the lower synthetic resin foam. Since the convex portion (second type foam convex portion) 3b supports the synthetic resin foam flat plate portion 2 at a location not directly below the upper synthetic resin foam convex portion (first type foam convex portion) 3a, A synthetic resin foam convex portion (second type) that causes the deformation deformation of the synthetic resin foam flat plate portion 2 due to the shearing force as shown in an enlarged view in FIG. 2B and further supports the synthetic resin foam flat plate portion 2. The foam protrusion 3b is caused to undergo compression deformation. Therefore, vibration is absorbed not only by compressive deformation of the synthetic resin foam but also by bending deformation.

ここで、固体の圧縮変形に関係する縦弾性係数Eと撓み変形に関係する横弾性係数Gは、ポアソン比をν(ν>0)とすると、E=G/2(1+ν)の関係がある。
そのため、一般に固体の縦弾性係数Eは横弾性係数Gよりも大きい。また図2から分かるように、形成される床の厚さを考慮した場合、合成樹脂発泡体凸部の厚みより合成樹脂発泡体凸部の間隔(支点間の距離)を大きくすることができる。そのため、横弾性係数Gと支点間の距離が関係する撓み変形の固有振動数は、縦弾性係数Eと厚みが関係する圧縮変形の固有振動数より低いものとなり、この両者の変形を利用することとなる上記防振材1の固有振動数は、圧縮変形のみを利用するものに比して低いものとなると考えられる。防振材の固有振動数が低い方向にシフトすることは、防振効果が認められる周波数域が広がることを意味し、上記第1の実施形態に係る防振材1は、広い周波数域で振動を効果的に防振することができるものとなる。
Here, the longitudinal elastic modulus E related to the compressive deformation of the solid and the transverse elastic modulus G related to the bending deformation have a relationship of E = G / 2 (1 + ν), where Poisson's ratio is ν (ν> 0). .
Therefore, generally, the longitudinal elastic modulus E of the solid is larger than the transverse elastic modulus G. As can be seen from FIG. 2, when the thickness of the floor to be formed is taken into consideration, the interval between the synthetic resin foam convex portions (the distance between the fulcrums) can be made larger than the thickness of the synthetic resin foam convex portions. Therefore, the natural frequency of the flexural deformation related to the distance between the transverse elastic modulus G and the fulcrum is lower than the natural frequency of the compressive deformation related to the longitudinal elastic modulus E and the thickness. It is considered that the natural frequency of the vibration isolator 1 becomes lower than that using only compression deformation. Shifting in the direction in which the natural frequency of the vibration isolator is low means that the frequency range where the anti-vibration effect is recognized widens, and the vibration isolator 1 according to the first embodiment vibrates in a wide frequency range. Can be effectively anti-vibrated.

図3〜図5は、本発明の防振床構造に係る防振材の第2の実施形態を示した図であり、図3は第2の実施形態に係る防振材を構成する第1の合成樹脂発泡体板を示した図、図4は同じく第2の実施形態に係る防振材を構成する第2の合成樹脂発泡体板を示した図、図5は前記第1、第2の合成樹脂発泡体板を組み合わせて形成した本発明に係る防振材の第2の実施形態を示した図である。
この第2の実施形態に係る防振材11では、第1と第2の合成樹脂発泡体板11A,11Bを備える。第1の合成樹脂発泡体板11Aの合成樹脂発泡体平板部12aの下板面には、多数の合成樹脂発泡体凸部(第1種の発泡体凸部)13aが正方形格子点を形成するように配設されている。この第1の合成樹脂発泡体板11Aに配設された合成樹脂発泡体凸部13aが配設されている格子点の各正方形の中心(対角線の交点)が作る格子点に対応する位置で、第2の合成樹脂発泡体板11Bの合成樹脂発泡体平板部12bの下板面に合成樹脂発泡体凸部(第2種の発泡体凸部)13bが配設されている。逆に、第2の合成樹脂発泡体板11Bの合成樹脂発泡体平板部12bの下板面の合成樹脂発泡体凸部(第2種の発泡体凸部)13bが配設されている格子点の各正方形の中心(対角線の交点)が作る格子点に対応する位置で、第1の合成樹脂発泡体板11Aの合成樹脂発泡体平板部12aの下板面に合成樹脂発泡体凸部(第1種の発泡体凸部)13aが配設されている。そして好ましくは、合成樹脂発泡体凸部13a,13bは、接着或いは一体成形によりそれぞれ合成樹脂発泡体平板部12a,12bに固定され、第1と第2の合成樹脂発泡体板11A,11Bが形成されている。図示した実施形態のものにあっては、上記第1の合成樹脂発泡体板11Aは、合成樹脂発泡体平板部12aと上記第1種の発泡体凸部13a、および上記第2の合成樹脂発泡体板11Bは、合成樹脂発泡体平板部12bと上記第2種の発泡体凸部13bとが、合成樹脂発泡粒子の型内成型にてそれぞれ一体的に形成されている。
3-5 is the figure which showed 2nd Embodiment of the vibration isolator which concerns on the vibration isolator floor structure of this invention, FIG. 3 is 1st which comprises the vibration isolator which concerns on 2nd Embodiment. FIG. 4 is a view showing a second synthetic resin foam plate constituting the vibration isolator according to the second embodiment, and FIG. 5 is a view showing the first and second synthetic resin foam plates. It is the figure which showed 2nd Embodiment of the vibration isolator which concerns on this invention formed combining the synthetic resin foam board of this.
The vibration isolator 11 according to the second embodiment includes first and second synthetic resin foam plates 11A and 11B. A large number of synthetic resin foam convex portions (first type foam convex portions) 13a form square lattice points on the lower plate surface of the synthetic resin foam flat plate portion 12a of the first synthetic resin foam plate 11A. It is arranged like this. At the position corresponding to the lattice point formed by the center of each square (intersection of diagonal lines) of the lattice point where the synthetic resin foam convex portion 13a disposed on the first synthetic resin foam plate 11A is disposed, A synthetic resin foam convex portion (second type foam convex portion) 13b is disposed on the lower plate surface of the synthetic resin foam flat plate portion 12b of the second synthetic resin foam plate 11B. On the contrary, the lattice point where the synthetic resin foam convex part (2nd type foam convex part) 13b of the lower plate surface of the synthetic resin foam flat plate part 12b of the second synthetic resin foam board 11B is disposed. Of the first synthetic resin foam plate 11A on the lower plate surface of the first synthetic resin foam plate 11A at a position corresponding to a lattice point formed by the center of each square (intersection of diagonal lines). 1 type of foam convex part) 13a is arrange | positioned. Preferably, the synthetic resin foam convex portions 13a and 13b are fixed to the synthetic resin foam flat plate portions 12a and 12b, respectively, by bonding or integral molding to form the first and second synthetic resin foam plates 11A and 11B. Has been. In the illustrated embodiment, the first synthetic resin foam plate 11A includes a synthetic resin foam flat plate portion 12a, the first type foam convex portion 13a, and the second synthetic resin foam. In the body plate 11B, the synthetic resin foam flat plate portion 12b and the second-type foam convex portion 13b are integrally formed by in-mold molding of synthetic resin foam particles.

図5に示したように、第1、第2の合成樹脂発泡体板11A,11Bを組み合わせて形成したこの第2の実施形態に係る防振材11では、第2の合成樹脂発泡体板11Bの下板面に形成された合成樹脂発泡体凸部(第2種の発泡体凸部)13bが、第2の合成樹脂発泡体板11Bの合成樹脂発泡体平板部12bを支えている。他方、該第2の合成樹脂発泡体板11Bの合成樹脂発泡体平板部12bの上板面に第1の合成樹脂発泡体板11Aの下板面に形成された合成樹脂発泡体凸部(第1種の発泡体凸部)13aが当接しているが、その直下には前記合成樹脂発泡体凸部(第2種の発泡体凸部)13bがなく、発泡体凸部13bと13aとはずれた位置、即ち平面視にて重ならないように配設されている。また、この例では、4個の防振ゴム14が、荷重負担ができるだけ均等になるような位置で第1と第2の合成樹脂発泡体板11A,11Bを貫通して設けられている。この第1と第2の合成樹脂発泡体板11A,11Bの組み合わせ、および防振ゴム14の固定は、現場で行なっても、或いは工場で行なってもよい。   As shown in FIG. 5, in the vibration isolator 11 according to the second embodiment formed by combining the first and second synthetic resin foam plates 11A and 11B, the second synthetic resin foam plate 11B. Synthetic resin foam convex portions (second type foam convex portions) 13b formed on the lower plate surface of the lower plastic plate support the synthetic resin foam flat plate portion 12b of the second synthetic resin foam plate 11B. On the other hand, the synthetic resin foam convex part (the first synthetic resin foam plate 11B formed on the lower plate surface of the first synthetic resin foam plate 11A on the upper plate surface of the synthetic resin foam flat plate portion 12b of the second synthetic resin foam plate 11B. One type of foam convex part) 13a is in contact, but there is no synthetic resin foam convex part (second type foam convex part) 13b immediately below, and the foam convex parts 13b and 13a are not aligned. Are arranged so as not to overlap each other in plan view. Further, in this example, four anti-vibration rubbers 14 are provided so as to penetrate the first and second synthetic resin foam plates 11A and 11B at a position where the load burden is as even as possible. The combination of the first and second synthetic resin foam plates 11A and 11B and the anti-vibration rubber 14 may be fixed on site or in a factory.

