JP2013036016A - Method for separating volatile fuel oil contained in algae by solar heat - Google Patents

Method for separating volatile fuel oil contained in algae by solar heat Download PDF

Info

Publication number
JP2013036016A
JP2013036016A JP2011180947A JP2011180947A JP2013036016A JP 2013036016 A JP2013036016 A JP 2013036016A JP 2011180947 A JP2011180947 A JP 2011180947A JP 2011180947 A JP2011180947 A JP 2011180947A JP 2013036016 A JP2013036016 A JP 2013036016A
Authority
JP
Japan
Prior art keywords
pressure
algae
water
pressure vessel
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011180947A
Other languages
Japanese (ja)
Inventor
Tetsushi Mita
哲史 三田
Haruki Yokono
春樹 横野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011180947A priority Critical patent/JP2013036016A/en
Publication of JP2013036016A publication Critical patent/JP2013036016A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To separate organic compounds, contained in algae and capable of being used as fuel oil, from the algae at low cost.SOLUTION: Volatile components such as hydrocarbons are separated from algae by repeating, at least once, the operation comprising: filling the inside of a pressure container, whose surface is covered with a solar heat absorbing film, with water and algae and closing the container; then heating the water and algae under a high temperature environment of 50-300°C formed by the irradiation with solar light; reducing the pressure in the pressure container down to normal pressure as rapidly as possible when the pressure is raised by generated water vapor up to a predetermined pressure in the range of 1.4 to 5.0 atmospheres; and applying heat and the pressure and reducing the pressure, again.

Description

本発明は、藻類に含まれる揮発性燃料オイルの分離に関する。  The present invention relates to separation of volatile fuel oil contained in algae.

藻類に含まれる炭化水素、炭水化物はじめその他の有機物には、燃料、工業薬品、化粧品あるいは医薬品に用いられる有用な物質が含まれている事が知られているが、その分離抽出には機械的な細胞膜破壊法、超音波振動法、圧縮加圧法、接触クラッキング法、溶剤抽出法、超臨界溶液による抽出法あるいは蒸溜法などの方法が実施されてきた。しかし、その分離抽出のために必要とするエネルギーが、特に燃料を目的とする炭化水素および炭水化物において、燃料として得られるエネルギーより大きくなるという経済的な理由から産業として成り立たない状況が続いてきた。そのために、燃料以外の付加価値の大きい医薬品や化粧品などに使用される物だけが企業化されているが、燃料オイルは経済性を模索する試行錯誤の状況が続いてきた。
しかしながら地球上の人口増加に伴って、二酸化炭素による地球温暖化という環境問題や化石燃料の枯渇問題とも絡んで、その解決を迫られている状況にある。
本発明の技術分野に関連しては、過去に多数の特許が出願されている。その中から代表的な例を上げる。特許文献1は、機械的な方法で藻の細胞膜を破壊しエタノールを採取する例である。特許文献2は、回転刃による機械的な細胞膜破壊の例である。この後、蒸留などにより燃料などの有機物を採取するものと考えられる。特許文献3は水分5〜96%含んだ藻から、機械的方法、酵素処理、アルカリ処理、などの方法で細胞膜を破壊したのち超臨界二酸化炭素、アルコールその他の溶剤による抽出工程を経て燃料などの有機物を採取する例である。特許文献4は、接触クラッキング工程を経て、溶剤を用いて炭化水素を抽出する例である。特許文献5は、植物の種などから有用物質を採取するときに、外部から圧力容器とポンプを用いて、常温に於いて加圧と減圧操作を行うというものである。特に大豆から豆腐を作る時に、この加圧と減圧操作によって巣のない豆腐が出来ると記載している。
非特許文献1と2は、前川孝昭( 筑波大名誉教授、筑波バイオテック研究所長)渡邉 信( 筑波大教授 )両氏の藻類から燃料を採取する技術に関する論説である。非特許文献3は米国 OriginOil社の藻類から燃料油を抽出する同社の技術を解説したもので、現在では世界で最も効率の良い抽出技術と言われている。同社は、2011年、世界で初めて採算のとれる藻類からの採油に成功したと発表している。この技術の中心は超音波振動を藻に印加させて藻類の細胞膜破壊を起こす事が骨格となっている。しかし超音波振動だけでは細胞膜の破壊は不十分で、更なる改善が望まれている。詳細は不明であるが、二酸化炭素も注入していると発表している。非特許文献4は、微細藻からEPAなどの有価物および燃料オイルを培養抽出する事業の可能性を技術面および経済面から調査検討した報告である。広大な培養地の問題、水の調達問題、藻培養に関わる技術的問題や有価物の抽出問題などについて諸外国の状況も含めて詳細に検討を加えている。EPAなど付加価値の高いものは採算に合うが、燃料オイルについては採油の更なる低価格化の検討が必要との見解である。
Hydrocarbons, carbohydrates and other organic substances contained in algae are known to contain useful substances used in fuels, industrial chemicals, cosmetics or pharmaceuticals. Methods such as cell membrane disruption, ultrasonic vibration, compression and pressure, contact cracking, solvent extraction, supercritical solution extraction, or distillation have been practiced. However, the situation that has not been realized as an industry has continued for the economic reason that the energy required for the separation and extraction is larger than the energy obtained as fuel, particularly in hydrocarbons and carbohydrates intended for fuel. For this reason, only those used for pharmaceuticals and cosmetics with high added value other than fuel have been commercialized, but fuel oil has been in a trial-and-error situation in search of economic efficiency.
However, as the population on the earth grows, there is an urgent need to solve the problem due to the environmental problem of global warming caused by carbon dioxide and the problem of exhaustion of fossil fuels.
In connection with the technical field of the present invention, numerous patents have been filed in the past. Typical examples are given below. Patent Document 1 is an example in which ethanol is collected by breaking a cell membrane of algae by a mechanical method. Patent document 2 is an example of mechanical cell membrane destruction by a rotary blade. After this, it is considered that organic substances such as fuel are collected by distillation or the like. In Patent Document 3, a cell membrane is destroyed from an algae containing 5 to 96% of water by a mechanical method, an enzyme treatment, an alkali treatment, or the like, followed by an extraction step with supercritical carbon dioxide, alcohol or other solvent, and then a fuel or the like. This is an example of collecting organic matter. Patent document 4 is an example which extracts a hydrocarbon using a solvent through a contact cracking process. In Patent Document 5, when a useful substance is collected from a plant seed or the like, pressurization and decompression are performed at room temperature using a pressure vessel and a pump from the outside. In particular, when making tofu from soybeans, it is described that tofu without nests can be made by this pressurization and decompression operation.
Non-Patent Documents 1 and 2 are articles on the technology of collecting fuel from algae by Takaaki Maekawa (Professor Emeritus, University of Tsukuba, Director of Tsukuba Biotech Research Institute) and Shin Watanabe (Professor, University of Tsukuba). Non-Patent Document 3 describes the company's technology for extracting fuel oil from algae of OriginOil, USA, and is currently said to be the most efficient extraction technology in the world. The company announced in 2011 that it succeeded in extracting the world's first profitable algae. The core of this technology is the application of ultrasonic vibration to algae to cause destruction of algal cell membranes. However, destruction of cell membranes is not sufficient with ultrasonic vibration alone, and further improvements are desired. The details are unknown, but it has announced that it is also injecting carbon dioxide. Non-Patent Document 4 is a report which investigated and examined the possibility of a business to culture and extract valuable materials such as EPA and fuel oil from microalgae from the technical and economic aspects. We are investigating in detail, including the situation in other countries, the problems of vast culture sites, water procurement problems, technical problems related to algae culture and extraction of valuable resources. EPA and other high-value-added products are profitable, but it is the view that fuel oil needs to be examined for further cost reduction.

