JP2013035957A - Blue light-emitting phosphor and light-emitting device using the blue light-emitting phosphor - Google Patents

Blue light-emitting phosphor and light-emitting device using the blue light-emitting phosphor Download PDF

Info

Publication number
JP2013035957A
JP2013035957A JP2011173867A JP2011173867A JP2013035957A JP 2013035957 A JP2013035957 A JP 2013035957A JP 2011173867 A JP2011173867 A JP 2011173867A JP 2011173867 A JP2011173867 A JP 2011173867A JP 2013035957 A JP2013035957 A JP 2013035957A
Authority
JP
Japan
Prior art keywords
blue light
emitting phosphor
light emitting
powder
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011173867A
Other languages
Japanese (ja)
Other versions
JP5736272B2 (en
JP2013035957A5 (en
Inventor
Koichi Fukuda
晃一 福田
Hitoshi Amaya
仁 天谷
Seiji Noguchi
誠司 野口
Toru Inagaki
徹 稲垣
Maki Tanaka
真樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Material Industries Ltd
Original Assignee
Ube Material Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Material Industries Ltd filed Critical Ube Material Industries Ltd
Priority to JP2011173867A priority Critical patent/JP5736272B2/en
Publication of JP2013035957A publication Critical patent/JP2013035957A/en
Publication of JP2013035957A5 publication Critical patent/JP2013035957A5/ja
Application granted granted Critical
Publication of JP5736272B2 publication Critical patent/JP5736272B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a blue light-emitting phosphor of which the emission intensity is highly temperature-stabilized.SOLUTION: The blue light-emitting phosphor has basic compositional formula, Eu activated (Sr, Ca)MgSiO, and merwinite crystal structure, wherein a molar ratio of Sr to Ca is in the range of 1:0.10-1:0.30.

Description

本発明は、白色LEDの青色発光源として有用なケイ酸系青色発光蛍光体に関し、特にEuで付活した(Sr,Ca)3MgSi28の基本組成式を有し、メルウィナイト結晶構造を持つ青色発光蛍光体に関する。 The present invention relates to a silicate-based blue light-emitting phosphor useful as a blue light-emitting source of a white LED, and particularly has a basic composition formula of (Sr, Ca) 3 MgSi 2 O 8 activated by Eu, and has a merwinite crystal structure. The present invention relates to a blue light emitting phosphor.

従来より、白色LEDとして、電気エネルギーの付与によって青色光を放出する半導体発光素子と黄色発光蛍光体とを組み合わせて、半導体発光素子からの青色光と、その青色光で黄色発光蛍光体を励起することによって発生した黄色光との混色により白色光を得る二色混色タイプのものが広く利用されている。しかしながら、この二色混色タイプの白色LEDが発する白色光は純度が低いという問題がある。このため、最近では、電気エネルギーの付与によって波長350〜430nmの光を発光する半導体発光素子と、青色発光蛍光体、緑色発光蛍光体そして赤色発光蛍光体の三種類の蛍光体を組み合わせて、半導体発光素子からの光で、それぞれの蛍光体を励起することによって発生した青色光と緑色光及び赤色光の三色の混色により白色光を得る三色混色タイプの白色LEDの開発が行なわれている。   Conventionally, as a white LED, a semiconductor light emitting device that emits blue light by applying electric energy and a yellow light emitting phosphor are combined, and the blue light from the semiconductor light emitting device and the yellow light emitting phosphor are excited by the blue light. A two-color mixed type that obtains white light by mixing with yellow light generated by this is widely used. However, there is a problem that the white light emitted from the two-color mixed type white LED has low purity. For this reason, recently, a semiconductor light-emitting element that emits light having a wavelength of 350 to 430 nm by applying electric energy, and three types of phosphors, a blue light-emitting phosphor, a green light-emitting phosphor, and a red light-emitting phosphor, are combined. Development of a three-color mixed-type white LED that obtains white light by mixing three colors of blue light, green light, and red light generated by exciting each phosphor with light from a light emitting element is underway. .

青色発光蛍光体としては、Sr3MgSi28の基本組成式を有し、メルウィナイト(Ca3MgSi28)と同じ結晶構造を有するケイ酸塩化合物を二価のEuで付活した青色発光蛍光体(以下、SMS青色発光蛍光体とも言う)が知られている。このSMS青色発光蛍光体については、プラズマディスプレイパネルや上記三色混色タイプの白色LEDの青色発光源として利用することが検討されている(特許文献1参照)。 As a blue light emitting phosphor, blue having a basic composition formula of Sr 3 MgSi 2 O 8 and activating a silicate compound having the same crystal structure as merwinite (Ca 3 MgSi 2 O 8 ) with divalent Eu. Luminescent phosphors (hereinafter also referred to as SMS blue-emitting phosphors) are known. About this SMS blue light emission fluorescent substance, utilizing as a blue light emission source of a plasma display panel or the said 3 color mixed type white LED is examined (refer patent document 1).

特許文献1には、下記の式で示される、Srの一部をCaで置換したSMS青色発光蛍光体が記載されている。
(Sr3-c-3xCacEu3x)MgSi28
但し、式中cは0.9以下の数、xは、0.00016以上0.003未満である。
Patent Document 1 describes an SMS blue light emitting phosphor represented by the following formula in which a part of Sr is substituted with Ca.
(Sr 3-c-3x Ca c Eu 3x ) MgSi 2 O 8
However, in the formula, c is a number of 0.9 or less, and x is 0.00016 or more and less than 0.003.

上記特許文献1に記載の発明は、実施例の表1に記載されている蛍光体の組成と輝度維持率のデータを見ると、SMS青色発光蛍光体のEu含有量を上記の範囲にすることによって、蛍光体を蛍光体層に形成したときの発光輝度の維持率が向上するという知見に基づく発明であると理解される。但し、特許文献1では、SMS青色発光蛍光体の発光輝度をプラズマディスプレイパネルで主に利用される波長146nmの真空紫外光を用いていることから、特許文献1に記載されているSMS青色発光蛍光体はプラズマディスプレイパネルの青色発光源として最適化されたものと考えられる。すなわち、特許文献1に記載されているSMS青色発光蛍光体は、白色LEDの青色発光源として最適化されたものではない。   The invention described in the above-mentioned Patent Document 1 makes the Eu content of the SMS blue-emitting phosphor within the above range when looking at the phosphor composition and luminance maintenance ratio data described in Table 1 of the Examples. Thus, it is understood that the invention is based on the knowledge that the maintenance ratio of the emission luminance is improved when the phosphor is formed on the phosphor layer. However, in Patent Document 1, since the vacuum ultraviolet light having a wavelength of 146 nm mainly used in the plasma display panel is used for the emission luminance of the SMS blue light-emitting phosphor, the SMS blue light-emitting fluorescence described in Patent Document 1 is used. The body is thought to be optimized as a blue light source for plasma display panels. That is, the SMS blue light-emitting phosphor described in Patent Document 1 is not optimized as a blue light source for white LEDs.