なお、上記した第1の実施形態と同じく、上記合成樹脂発泡体凸部(第1種と第2種の発泡体凸部)13a,13bは、異なる位置で第2の合成樹脂発泡体板11Bの合成樹脂発泡体平板部12bの上板面、下板面にそれぞれ当接或いは固定されていればよく、図3〜図5では正方形格子点を形成する位置に配設した例を示したが、長方形格子点、或いは三角形格子点、六角形格子点を形成する位置であってもよい。また、第2の合成樹脂発泡体板11Bの合成樹脂発泡体平板部12bの上下板面で、合成樹脂発泡体凸部13a,13bが該発泡体平板部に当接或いは固定される位置が平面視で重ならないものであれば、一見乱雑に見えるような配置であってもよい。   As in the first embodiment described above, the synthetic resin foam convex portions (first and second type foam convex portions) 13a and 13b are different from each other in the second synthetic resin foam plate 11B. The synthetic resin foam flat plate portion 12b may be in contact with or fixed to the upper plate surface and the lower plate surface, respectively, and FIGS. 3 to 5 show examples in which the square lattice points are formed. , Rectangular lattice points, or triangular lattice points or hexagonal lattice points. Further, on the upper and lower plate surfaces of the synthetic resin foam flat plate portion 12b of the second synthetic resin foam plate 11B, the positions where the synthetic resin foam convex portions 13a and 13b are in contact with or fixed to the foam flat plate portion are flat. As long as it does not overlap visually, it may be arranged so that it looks messy.

図6は、図3〜図5に示した防振材11を用いて浮き床構造の防振床を構築した状態を示した図である。
この防振床20は、基礎コンクリート床15a上に上記した防振材11を敷設し、その上方からコンクリートを打設し、浮きコンクリート床15bを構築したものである。この第2の実施形態に係る防振材11を用いた防振床20の場合においても、防振ゴム14が適所に配設されているので、この防振ゴム14は、合成樹脂発泡体凸部(第1種と第2種の発泡体凸部)13a,13bだけで上部からの荷重を支えるとき、一部の合成樹脂発泡体凸部が潰れたり、振動吸収力がなくなるのを防止する効果を有する。また、防振材11の他の部分を構成する合成樹脂発泡体と防振ゴム14の振動吸収周波数帯が異なるので、広い周波数帯域で振動を吸収することができる効果も期待できる。
FIG. 6 is a diagram illustrating a state in which a vibration-isolating floor having a floating floor structure is constructed using the vibration-isolating material 11 illustrated in FIGS. 3 to 5.
This anti-vibration floor 20 is constructed by laying the above-mentioned anti-vibration material 11 on a foundation concrete floor 15a and placing concrete from above to construct a floating concrete floor 15b. Even in the case of the vibration-proof floor 20 using the vibration-proof material 11 according to the second embodiment, the vibration-proof rubber 14 is disposed at an appropriate position. When the load from the upper part is supported only by the parts (first and second type foam convex parts) 13a, 13b, it is prevented that some synthetic resin foam convex parts are crushed or the vibration absorbing power is lost. Has an effect. Moreover, since the vibration absorption frequency band of the synthetic resin foam which comprises the other part of the vibration-proof material 11 and the vibration-proof rubber 14 differs, the effect which can absorb a vibration in a wide frequency band can also be anticipated.

また、上記構造の防振床20において振動を受けた場合、防振ゴム14は圧縮変形により振動を吸収し、また、合成樹脂発泡体凸部13a,13bの圧縮変形および第2の合成樹脂発泡体板11Bの合成樹脂発泡体平板部12bの撓み変形により振動を吸収する。即ち、上方の浮きコンクリート床15bの振動は防振ゴム14および第1の合成樹脂発泡体板11Aを支える合成樹脂発泡体凸部(第1種の発泡体凸部)13aの圧縮変形を生じさせると共に、下方の合成樹脂発泡体凸部(第2種の発泡体凸部)13bは上方の合成樹脂発泡体凸部(第1種の発泡体凸部)13aの直下ではない箇所で第2の合成樹脂発泡体板11Bを支えるため、上記第1の実施形態の場合の図2(b)と同様に剪断力による第2の合成樹脂発泡体板11Bの合成樹脂発泡体平板部12bの撓み変形を生じさせ、さらに該第2の合成樹脂発泡体板11Bを支える下方の合成樹脂発泡体凸部(第2種の発泡体凸部)13bに圧縮変形を生じさせる。そのため、振動は、合成樹脂発泡体の圧縮変形のみならず撓み変形によっても吸収され、上記第1の実施形態の場合と同様の理由により、この第2の実施形態に係る防振材11は、広い範囲の周波数域にて効果的に防振し得るものとなる。   Further, when vibration is received in the vibration-isolating floor 20 having the above structure, the vibration-proof rubber 14 absorbs vibration due to compression deformation, and the compression deformation of the synthetic resin foam convex portions 13a and 13b and the second synthetic resin foaming. The vibration is absorbed by the bending deformation of the synthetic resin foam flat plate portion 12b of the body plate 11B. That is, the vibration of the upper floating concrete floor 15b causes the compressive deformation of the anti-vibration rubber 14 and the synthetic resin foam convex portion (first type foam convex portion) 13a that supports the first synthetic resin foam plate 11A. At the same time, the lower synthetic resin foam convex portion (second type foam convex portion) 13b is not directly below the upper synthetic resin foam convex portion (first type foam convex portion) 13a. In order to support the synthetic resin foam plate 11B, the deformation deformation of the synthetic resin foam flat plate portion 12b of the second synthetic resin foam plate 11B due to the shearing force as in FIG. 2B in the case of the first embodiment. Further, the lower synthetic resin foam convex portion (second type foam convex portion) 13b supporting the second synthetic resin foam plate 11B is compressed and deformed. Therefore, the vibration is absorbed not only by the compression deformation of the synthetic resin foam but also by the bending deformation. For the same reason as in the case of the first embodiment, the vibration isolator 11 according to the second embodiment is Vibration can be effectively prevented in a wide frequency range.

上記した第2の実施形態に係る防振材11は、2枚の合成樹脂発泡体板11A,11Bを備えるが、3枚以上の合成樹脂発泡体板を重ねることも可能である。この際、少なくとも1枚の合成樹脂発泡体板の合成樹脂発泡体平板部の上板面に当接或いは固定されて配置される合成樹脂発泡体凸部(第1種の発泡体凸部)の直下には、その合成樹脂発泡体平板部の下板面に当接或いは固定されて配置される合成樹脂発泡体凸部(第2種の発泡体凸部)が平面視にて重ならないように、第1種と第2種の発泡体凸部を配設することにより、その合成樹脂発泡体平板部に撓み変形を起こさせて、振動を吸収させる。その場合においても、全ての合成樹脂発泡体板を貫通するように防振ゴムを配設し、上からの荷重が均等に合成樹脂発泡体凸部に分散されるように、防振ゴムを配設することが好ましい。   The vibration isolator 11 according to the second embodiment described above includes two synthetic resin foam plates 11A and 11B, but it is also possible to stack three or more synthetic resin foam plates. At this time, the synthetic resin foam convex part (first type foam convex part) arranged in contact with or fixed to the upper plate surface of the synthetic resin foam flat plate part of at least one synthetic resin foam board Immediately below, the synthetic resin foam convex portion (second type foam convex portion) arranged in contact with or fixed to the lower plate surface of the synthetic resin foam flat plate portion does not overlap in plan view. By arranging the first and second type foam protrusions, the synthetic resin foam flat plate portion is caused to bend and deform to absorb vibration. Even in such a case, the anti-vibration rubber is disposed so as to penetrate all the synthetic resin foam plates, and the anti-vibration rubber is arranged so that the load from above is evenly distributed to the convex portions of the synthetic resin foam. It is preferable to install.

上記した本発明に係る防振材の合成樹脂発泡体平板部や第1種および第2種の発泡体凸部を構成する基材樹脂としては、ポリエチレン系樹脂(低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン)、ポリプロピレン系樹脂(エチレン−プロピレンランダム共重合体、ブテン−プロピレンランダム共重合体、エチレン−プロピレンブロック共重合体、ブテン−プロピレンブロック共重合体、エチレン−プロピレン−ブテンランダム共重合体、ポリプロピレン)、ポリスチレン系樹脂(ポリスチレン、ハイインパクトポリスチレン、スチレン系共重合体樹脂)、その他、ポリスチレン系樹脂とポリオレフィン系樹脂との複合樹脂、フェノール樹脂、塩化ビニル樹脂、ポリカーボネート樹脂等を用いることができる。これらの基材樹脂は、架橋されたものであっても或いは無架橋のものであってもいずれでもよいが、耐久性の観点から架橋されていることが好ましい。前記の合成樹脂の中でも、得られる防振材の柔軟性と機械的強度とのバランスに優れ、耐水性が高く、また繰り返し圧縮永久歪が小さいことから、架橋ポリエチレン系樹脂、ポリプロピレン系樹脂等のポリオレフィン系樹脂、ポリスチレン系樹脂とポリオレフィン系樹脂との複合樹脂が好ましく、防振性能の観点から架橋ポリエチレン系樹脂が最も好ましい。   As the base resin constituting the synthetic resin foam flat plate portion and the first and second type foam convex portions of the vibration-damping material according to the present invention described above, a polyethylene-based resin (low density polyethylene, linear low Density polyethylene, high density polyethylene), polypropylene resin (ethylene-propylene random copolymer, butene-propylene random copolymer, ethylene-propylene block copolymer, butene-propylene block copolymer, ethylene-propylene-butene random) Copolymer, polypropylene), polystyrene resin (polystyrene, high impact polystyrene, styrene copolymer resin), other composite resins of polystyrene resin and polyolefin resin, phenol resin, vinyl chloride resin, polycarbonate resin, etc. Can be used. These base resins may be cross-linked or non-cross-linked, but are preferably cross-linked from the viewpoint of durability. Among the above synthetic resins, since the vibration-proof material obtained has an excellent balance between flexibility and mechanical strength, has high water resistance, and has a small repeated compression set, such as a crosslinked polyethylene resin, a polypropylene resin, etc. A polyolefin resin, a composite resin of a polystyrene resin and a polyolefin resin is preferable, and a crosslinked polyethylene resin is most preferable from the viewpoint of vibration proof performance.