特開 平7−87983JP 7-87983 A 特開 2010−162499JP 2010-162499 A 特開 2011−68741JP 2011-68741 A 特許公表 2010−539300Patent publication 2010-539300 特開 2005−87183JP 2005-87183 A

前川孝昭 筑波バイオテック研究所 ホームページ http://maekawabio.org/aurantio.pdfTakaaki Maekawa Tsukuba Biotech Research Institute Homepage http: // maekawabio. org / aurantio. pdf 渡邉 信 (藻類バイオマスエネルギー技術の展望) http://www.sakura.cc.tsukuba.ac.jp/〜eefforum/1st3EF/1st3EFwatanabe.pdfShin Watanabe (Algae Biomass Energy Technology Perspective) http: // www. sakura. cc. tsukuba. ac. jp / ~ efforum / 1st3EF / 1st3EFwatanabe. pdf OriginOil 社(米国)のホームページ http://www.originoil.com/technology/overview.htmlOriginOil (USA) home page: http: // www. originoil. com / technology / overview. html 平成23年度農林水産省 緑と水の環境技術革命プロジェクト事業 「耕作放棄地における微細藻培養技術の確立と事業化方策の検討に係る事業化可能性調査報告」 平成23年4月 スメーブジャパン(株)他2社共同執筆 www.j−phoenix.com/pages/65/file20110625.pdf2011 Ministry of Agriculture, Forestry and Fisheries Green and Water Environmental Technology Revolution Project Project “Survey Report on Establishment of Microalgae Culture Technology in Abandoned Cultivation Area and Examination of Commercialization Strategy” April 2011 Co-authored by two other companies www. j-phoenix. com / pages / 65 / file201110625. pdf

藻類から、燃料オイルを低コストで分離することを課題とした。    The problem was to separate fuel oil from algae at low cost.

藻類の組織内において、炭化水素などの揮発性有機化合物は、藻類の細胞膜破壊に要するエネルギーの消費が多大なために、経済的に分離採取する事が出来なかった。
本発明は、太陽光線を照射する事によって造出された高温度の環境の中で、水分を含んだ藻類入りの圧力容器を加熱し、発生した水蒸気によって高圧状態となった藻類に対し、急激な減圧操作を加え、藻類の細胞膜組織の結合を破壊し、揮発性有機化合物を水との比重の差を利用して藻類組織と分離することを基本的な手段とするものである。
In the algae tissue, volatile organic compounds such as hydrocarbons could not be economically separated and collected due to the large consumption of energy required for cell membrane destruction of algae.
The present invention heats a pressure vessel containing algae containing moisture in a high-temperature environment created by irradiating solar rays, and abruptly Therefore, the basic means is to separate the volatile organic compound from the algal tissue by utilizing the difference in specific gravity with water by destroying the binding of algal cell membrane tissue and applying a reduced pressure operation.

具体的には(1)、太陽光線を照射する事によって造出された50〜300℃の高温度の環境の中に設置された(1−1)「太陽熟吸収膜で表面被覆された金属製の圧力容器」(以下圧力容器と略称)の内部に、この圧力容器の30〜90%の容積範囲内で水没状態となるように水を調合した藻類を導入したのち
(1−2)圧力容器を密閉して加熱し、発生した水蒸気により上昇した圧力容器内の圧力が1.4〜5.0気圧の間の予め定めた圧力に達した時に、可及的速やかに常圧まで減圧して藻類に衝撃を与える加熱と減圧の繰り返し操作を1回以上行い
(1−3)次いで圧力容器から藻類を水槽中に排出し、藻類が水槽中において水没状態になるように水槽の水量を調節して撹拌したのち静置し、「炭化水素などの有機化合物で、沸点が常圧で300℃以下の揮発性成分」(以下揮発性成分と略称)を水面の上部に、藻類の残渣を水底に分離する方法。
Specifically, (1) installed in a high temperature environment of 50 to 300 ° C. created by irradiating with solar rays (1-1) “metal coated with a surface by a solar ripening absorption film” After introducing algae prepared with water so as to be submerged in a volume range of 30 to 90% of the pressure vessel (hereinafter abbreviated as “pressure vessel”) (1-2) Pressure The container is sealed and heated, and when the pressure in the pressure container raised by the generated water vapor reaches a predetermined pressure of 1.4 to 5.0 atm, the pressure is reduced to normal pressure as soon as possible. (1-3) Next, discharge the algae from the pressure vessel into the aquarium and adjust the amount of water in the aquarium so that the algae are submerged in the aquarium. And then left to stand, "both organic compounds such as hydrocarbons, boiling point Atmospheric pressure at 300 ° C. or less of the volatile component "(hereinafter referred to as volatile components) in the water surface of the upper, the method of separating the residue of algae water bottom.