特許文献2には、LEDの作動温度について、LEDを長時間駆動させたり、発光輝度を高めるために高電流駆動させた場合には、LEDチップ(半導体発光素子)が発熱し、120℃にまで達する高温状態となることがある旨の記載がある。従って、白色LEDの可視光発光源として利用する蛍光体は、LED作動時の発熱による温度の変化によって発光強度が変動しにくいこと、すなわち120℃の付近の温度での発光強度の安定性が高いことが要求される。   In Patent Document 2, when the LED is driven for a long time or is driven at a high current to increase the light emission luminance, the LED chip (semiconductor light emitting element) generates heat and reaches 120 ° C. There is a description that it may reach a high temperature state. Accordingly, the phosphor used as the visible light source of the white LED is less likely to change in emission intensity due to a change in temperature due to heat generation during LED operation, that is, the emission intensity is stable at a temperature around 120 ° C. Is required.

特開2006−312654号公報JP 2006-31654 A 特開2010−3790号公報JP 2010-3790 A

上述の通り、白色LEDの可視光発光源として利用する蛍光体では、室温〜120℃付近での温度範囲において発光強度の温度安定性が高いことが要求される。しかしながら、本発明者の検討によるとSMS青色発光蛍光体は、環境温度の上昇に伴って発光強度が低下する傾向が高い。
従って、本発明の目的は、発光強度の温度安定性が高いSMS青色発光蛍光体を提供することにある。
As described above, a phosphor used as a visible light emission source of a white LED is required to have high temperature stability of emission intensity in a temperature range from room temperature to around 120 ° C. However, according to the study of the present inventor, the SMS blue light-emitting phosphor has a high tendency to decrease the emission intensity as the environmental temperature increases.
Accordingly, an object of the present invention is to provide an SMS blue light emitting phosphor having high temperature stability of emission intensity.

本発明者は、SMS青色発光蛍光体のSrの一部をCaに置換して、SMS青色発光蛍光体中のSrとCaとのモル比を1:0.10〜1:0.30の範囲とすることによって、波長350〜430nmの光で励起させたときの発光強度の温度安定性が向上することを見出して、本発明を完成させた。   The present inventor substituted a part of Sr of the SMS blue light emitting phosphor with Ca, and the molar ratio of Sr and Ca in the SMS blue light emitting phosphor was in the range of 1: 0.10 to 1: 0.30. As a result, it was found that the temperature stability of the emission intensity when excited by light having a wavelength of 350 to 430 nm was improved, and the present invention was completed.

従って、本発明は、Euで付活された(Sr,Ca)3MgSi28の基本組成式を有し、メルウィナイト結晶構造を持つ青色発光蛍光体であって、SrとCaのモル比が、1:0.10〜1:0.30の範囲にあることを特徴とする青色発光蛍光体にある。 Accordingly, the present invention is a blue light-emitting phosphor having a basic composition formula of (Sr, Ca) 3 MgSi 2 O 8 activated by Eu and having a merwinite crystal structure, wherein the molar ratio of Sr and Ca is The blue light-emitting phosphor is characterized by being in the range of 1: 0.10 to 1: 0.30.

本願発明の青色発光蛍光体の好ましい態様は、次の通りである。
(1)波長350〜430nmの光を放出する半導体発光素子からの光で励起して、青色光を発生させるための青色発光蛍光体である。
(2)EuをMgの含有量を1モルとしたときに、0.01〜0.20モルの範囲の量にて含有する。
(3)さらに、Sc、Y、Gd、Tb及びLaからなる群より選ばれる一種以上のEu以外の希土類金属元素で共付活されている。
(4)SrとCaのモル比が、1:0.13〜1:0.23の範囲にある。
Preferred embodiments of the blue light-emitting phosphor of the present invention are as follows.
(1) A blue light emitting phosphor for generating blue light by being excited by light from a semiconductor light emitting element that emits light having a wavelength of 350 to 430 nm.
(2) Eu is contained in an amount in the range of 0.01 to 0.20 mol, when the content of Mg is 1 mol.
(3) Furthermore, it is co-activated with one or more rare earth metal elements other than Eu selected from the group consisting of Sc, Y, Gd, Tb and La.
(4) The molar ratio of Sr and Ca is in the range of 1: 0.13 to 1: 0.23.

本発明はさらに、上記本発明の青色発光蛍光体と、波長350〜430nmの光を放出する半導体発光素子とを含む発光装置にもある。   The present invention is also a light emitting device including the blue light emitting phosphor of the present invention and a semiconductor light emitting element that emits light having a wavelength of 350 to 430 nm.

本発明のSMS青色発光蛍光体は、120℃付近(特に100〜150℃)での高温環境下での発光強度が高く、発光強度の温度安定性が高い。従って、本発明のSMS青色発光蛍光体は、白色LEDなどの装置内の温度が120℃付近にまで上昇することがあるような発光装置の青色発光源として有利に使用することができる。
また、本発明のSMS青色発光蛍光体を青色発光源に用いた発光装置は、広い温度範囲において発光強度が安定する。
The SMS blue light-emitting phosphor of the present invention has high emission intensity in a high-temperature environment near 120 ° C. (particularly 100 to 150 ° C.) and high temperature stability of the emission intensity. Therefore, the SMS blue light emitting phosphor of the present invention can be advantageously used as a blue light source of a light emitting device in which the temperature in the device such as a white LED may rise to around 120 ° C.
In addition, the light emitting device using the SMS blue light emitting phosphor of the present invention as a blue light source has stable emission intensity over a wide temperature range.

本発明に従う発光装置(白色LED)の一例の断面図である。It is sectional drawing of an example of the light-emitting device (white LED) according to this invention.

本発明のSMS青色発光蛍光体は、(Sr,Ca)3MgSi28の基本組成式を有し、メルウィナイト結晶構造を持つ。SMS青色発光蛍光体中のSrとCaとのモル比(Sr:Ca)は、通常は1:0.10〜1:0.30の範囲、好ましくは1:0.13〜1:0.23の範囲である。 The SMS blue light emitting phosphor of the present invention has a basic composition formula of (Sr, Ca) 3 MgSi 2 O 8 and has a merwinite crystal structure. The molar ratio of Sr to Ca (Sr: Ca) in the SMS blue light emitting phosphor is usually in the range of 1: 0.10 to 1: 0.30, preferably 1: 0.13 to 1: 0.23. Range.