また、上記合成樹脂発泡体平板部の製造方法としては、前記の樹脂を用いる押出発泡法、発泡粒子を用いる型内成形する方法等、従来公知の方法が挙げられる。それらの方法の中でも、得られる防振材の防振特性等の観点から発泡粒子型内成形法が好ましい。当該方法により得られた発泡粒子型内成形体は、縦、横、および厚み方向の機械的物性の均一性に優れることから本発明における防振材として特に好ましい。したがって、上記合成樹脂発泡体平板部や上記発泡体凸部としては、架橋ポリエチレン系樹脂発泡粒子型内成形体が特に好ましい。   Moreover, as a manufacturing method of the said synthetic resin foam flat plate part, conventionally well-known methods, such as the extrusion foaming method using the said resin, the method of carrying out the in-mold shaping | molding using foamed particle | grains, are mentioned. Among these methods, the foamed particle in-mold molding method is preferable from the viewpoint of vibration-proof characteristics of the vibration-proof material to be obtained. The foamed particle-in-mold molded product obtained by this method is particularly preferable as a vibration-proof material in the present invention because of excellent uniformity in mechanical properties in the vertical, horizontal, and thickness directions. Therefore, as the synthetic resin foam flat plate portion and the foam convex portion, a cross-linked polyethylene resin expanded particle-in-mold molded product is particularly preferable.

本発明において、上記の合成樹脂発泡体平板部と発泡体凸部の基材樹脂は通常、同じものを選択するが、異なるものを選択しても構わない。また、発泡体凸部と合成樹脂発泡体平板部を構成する発泡体の密度は、防振機能の観点から、0.02〜0.09g/cm3、更に0.03〜0.06g/cm3が好ましい。なお、本発明における防振材として、発泡体凸部と合成樹脂発泡体平板部を構成する発泡体の密度を異なるように設計することもできる。
また、上記した本発明に係る防振材の発泡体凸部は合成樹脂発泡体平板部に当接或いは固定されて配置される。なお、発泡体凸部と合成樹脂発泡体平板部とが固定される場合は、両者を接着剤にて接着することもできるし、発泡粒子の型内成形法等にて両者を一体成形することもできる。
In the present invention, the same base resin is usually selected for the synthetic resin foam flat plate portion and the foam convex portion, but different base resins may be selected. Moreover, the density of the foam which comprises a foam convex part and a synthetic resin foam flat plate part is 0.02-0.09 g / cm < 3 >, and also 0.03-0.06 g / cm from a viewpoint of a vibration proof function. 3 is preferred. In addition, as a vibration isolator in this invention, it can also design so that the density of the foam which comprises a foam convex part and a synthetic resin foam flat plate part may differ.
Moreover, the foam convex part of the above-mentioned vibration isolator according to the present invention is disposed in contact with or fixed to the synthetic resin foam flat plate part. In addition, when a foam convex part and a synthetic-resin foam flat plate part are fixed, both can also be adhere | attached with an adhesive agent, and both can be integrally molded by the in-mold molding method of a foam particle, etc. You can also.

上記合成樹脂発泡体平板部の形状は、正方形、或いは長方形の板状であることが好ましく、具体的には縦900〜2000mm、横600〜1500mmの板状が好ましい。また、上記第1種の発泡体凸部の合成樹脂発泡体平板部への配置は、該合成樹脂発泡体平板部を下から支える第2種の発泡体凸部の位置の中間位置付近であることが、合成樹脂発泡体平板部に撓み変形を有効に生じさせる上で好ましく、支点間距離となる発泡体凸部の間隔は、5〜30mmが好ましく、10〜25mmより好ましい。   The shape of the synthetic resin foam flat plate portion is preferably a square or rectangular plate shape, and specifically, a plate shape of 900 to 2000 mm in length and 600 to 1500 mm in width is preferable. In addition, the arrangement of the first type foam convex portion on the synthetic resin foam flat plate portion is in the vicinity of the middle position of the second type foam convex portion supporting the synthetic resin foam flat plate portion from below. This is preferable for effectively causing the flexural deformation in the flat plate portion of the synthetic resin foam, and the distance between the foam convex portions as the fulcrum distance is preferably 5 to 30 mm, more preferably 10 to 25 mm.

また、上記第1種および第2種の発泡体凸部の形状は、円柱、角柱、円錐、角錐、角錐台形、逆角錐台形など合成樹脂発泡体平板部を押圧する、或いは支えることのできる柱状であれば特に制限はないが、製造し易く、強度に優れ、破損しにくいことなどから、円柱、多角柱、円錐台形、多角錐台形、或いはそれらの一部を切欠いた形状のものから選択される1種以上の柱状であることが好ましい。これらの中では、圧縮されるに従がってより一層強い弾性が発現する、円錐台形、多角錐台形が好ましい。   The shape of the first and second type foam protrusions is a columnar shape that can press or support a synthetic resin foam flat plate such as a cylinder, a prism, a cone, a pyramid, a truncated pyramid, or an inverted truncated pyramid. If there is no particular limitation, it is selected from a cylinder, a polygonal column, a truncated cone, a truncated pyramid, or a part of which is notched because it is easy to manufacture, excellent in strength, and difficult to break. One or more columnar shapes are preferred. Among these, a truncated cone shape and a polygonal truncated pyramid shape that exhibit stronger elasticity as they are compressed are preferable.

また、第1種および第2種の発泡体凸部の先端の形状は、防振床構造を構成する際の安定性に優れることから、少なくとも施工状態において平面となるように形成されている。その場合、上記合成樹脂発泡体平板部の板面の面積Sに対する、該平板部の上板面に複数配置される第1種の発泡体凸部の凸部上面(先端の平面)の面積s1の合計面積S1と該平板部の下板面に複数配置される第2種の発泡体凸部の凸部上面(先端の平面)の面積s2の合計面積S2との合計面積の割合((S1+S2)/S)が0.15以上であり、更に0.15〜0.56、更に0.20〜0.55、特に0.25〜0.53であることが好ましい。該((S1+S2)/S)の値が小さすぎると、防振材の歪量が大きくなり施工性、防振性能等が低下する虞がある。一方、該((S1+S2)/S)の値が大きすぎると、合成樹脂発泡体平板部の撓み変形による防振性能が不十分となる虞がある。したがって、該先端の平面の合計面積(S1+S2)は、防振材1m2あたり、好ましくは1500〜8000cm2であり、更に好ましくは2000〜6000cm2、特に好ましくは2500〜5000cm2である。 Moreover, since the shape of the front-end | tip of a 1st type and 2nd type foam convex part is excellent in stability at the time of comprising a vibration-proof floor structure, it is formed so that it may become a plane at least in a construction state. In that case, the area s1 of the convex upper surface (front end plane) of the first type foam convex portion arranged on the upper plate surface of the flat plate portion relative to the area S of the plate surface of the synthetic resin foam flat plate portion. Of the total area S1 and the total area S2 of the areas s2 of the top surfaces (tip planes) of the second type foam protrusions disposed on the lower plate surface of the flat plate portion ((S1 + S2 ) / S) is 0.15 or more, preferably 0.15 to 0.56, more preferably 0.20 to 0.55, and particularly preferably 0.25 to 0.53. If the value of ((S1 + S2) / S) is too small, the amount of distortion of the vibration-proof material increases, and the workability, vibration-proof performance, and the like may decrease. On the other hand, if the value of ((S1 + S2) / S) is too large, the vibration-proof performance due to the bending deformation of the synthetic resin foam flat plate portion may be insufficient. Therefore, the total area (S1 + S2) of the flat surface of the tip is preferably 1500 to 8000 cm 2 , more preferably 2000 to 6000 cm 2 , and particularly preferably 2500 to 5000 cm 2 per 1 m 2 of the vibration-proof material.

また、上記のs1とs2との比(s1/s2)は0.3〜3.5であり、更に0.3超、3.0以下、特に0.4〜2.5であることが好ましい。該(s1/s2)の値が小さすぎたり大きすぎたりすると、片側の凸部が他方の凸部よりも過度に大きく歪み、合成樹脂発泡体平板部の撓み変形による防振性能が不十分となる。   The ratio of s1 and s2 (s1 / s2) is 0.3 to 3.5, more preferably more than 0.3 and not more than 3.0, and particularly preferably 0.4 to 2.5. . If the value of (s1 / s2) is too small or too large, the convex part on one side is distorted excessively more than the convex part on the other side, and the vibration-proof performance due to the bending deformation of the synthetic resin foam flat plate part is insufficient. Become.