(2)、前記圧力容器が、(2−1)圧力容器の30〜90%の容積範囲で水没状態となるように水を調合した藻類を、圧力容器内に導入するための開閉弁または開閉蓋を装着した入り口部
(2−2)加熱して発生した水蒸気により、藻類に対し加圧と減圧操作を1回以上繰り返し行ってから、藻類を圧力容器外に排出するための開閉弁または開閉蓋を装着した出口部
(2−3)圧力容器内の圧力を常圧まで減圧し、再度圧力を復旧させるための圧力調整弁を装着した開口部
以上の3種類の開口部が設けられている事を特徴とする加熱処理装置である1項に記載の揮発性成分を水面の上部に、藻類の残渣を水底に分離する方法。
(2) An on-off valve or an on-off valve for introducing the alga prepared with water so that the pressure vessel is submerged in the volume range of (2-1) 30 to 90% of the pressure vessel. (2-2) Open / close valve or open / close valve for discharging the algae out of the pressure vessel after repeating the pressurization and depressurization operations on the algae one or more times with water vapor generated by heating. (2-3) Opening part equipped with a pressure regulating valve for reducing the pressure in the pressure vessel to normal pressure and restoring the pressure again The above three types of opening parts are provided. 2. A method for separating the volatile component according to 1 above, which is a heat treatment apparatus characterized by the above, to the upper part of the water surface and the algae residue to the bottom of the water.

(3)、前記圧力容器が、(3−1)出口部および圧力調整弁を装着した開口部が閉じられており、入り口部が開口状態の時に、圧力容器内の30〜90%の容積範囲で水没状態となるように水を調合した藻類を入り口部から圧力容器内に導入し
(3−2)この水を調合した藻類の容積が、圧力容器の30〜90%の容積範囲内となった時に、入り口部の開閉弁または開閉蓋を閉じて、太陽光線を照射する事によって造出された50〜300℃の高温度の環境の中で加熱され
(3−3)加熱により発生した水蒸気によって圧力容器内の圧力が1.4〜5.0気圧の間の予め定めた圧力に達した時に、可及的速やかに圧力調整弁を開いて圧力容器内の圧力を常圧まで減圧して藻類に衝撃を与える加熱と減圧の繰り返し操作を1回以上行う事を特徴とする1項に記載の揮発性成分を水面の上部に、藻類の残渣を水底に分離する方法。
(3) The pressure vessel has a volume range of 30-90% in the pressure vessel when (3-1) the opening and the opening fitted with the pressure regulating valve are closed and the inlet is open. (3-2) The volume of the algae prepared with water is within the volume range of 30 to 90% of the pressure vessel. (3) Water vapor generated by heating in a high temperature environment of 50 to 300 ° C. created by irradiating sunlight. When the pressure in the pressure vessel reaches a predetermined pressure between 1.4 and 5.0 atm, the pressure adjustment valve is opened as soon as possible to reduce the pressure in the pressure vessel to normal pressure. Repeat heating and depressurization operations that impact algae at least once. The volatile components the water surface of the upper portion according to the paragraph (1), symptom, method for separating the residue of algae water bottom.

(4)、前記圧力容器の表面に被覆された太陽熱吸収膜が、(4−1)カーボンブラック、黒鉛、酸化銅、二酸化マンガン、酸化コバルト、酸化クローム、酸化鉄、硫化鉛または硫化ニッケルから選ばれた単体、複合体または混合体で構成された物質からなり
(4−2)これらの物質が、蒸着、スパッタリングあるいはCVDなどの物理的表面被覆処理、メッキあるいは酸化処理などの化学的表面被覆処理または合成樹脂バインダーと混練されて製造された塗料を塗布乾燥して表面被覆処理した被膜の何れかであることを特徴とする1項に記載の揮発性成分を水面の上部に、藻類の残渣を水底に分離する方法。
(4) The solar heat absorption film coated on the surface of the pressure vessel is selected from (4-1) carbon black, graphite, copper oxide, manganese dioxide, cobalt oxide, chromium oxide, iron oxide, lead sulfide or nickel sulfide. (4-2) These substances are formed by physical surface coating treatment such as vapor deposition, sputtering or CVD, and chemical surface coating treatment such as plating or oxidation treatment. Alternatively, the volatile component according to item 1 is applied to the upper part of the water surface, and algae residue is applied to the surface by applying a coating prepared by kneading with a synthetic resin binder and drying and coating the surface. Separating to the bottom of the water.

(5)、前記圧力容器が、ステンレス鋼、アルミニウム合金、チタン、チタン合金、銅または銅合金製であることを特徴とする1項に記載の揮発性成分を水面の上部に、藻類の残渣を水底に分離する方法。  (5) The pressure vessel is made of stainless steel, aluminum alloy, titanium, titanium alloy, copper, or copper alloy. Separating to the bottom of the water.

(6)、(4−2)に記載された合成樹脂バインダーが、アクリル樹脂、ビニル樹脂、ポリエステル樹脂、シリコーン樹脂、ウレタン樹脂、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂および合成ゴムから選ばれた単独または2種類以上の混合物であることを特徴とする1項に記載の揮発性成分を水面の上部に、藻類の残渣を水底に分離する方法。  (6), the synthetic resin binder described in (4-2) is selected from acrylic resin, vinyl resin, polyester resin, silicone resin, urethane resin, epoxy resin, phenol resin, polyimide resin, and synthetic rubber, alone or 2. A method for separating a volatile component according to item 1 above at the top of the water surface and algae residue at the bottom of the water, which is a mixture of two or more.

(7)、前記(3−3)に記載された、可及的速やかに圧力調整弁を開いて圧力容器内の圧力を常圧まで減圧して藻類に衝撃を与える加熱と減圧の繰り返し操作を1回以上行った時に、圧力調整弁を開いた開口部から圧力容器の外部に噴出する揮発性成分を含む水蒸気を、空冷または水冷された凝縮管を通過させて液体とし、この液体を凝縮管の出口に設けられた容器に捕捉して静置し、水面に浮上した揮発性成分を分離する方法。  (7) The repeated operation of heating and depressurization described in (3-3) above, which opens the pressure regulating valve as quickly as possible to depressurize the pressure in the pressure vessel to normal pressure and gives an impact on the algae. When performed once or more, water vapor containing volatile components ejected from the opening of the pressure regulating valve to the outside of the pressure vessel passes through an air-cooled or water-cooled condensing tube to form liquid, and this liquid is condensed into the condensing tube. A method of separating volatile components floating on the water surface by capturing them in a container provided at the outlet of the water and leaving them standing.

以上の1、2、3、4、5、6および7項が本発明の手段である。以下はその補足説明である。  The above items 1, 2, 3, 4, 5, 6 and 7 are the means of the present invention. The following is a supplementary explanation.