本発明のSMS青色発光蛍光体は、二価のEuで付活されている。EuはSrに置換していることが好ましい。SMS青色発光蛍光体のEuの含有量は、Mgの含有量を1モルとしたときに、通常は0.01〜0.20モルの範囲、好ましくは0.01〜0.15モルの範囲、特に好ましくは0.02〜0.10モルの範囲にある。   The SMS blue light-emitting phosphor of the present invention is activated with divalent Eu. Eu is preferably substituted with Sr. The content of Eu in the SMS blue light-emitting phosphor is usually in the range of 0.01 to 0.20 mol, preferably in the range of 0.01 to 0.15 mol, when the Mg content is 1 mol. Especially preferably, it exists in the range of 0.02-0.10 mol.

本発明のSMS青色発光蛍光体は、さらにSc、Y、Gd、Tb及びLaなどのEu以外の希土類金属元素で共付活されていてもよい。希土類金属元素はSrに置換していることが好ましい。SMS青色発光蛍光体の希土類金属元素の含有量は、Mgの含有量を1モルとしたときに、好ましくは0.00010〜0.030モルの範囲、より好ましくは0.0005〜0.02モルの範囲、特に好ましくは0.0008〜0.02モルの範囲である。希土類金属元素は、一種を単独で使用してもよいし、二種以上を組み合わせて使用してもよい。SMS青色発光蛍光体のEuの含有量とEu以外の希土類金属の含有量とのモル比(Eu/希土類金属元素)は、好ましくは1以上、より好ましくは1〜300の範囲、特に好ましくは2〜100の範囲にある。   The SMS blue light emitting phosphor of the present invention may further be co-activated with a rare earth metal element other than Eu such as Sc, Y, Gd, Tb and La. The rare earth metal element is preferably substituted with Sr. The content of the rare earth metal element in the SMS blue light emitting phosphor is preferably in the range of 0.00010 to 0.030 mol, more preferably 0.0005 to 0.02 mol, when the Mg content is 1 mol. In the range of 0.0008 to 0.02 mol. A rare earth metal element may be used individually by 1 type, and may be used in combination of 2 or more type. The molar ratio (Eu / rare earth metal element) between the Eu content of the SMS blue light emitting phosphor and the rare earth metal content other than Eu is preferably 1 or more, more preferably in the range of 1 to 300, and particularly preferably 2. It is in the range of ~ 100.

本発明のSMS青色発光蛍光体は、メルウィナイト結晶構造が維持される範囲であれば、金属元素のモル比が基本組成式のモル比から外れていてもよい。SMS青色発光蛍光体の金属元素のモル比は、Mgのモル量を1としたときに、Sr、Ca、Eu及びEu以外の希土類金属元素はその合計量が2.9〜3.1の範囲にあって、Siが1.9〜2.1の範囲にあることが好ましい。   In the SMS blue light-emitting phosphor of the present invention, the molar ratio of the metal elements may deviate from the molar ratio of the basic composition formula as long as the merwinite crystal structure is maintained. The molar ratio of the metal elements of the SMS blue light emitting phosphor is such that the total amount of rare earth metal elements other than Sr, Ca, Eu and Eu is in the range of 2.9 to 3.1 when the molar amount of Mg is 1. Then, it is preferable that Si is in the range of 1.9 to 2.1.

本発明のSMS青色発光蛍光体の一例として、下記式で表される化合物を挙げることができる。
SraCabEucLndMgSiea+b+c+d+e
但し、LnはSc、Y、Gd、Tb及びLaからなる群より選ばれる少なくとも一つの希土類金属元素であり、a、b、c及びdはその合計で2.9〜3.1の範囲の数であり、b/aは0.10〜0.30の範囲の数であり、cは0.01〜0.20の範囲の数であり、dは0〜0.030の範囲の数であり、そしてeは1.9〜2.1の範囲の数である。
As an example of the SMS blue light emitting phosphor of the present invention, a compound represented by the following formula can be given.
Sr a Ca b Eu c Ln d MgSi e O a + b + c + d + e
Where Ln is at least one rare earth metal element selected from the group consisting of Sc, Y, Gd, Tb and La, and a, b, c and d are numbers in the range of 2.9 to 3.1 in total. B / a is a number in the range of 0.10 to 0.30, c is a number in the range of 0.01 to 0.20, and d is a number in the range of 0 to 0.030. , And e is a number in the range of 1.9 to 2.1.

本発明のSMS青色発光蛍光体の表面をフッ化アンモニウムの熱分解ガスで処理してもよい。この表面処理によって、SMS青色発光蛍光体を大気雰囲気下にて加熱処理した後の発光特性(発光強度)の低下が改善される。上記の表面処理は、SMS青色発光蛍光体にフッ化アンモニウムを添加して混合し、得られた混合物を坩堝などの耐熱性容器に入れ、耐熱性容器に蓋をした状態で加熱することにより行なうことが好ましい。フッ化アンモニウムの添加量は、SMS青色発光蛍光体100質量部に対して一般に0.1〜30質量部の範囲、好ましくは0.1〜15質量部の範囲にある。加熱温度は、一般に300〜600℃の範囲、好ましくは300〜500℃の範囲、特に好ましくは300〜480℃の範囲である。加熱時間は一般に1〜5時間の範囲にある。   The surface of the SMS blue light emitting phosphor of the present invention may be treated with a pyrolysis gas of ammonium fluoride. This surface treatment improves the decrease in the light emission characteristics (light emission intensity) after heat-treating the SMS blue light-emitting phosphor in the air atmosphere. The surface treatment is performed by adding and mixing ammonium fluoride to the SMS blue light-emitting phosphor, placing the resulting mixture in a heat-resistant container such as a crucible, and heating the heat-resistant container with the lid on. It is preferable. The addition amount of ammonium fluoride is generally in the range of 0.1 to 30 parts by mass, preferably in the range of 0.1 to 15 parts by mass with respect to 100 parts by mass of the SMS blue light emitting phosphor. The heating temperature is generally in the range of 300 to 600 ° C, preferably in the range of 300 to 500 ° C, particularly preferably in the range of 300 to 480 ° C. The heating time is generally in the range of 1 to 5 hours.