なお、通常、本発明における防振材は第1種および第2種の発泡体凸部が規則的に繰り返して配置された正方形或いは長方形の定形の板状に形成されるため、上記の面積S、S1、およびS2は、当該防振材の合成樹脂発泡体平板部の板面の面積をS、平板部の上板面に複数配置される第1種の発泡体凸部の凸部上面(先端の平面)の面積s1の合計面積をS1、平板部の下板面に複数配置される第2種の発泡体凸部の凸部上面(先端の平面)の面積s2の合計面積をS2とする。稀に、本発明における防振材が不定形の板状である場合もあるが、その場合には第1種および第2種の発泡体凸部の繰り返し単位を見定めて面積S、S1、およびS2の値を求めることができる。また、大きさや形状の異なる第1種または第2種の発泡体凸部が形成されている防振材においては、s1、s2の値は大きさや形状の異なる発泡体凸部の凸部上面(先端の平面)の面積の平均値(S1/第1種の発泡体凸部の個数、またはS2/第2種の発泡体凸部の個数)を採用することとする。   In general, the vibration-proof material in the present invention is formed in a square or rectangular fixed plate shape in which the first and second type foam protrusions are regularly and repeatedly arranged. , S1 and S2 are the surface area of the synthetic resin foam flat plate portion of the vibration isolator S, and the upper surface of the convex portion of the first type of foam convex portion arranged on the upper plate surface of the flat plate portion ( S1 is the total area of the area s1 of the flat surface of the tip, and S2 is the total area of the area s2 of the convex upper surface (the flat surface of the tip) of the second type foam convex portion disposed on the lower plate surface of the flat plate portion. To do. In rare cases, the vibration-proof material in the present invention may be an indeterminate plate shape. In that case, the areas S, S1, and The value of S2 can be obtained. Moreover, in the vibration-proof material in which the 1st type or 2nd type foam convex part from which a magnitude | size and a shape differ is formed, the value of s1 and s2 is the convex upper surface of the foam convex part from which a magnitude | size and a shape differ ( The average value of the area of the flat surface at the tip (S1 / number of first-type foam protrusions or S2 / number of second-type foam protrusions) is adopted.

さらに、第1種および第2種の発泡体凸部の合計数は、凸部の形状等にもよるが特に優れた合成樹脂発泡体平板部の撓み変形による防振性能を発現させる上で、合成樹脂発泡体平板部1m2あたり80〜200個、更に100〜180個であることが好ましい。 Furthermore, the total number of the first type and the second type of foam convex part is based on the shape of the convex part, etc. It is preferable that it is 80-200 per 1 m < 2 > of synthetic resin foam flat-plate parts, and also 100-180.

発泡体凸部の高さは、凸部の形状等にもよるが防振材の特に優れた防振性能を発現させる上で、第1の実施形態、即ち一枚の合成樹脂発泡体平板部の上下板面にそれぞれ第1種および第2種の発泡体凸部を配設した防振材にあっては、合成樹脂発泡体平板部の厚さと第1種および第2種の発泡体凸部の厚さの和の厚み(防振材1の全体厚み)の25〜45%、さらに30〜40%が好ましい。第2の実施形態では、少なくとも上下板面に発泡体凸部が位置する合成樹脂発泡体平板部において、該合成樹脂発泡体平板部の厚さと、該平板部の上下板面の発泡体凸部の厚さの和の厚みの25〜45%、さらに30〜40%が好ましい。凸部の高さは、具体的には10〜100mm、更に20〜50mmが好ましい。   Although the height of the foam convex portion depends on the shape of the convex portion, etc., the first embodiment, that is, one synthetic resin foam flat plate portion, is used to express particularly excellent vibration-proofing performance of the vibration-proof material. In the anti-vibration material having the first and second type foam protrusions disposed on the upper and lower plate surfaces, the thickness of the synthetic resin foam flat plate part and the first and second type foam protrusions are provided. 25 to 45%, more preferably 30 to 40%, of the sum of the thicknesses of the parts (total thickness of the vibration-proof material 1). In the second embodiment, in the synthetic resin foam flat plate portion where the foam convex portions are located at least on the upper and lower plate surfaces, the thickness of the synthetic resin foam flat plate portion and the foam convex portions on the upper and lower plate surfaces of the flat plate portion Is preferably 25 to 45%, more preferably 30 to 40% of the total thickness. Specifically, the height of the convex portion is preferably 10 to 100 mm, more preferably 20 to 50 mm.

上記した本発明の防振床構造において防振材の上に配置される面材としては、コンクリート、フローリング材、合板、樹脂タイルなどが挙げられる。かかる面材は、面材の曲げ撓みによる下方の防振材への振動の伝播を考慮して防振作用を設計する場合には、曲げ剛性が0.5〜30N・m2であることが好ましく、0.6〜20N・m2であることが更に好ましい。なお、本明細書における上記曲げ剛性は、JIS A1408:2001に記載の曲げ試験に基づき、試験体寸法:長さ200mm、幅150mm、曲げ試験スパン:150mm、気燥状態:試験体を通風の良い室内に7日間静置、測定雰囲気温度23℃、湿度50%の条件にて測定される値である。
一方、コンクリートなど殆ど面材の曲げ撓みを考慮しなくてよい程の高い曲げ剛性を有する面材を用いる場合には、面材の振動を広範囲の面積で防振材へ伝播することができ、効率的に本発明の防振作用効果が発現される。
Examples of the face material disposed on the vibration-proof material in the above-described vibration-proof floor structure of the present invention include concrete, flooring material, plywood, and resin tile. Such a face material may have a bending rigidity of 0.5 to 30 N · m 2 in the case of designing an anti-vibration action in consideration of the propagation of vibrations to the anti-vibration material below due to the bending deflection of the face material. Preferably, it is 0.6-20 N · m 2 . The bending rigidity in this specification is based on a bending test described in JIS A1408: 2001. Test specimen dimensions: length 200 mm, width 150 mm, bending test span: 150 mm, air-drying state: good ventilation of the specimen. It is a value measured under conditions of standing indoors for 7 days, measuring atmosphere temperature 23 ° C., and humidity 50%.
On the other hand, in the case of using a face material having such a high bending rigidity that it is not necessary to consider the bending bending of the face material such as concrete, the vibration of the face material can be transmitted to the vibration-proof material in a wide area, The anti-vibration effect of the present invention is efficiently expressed.

本発明の防振材には、必要に応じ本発明の防振材を配置することによる防振作用を阻害しない範囲内で、上記したように防振ゴムを貫通して設けることができる。この防振ゴムは等間隔など規則的に配設されていることが好ましい。この防振ゴムが配設される間隔は、耐荷重性能向上の観点から、100〜500mm、さらに150〜350mmであることが好ましい。防振ゴムが規則的に配設されていると、例えば、防振材の上にコンクリートを打設して浮き床構造を形成したときなど、上のコンクリートの荷重が均等に分散されるので、一部の合成樹脂発泡体凸部に大きい荷重がかかり該凸部が潰れることを防止できる。   The anti-vibration material of the present invention can be provided with a vibration-proof rubber penetrating as described above, as long as the anti-vibration effect by disposing the anti-vibration material of the present invention is not impaired. The anti-vibration rubber is preferably arranged regularly such as at regular intervals. The interval at which the anti-vibration rubber is disposed is preferably 100 to 500 mm, more preferably 150 to 350 mm, from the viewpoint of improving load bearing performance. When the anti-vibration rubber is regularly arranged, for example, when the concrete is placed on the anti-vibration material to form a floating floor structure, the load of the upper concrete is evenly distributed. A large load is applied to some of the convex portions of the synthetic resin foam, and the convex portions can be prevented from being crushed.

防振ゴムの材質としては、防振材を構成する発泡体、特に凸部を構成する発泡体の防振性能を阻害せずに防振材の耐荷重を向上させる観点から、前記凸部の動的バネ定数よりも小さな動的バネ定数を有する防振ゴムが好ましく選択され、具体的には、天然ゴム製のものなどを採用することができる。なお、上記動的バネ定数はJIS A 6321で規定されている測定方法に基づいて、正弦波加振法で得られた固有振動数から求められる値である。   As the material of the anti-vibration rubber, from the viewpoint of improving the load resistance of the anti-vibration material without impairing the anti-vibration performance of the foam constituting the anti-vibration material, particularly the foam constituting the convex portion, An anti-vibration rubber having a dynamic spring constant smaller than the dynamic spring constant is preferably selected. Specifically, a rubber made of natural rubber can be employed. In addition, the said dynamic spring constant is a value calculated | required from the natural frequency obtained by the sine wave excitation method based on the measuring method prescribed | regulated by JISA6321.

防振ゴムの形状に制限はないが、防振材に取り付け易いことから、四角柱または円柱が好ましい。その水平断面が正方形や長方形の場合、最大辺の長さは、30〜100mm、好ましくは40〜70mmである。その水平断面が円形の場合、直径の長さは、30〜100mm、好ましくは40〜70mmである。防振ゴムの取り付け方としては、平板部に防振ゴムの水平断面形状の孔を形成し、該孔に防振ゴムを嵌入させる方法が挙げられる。防振材の厚みは、防振床構造における十分な防振材容積および防振のための空間容積を保ち優れた防振性能を発揮させる上で、防振材の全体高さと同様、或いは防振材の全体高さよりも多少厚くすることが好ましく、具体的には25mm以上が好ましい。かかる観点から、より好ましくは30mm以上、さらに好ましくは50mm以上である。該厚みが厚すぎると、一定の大きさの建築物において居住等の空間が狭くなることから、その上限は、好ましくは150mm、さらに好ましくは100mmである。   Although there is no restriction | limiting in the shape of an anti-vibration rubber | gum, Since it is easy to attach to an anti-vibration material, a square pillar or a cylinder is preferable. When the horizontal cross section is square or rectangular, the length of the maximum side is 30 to 100 mm, preferably 40 to 70 mm. When the horizontal cross section is circular, the length of the diameter is 30 to 100 mm, preferably 40 to 70 mm. As a method for attaching the anti-vibration rubber, there is a method in which a hole having a horizontal cross-sectional shape of the anti-vibration rubber is formed in the flat plate portion, and the anti-vibration rubber is inserted into the hole. The thickness of the anti-vibration material is the same as the overall height of the anti-vibration material, in order to maintain a sufficient anti-vibration material volume in the anti-vibration floor structure and to exhibit excellent anti-vibration performance. It is preferable that the thickness is somewhat thicker than the overall height of the vibration material, and specifically 25 mm or more is preferable. From this viewpoint, it is more preferably 30 mm or more, and further preferably 50 mm or more. If the thickness is too thick, a space such as a residence is narrowed in a building having a certain size. Therefore, the upper limit is preferably 150 mm, and more preferably 100 mm.