高温度の環境は、太陽光線を太陽光反射板または集光レンズによって照射して造出するもので、既にこの原理を利用した発電などに実用化されている。本発明では、太陽光反射板を主として使用する。この太陽光の照射による高温度の環境には、横方向のトラフ型のものと、縦方向の塔型のものがあり、本発明は、その高温度の環境に水を含んだ藻類の入った圧力容器を導入して加熱するものである。本発明では(図1)に示した横方向のトラフ型の加熱処理装置および(図2)に示した縦方向の塔型の加熱処理装置が使用可能であるが、塔型が生産性と維持管理に於いて優れており好ましい。本発明の前工程である藻類の培養装置と本発明の主部をなす太陽熱で加熱される圧力容器は連続して設置される。その接続部に近い培養装置の末端部には、藻類に含まれる水分を調整するためにメッシュ部を設けて水分を濾過し調整する事が行われる。水分量は、藻類が圧力容器内で水没する程度とする。この範囲が藻類に対する加圧と減圧の衝撃度効果が大きく好ましい。
圧力容器の表面付近の温度は、50〜300℃、圧力容器内部の藻類を加熱する温度は、110〜150℃が好ましい。300℃以上になると藻類の炭化が始まり揮発性成分も酸化される場合が生じる。その場合は窒素ガス封入下で行う事になりシステムが複雑化するので好ましくない。揮発性成分を分離した後の藻類の残渣は、水溶性有価物の回収、家畜の飼料あるいは肥料等として活用される。
圧力容器内の圧力範囲が1.4〜5.0気圧(圧力容器内温度は約110〜150℃となる)で、予め定めた圧力に到達した時に圧力容器内部の圧力を減圧し、藻類に衝撃を加えて細胞膜を破壊し、揮発性成分を分離する。この加圧操作と減圧操作は1回以上、好ましくは3回〜5回ほど繰り返して行う。これによって藻類の細胞膜はほぼ完全に破壊され、揮発性成分はほぼ100%近く分離する事が可能となる。この減圧操作は、圧力容器の大きさや藻類の種類について予め検討して定めておいた圧力に達した時に行う事になる。減圧から再加圧までの時間の間隔も圧力容器の大きさや藻類の種類について、予め検討して定めておく事になる。
The high temperature environment is created by irradiating sunlight with a sunlight reflector or a condenser lens, and has already been put into practical use for power generation using this principle. In the present invention, a solar reflector is mainly used. The high temperature environment by irradiation with sunlight includes a lateral trough type and a vertical tower type, and the present invention includes algae containing water in the high temperature environment. A pressure vessel is introduced and heated. In the present invention, the horizontal trough heat treatment apparatus shown in FIG. 1 and the vertical tower heat treatment apparatus shown in FIG. 2 can be used. It is excellent in management and preferable. The algae culture apparatus which is the pre-process of the present invention and the pressure vessel heated by solar heat which constitutes the main part of the present invention are continuously installed. In order to adjust the moisture contained in the algae, a mesh portion is provided at the end of the culture apparatus close to the connecting portion, and the moisture is filtered and adjusted. The amount of water is such that the algae are submerged in the pressure vessel. This range is preferable because the impact effect of pressurization and decompression on algae is great.
The temperature near the surface of the pressure vessel is preferably 50 to 300 ° C., and the temperature for heating the algae inside the pressure vessel is preferably 110 to 150 ° C. When the temperature exceeds 300 ° C., carbonization of algae begins and volatile components may be oxidized. In that case, it is not preferable because it is performed under nitrogen gas filling and the system becomes complicated. The algae residue after separation of volatile components is used as a recovery of water-soluble valuables, livestock feed or fertilizer.
The pressure range in the pressure vessel is 1.4 to 5.0 atm (the temperature in the pressure vessel is about 110 to 150 ° C.), and when the pressure reaches a predetermined pressure, the pressure inside the pressure vessel is reduced to algae. Impact is applied to break the cell membrane and separate volatile components. This pressurizing operation and depressurizing operation are repeated once or more, preferably about 3 to 5 times. As a result, the cell membrane of the algae is almost completely destroyed, and almost 100% of the volatile components can be separated. This depressurization operation is performed when the pressure reaches the pressure determined by examining the size of the pressure vessel and the type of algae in advance. The time interval from depressurization to repressurization is also determined in advance with respect to the size of the pressure vessel and the type of algae.

本発明は、ボツリオコッカス、ユーグレナ、アオコ、シュウードコリシスチスあるいはイソチリス ガルバーナ、ナンノクロプロシスなどの光合成型およびオーランチオキトリウムなどの従属栄養型の藻類に適用可能である。藻類は培地の水に対し1%前後の乾燥重量の藻類しか生育せず、この乾燥藻の重量の20〜70%が炭化水素などの燃料オイルとして含まれる藻類が本発明の実施対象として好ましい。この藻類は、培地からの出口付近即ち圧力容器の入り口前付近に於いて、圧力容器内で水没状態となる程度の水を含む湿藻状態としたのち、圧力容器内に導入し、加熱、加圧および減圧操作を行い、細胞膜の結合を緩和し破壊する。この操作中において、圧力調整弁を装着した開口部を開き減圧操作を行った時に、その開口部から揮発性成分を含んだ水蒸気が噴出する。その水蒸気を凝縮管内で冷却し液体として採取し、その液体からも揮発性成分を分離する事が出来る。加圧と減圧操作回数が3回〜5回ほど繰り返し実施されると揮発性成分は殆ど圧力容器から排出される。なおこの時、圧力容器内の水量も減少するので、藻類が水没する程度に水を補給する事になる。  The present invention is applicable to photosynthetic algae such as Botriococcus, Euglena, Blue-green, Pseudocollistis or Isotilis galvana and Nannocloprosis, and heterotrophic algae such as Aurantiochytrium. Algae grow only algae having a dry weight of about 1% with respect to the water of the medium, and algae containing 20 to 70% of the weight of the dry algae as fuel oil such as hydrocarbons are preferred as the object of the present invention. This algae is in a wet algae state that is submerged in the pressure vessel in the vicinity of the outlet from the medium, that is, in front of the pressure vessel, and is then introduced into the pressure vessel and heated and heated. Pressurize and depressurize to relax and break cell membrane binding. During this operation, when an opening equipped with a pressure regulating valve is opened and a pressure reducing operation is performed, water vapor containing a volatile component is ejected from the opening. The water vapor is cooled in a condenser tube and collected as a liquid, and volatile components can be separated from the liquid. When the pressurization and decompression operations are repeated 3 to 5 times, the volatile components are almost discharged from the pressure vessel. At this time, since the amount of water in the pressure vessel also decreases, water is supplied to such an extent that the algae are submerged.