本発明のSMS青色発光蛍光体は、例えば、Sr源粉末、Mg源粉末、Si源粉末、Eu源粉末、さらに必要に応じてEu以外の希土類金属元素源粉末を、SMS青色発光蛍光体を生成する割合で混合し、得られた原料粉末混合物を焼成することによって製造することができる。Sr源粉末、Mg源粉末、Si源粉末、Eu源粉末及び希土類金属元素源粉末の各原料粉末はそれぞれ、酸化物粉末であってもよいし、水酸化物、ハロゲン化物、炭酸塩(塩基性炭酸塩を含む)、硝酸塩、シュウ酸塩などの加熱により酸化物を生成する化合物の粉末であってもよい。原料粉末はそれぞれ一種を単独で使用してもよいし、二種以上を併用してもよい。各原料粉末は、純度が99質量%以上であることが好ましい。   The SMS blue light-emitting phosphor of the present invention generates, for example, an Sr source powder, an Mg source powder, an Si source powder, an Eu source powder, and, if necessary, a rare earth metal element source powder other than Eu to generate an SMS blue light-emitting phosphor. It mixes in the ratio which carries out, and it can manufacture by baking the obtained raw material powder mixture. Each raw material powder of Sr source powder, Mg source powder, Si source powder, Eu source powder and rare earth metal element source powder may be an oxide powder, hydroxide, halide, carbonate (basic) (Including carbonates), nitrates, oxalates and the like, powders of compounds that generate oxides by heating. The raw material powders may be used alone or in combination of two or more. Each raw material powder preferably has a purity of 99% by mass or more.

原料粉末混合物には、フラックスを添加してもよい。フラックスはハロゲン化物であることが好ましく、塩素化合物であることが特に好ましい。フラックスとして原料粉末の一部に塩素化合物粉末を用いることが好ましい。特に、ストロンチウムの塩素化合物粉末を用いることが好ましい。フラックスの添加量は、粉末混合物中のマグネシウムを1モルとして、ハロゲン量が0.0001〜0.5モルの範囲となる量であることが好ましく、0.02〜0.5モルの範囲となる量であることが特に好ましい。   A flux may be added to the raw material powder mixture. The flux is preferably a halide, and particularly preferably a chlorine compound. It is preferable to use chlorine compound powder as part of the raw material powder as the flux. In particular, it is preferable to use a strontium chlorine compound powder. The amount of flux added is preferably an amount such that the amount of halogen is in the range of 0.0001 to 0.5 mol, with magnesium in the powder mixture being 1 mol, and is in the range of 0.02 to 0.5 mol. Particularly preferred is an amount.

原料粉末の混合方法には、乾式混合法及び湿式混合法のいずれかの方法を採用することができる。湿式混合法で原料粉末を混合する場合は、回転ボールミル、振動ボールミル、
遊星ミル、ペイントシェーカー、ロッキングミル、ロッキングミキサー、ビーズミル、撹拌機などを用いることができる。溶媒には、水や、エタノール、イソプロピルアルコールなどの低級アルコールを用いることができる。
Either a dry mixing method or a wet mixing method can be adopted as a method for mixing the raw material powders. When mixing raw material powder by wet mixing method, rotating ball mill, vibrating ball mill,
A planetary mill, paint shaker, rocking mill, rocking mixer, bead mill, stirrer, or the like can be used. As the solvent, water, lower alcohols such as ethanol and isopropyl alcohol can be used.

原料粉末混合物の焼成は、0.5〜5.0体積%の水素と99.5〜95.0体積%の不活性気体とからなる還元性気体の雰囲気下にて行なう。不活性気体の例としては、アルゴン及び窒素を挙げることができる。焼成温度は、一般に900〜1300℃の範囲である。焼成時間は、一般に0.5〜100時間の範囲である。   The firing of the raw material powder mixture is performed in an atmosphere of a reducing gas composed of 0.5 to 5.0% by volume of hydrogen and 99.5 to 95.0% by volume of an inert gas. Examples of inert gases include argon and nitrogen. The firing temperature is generally in the range of 900-1300 ° C. The firing time is generally in the range of 0.5 to 100 hours.

原料粉末に加熱により酸化物を生成する化合物の粉末を用いる場合には、還元性気体雰囲気下で焼成する前に、粉末混合物を大気雰囲気下にて、600〜850℃の温度で0.5〜100時間仮焼することが好ましい。焼成により得られたSMS青色発光蛍光体は、必要に応じて分級処理、塩酸や硝酸などの鉱酸による酸洗浄処理、ベーキング処理を行なってもよい。   In the case of using a powder of a compound that generates an oxide by heating as the raw material powder, before firing in a reducing gas atmosphere, the powder mixture is placed in an air atmosphere at a temperature of 600 to 850 ° C. at a temperature of 0.5 to It is preferable to calcine for 100 hours. The SMS blue light-emitting phosphor obtained by firing may be subjected to classification treatment, acid cleaning treatment with a mineral acid such as hydrochloric acid or nitric acid, and baking treatment as necessary.

次に本発明のSMS青色発光蛍光体を用いた発光装置について、添付図面の図1を参照しながら説明する。   Next, a light emitting device using the SMS blue light emitting phosphor of the present invention will be described with reference to FIG. 1 of the accompanying drawings.

図1は、本発明のSMS青色発光蛍光体を用いた白色LEDの一例の断面図である。図1において、白色LEDは、基板1と、基板1の上に接着材2により固定された半導体発光素子3、基板1の上に形成された一対の電極4a、4b、半導体発光素子3と電極4a、4bとを電気的に接続するリード線5a、5b、半導体発光素子3を被覆する樹脂層6、樹脂層6の上に設けられた蛍光体層7、そして樹脂層6と蛍光体層7の周囲を覆う光反射材8、そして電極4a、4bと外部電源(図示せず)とを電気的に接続するための導電線9a、9bからなる。蛍光体層7には、SMS青色発光蛍光体と緑色発光蛍光体と赤色発光蛍光体とがガラスやシリコーン樹脂などの透明樹脂に分散されている。図1の白色LEDにおいて、導電線9a、9bを介して電極4a、4bに電圧を印加して、電気エネルギーを付与すると半導体発光素子3が発光して波長350〜430nmの範囲にピークを有する発光光が発生し、この発光光が蛍光体層7中の各色発光蛍光体を励起させることによって青色、緑色及び赤色の可視光が生成する。そして、それらの青色光、緑色光及び赤色光の混色により白色光が生成する。   FIG. 1 is a cross-sectional view of an example of a white LED using the SMS blue light emitting phosphor of the present invention. In FIG. 1, a white LED includes a substrate 1, a semiconductor light emitting device 3 fixed on the substrate 1 with an adhesive 2, a pair of electrodes 4 a and 4 b formed on the substrate 1, a semiconductor light emitting device 3 and an electrode Lead wires 5a and 5b that electrically connect 4a and 4b, a resin layer 6 that covers the semiconductor light emitting element 3, a phosphor layer 7 provided on the resin layer 6, and a resin layer 6 and the phosphor layer 7 And a conductive line 9a, 9b for electrically connecting the electrodes 4a, 4b and an external power source (not shown). In the phosphor layer 7, the SMS blue light-emitting phosphor, the green light-emitting phosphor, and the red light-emitting phosphor are dispersed in a transparent resin such as glass or silicone resin. In the white LED of FIG. 1, when a voltage is applied to the electrodes 4a and 4b through the conductive wires 9a and 9b to apply electric energy, the semiconductor light emitting element 3 emits light and has a peak in the wavelength range of 350 to 430 nm. Light is generated, and the emitted light excites each color emitting phosphor in the phosphor layer 7 to generate blue, green and red visible lights. And white light produces | generates by the color mixture of those blue light, green light, and red light.