なお、ビル地下駐車場の防振床構造の上にエレベータ設備を設ける場所やマンション個室の防振床構造の上にピアノなどの重量物が載置される場所には多くの防振ゴムを配設できるように、合成樹脂発泡体平板部に防振ゴム用の予備の貫通孔を設けておいてもよい。また、そのような箇所に設置するために特別に多数の防振ゴムを工場で配設したものを出荷してもよい。   A lot of anti-vibration rubber is placed in places where elevator equipment is installed on the anti-vibration floor structure of the building underground parking lot or where heavy objects such as pianos are placed on the anti-vibration floor structure of the apartment private room. It is also possible to provide a spare through-hole for vibration-proof rubber in the synthetic resin foam flat plate portion so that it can be provided. In addition, in order to install in such a place, a specially arranged many anti-vibration rubbers may be shipped at the factory.

また、第1の実施形態において、第1種と第2種の発泡体凸部の発泡倍率を同一にせず異なる発泡倍率とすることにより、第1種と第2種の発泡体凸部の圧縮弾性率を変えることにより、異なる周波数帯で振動を吸収させ広い周波数帯で振動吸収の効率を向上させてもよい。また、同様の観点から、第2の実施形態において、第1の合成樹脂発泡体板の合成樹脂発泡体平板部とこれに固定された第1種の発泡体凸部の発泡倍率と、第2の合成樹脂発泡体板の合成樹脂発泡体平板部とこれに固定された第2種の発泡体凸部の発泡倍率とを異なるものとしてもよい。   Further, in the first embodiment, the first type and the second type foam convex portions are compressed by making the foam ratios of the first type and the second type foam convex portions different from each other, but not the same. By changing the elastic modulus, vibrations may be absorbed in different frequency bands, and the efficiency of vibration absorption may be improved in a wide frequency band. Further, from the same viewpoint, in the second embodiment, the foaming ratio of the synthetic resin foam flat plate portion of the first synthetic resin foam plate and the first type of foam convex portion fixed thereto, and the second The foaming ratio of the synthetic resin foam flat plate portion of the synthetic resin foam plate may be different from the foaming magnification of the second type foam convex portion fixed thereto.

本発明の防振材は、住宅の床、精密機器を設置する測定室基礎床、スタジオ等に用いられる床用の防振材;住宅、ビル、スタジオ等に用いられる防振壁面;精密機器等の振動を嫌うもの等の基台等として用いられる除振用の防振材;鉄道、地下鉄等の振動遮断の目的で用いられる振動遮断材;工事車両、機械の振動吸収用等として用いられる仮設防振材等の用途に用いることができ、防振性、遮音性に優れたものであり、特に、防振床用等の構造物用防振材として好適なものである。   The anti-vibration material of the present invention includes a floor of a house, a floor of a measurement room where precision equipment is installed, a floor anti-vibration material used in a studio, etc .; a vibration-proof wall used in a house, building, studio, etc .; Anti-vibration material for vibration isolation used as a base for objects that dislike vibrations; Vibration isolation material used for the purpose of vibration isolation in railways, subways, etc .; Temporary construction used for vibration absorption of construction vehicles and machinery It can be used for applications such as vibration-proof materials, and has excellent vibration-proof properties and sound-insulation properties, and is particularly suitable as a vibration-proof material for structures such as for vibration-proof floors.

以上、本発明に係る防振床構造および防振材の好ましい実施形態を説明したが、本発明は、何ら既述の実施形態に限定されるものではなく、特許請求の範囲に記載した本発明の技術的思想の範囲内において、さらに種々の変形および変更が可能であることは当然である。   The preferred embodiments of the vibration-proof floor structure and the vibration-proof material according to the present invention have been described above, but the present invention is not limited to the above-described embodiments, and the present invention described in the claims. Of course, various modifications and changes can be made within the scope of the technical idea.

上記した本発明の第1と第2の実施形態に係る防振材と、それぞれに対応する従来技術の防振材とを比較する試験等を行った。   The test etc. which compared the anti-vibration material which concerns on the 1st and 2nd embodiment of this invention mentioned above and the anti-vibration material of the prior art corresponding to each were conducted.

図7は各試験体の振動伝達率の測定方法を概念的に示した図である。
この方法は、防振ゴムなどの試験に広く使われているものであり、試験体100の上に重量物101を置き、加振装置102で試験体100を加振し、重量物101の振動の振幅を測定するものである。加振装置102の強制加振の振幅a1を入力とし、これに対する出力である重量物101の振幅をa2とするとき、振動が伝わった割合τを振動伝達率といい、次の(1)式で表わされる。

τ=|a2/1|・・・(1)

また、防振支持をした時の固有振動数をf0、強制加振の振動数をfとするとき、τは次の(2)式で表わされる。

τ=|1/(1−(f/f02)|・・・(2)

強制加振の振動数fを変えながら、a1とa2を測定し、(1)式で振動伝達率τを求め、(2)式を用いて固有振動数f0が求まる。
FIG. 7 is a diagram conceptually showing a method for measuring the vibration transmissibility of each specimen.
This method is widely used for testing vibration-proof rubber and the like. A heavy object 101 is placed on a test body 100, the test body 100 is vibrated by a vibration device 102, and the vibration of the heavy object 101 is performed. It measures the amplitude of. When the amplitude a 1 of the forced vibration of the vibration device 102 is input and the amplitude of the heavy object 101 that is the output to the input is a 2 , the ratio τ at which the vibration is transmitted is referred to as a vibration transmissibility. ).

τ = | a 2 / a 1 | (1)

Further, when the natural frequency at the time of vibration isolation support is f 0 and the frequency of forced vibration is f, τ is expressed by the following equation (2).

τ = | 1 / (1- (f / f 0 ) 2 ) | (2)

While changing the frequency f of the forced excitation, a 1 and a 2 are measured, the vibration transmissibility τ is obtained by the equation (1), and the natural frequency f 0 is obtained by using the equation (2).

図8は、強制加振の振動数fを変えたときの理論に基づく振動伝達率τの変化を示した図である。上記式(2)および図8から分かるように、τはf=f0において発散する。同じことであるが、τの逆数はゼロ点となる。このゼロクロス点から固有周波数f0が求まる。理論により、固有振動数f0ラ√2以上の振動数領域で防振効果があることが分かっている。これ故、固有振動数f0を測定することにより、そのものの防振効果を判定することができる。
上記理論に基づき、幾つかの試験体について次のように試験を行った。
FIG. 8 is a diagram showing a change in vibration transmissibility τ based on the theory when the frequency f of forced excitation is changed. As can be seen from the above equation (2) and FIG. 8, τ diverges at f = f 0 . The same is true, but the reciprocal of τ is zero. The natural frequency f 0 is obtained from this zero cross point. Theoretically, it has been found that there is an anti-vibration effect in the frequency region of the natural frequency f 0 √2 or more. Therefore, by measuring the natural frequency f 0 , the anti-vibration effect can be determined.
Based on the above theory, several specimens were tested as follows.

全ての試験において、重量物としては25mm厚300ラ300mmの鉄板(荷重:17.6kg)、強制加振は5〜100Hz、0.2Gで行った。試験体は全てポリオレフィン系樹脂発泡粒子成形体(株式会社ジェイエスピー製:ミラブロック26S)で作製した合成樹脂発泡体平板部と種々の形状寸法の合成樹脂発泡体凸部を接着剤で接着して作った。第1〜4の試験においては合成樹脂発泡体平板部は全て同一寸法であり、厚さ25mm、縦横300mmの正方形板体で行なった。また、第5、6の試験においては合成樹脂発泡体平板部は、厚さ25mm、縦横250mmの正方形板体で行なった。図9〜図14は、作製した種々試験体を示した図である。   In all the tests, 25 mm thick 300 mm 300 mm iron plate (load: 17.6 kg) was used as a heavy object, and forced excitation was performed at 5 to 100 Hz and 0.2 G. All test specimens were prepared by bonding a synthetic resin foam flat plate part made of a polyolefin resin foamed molded article (JSP Co., Ltd .: Mirablock 26S) and synthetic resin foam convex parts of various shapes and sizes with an adhesive. Had made. In the first to fourth tests, all of the synthetic resin foam flat plate portions have the same dimensions, and a square plate having a thickness of 25 mm and a length and width of 300 mm was used. In the fifth and sixth tests, the synthetic resin foam flat plate portion was a square plate having a thickness of 25 mm and a width and width of 250 mm. 9-14 is the figure which showed the produced various test bodies.