本発明のプロセスに於いて、在来使われてきた超音波振動や超臨界抽出の適用ほか公知の藻類の細胞膜破壊方法を併用することも可能である。然しながら、これらの併用も本発明がその基本的基盤技術となっており、本発明に含まれ、本発明を否定するものではない。  In the process of the present invention, it is possible to use a known algae cell membrane disruption method in addition to the application of ultrasonic vibration and supercritical extraction, which have been used conventionally. However, these combined use also constitutes the basic fundamental technology of the present invention, and is included in the present invention and does not deny the present invention.

本発明による藻類から揮発性成分を分離する方法は、太陽光線を照射して造出された高温度の環境下で行われる。このため化石燃料や電力を使用して加熱することなく藻類から低コストのエネルギーで揮発性成分を採取出来る。藻類の細胞膜破壊は、水蒸気圧の開放によるショックを利用するために簡単な弁の操作によって行う事が出来て、これによってほぼ完全に細胞膜破壊が可能となる。これらの事によって課題の低コスト化を実現できた。  The method for separating volatile components from algae according to the present invention is performed in a high temperature environment created by irradiation with sunlight. For this reason, volatile components can be collected from algae with low-cost energy without using fossil fuel or electric power. Algae cell membrane destruction can be performed by a simple valve operation in order to take advantage of the shock caused by the release of water vapor pressure, which enables almost complete cell membrane destruction. By these things, the cost reduction of the subject was realizable.

太陽光線を照射して造出された高温度の環境の中で、揮発性の燃料オイルと藻類を分離するトラフ型システムの説明図。  Explanatory drawing of the trough type | system | group which isolate | separates volatile fuel oil and algae in the high temperature environment produced by irradiating sunlight. 太陽光線を照射して造出された高温度の環境の中で、揮発性の燃料オイルと藻類を分離する塔型システムの説明図。  Explanatory drawing of the tower type system which isolate | separates volatile fuel oil and algae in the high temperature environment produced by irradiating with a solar ray.

本発明は、揮発性成分を含む藻類を培養したのち、それを分離する工程に関する。培養工程で、光合成型藻類にあっては水培地の炭酸ガス濃度を高めながら光を照射して藻を生育させる。従属栄養型の藻類にあっては、水培地の有機物質を栄養として藻は生育する。それらの培地は酸性に傾きがちな傾向があり、何らかの操作で水がアルカリ性となるように維持する事を必要とする。この方法は一般的には、緩衝溶液によって行われている。そのためにナトリウムなどの塩濃度を管理する必要があるが、本発明者の一人は、先に分極性陽電極による方法を提案(特願2010−291056)して培養水の負電荷密度を高めアルカリ性とする事により、ナトリウムなどの塩濃度の少ない培地環境の中で安定した藻類の生育環境の造成に成功した。本発明は、培養した藻類から揮発性の燃料オイルを分離する工程に関するものであるが、負電荷密度が高まると、アルカリ性を示すようになり本発明の実施結果ではpH値の範囲は7.1〜13.0であった。実際の作業に当たっては、好ましくは7.1〜10.0の範囲に調整する事で揮発性成分の分離も順調に運ぶ事が確認された。pHの値は、藻類の品種や大規模な工業生産などに於いては、それぞれの条件にあった適正なpH範囲に調整されて使用される事になる。例えば従属栄養型のオ−ランチトキノリウムの場合はやや低いpH7.1〜7.5の状態で燃料オイルの分離は比較的順調に進んだ。このpHと湿藻状態の調整は前工程である培養中に行った後、本発明の分離工程に進む事になる。  The present invention relates to a step of culturing algae containing volatile components and then separating them. In the culturing process, in the case of photosynthetic algae, algae are grown by irradiating light while increasing the concentration of carbon dioxide in the aqueous medium. In heterotrophic algae, algae grow using organic substances in water medium as nutrients. These media tend to be acidic and require that the water be kept alkaline by some operation. This method is generally performed with a buffer solution. For this purpose, it is necessary to control the concentration of salt such as sodium. One of the present inventors previously proposed a method using a polarizable positive electrode (Japanese Patent Application No. 2010-291056) to increase the negative charge density of the culture water and make it alkaline. By doing so, we succeeded in creating a stable algae growth environment in a medium environment with a low salt concentration such as sodium. The present invention relates to a process for separating volatile fuel oil from cultured algae. However, when the negative charge density is increased, the present invention shows alkalinity, and the pH value range is 7.1 in the results of the present invention. ˜13.0. In actual work, it was confirmed that the separation of volatile components was carried smoothly by adjusting preferably to the range of 7.1 to 10.0. In the case of algal varieties and large-scale industrial production, the pH value is adjusted to an appropriate pH range suitable for each condition. For example, in the case of heterotrophic orchitotoquinolium, the separation of fuel oil proceeded relatively smoothly at a slightly low pH of 7.1 to 7.5. The adjustment of the pH and the wet algal state is performed during the culturing which is the previous step, and then proceeds to the separation step of the present invention.