半導体発光素子3の例としては、AlGaN系半導体発光素子を挙げることができる。樹脂層6の材料の例としてはシリコーン樹脂を挙げることができる。蛍光体層7に分散させる緑色発光蛍光体の例としては、(Ca,Sr,Ba)2SiO4:Eu2+、BaMgAl1017:Eu2+,Mn2+、α−SiAlON:Eu2+、β−SiAlON:Eu2+、ZnS:Cu,Alを挙げることができる。赤色発光蛍光体の例としては、Y22S:Eu2+、La23S:Eu2+、(Ca,Sr,Ba)2Si58:Eu2+、CaAlSiN3:Eu2+、Eu229、(Ca,Sr,Ba)2Si58:Eu2+,Mn2+、CaTiO3:Pr3+,Bi3+、(La,Eu)2312を挙げることができる。 As an example of the semiconductor light emitting element 3, an AlGaN-based semiconductor light emitting element can be cited. Examples of the material of the resin layer 6 include a silicone resin. Examples of the green light-emitting phosphor dispersed in the phosphor layer 7 include (Ca, Sr, Ba) 2 SiO 4 : Eu 2+ , BaMgAl 10 O 17 : Eu 2+ , Mn 2+ , α-SiAlON: Eu 2 + , Β-SiAlON: Eu 2+ , ZnS: Cu, Al. Examples of the red light emitting phosphor include Y 2 O 2 S: Eu 2+ , La 2 O 3 S: Eu 2+ , (Ca, Sr, Ba) 2 Si 5 N 8 : Eu 2+ , CaAlSiN 3 : Eu 2+ , Eu 2 W 2 O 9 , (Ca, Sr, Ba) 2 Si 5 N 8 : Eu 2+ , Mn 2+ , CaTiO 3 : Pr 3+ , Bi 3+ , (La, Eu) 2 W 3 O 12 can be mentioned.

実施例及び比較例で使用した原料粉末は、次の通りである。
(1)炭酸ストロンチウム(SrCO3)粉末:純度99.7質量%、レーザー回折散乱法により測定した平均粒子径0.9μm
(2)塩化ストロンチウム(SrCl2・6H2O)粉末:純度99質量%
(3)炭酸カルシウム(CaCO3)粉末:純度99.99質量%、レーザー回折散乱法により測定した平均粒子径3.87μm
(4)酸化ユウロピウム(Eu23)粉末:純度99.9質量%、レーザー回折散乱法により測定した平均粒子径2.7μm
(5)酸化マグネシウム(MgO)粉末:気相法により製造したもの、純度99.98質量%、BET比表面積から換算した粒子径0.2μm
(6)二酸化ケイ素(SiO2)粉末:純度99.9質量%、BET比表面積から換算した粒子径0.01μm
(7)酸化イットリウム(Y23)粉末:純度99.9質量%
The raw material powders used in the examples and comparative examples are as follows.
(1) Strontium carbonate (SrCO 3 ) powder: purity 99.7% by mass, average particle diameter measured by laser diffraction scattering method 0.9 μm
(2) Strontium chloride (SrCl 2 .6H 2 O) powder: purity 99% by mass
(3) Calcium carbonate (CaCO 3 ) powder: purity 99.99 mass%, average particle diameter measured by laser diffraction scattering method 3.87 μm
(4) Europium oxide (Eu 2 O 3 ) powder: purity 99.9% by mass, average particle diameter measured by laser diffraction scattering method 2.7 μm
(5) Magnesium oxide (MgO) powder: manufactured by vapor phase method, purity 99.98% by mass, particle diameter 0.2 μm converted from BET specific surface area
(6) Silicon dioxide (SiO 2 ) powder: purity 99.9% by mass, particle diameter 0.01 μm converted from BET specific surface area
(7) Yttrium oxide (Y 2 O 3 ) powder: purity 99.9% by mass

[実施例1]
原料粉末にSrCO3粉末、SrCl2・6H2O粉末、CaCO3粉末、Eu23粉末、MgO粉末、SiO2粉末を用い、SrCO3:SrCl2・6H2O:CaCO3:Eu23:MgO:SiO2のモル比がそれぞれ2.445:0.125:0.360:0.035:1:2.000となるように秤量した。秤量した各粉末を、水中にてボールミルを用いて15時間湿式混合して、粉末混合物のスラリーを得た。得られたスラリーをロータリーエバポレーターで乾燥して、乾燥粉末を得た。得られた乾燥粉末をアルミナ坩堝に入れて、大気雰囲気下にて800℃の温度で3時間焼成し、次いで、室温まで放冷した後、2体積%水素−98体積%アルゴンの混合ガス雰囲気下にて1220℃の温度で3時間焼成して、組成式がSr257Ca036Eu007MgSi28のSMS青色発光蛍光体を製造した。得られたSMS青色発光蛍光体の発光強度の温度特性を、下記の方法により測定した。表1に、得られたSMS青色発光蛍光体のSrとCaのモル比と発光強度の温度特性を示す。
[Example 1]
SrCO 3 powder, SrCl 2 .6H 2 O powder, CaCO 3 powder, Eu 2 O 3 powder, MgO powder, SiO 2 powder are used as raw material powder, and SrCO 3 : SrCl 2 .6H 2 O: CaCO 3 : Eu 2 O 3 : MgO: SiO 2 were weighed so that the molar ratio was 2.445: 0.125: 0.360: 0.035: 1: 2.000, respectively. Each weighed powder was wet-mixed in water using a ball mill for 15 hours to obtain a powder mixture slurry. The obtained slurry was dried with a rotary evaporator to obtain a dry powder. The obtained dry powder was put in an alumina crucible, calcined at a temperature of 800 ° C. for 3 hours in an air atmosphere, and then allowed to cool to room temperature. At 1220 ° C. for 3 hours, and the composition formula is Sr 2 . 57 Ca 0 . 36 Eu 0 . 07 An SMS blue light-emitting phosphor of MgSi 2 O 8 was produced. The temperature characteristic of the emission intensity of the obtained SMS blue light emitting phosphor was measured by the following method. Table 1 shows temperature characteristics of Sr and Ca molar ratio and emission intensity of the obtained SMS blue light emitting phosphor.