第1の試験は、図9に示した試験体により行なった。この試験体は、合成樹脂発泡体平板部の下板面の四隅と周縁中央および中心に40ラ40mm(厚さ25mm)の合成樹脂発泡体凸部が計9個配設され、その下板面の合成樹脂発泡体凸部が作る正方形の対角線の交点に対応する位置で、合成樹脂発泡体平板部の上板面に60ラ60mm(厚さ25mm)の合成樹脂発泡体凸部が計4個配設されているものである。この試験体において得られた固有振動数f0は8Hzであった。なお、上記合成樹脂発泡体平板部の板面の面積Sに対する、該平板部の上板面に配置される第1種の発泡体凸部の凸部上面の面積s1の合計面積S1と該平板部の下板面に配置される第2種の発泡体凸部の凸部上面の面積s2の合計面積S2との合計面積の割合((S1+S2)/S)は0.32、(s1/s2)は2.3である。 The first test was performed using the test specimen shown in FIG. In this test body, a total of nine synthetic resin foam convex portions of 40 mm 40 mm (thickness 25 mm) are arranged at the four corners, the center of the peripheral edge and the center of the lower plate surface of the synthetic resin foam flat plate portion. A total of four synthetic resin foam convex portions of 60 mm 60 mm (thickness 25 mm) are formed on the upper surface of the synthetic resin foam flat plate portion at positions corresponding to the intersections of the square diagonal lines formed by the synthetic resin foam convex portions. It is arranged. The natural frequency f 0 obtained in this test body was 8 Hz. In addition, with respect to the area S of the plate surface of the synthetic resin foam flat plate portion, the total area S1 of the area s1 of the upper surface of the convex portion of the first type foam protruded on the upper plate surface of the flat plate portion and the flat plate The ratio ((S1 + S2) / S) of the total area to the total area S2 of the area s2 of the upper surface of the convex part of the second type foam convex part disposed on the lower plate surface of the part is 0.32, (s1 / s2 ) Is 2.3.

第2の試験は、図10に示した試験体で行った。この試験体は、合成樹脂発泡体平板部の上板面と下板面の対応する位置にそれぞれ40ラ40mm(厚さ25mm)の合成樹脂発泡体凸部を計9個ずつ配設したものである。この試験体において得られた固有振動数f0は15Hzであった。なお、この試験体における((S1+S2)/S)は0.32、(s1/s2)は1.0である。 The second test was conducted with the test body shown in FIG. In this test body, a total of nine synthetic resin foam convex portions of 40 mm 40 mm (thickness 25 mm) are arranged at corresponding positions on the upper and lower plate surfaces of the synthetic resin foam flat plate portion. is there. The natural frequency f 0 obtained in this specimen was 15 Hz. In this specimen, ((S1 + S2) / S) is 0.32, and (s1 / s2) is 1.0.

第1の試験で得られた固有振動数(8Hz)が第2の試験で得られた固有振動数(15Hz)より小さい理由は,次のように説明される。
第1の試験体は、本発明の第1の実施形態に対応する。理解を容易にするために、図9には、図1の部材に対応する部材に同一の参照番号を付した。上の合成樹脂発泡体凸部(第1種の発泡体凸部)3aと下の合成樹脂発泡体凸部(第2種の脂発泡体凸部)3bが、合成樹脂発泡体平板部2の上板面と下板面において対応しない位置に配設されているので、合成樹脂発泡体平板部2には撓み変形が起こり、固有振動数は低いものとなった。これに対して、第2の試験の比較用試験体では、合成樹脂発泡体凸部の両者が対応する位置に配設されているので、合成樹脂発泡体平板部の撓み変形は起らず、合成樹脂発泡体凸部の圧縮変形のみが起っており、固有振動数は高い。
この第1と第2の試験の対比結果は、本発明の第1の実施形態が、撓み変形により低い振動数域まで防振効果を有することを示している。
The reason why the natural frequency (8 Hz) obtained in the first test is smaller than the natural frequency (15 Hz) obtained in the second test is explained as follows.
The first specimen corresponds to the first embodiment of the present invention. For ease of understanding, in FIG. 9, the same reference numerals are assigned to members corresponding to those in FIG. The upper synthetic resin foam convex part (first type foam convex part) 3a and the lower synthetic resin foam convex part (second type fat foam convex part) 3b are the synthetic resin foam flat plate part 2. Since the upper plate surface and the lower plate surface are disposed at positions that do not correspond to each other, the synthetic resin foam flat plate portion 2 is bent and deformed, and the natural frequency is low. On the other hand, in the comparative test body of the second test, since both of the synthetic resin foam convex portions are disposed at corresponding positions, the synthetic resin foam flat plate portion does not bend and deform, Only the compression deformation of the convex part of the synthetic resin foam occurs, and the natural frequency is high.
The comparison results of the first and second tests indicate that the first embodiment of the present invention has a vibration isolation effect up to a low frequency range due to bending deformation.

第3の試験は、図11に示した試験体で行った。この試験体は、合成樹脂発泡体平板部の下板面にそれぞれ合成樹脂発泡体凸部を配設した2枚の合成樹脂発泡体板が重ねられている試験体である。下の合成樹脂発泡体板の合成樹脂発泡体平板部の下板面の四隅と周縁中央および中心に40ラ40mm(厚さ25mm)の合成樹脂発泡体凸部が計9個配設されている。上の合成樹脂発泡体板の合成樹脂発泡体平板部の下板面の合成樹脂発泡体凸部は、下の合成樹脂発泡体板の合成樹脂発泡体凸部が作る正方形格子の中心(対角線の交点)に対応する位置に60ラ60mm(厚さ25mm)の合成樹脂発泡体凸部が計4個配設されている。この試験体において得られた固有振動数f0は8Hzであった。なお、この試験体における((S1+S2)/S)は0.32、(s1/s2)は2.3である。 The third test was conducted with the test body shown in FIG. This test body is a test body in which two synthetic resin foam plates each having a synthetic resin foam convex portion disposed on the lower plate surface of the synthetic resin foam flat plate portion are stacked. A total of nine synthetic resin foam convex portions of 40 mm 40 mm (thickness 25 mm) are arranged at the four corners, the peripheral center and the center of the lower plate surface of the synthetic resin foam flat plate portion of the lower synthetic resin foam plate. . The synthetic resin foam convex part on the lower plate surface of the synthetic resin foam flat plate part of the upper synthetic resin foam plate is the center of the square lattice (diagonal line) formed by the synthetic resin foam convex part of the lower synthetic resin foam plate. A total of four synthetic resin foam convex portions of 60 mm 60 mm (thickness 25 mm) are arranged at positions corresponding to (intersection points). The natural frequency f 0 obtained in this test body was 8 Hz. In this specimen, ((S1 + S2) / S) is 0.32, and (s1 / s2) is 2.3.

第4の試験は、図12に示した試験体で行った。この試験体は、2枚の合成樹脂発泡体板のそれぞれの合成樹脂発泡体平板部の下板面の同一位置に40ラ40mm(厚さ25mm)の合成樹脂発泡体凸部を計9個ずつ配設し、その2枚の合成樹脂発泡体板を重ね合わせたものである。この試験体において得られた固有振動数f0は14Hzであった。なお、この試験体における((S1+S2)/S)は0.32、(s1/s2)は1.00である。 The fourth test was performed with the test body shown in FIG. In this test body, a total of 9 synthetic resin foam convex portions of 40 mm 40 mm (thickness 25 mm) are formed at the same position on the lower plate surface of each synthetic resin foam flat plate portion of the two synthetic resin foam plates. The two synthetic resin foam plates are arranged and overlapped. The natural frequency f 0 obtained in this specimen was 14 Hz. In this specimen, ((S1 + S2) / S) is 0.32, and (s1 / s2) is 1.00.

第3の試験で得られた固有振動数(8Hz)が第4の試験で得られた固有振動数(14Hz)より小さい理由は、第1と第2の試験の結果と同様に、次のように説明される。
第3の試験の試験体は、本発明の第2の実施形形態に対応する。理解を容易にするために、図11において、図3〜図5の部材に対応する部材に同一の参照番号を付した。下の合成樹脂発泡体板11Bについて、その平板部12bの上面に配設されている合成樹脂発泡体凸部(第1種の発泡体凸部)13aと下面に配設されている合成樹脂発泡体凸部(第2種の発泡体凸部)13bが、この合成樹脂発泡体平板部12bの上板面と下板面において平面視で重なり合わない位置に配設されているので、この合成樹脂発泡体平板部12bに撓み変形が起こり、固有振動数は低いものとなった。これに対して、第4の試験の比較用試験体では、合成樹脂発泡体凸部の両者が平面視で重なる位置に配設されているので、合成樹脂発泡体平板部の撓み変形は起らず、合成樹脂発泡体凸部の圧縮変形のみが起っており、固有振動数は高い。
この第3と第4の試験の対比結果は、本発明の第2の実施形態が、撓み変形により低い振動数域まで防振効果を有することを示している。
The reason why the natural frequency (8 Hz) obtained in the third test is smaller than the natural frequency (14 Hz) obtained in the fourth test is as follows, similar to the results of the first and second tests. Explained.
The specimen for the third test corresponds to the second embodiment of the present invention. In order to facilitate understanding, in FIG. 11, members corresponding to those in FIGS. 3 to 5 are denoted by the same reference numerals. For the lower synthetic resin foam plate 11B, the synthetic resin foam convex portion (first type foam convex portion) 13a disposed on the upper surface of the flat plate portion 12b and the synthetic resin foam disposed on the lower surface. Since the body convex portion (the second type foam convex portion) 13b is disposed at a position where the upper and lower plate surfaces of the synthetic resin foam flat plate portion 12b do not overlap in plan view, The resin foam flat plate portion 12b was bent and deformed, and the natural frequency was low. On the other hand, in the comparative test body of the fourth test, since both of the synthetic resin foam convex portions are arranged at positions where they overlap in a plan view, the plastic resin foam flat plate portion is not deformed. However, only the compression deformation of the convex part of the synthetic resin foam occurs, and the natural frequency is high.
The comparison results of the third and fourth tests indicate that the second embodiment of the present invention has a vibration isolation effect up to a low frequency range due to bending deformation.