培養後、藻類は、圧力容器内に導入された時に水没状態になる程度の水を含んで、太陽光を照射して造出された高温度の環境内に導入される。導入の方法としては、断面が円形で管状の圧力容器を垂直にした塔型が、上部の開口部から水を含む藻類を重力で落下させる事によって簡単にできるために好ましい。その材質は、熱伝導に優れた銅または銅合金製が好ましい。圧力容器は、その円周方向から太陽光線を曲面状または平面上の反射板によって照射して高温度の環境を得る事になる。藻類は加熱初期には水面の上に浮く傾向が有り、加熱、加圧および減圧操作と共に揮発性成分を水面に残して水底に沈み分離される。受光面は、温度が150℃以下であれば太陽熱吸収膜として黒色酸化銅や酸化クロームによる処理を施されたものが好ましい。黒化処理は、スパッタのような物理的表面処理よりも銅を酸化して黒色化する化学的表面処理が簡便で維持管理に優れている。塗膜を使用する場合は、バインダーとしてエポキシ樹脂、シリコーン樹脂またはポリイミド樹脂などの熱硬化性樹脂を使用し、黒色酸化銅を吸収膜の材料とするのが好ましい。
太陽光線の照射による高温度の環境に曝された圧力容器内の圧力は1.4気圧以上となるのが好ましく、その時の温度は110〜150℃の範囲で最高圧力は5.0気圧以下が好ましい。1.4気圧以上に於いて行う減圧操作は、出来るだけ短時間に圧力調整弁を開いて減圧し、藻類に衝撃を与えて細胞膜破壊を生じさせる事が重要である。この後、30秒から1分前後経ってから減圧弁を閉めて再加熱、再加圧を開始する。水面上部に溜った揮発性成分の燃料オイルは、水底の藻類の残渣をまず圧力容器の出口から排出したのち、外部に排出して採取する。減圧ショック回数は、3回〜5回程度を標準として行う。この操作によって、燃料オイルは95%以上ほぼ100%近く採取可能である。
水を含んだ藻類が圧力容器内で加熱され揮発性成分の採取が終わるまでの時間は、1サイクル0.5〜1時間以内で次のサイクルに入る事が可能である。有効な日照時間、約6時間で約10サイクルが可能となり、藻類培養工程の速度に合わせて効率的なシステムの規模を設計する事になる。なお太陽熱は、塩浴を使って蓄熱が可能なので、これを補助的に利用することも可能であり、太陽熱を間接的に圧力容器内に伝達する事になる。この技術は既に発電などに利用されておりほぼ確立されている。
After culturing, the algae contain water that is submerged when introduced into the pressure vessel and is introduced into a high temperature environment created by irradiating sunlight. As an introduction method, a tower type having a circular cross-section and a vertical pressure vessel is preferable because it can be easily obtained by dropping algae containing water from the upper opening by gravity. The material is preferably made of copper or copper alloy having excellent heat conduction. The pressure vessel is irradiated with sunlight rays from the circumferential direction by a curved or flat reflecting plate to obtain a high temperature environment. Algae tend to float on the water surface in the early stage of heating, and are separated by sinking to the bottom of the water leaving a volatile component on the water surface with heating, pressurizing and depressurizing operations. If the temperature is 150 ° C. or lower, the light receiving surface is preferably a solar heat absorbing film that has been treated with black copper oxide or chrome oxide. In the blackening treatment, a chemical surface treatment for oxidizing and blackening copper is simpler and easier to maintain than a physical surface treatment such as sputtering. When using a coating film, it is preferable to use a thermosetting resin such as an epoxy resin, a silicone resin, or a polyimide resin as a binder, and to use black copper oxide as a material of the absorption film.
The pressure in the pressure vessel exposed to a high temperature environment by irradiation with sunlight is preferably 1.4 atm or more, and the temperature at that time is in the range of 110 to 150 ° C. and the maximum pressure is 5.0 atm or less. preferable. In the decompression operation performed at 1.4 atmospheres or more, it is important to open the pressure regulating valve in as short a time as possible to reduce the pressure and to give an impact to the algae to cause cell membrane destruction. Then, after 30 seconds to about 1 minute, the pressure reducing valve is closed and reheating and repressurization are started. Volatile fuel oil collected on the upper surface of the water is collected by first discharging the algae residue at the bottom of the water from the outlet of the pressure vessel and then discharging it to the outside. The number of decompression shocks is about 3 to 5 times as a standard. By this operation, fuel oil can be collected more than 95% and almost 100%.
The time from when the algae containing water is heated in the pressure vessel until the collection of the volatile components is completed, it is possible to enter the next cycle within 0.5 to 1 hour of one cycle. Effective sunshine hours, about 6 hours, and about 10 cycles are possible, and an efficient system scale is designed in accordance with the speed of the algal culture process. Since solar heat can be stored using a salt bath, it can be used as an auxiliary, and solar heat is indirectly transmitted into the pressure vessel. This technology has already been used for power generation and is almost established.

圧力調整弁が開かれた時に、圧力容器内の圧力が開放されて外部に揮発性成分を含む水蒸気が開口部から噴出する。この噴出物は大気中に放出するのではなく、凝縮管で水冷または空冷して液化してから凝縮管の出口に設けた容器に回収する。この回収液は、静置する事によって水面上部に揮発性成分が浮上し、これを分離する。
揮発性成分を分離した藻類の残渣は、最後に、圧力容器底部に設けられた残渣捕集部に集められ、外部に排出される。
以上が、藻類から燃料オイルを分離する標準的な形態である。
When the pressure regulating valve is opened, the pressure in the pressure vessel is released and water vapor containing a volatile component is ejected from the opening. The ejected matter is not released into the atmosphere, but is collected in a container provided at the outlet of the condensing tube after being liquefied by water cooling or air cooling in the condensing tube. When the recovered liquid is left standing, a volatile component floats above the water surface and is separated.
The algal residue from which the volatile components have been separated is finally collected in a residue collecting section provided at the bottom of the pressure vessel and discharged to the outside.
The above is the standard form for separating fuel oil from algae.

1 圧力調整弁
2 水を含む藻類が導入される入り口部
3 入り口側開閉弁または開閉蓋
4 噴出蒸気を凝縮管に送るための排出口
5 圧力容器内の水没した藻類最上面
6 圧力容器
7 圧力調整弁
8 太陽熱吸収膜
9 缶内に充填された水を含む藻類
10−1 排出口側開閉弁または開閉蓋
10−2 拝出口側開閉弁または開閉蓋 兼 加熱加圧処理後の藻類の排出口
11 加熱加圧および減圧処理後の藻類の排出口側開閉弁または開閉蓋
12 照射された太陽光線の反射板
13 噴出蒸気を凝縮管に送るための排出口
DESCRIPTION OF SYMBOLS 1 Pressure regulating valve 2 Entrance part where water-containing algae are introduced 3 Entrance side opening / closing valve or opening / closing lid 4 Outlet for sending jetting vapor to condensing pipe 5 Top surface of submerged algae in pressure vessel 6 Pressure vessel 7 Pressure Regulating valve 8 Solar heat absorbing film 9 Algae containing water filled in the can 10-1 Drainage side opening / closing valve or opening / closing lid 10-2 Drawer side opening / closing valve or opening / closing lid Also serving as algae outlet after heating and pressurizing treatment 11 Heat-pressurized and pressure-reduced alga discharge port side open / close valve or open / close lid 12 Reflected solar radiation plate 13 Exhaust port for sending ejected vapor to condenser tube

Claims (7)