[発光強度の温度特性の測定方法]
試料のSMS青色発光蛍光体を10℃/1分の昇温速度で加熱して、30℃、50℃、100℃、150℃の各温度となった時点で、該温度を5分間維持した後に該温度を維持したままSMS青色発光蛍光体にキセノンランプを用いて波長400nmの紫外光を照射して、発光スペクトルを測定する。得られた発光スペクトルの400〜500nmの波長範囲の中で最大ピーク強度を求め、これを発光強度とする。発光強度は、後述の比較例1で製造したSMS青色発光蛍光体を30℃に加熱したときの発光強度を100とした相対値で示す。
[Measurement method of temperature characteristics of luminescence intensity]
The sample SMS blue light-emitting phosphor was heated at a rate of temperature increase of 10 ° C./1 min. When the temperature reached 30 ° C., 50 ° C., 100 ° C., and 150 ° C., the temperature was maintained for 5 minutes. The SMS blue light emitting phosphor is irradiated with ultraviolet light having a wavelength of 400 nm using a xenon lamp while the temperature is maintained, and an emission spectrum is measured. The maximum peak intensity is determined in the wavelength range of 400 to 500 nm of the obtained emission spectrum, and this is used as the emission intensity. The emission intensity is shown as a relative value with the emission intensity when the SMS blue light-emitting phosphor manufactured in Comparative Example 1 described later is heated to 30 ° C. being 100.

[実施例2]
各原料粉末の量をSrCO3:SrCl2・6H2O:CaCO3:Eu23:MgO:SiO2のモル比で2.295:0.125:0.510:0.035:1:2.000としたこと以外は、実施例1と同様にして組成式がSr242Ca051Eu007MgSi28のSMS青色発光蛍光体を製造した。得られたSMS青色発光蛍光体の発光強度の温度特性を上記の方法により測定した。表1に、得られたSMS青色発光蛍光体のSrとCaのモル比と発光強度の温度特性を示す。
[Example 2]
The amount of each raw material powder is 2.295: 0.125: 0.510: 0.035: 1: in a molar ratio of SrCO 3 : SrCl 2 .6H 2 O: CaCO 3 : Eu 2 O 3 : MgO: SiO 2. The composition formula was Sr 2 . 42 Ca 0 . 51 Eu 0 . 07 An SMS blue light-emitting phosphor of MgSi 2 O 8 was produced. The temperature characteristic of the emission intensity of the obtained SMS blue light emitting phosphor was measured by the above method. Table 1 shows temperature characteristics of Sr and Ca molar ratio and emission intensity of the obtained SMS blue light emitting phosphor.

[比較例1]
原料粉末にSrCO3粉末、SrCl2・6H2O粉末、Eu23粉末、MgO粉末、SiO2粉末を用い、各原料粉末をSrCO3:SrCl2・6H2O:Eu23:MgO:SiO2のモル比が2.805:0.125:0.035:1:2.000となるように秤量したこと以外は、実施例1と同様にして組成式がSr293Eu007MgSi28のSMS青色発光蛍光体を製造した。得られたSMS青色発光蛍光体の発光強度の温度特性を上記の方法により測定した。表1に、得られたSMS青色発光蛍光体の発光強度の温度特性を示す。
[Comparative Example 1]
SrCO 3 powder, SrCl 2 .6H 2 O powder, Eu 2 O 3 powder, MgO powder and SiO 2 powder are used as the raw material powder, and each raw material powder is made of SrCO 3 : SrCl 2 .6H 2 O: Eu 2 O 3 : MgO. : SiO 2 molar ratio is 2.805: 0.125: 0.035: 1: 2.000, except that the composition formula is Sr 2 . 93 Eu 0 . 07 An SMS blue light-emitting phosphor of MgSi 2 O 8 was produced. The temperature characteristic of the emission intensity of the obtained SMS blue light emitting phosphor was measured by the above method. Table 1 shows the temperature characteristics of the emission intensity of the obtained SMS blue light-emitting phosphor.

[比較例2]
各原料粉末の量をSrCO3:SrCl2・6H2O:CaCO3:Eu23:MgO:SiO2のモル比で2.655:0.125:0.150:0.035:1:2.000としたこと以外は、実施例1と同様にして組成式がSr278Ca015Eu007MgSi28のSMS青色発光蛍光体を製造した。得られたSMS青色発光蛍光体の発光強度の温度特性を上記の方法により測定した。表1に、得られたSMS青色発光蛍光体のSrとCaのモル比と発光強度の温度特性を示す。
[Comparative Example 2]
The amount of each raw material powder is 2.655: 0.125: 0.150: 0.035: 1: in a molar ratio of SrCO 3 : SrCl 2 .6H 2 O: CaCO 3 : Eu 2 O 3 : MgO: SiO 2. The composition formula was Sr 2 . 78 Ca 0 . 15 Eu 0 . 07 An SMS blue light-emitting phosphor of MgSi 2 O 8 was produced. The temperature characteristic of the emission intensity of the obtained SMS blue light emitting phosphor was measured by the above method. Table 1 shows temperature characteristics of Sr and Ca molar ratio and emission intensity of the obtained SMS blue light emitting phosphor.

[比較例3]
各原料粉末の量をSrCO3:SrCl2・6H2O:CaCO3:Eu23:MgO:SiO2のモル比で2.055:0.125:0.750:0.035:1:2.000としたこと以外は、実施例1と同様にして組成式がSr218Ca075Eu007MgSi28のSMS青色発光蛍光体を製造した。得られたSMS青色発光蛍光体の発光強度の温度特性を上記の方法により測定した。表1に、得られたSMS青色発光蛍光体のSrとCaのモル比と発光強度の温度特性を示す。
[Comparative Example 3]
The amount of each raw material powder is 2.055: 0.125: 0.750: 0.035: 1: in a molar ratio of SrCO 3 : SrCl 2 .6H 2 O: CaCO 3 : Eu 2 O 3 : MgO: SiO 2. The composition formula was Sr 2 . 18 Ca 0 . 75 Eu 0 . 07 An SMS blue light-emitting phosphor of MgSi 2 O 8 was produced. The temperature characteristic of the emission intensity of the obtained SMS blue light emitting phosphor was measured by the above method. Table 1 shows temperature characteristics of Sr and Ca molar ratio and emission intensity of the obtained SMS blue light emitting phosphor.