第5の試験は、図13に示した試験体で行った。この試験体は、合成樹脂発泡体平板部の下板面の四隅と周縁中央および中心に底面が50ラ50mm、上面が40ラ40mmの正四角錐台形(厚さ25mm)の合成樹脂発泡体凸部が計9個配設され、その下板面の合成樹脂発泡体凸部が作る正方形の対角線の交点に対応する位置で、合成樹脂発泡体平板部の上板面に底面が50ラ50mm、上面が40ラ40mmの正四角錐台形(厚さ25mm)の合成樹脂発泡体凸部が計4個配設されているものである。この試験体において得られた固有振動数f0は10Hzであった。なお、この試験体における((S1+S2)/S)は0.28、(s1/s2)は1.0である。 The fifth test was conducted with the test body shown in FIG. This test sample is a synthetic resin foam convex part of a regular quadrangular pyramid shape (thickness 25 mm) having a bottom surface of 50 mm and 50 mm and an upper surface of 40 mm and 40 mm at the center and the center of the lower plate surface of the synthetic resin foam flat plate part. Are placed at a position corresponding to the intersection of the square diagonal lines formed by the convex portions of the synthetic resin foam on the lower plate surface, and the bottom surface is 50 mm and 50 mm on the upper plate surface of the synthetic resin foam flat plate portion. A total of four convex portions of a synthetic resin foam having a square pyramidal trapezoidal shape (thickness of 25 mm) of 40 × 40 mm. The natural frequency f 0 obtained in this test body was 10 Hz. In this specimen, ((S1 + S2) / S) is 0.28, and (s1 / s2) is 1.0.

第6の試験は、図14に示した試験体で行った。この試験体は、合成樹脂発泡体平板部の下板面の四隅と周縁中央および中心に底面が50ラ50mm、上面が40ラ40mmの正四角錐台形(厚さ25mm)の合成樹脂発泡体凸部が計9個配設され、その下板面の合成樹脂発泡体凸部が作る正方形の対角線の交点に対応する位置で、合成樹脂発泡体平板部の上板面に20ラ20mm(厚さ25mm)の合成樹脂発泡体凸部が計4個配設されているものである。この試験体において得られた固有振動数f0は9Hzであったが、振動伝達率曲線において固有振動数f0の高周波数側の17Hz付近に第2のピークが現れるものであった。なお、この試験体における((S1+S2)/S)は0.21、(s1/s2)は0.3である。 The sixth test was conducted with the test body shown in FIG. This test sample is a synthetic resin foam convex part of a regular quadrangular pyramid shape (thickness 25 mm) having a bottom surface of 50 mm and 50 mm and an upper surface of 40 mm and 40 mm at the center and the center of the lower plate surface of the synthetic resin foam flat plate part. Is placed at a position corresponding to the intersection of the diagonals of the square formed by the convex part of the synthetic resin foam on the lower plate surface, and 20 mm 20 mm (thickness 25 mm) on the upper plate surface of the synthetic resin foam flat plate part. ) Synthetic resin foam convex portions are disposed in total. The natural frequency f 0 obtained in this test specimen was 9 Hz, but a second peak appeared in the vibration transmissibility curve near 17 Hz on the high frequency side of the natural frequency f 0 . In this specimen, ((S1 + S2) / S) is 0.21, and (s1 / s2) is 0.3.

第5、6の試験で、使用した試験体は、第1種の発泡体凸部3aが平板部2の上板面に配置されている位置と第2種の発泡体凸部3bが平板部2の下板面に配置されている位置とが平面視で重ならないように配置された防振材であるため、共に良好な固有振動数を示した。しかしながら、第6の試験において、使用した試験体は(s1/s2)が0.3であったため、第1種の発泡体凸部3aが圧縮による底付きを起こし振動伝達率曲線において固有振動数f0の高周波数側の17Hz付近にピークが現れ防振効果が第5の試験の結果よりも劣るものとなった。この第5と第6の試験の対比結果は、本発明の((S1+S2)/S)の要件を満足するものであっても、(s1/s2)の値が小さすぎたりする場合には、優れた防振効果に差異が生じ悪い影響を与えることがあることを示している。また、第6の試験結果は、第1種の発泡体凸部および/または第2種の発泡体凸部が、顕著な圧縮による底付きを起こすような場合、即ち((S1+S2)/S)の値が小さすぎる場合などは、防振効果が劣るものとなることを示唆している。 In the fifth and sixth tests, the test specimens used were the positions where the first type foam projections 3a were arranged on the upper plate surface of the flat plate part 2 and the second type foam projections 3b were flat plate parts. Since the anti-vibration material was arranged so as not to overlap with the position arranged on the lower plate surface of 2 in plan view, both showed good natural frequencies. However, in the sixth test, since (s1 / s2) of the test body used was 0.3, the first-type foam convex portion 3a caused bottoming due to compression, and the natural frequency in the vibration transmissibility curve. A peak appeared near 17 Hz on the high frequency side of f 0, and the vibration isolation effect was inferior to the result of the fifth test. Even if the comparison result of the fifth and sixth tests satisfies the requirement of ((S1 + S2) / S) of the present invention, if the value of (s1 / s2) is too small, It shows that there is a difference in the excellent anti-vibration effect, which may have a bad influence. The sixth test result shows that the first type of foam protrusion and / or the second type of foam protrusion causes bottoming due to significant compression, that is, ((S1 + S2) / S). When the value of is too small, it is suggested that the anti-vibration effect is inferior.

1 防振材
2 合成樹脂発泡体平板部
3a 第1種の発泡体凸部
3b 第2種の発泡体凸部
4 防振ゴム
5a 基礎コンクリート床
5b 浮きコンクリート床
6 合板
10 防振床
11 防振材
11A 第1の合成樹脂発泡体板
11B 第2の合成樹脂発泡体板
12a 合成樹脂発泡体平板部
12b 合成樹脂発泡体平板部
13a 第1種の発泡体凸部
13b 第2種の発泡体凸部
14 防振ゴム
15a 基礎コンクリート床
15b 浮きコンクリート床
20 防振床
DESCRIPTION OF SYMBOLS 1 Anti-vibration material 2 Synthetic resin foam flat part 3a 1st type foam convex part 3b 2nd type foam convex part 4 Anti-vibration rubber 5a Foundation concrete floor 5b Floating concrete floor 6 Plywood 10 Anti-vibration floor 11 Anti-vibration floor Materials 11A First synthetic resin foam plate 11B Second synthetic resin foam plate 12a Synthetic resin foam flat plate portion 12b Synthetic resin foam flat plate portion 13a First type foam convex portion 13b Second type foam convex shape Part 14 Anti-vibration rubber 15a Foundation concrete floor 15b Floating concrete floor 20 Anti-vibration floor

Claims (7)