太陽光線を照射する事によって造出された50〜300℃の高温度の環境の中に設置された(1)「太陽熱吸収膜で表面被覆された金属製の圧力容器」(以下圧力容器と略称)の内部に、この圧力容器の30〜90%の容積範囲内で水没状態となるように水を調合した藻類を導入したのち
(2)圧力容器を密閉して加熱し、発生した水蒸気により上昇した圧力容器内の圧力が1.4〜5.0気圧の間の予め定めた圧力に達した時に、可及的速やかに常圧まで減圧して藻類に衝撃を与える加熱と減圧の繰り返し操作を1回以上行い
(3)次いで圧力容器から藻類を水槽中に排出し、藻類が水槽中において水没状態になるように水槽の水量を調節して撹拌したのち静置し、「炭化水素などの有機化合物で、沸点が常圧で300℃以下の揮発性成分」(以下揮発性成分と略称)を水面の上部に、藻類の残渣を水底に分離する方法。
(1) “Metal pressure vessel surface-coated with a solar heat absorbing film” (hereinafter abbreviated as “pressure vessel”) installed in a high temperature environment of 50 to 300 ° C. created by irradiating with sunlight. ) After introducing algae prepared by mixing water so that it is submerged within the volume range of 30 to 90% of this pressure vessel, (2) The pressure vessel is sealed and heated, and rises by the generated water vapor When the pressure in the pressure vessel reaches a predetermined pressure of 1.4 to 5.0 atmospheres, repeat the heating and depressurization operations to reduce the pressure to normal pressure as quickly as possible and to give an impact to the algae. (3) Next, discharge the algae from the pressure vessel into the aquarium, adjust the amount of water in the aquarium so that the algae are submerged in the aquarium, and then leave it to stand. A volatile component with a boiling point of 300 ° C or less at normal pressure. (Hereinafter volatiles abbreviated) to the water surface of the upper, the method of separating the residue of algae water bottom.
前記圧力容器が、(1)圧力容器の30〜90%の容積範囲で水没状態となるように水を調合した藻類を、圧力容器内に導入するための開閉弁または開閉蓋を装着した入り口部
(2)加熱して発生した水蒸気により、藻類にたいし加圧と減圧操作を1回以上繰り返し行ってから、藻類を圧力容器外に排出するための開閉弁または開閉蓋を装着した出口部
(3)圧力容器内の圧力を常圧まで減圧し、再度圧力を復旧させるための圧力調整弁を装着した開口部
以上の3種類の開口部が設けられている事を特徴とする加熱処理装置である請求項1に記載の揮発性成分を水面の上部に、藻類の残渣を水底に分離する方法。
The pressure vessel is (1) an inlet portion equipped with an opening / closing valve or an opening / closing lid for introducing the algae prepared with water so as to be submerged in a volume range of 30 to 90% of the pressure vessel. (2) An outlet portion equipped with an opening / closing valve or an opening / closing lid for discharging the algae to the outside of the pressure vessel after repeatedly performing pressurization and decompression operations on the algae one or more times with steam generated by heating. 3) An opening equipped with a pressure regulating valve for reducing the pressure in the pressure vessel to normal pressure and restoring the pressure again. The heat treatment apparatus is characterized by having the above three types of openings. A method for separating a volatile component according to claim 1 at the top of the water surface and algae residue at the bottom of the water.
前記圧力容器が、(1)出口部および圧力調整弁を装着した開口部が閉じられており、入り口部が開口状態の時に、圧力容器の30〜90%の容積範囲で水没状態となるように水を調合した藻類を入り口部から圧力容器内に導入し
(2)この水を調合した藻類の容積が、圧力容器の30〜90%の容積範囲となった時に、入り口部の開閉弁または開閉蓋を閉じて、太陽光線を照射する事によって造出された50〜300℃の高温度の環境の中で加熱され
(3)加熱により発生した水蒸気によって圧力容器内の圧力が1.4〜5.0気圧の間の予め定めた圧力に達した時に、可及的速やかに圧力調整弁を開いて圧力容器内の圧力を常圧まで減圧して藻類に衝撃を与える加熱と減圧の繰り返し操作を1回以上行う事を特徴とする請求項1に記載の揮発性成分を水面の上部に、藻類の残渣を水底に分離する方法。
The pressure vessel is (1) closed at the outlet and the opening to which the pressure regulating valve is attached, and when the inlet is open, the pressure vessel is submerged in a volume range of 30 to 90% of the pressure vessel. (2) When the volume of the algae prepared with water is 30-90% of the pressure vessel, the opening / closing valve or opening / closing of the inlet is performed. The lid is closed and heated in a high temperature environment of 50 to 300 ° C. created by irradiating with sunlight. (3) The pressure in the pressure vessel is 1.4 to 5 by the steam generated by the heating. When a predetermined pressure of 0.0 atm is reached, the pressure regulating valve is opened as soon as possible to reduce the pressure in the pressure vessel to normal pressure and repeatedly perform heating and depressurization operations that impact the algae. It is performed once or more, The claim 1 characterized by the above-mentioned The nonvolatile component in the water surface of the upper, the method of separating the residue of algae water bottom.
前記圧力容器の表面に被覆された太陽熱吸収膜が、(1)カーボンブラック、黒鉛、酸化銅、二酸化マンガン、酸化コバルト、酸化クローム、酸化鉄、硫化鉛または硫化ニッケルから選ばれた単体、複合体または混合体で構成された物質からなり
(2)これらの物質が、蒸着、スパッタリングあるいはCVDなどの物理的表面被覆処理、メッキあるいは酸化処理などの化学的表面被覆処理または合成樹脂バインダーと混練されて製造された塗料を塗布乾燥して表面被覆処理した被膜の何れかであることを特徴とする請求項1に記載の揮発性成分を水面の上部に、藻類の残渣を水底に分離する方法。
The solar heat absorbing film coated on the surface of the pressure vessel is (1) a simple substance or a composite selected from carbon black, graphite, copper oxide, manganese dioxide, cobalt oxide, chromium oxide, iron oxide, lead sulfide or nickel sulfide. (2) These materials are kneaded with a physical surface coating treatment such as vapor deposition, sputtering or CVD, a chemical surface coating treatment such as plating or oxidation treatment, or a synthetic resin binder. 2. The method of separating a volatile component at the top of the water surface and algae residue at the bottom of the water according to claim 1, wherein the coating material is applied and dried to apply a surface coating treatment.
前記圧力容器が、ステンレス鋼、アルミニウム合金、チタン、チタン合金、銅または銅合金製であることを特徴とする請求項1に記載の揮発性成分を水面の上部に、藻類の残渣を水底に分離する方法。  The volatile component according to claim 1, wherein the pressure vessel is made of stainless steel, aluminum alloy, titanium, titanium alloy, copper, or copper alloy, and the algal residue is separated into the bottom of the water. how to. 請求項4の(2)に記載された合成樹脂バインダーが、アクリル樹脂、ビニル樹脂、ポリエステル樹脂、シリコーン樹脂、ウレタン樹脂、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂および合成ゴムから選ばれた単独または2種類以上の混合物であることを特徴とする請求項1に記載の揮発性成分を水面の上部に、藻類の残渣を水底に分離する方法。  The synthetic resin binder described in (2) of Claim 4 is single or two types selected from acrylic resin, vinyl resin, polyester resin, silicone resin, urethane resin, epoxy resin, phenol resin, polyimide resin and synthetic rubber The method according to claim 1, wherein the volatile component is separated into the upper part of the water surface and the algal residue is separated into the bottom of the water. 請求項3の(3)に記載された、可及的速やかに圧力調整弁を開いて圧力容器内の圧力を常圧まで減圧して藻類に衝撃を与える加熱と減圧の繰り返し操作を1回以上行った時に圧力調整弁を開いた開口部から圧力容器の外部に噴出する揮発性成分を含む水蒸気を、空冷または水冷された凝縮管を通過させて液体とし、この液体を凝縮管の出口に設けられた容器に捕捉して静置し、水面に浮上した揮発性成分を分離する方法。  One or more repetitions of heating and depressurization operations that open the pressure regulating valve as quickly as possible and depressurize the pressure in the pressure vessel to normal pressure and give impact to algae as described in (3) of claim 3 Water vapor containing volatile components that are blown out of the pressure vessel from the opening where the pressure regulating valve is opened is made liquid by passing it through an air-cooled or water-cooled condenser tube, and this liquid is provided at the outlet of the condenser tube. A method of separating volatile components that have been trapped in a container and allowed to stand and floated on the surface of the water.
JP2011180947A 2011-08-04 2011-08-04 Method for separating volatile fuel oil contained in algae by solar heat Withdrawn JP2013036016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011180947A JP2013036016A (en) 2011-08-04 2011-08-04 Method for separating volatile fuel oil contained in algae by solar heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011180947A JP2013036016A (en) 2011-08-04 2011-08-04 Method for separating volatile fuel oil contained in algae by solar heat