表1
────────────────────────────────────────
SMS青色発光蛍光体の SMS青色発光蛍光体の発光強度の温度特性
SrとCaのモル比 ───────────────────────
Sr:Ca 30℃ 50℃ 100℃ 150℃
────────────────────────────────────────
実施例1 1:0.14 100 97 86 76
実施例2 1:0.21 105 101 90 78
────────────────────────────────────────
比較例1 Caの添加なし 100 96 83 72
比較例2 1:0.05 98 93 81 70
比較例3 1:0.34 91 86 77 66
────────────────────────────────────────
Table 1
────────────────────────────────────────
Temperature characteristics of emission intensity of SMS blue light emitting phosphor
Sr to Ca molar ratio ───────────────────────
Sr: Ca 30 ° C. 50 ° C. 100 ° C. 150 ° C.
────────────────────────────────────────
Example 1 1: 0.14 100 97 86 76
Example 2 1: 0.21 105 101 90 78
────────────────────────────────────────
Comparative Example 1 No addition of Ca 100 96 83 72
Comparative Example 2 1: 0.05 98 93 81 70
Comparative Example 3 1: 0.34 91 86 77 66
────────────────────────────────────────

上記表1の結果から、SrをCaで本発明の範囲で置換したSMS青色発光蛍光体(実施例1、2)は、Caで置換していないSMS蛍光体(比較例1)やCaの含有量が本発明の範囲から逸脱したSMS蛍光体(比較例2、3)と比べて、120℃付近(100〜150℃)での高温環境下での発光強度が高く、発光強度の温度安定性が高いことが分かる。   From the results of Table 1 above, the SMS blue light emitting phosphors (Examples 1 and 2) in which Sr is substituted with Ca in the scope of the present invention are contained in the SMS phosphors (Comparative Example 1) and Ca not substituted with Ca. Compared with the SMS phosphor (Comparative Examples 2 and 3) whose amount departs from the scope of the present invention, the emission intensity in a high temperature environment near 120 ° C. (100 to 150 ° C.) is high, and the temperature stability of the emission intensity. Is high.

[実施例3]
原料粉末にSrCO3粉末、SrCl2・6H2O粉末、CaCO3粉末、Eu23粉末、Y23粉末、MgO粉末、SiO2粉末を用い、各原料粉末の量をSrCO3:SrCl2・6H2O:CaCO3:Eu23:Y23:MgO:SiO2のモル比で2.500:0.125:0.300:0.035:0.0025:1:2.000としたこと以外は、実施例1と同様にして組成式がSr2625Ca0300Eu00700005MgSi28のSMS青色発光蛍光体を製造した。得られたSMS青色発光蛍光体の発光強度の温度特性を上記の方法により測定した。表2に、得られたSMS青色発光蛍光体のSrとCaのモル比と発光強度の温度特性を示す。
[Example 3]
SrCO 3 powder, SrCl 2 .6H 2 O powder, CaCO 3 powder, Eu 2 O 3 powder, Y 2 O 3 powder, MgO powder, SiO 2 powder are used as the raw material powder, and the amount of each raw material powder is SrCO 3 : SrCl 2 · 6H 2 O: CaCO 3 : Eu 2 O 3: Y 2 O 3: MgO: at a molar ratio of SiO 2 2.500: 0.125: 0.300: 0.035: 0.0025: 1: 2 The composition formula is Sr 2 . 625 Ca 0 . 300 Eu 0 . 070 Y 0 . 005 MgSi 2 O 8 SMS blue light emitting phosphor was manufactured. The temperature characteristic of the emission intensity of the obtained SMS blue light emitting phosphor was measured by the above method. Table 2 shows temperature characteristics of Sr and Ca molar ratio and emission intensity of the obtained SMS blue light emitting phosphor.

[実施例4]
各原料粉末の量をSrCO3:SrCl2・6H2O:CaCO3:Eu23:Y23:MgO:SiO2のモル比で2.440:0.125:0.360:0.035:0.0025:1:2.000としたこと以外は、実施例3と同様にして組成式がSr2565Ca0360Eu00700005MgSi28のSMS青色発光蛍光体を製造した。得られたSMS青色発光蛍光体の発光強度の温度特性を上記の方法により測定した。表2に、得られたSMS青色発光蛍光体のSrとCaのモル比と発光強度の温度特性を示す。
[Example 4]
The amount of each raw material powder is 2.440: 0.125: 0.360: 0 in terms of a molar ratio of SrCO 3 : SrCl 2 .6H 2 O: CaCO 3 : Eu 2 O 3 : Y 2 O 3 : MgO: SiO 2. 0.03: 0.0025: 1: 2.000, the composition formula was Sr 2 . 565 Ca 0 . 360 Eu 0 . 070 Y 0 . 005 MgSi 2 O 8 SMS blue light emitting phosphor was manufactured. The temperature characteristic of the emission intensity of the obtained SMS blue light emitting phosphor was measured by the above method. Table 2 shows temperature characteristics of Sr and Ca molar ratio and emission intensity of the obtained SMS blue light emitting phosphor.

[実施例5]
各原料粉末の量をSrCO3:SrCl2・6H2O:CaCO3:Eu23:Y23:MgO:SiO2のモル比で2.355:0.125:0.450:0.035:0.0025:1:2.000としたこと以外は、実施例3と同様にして組成式がSr2475Ca0510Eu00700005MgSi28のSMS青色発光蛍光体を製造した。得られたSMS青色発光蛍光体の発光強度の温度特性を上記の方法により測定した。表2に、得られたSMS青色発光蛍光体のSrとCaのモル比と発光強度の温度特性を示す。
[Example 5]
The amount of each raw material powder is 2.355: 0.125: 0.450: 0 in the molar ratio of SrCO 3 : SrCl 2 .6H 2 O: CaCO 3 : Eu 2 O 3 : Y 2 O 3 : MgO: SiO 2. 0.03: 0.0025: 1: 2.000, the composition formula was Sr 2 . 475 Ca 0 . 510 Eu 0 . 070 Y 0 . 005 MgSi 2 O 8 SMS blue light emitting phosphor was manufactured. The temperature characteristic of the emission intensity of the obtained SMS blue light emitting phosphor was measured by the above method. Table 2 shows temperature characteristics of Sr and Ca molar ratio and emission intensity of the obtained SMS blue light emitting phosphor.