構造物の床基盤と、該床基盤の上に敷設された防振材と、該防振材の上に配置された面材とからなる防振床構造であって、上記防振材が、少なくとも一枚の合成樹脂発泡体平板部と、該平板部の板面に配設される複数の合成樹脂発泡体凸部を備え、上記複数の合成樹脂発泡体凸部は上記平板部の上板面に当接或いは固定されて配置される第1種の発泡体凸部と上記平板部の下板面に当接或いは固定されて配置される第2種の発泡体凸部とにより構成され、上記第1種の発泡体凸部が上記平板部の上板面に配置されている位置と上記第2種の発泡体凸部が上記平板部の下板面に配置されている位置とが平面視で重ならないように、上記合成樹脂発泡体凸部が上記平板部の板面に配設されており、上記合成樹脂発泡体平板部の板面の面積Sに対する、該平板部の上板面に配置される第1種の発泡体凸部の凸部上面の面積s1の合計面積S1と該平板部の下板面に配置される第2種の発泡体凸部の凸部上面の面積s2の合計面積S2との合計面積の割合((S1+S2)/S)が0.15以上であり、かつs1とs2との比(s1/s2)が0.3〜3.5であることを特徴とする、防振床構造。   A floor structure of a structure, a vibration isolation material laid on the floor base, and a vibration isolation floor structure disposed on the vibration isolation material, wherein the vibration isolation material comprises: At least one synthetic resin foam flat plate portion and a plurality of synthetic resin foam convex portions disposed on the plate surface of the flat plate portion, wherein the plurality of synthetic resin foam convex portions are upper plates of the flat plate portion. A first type foam convex portion arranged in contact with or fixed to the surface and a second type foam convex portion arranged in contact with or fixed to the lower plate surface of the flat plate portion; The position where the first type foam protrusion is disposed on the upper plate surface of the flat plate portion and the position where the second type foam protrusion is disposed on the lower plate surface of the flat plate portion are flat. The synthetic resin foam convex portions are arranged on the plate surface of the flat plate portion so as not to overlap with each other, and the area S of the plate surface of the synthetic resin foam flat plate portion is The total area S1 of the area s1 of the upper surface of the convex portion of the first type foam convex portion arranged on the upper plate surface of the flat plate portion and the second type foam convex portion arranged on the lower plate surface of the flat plate portion The ratio ((S1 + S2) / S) of the total area to the total area S2 of the area s2 of the upper surface of the convex part of the part is 0.15 or more, and the ratio (s1 / s2) of s1 to s2 is 0.3 to An anti-vibration floor structure characterized by being 3.5. 上記合成樹脂発泡体平板部の上板面に当接或いは固定されて配置される上記第1種の発泡体凸部が正方形格子点を形成するように配設され、上記平板部の下板面に当接或いは固定されて配置される上記第2種の発泡体凸部が上記正方形の対角線の交点の位置に配設されていることを特徴とする、請求項1に記載の防振床構造。   The first type foam protrusions arranged in contact with or fixed to the upper plate surface of the synthetic resin foam flat plate portion are arranged so as to form square lattice points, and the lower plate surface of the flat plate portion. 2. The vibration-proof floor structure according to claim 1, wherein the second-type foam protrusions disposed in contact with or fixed to the square are disposed at the intersections of the diagonal lines of the square. . 上記合成樹脂発泡体平板部の適所に、該平板部を貫通した状態で防振ゴムが取り付けられていることを特徴とする、請求項1または2に記載の防振床構造。   The anti-vibration floor structure according to claim 1 or 2, wherein an anti-vibration rubber is attached to an appropriate position of the flat plate portion of the synthetic resin foam so as to penetrate the flat plate portion. 上記合成樹脂発泡体平板部と上記第1種および第2種の発泡体凸部とが、ポリオレフィン系樹脂発泡粒子型内成形体であることを特徴とする、請求項1〜3のいずれかに記載の防振床構造。   The said synthetic resin foam flat plate part and said 1st type and 2nd type foam convex part are polyolefin-type resin foaming particle type | molding bodies in any one of Claims 1-3 characterized by the above-mentioned. Anti-vibration floor structure as described. 上記合成樹脂発泡体平板部と上記第1種および第2種の発泡体凸部とが、架橋ポリエチレン系樹脂発泡粒子型内成形体であることを特徴とする、請求項1〜3のいずれかに記載の防振床構造。   The said synthetic resin foam flat plate part and said 1st type and 2nd type foam convex part are crosslinked polyethylene-type resin foaming-particles in-mold molded objects, The any one of Claims 1-3 characterized by the above-mentioned. Anti-vibration floor structure as described in 1. 少なくとも一枚の合成樹脂発泡体平板部と、該平板部の板面に配設される複数の合成樹脂発泡体凸部を備え、上記複数の合成樹脂発泡体凸部は上記平板部の上板面に当接或いは固定されて配置される第1種の発泡体凸部と上記平板部の下板面に当接或いは固定されて配置される第2種の発泡体凸部とにより構成され、上記第1種の発泡体凸部が上記平板部の上板面に配置されている位置と上記第2種の発泡体凸部が上記平板部の下板面に配置されている位置とが平面視で重ならないように、上記合成樹脂発泡体凸部が上記平板部の板面に配設されており、上記合成樹脂発泡体平板部の板面の面積Sに対する、該平板部の上板面に配置される第1種の発泡体凸部の凸部上面の面積s1の合計面積S1と該平板部の下板面に配置される第2種の発泡体凸部の凸部上面の面積s2の合計面積S2との合計面積の割合((S1+S2)/S)が0.15以上であり、かつs1とs2との比(s1/s2)が0.75〜1.25であることを特徴とする、防振材。   At least one synthetic resin foam flat plate portion and a plurality of synthetic resin foam convex portions disposed on the plate surface of the flat plate portion, wherein the plurality of synthetic resin foam convex portions are upper plates of the flat plate portion. A first type foam convex portion arranged in contact with or fixed to the surface and a second type foam convex portion arranged in contact with or fixed to the lower plate surface of the flat plate portion; The position where the first type foam protrusion is disposed on the upper plate surface of the flat plate portion and the position where the second type foam protrusion is disposed on the lower plate surface of the flat plate portion are flat. The synthetic resin foam convex portions are disposed on the plate surface of the flat plate portion so as not to overlap with each other, and the upper plate surface of the flat plate portion with respect to the area S of the plate surface of the synthetic resin foam flat plate portion The total area S1 of the upper surface area s1 of the first type foam protrusions disposed on the lower surface of the flat plate portion and the second type The ratio ((S1 + S2) / S) of the total area with the total area S2 of the area s2 of the upper surface of the convex part of the body convex part is 0.15 or more, and the ratio (s1 / s2) between s1 and s2 is 0.00. An anti-vibration material, which is 75 to 1.25. 上記合成樹脂発泡体平板部の上板面に当接或いは固定されて配置される上記第1種の発泡体凸部が正方形格子点を形成するように配設され、上記平板部の下板面に当接或いは固定されて配置される上記第2種の発泡体凸部が上記正方形の対角線の交点の位置に配設されていることを特徴とする、請求項6に記載の防振材。   The first type foam protrusions arranged in contact with or fixed to the upper plate surface of the synthetic resin foam flat plate portion are arranged so as to form square lattice points, and the lower plate surface of the flat plate portion. The anti-vibration material according to claim 6, wherein the second-type foam protrusions arranged in contact with or fixed to the square are arranged at the intersections of the diagonal lines of the square.
JP2011172407A 2011-08-05 2011-08-05 Anti-vibration floor structure and anti-vibration material Active JP5894390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011172407A JP5894390B2 (en) 2011-08-05 2011-08-05 Anti-vibration floor structure and anti-vibration material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011172407A JP5894390B2 (en) 2011-08-05 2011-08-05 Anti-vibration floor structure and anti-vibration material

Publications (2)

Publication Number Publication Date
JP2013036211A true JP2013036211A (en) 2013-02-21
JP5894390B2 JP5894390B2 (en) 2016-03-30

Family

ID=47886066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011172407A Active JP5894390B2 (en) 2011-08-05 2011-08-05 Anti-vibration floor structure and anti-vibration material

Country Status (1)

Country Link
JP (1) JP5894390B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202013011635U1 (en) * 2013-06-18 2014-01-29 Jürgen Jolly Simply decoupled and roll-out surface heating
JP2015117521A (en) * 2013-12-19 2015-06-25 株式会社長谷工コーポレーション Hollow double wall

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01112045A (en) * 1987-08-05 1989-04-28 Noda Corp Vibration isolating sheet
JPH074015A (en) * 1993-10-05 1995-01-10 Noda Corp Sheet-like buffer material and sound insulating floor material
JPH09242314A (en) * 1996-03-07 1997-09-16 Jsp Corp Vibration-proof material
JP2000154638A (en) * 1998-09-17 2000-06-06 Sekisui Chem Co Ltd Sound isolation sheet for floor
JP2006348702A (en) * 2005-06-20 2006-12-28 Tadashi Saihara Floor material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01112045A (en) * 1987-08-05 1989-04-28 Noda Corp Vibration isolating sheet
JPH074015A (en) * 1993-10-05 1995-01-10 Noda Corp Sheet-like buffer material and sound insulating floor material
JPH09242314A (en) * 1996-03-07 1997-09-16 Jsp Corp Vibration-proof material
JP2000154638A (en) * 1998-09-17 2000-06-06 Sekisui Chem Co Ltd Sound isolation sheet for floor
JP2006348702A (en) * 2005-06-20 2006-12-28 Tadashi Saihara Floor material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202013011635U1 (en) * 2013-06-18 2014-01-29 Jürgen Jolly Simply decoupled and roll-out surface heating
JP2015117521A (en) * 2013-12-19 2015-06-25 株式会社長谷工コーポレーション Hollow double wall

Also Published As

Publication number Publication date
JP5894390B2 (en) 2016-03-30

Similar Documents

Publication Publication Date Title
US6672426B2 (en) Sound-insulating floor structures, sound-insulating floor members and method for constructing said sound-insulating floor structures
JP5894390B2 (en) Anti-vibration floor structure and anti-vibration material
WO2004051015A1 (en) Reinforcing structure for building and reinforcing member for the structure
US8302351B2 (en) Vibration damper
JP4413344B2 (en) Soundproof floor structure
KR101757059B1 (en) Floor impact sound cushioning material of a multi-story building
JPH1037343A (en) Sound insulating floor material, sound insulating support leg for sound insulating floor material, and sound insulating floor structure
JP3159295U (en) Anti-vibration material, anti-vibration floor structure using the anti-vibration material
KR102119407B1 (en) Vibration dampener for reduction of crashing sound
JP3477072B2 (en) Building floor structure
JP4177817B2 (en) Seismic isolation structure and wooden house
JP6917738B2 (en) Laminated vibration damping structure
JP2003147947A (en) Vibration control heat insulating floor structure of building
JP4167627B2 (en) Reinforcement structure and reinforcement member of building or building
JP4271123B2 (en) Soundproof floor structure, combination of soundproof flooring material and konneta, and construction method of soundproof floor structure
KR20070088233A (en) Insulation materials for reducing a noise and a impact sound
JP3835999B2 (en) Combination form for vibration isolation floor construction
KR100930574B1 (en) Manufacturing method of noise reduction buffer member and mold used therein
JP4302052B2 (en) Beam structure and soundproof material for beams
JP6618305B2 (en) Floor structure and viscoelastic body used for floor structure
WO2020050276A1 (en) Floor structure
JP6430171B2 (en) Anti-vibration material for floating floor structures
JP7201174B2 (en) Ceiling anti-vibration material and ceiling anti-vibration structure
JP3012304U (en) Damping material
US20220415297A1 (en) Sound insulation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160226

R150 Certificate of patent or registration of utility model

Ref document number: 5894390

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250