Publications (1)

Publication Number Publication Date
JP2013036016A true JP2013036016A (en) 2013-02-21

Family

ID=47885911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011180947A Withdrawn JP2013036016A (en) 2011-08-04 2011-08-04 Method for separating volatile fuel oil contained in algae by solar heat

Country Status (1)

Country Link
JP (1) JP2013036016A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103525448A (en) * 2013-10-28 2014-01-22 抚顺市金山固体燃料新技术有限公司 System and process for preparing light distillate oil from coal
CN106281397A (en) * 2016-11-04 2017-01-04 北京林业大学 Based on solar energy heating and the field biomass through pyrolysis oil refining apparatus from heat supply
CN108329941A (en) * 2018-03-19 2018-07-27 台州创兴环保科技有限公司 A kind of river water pollution high-efficient treatment device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103525448A (en) * 2013-10-28 2014-01-22 抚顺市金山固体燃料新技术有限公司 System and process for preparing light distillate oil from coal
CN106281397A (en) * 2016-11-04 2017-01-04 北京林业大学 Based on solar energy heating and the field biomass through pyrolysis oil refining apparatus from heat supply
CN106281397B (en) * 2016-11-04 2018-03-13 北京林业大学 Field biomass through pyrolysis oil refining apparatus based on solar energy heating and from heat supply
CN108329941A (en) * 2018-03-19 2018-07-27 台州创兴环保科技有限公司 A kind of river water pollution high-efficient treatment device

Similar Documents

Publication Publication Date Title
Klinthong et al. A review: microalgae and their applications in CO2 capture and renewable energy
US8623634B2 (en) Growing aquatic biomass, and producing biomass feedstock and biocrude therefrom
Malovanyy et al. Production of renewable energy resources via complex treatment of cyanobacteria biomass
JP4923733B2 (en) Extraction method of oil from plant biomass using microwaves
JP2011529707A (en) Continuous culture, harvesting, and oil extraction of photosynthetic cultures
CN104449788A (en) Method for preparing micro-algal oil by microalgae hydro-thermal liquefaction
JP2013036016A (en) Method for separating volatile fuel oil contained in algae by solar heat
Audu et al. Ash-pretreatment and hydrothermal liquefaction of filamentous algae grown on dairy wastewater
US20100196969A1 (en) Method for obtaining energy-generating compounds by means of electromagnetic energy
CN104560357A (en) Method for synchronously extracting microalgal oil and microalgal polysaccharide
CN202430144U (en) D-bomeol extraction equipment suitable for field sites
Nguyen et al. A review on microalgae and cyanobacteria in biofuel production
CN102660464B (en) Oil-enriched marine microalga and application thereof
CN102746867A (en) Method for preparing bio-oil by treating duckweed biomass by using hydrothermal method
CN109503526B (en) Device and method for synchronously preparing 5-hydroxymethylfurfural and hydrothermal carbon by using organic wastes
Concas et al. Engineering Aspects Related to the Use of Microalgae for Biofuel Production and CO 2 Capture from Flue Gases
JP7385799B2 (en) Method for culturing heterotrophic microalgae using palm oil factory effluent (POME) and method for producing DHA
Mandawat Hydrolysis of algal biomass to recover nutrients and sugar
JP6884451B2 (en) Heterotrophic microalgae culture method and DHA production method using palm oil factory effluent (POME)
CN104277857A (en) Biological crude oil prepared by co-liquefying algae and crude glycerine and method for preparing biological crude oil by co-liquefying algae and crude glycerine
WO2021085469A1 (en) Plant processing method and plant processing system
Nautiyal et al. Effective utilization of deoiled algae biomass as a promising feedstock for bioenergy generation: Integrated approach towards sustainable bio-refinery industry
JP2013094140A (en) Method for producing hydrogen gas by using apple
Vlaskin et al. A new procedure of hydrothermal liquefaction of microalgae after different thermochemical pre-treatments
JP7279343B2 (en) Microalgae Botryococcus terribilis strain TEPMO-26, method for producing hydrocarbon, dry alga body and alga body residue

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007