[実施例6]
各原料粉末の量をSrCO3:SrCl2・6H2O:CaCO3:Eu23:Y23:MgO:SiO2のモル比で2.290:0.125:0.510:0.035:0.0025:1:2.000としたこと以外は、実施例3と同様にして組成式がSr2415Ca0510Eu00700005MgSi28のSMS青色発光蛍光体を製造した。得られたSMS青色発光蛍光体の発光強度の温度特性を上記の方法により測定した。表2に、得られたSMS青色発光蛍光体のSrとCaのモル比と発光強度の温度特性を示す。
[Example 6]
The amount of each raw material powder is 2.290: 0.125: 0.510: 0 in terms of a molar ratio of SrCO 3 : SrCl 2 .6H 2 O: CaCO 3 : Eu 2 O 3 : Y 2 O 3 : MgO: SiO 2. 0.03: 0.0025: 1: 2.000, the composition formula was Sr 2 . 415 Ca 0 . 510 Eu 0 . 070 Y 0 . 005 MgSi 2 O 8 SMS blue light emitting phosphor was manufactured. The temperature characteristic of the emission intensity of the obtained SMS blue light emitting phosphor was measured by the above method. Table 2 shows temperature characteristics of Sr and Ca molar ratio and emission intensity of the obtained SMS blue light emitting phosphor.

[実施例7]
各原料粉末の量をSrCO3:SrCl2・6H2O:CaCO3:Eu23:Y23:MgO:SiO2のモル比で2.200:0.125:0.600:0.035:0.0025:1:2.000としたこと以外は、実施例3と同様にして組成式がSr2325Ca0600Eu00700005MgSi28のSMS青色発光蛍光体を製造した。得られたSMS青色発光蛍光体の発光強度の温度特性を上記の方法により測定した。表2に、得られたSMS青色発光蛍光体のSrとCaのモル比と発光強度の温度特性を示す。
[Example 7]
The amount of each raw material powder is 2.200: 0.125: 0.600: 0 in the molar ratio of SrCO 3 : SrCl 2 .6H 2 O: CaCO 3 : Eu 2 O 3 : Y 2 O 3 : MgO: SiO 2. 0.03: 0.0025: 1: 2.000, the composition formula was Sr 2 . 325 Ca 0 . 600 Eu 0 . 070 Y 0 . 005 MgSi 2 O 8 SMS blue light emitting phosphor was manufactured. The temperature characteristic of the emission intensity of the obtained SMS blue light emitting phosphor was measured by the above method. Table 2 shows temperature characteristics of Sr and Ca molar ratio and emission intensity of the obtained SMS blue light emitting phosphor.

[実施例8]
各原料粉末の量をSrCO3:SrCl2・6H2O:CaCO3:Eu23:Y23:MgO:SiO2のモル比で2.140:0.125:0.660:0.035:0.0025:1:2.000としたこと以外は、実施例3と同様にして組成式がSr2265Ca0660Eu00700005MgSi28のSMS青色発光蛍光体を製造した。得られたSMS青色発光蛍光体の発光強度の温度特性を上記の方法により測定した。表2に、得られたSMS青色発光蛍光体のSrとCaのモル比と発光強度の温度特性を示す。
[Example 8]
The amount of each raw material powder was 2.140: 0.125: 0.660: 0 in the molar ratio of SrCO 3 : SrCl 2 .6H 2 O: CaCO 3 : Eu 2 O 3 : Y 2 O 3 : MgO: SiO 2. 0.03: 0.0025: 1: 2.000, the composition formula was Sr 2 . 265 Ca 0 . 660 Eu 0 . 070 Y 0 . 005 MgSi 2 O 8 SMS blue light emitting phosphor was manufactured. The temperature characteristic of the emission intensity of the obtained SMS blue light emitting phosphor was measured by the above method. Table 2 shows temperature characteristics of Sr and Ca molar ratio and emission intensity of the obtained SMS blue light emitting phosphor.

表2
────────────────────────────────────────
SMS青色発光蛍光体の SMS青色発光蛍光体の発光強度の温度特性
SrとCaのモル比 ───────────────────────
Ca:Sr 30℃ 50℃ 100℃ 150℃
────────────────────────────────────────
実施例3 1:0.11 106 99 89 77
実施例4 1:0.14 107 104 92 81
実施例5 1:0.18 109 104 96 83
実施例6 1:0.21 112 108 96 84
実施例7 1:0.26 106 102 90 78
実施例8 1:0.29 106 101 90 77
────────────────────────────────────────
Table 2
────────────────────────────────────────
Temperature characteristics of emission intensity of SMS blue light emitting phosphor
Sr to Ca molar ratio ───────────────────────
Ca: Sr 30 ° C. 50 ° C. 100 ° C. 150 ° C.
────────────────────────────────────────
Example 3 1: 0.11 106 99 89 77
Example 4 1: 0.14 107 104 92 81
Example 5 1: 0.18 109 104 96 83
Example 6 1: 0.21 112 108 96 84
Example 7 1: 0.26 106 102 90 78
Example 8 1: 0.29 106 101 90 77
────────────────────────────────────────

上記表2の結果から、Srの一部をCaで置換し、さらにYで共付活したSMS青色発光蛍光体は、120℃付近での高温環境下での発光強度が高く、発光強度の温度安定性が高いことが分かる。   From the results of Table 2 above, the SMS blue light emitting phosphor in which a part of Sr is substituted with Ca and further co-activated with Y has high emission intensity in a high temperature environment near 120 ° C., and the temperature of the emission intensity. It can be seen that the stability is high.

1 基板
2 接着材
3 半導体発光素子
4a、4b 電極
5a、5b リード線
6 樹脂層
7 蛍光体層
8 光反射材
9a、9b 導電線
DESCRIPTION OF SYMBOLS 1 Substrate 2 Adhesive material 3 Semiconductor light emitting element 4a, 4b Electrode 5a, 5b Lead wire 6 Resin layer 7 Phosphor layer 8 Light reflecting material 9a, 9b Conductive wire

Claims (6)

Euで付活された(Sr,Ca)3MgSi28の基本組成式を有し、メルウィナイト結晶構造を持つ青色発光蛍光体であって、SrとCaのモル比が、1:0.10〜1:0.30の範囲にあることを特徴とする青色発光蛍光体。 A blue light-emitting phosphor having a basic composition formula of (Sr, Ca) 3 MgSi 2 O 8 activated by Eu and having a merwinite crystal structure, wherein the molar ratio of Sr and Ca is 1: 0.10. A blue-emitting phosphor characterized by being in the range of ˜1: 0.30. 波長350〜430nmの光を放出する半導体発光素子からの光で励起して、青色光を発生させるための、請求項1に記載の青色発光蛍光体。   The blue light-emitting phosphor according to claim 1, which is excited by light from a semiconductor light-emitting element that emits light having a wavelength of 350 to 430 nm to generate blue light. EuをMgの含有量を1モルとしたときに、0.01〜0.20モルの範囲の量にて含有する請求項1に記載の青色発光蛍光体。   2. The blue-emitting phosphor according to claim 1, wherein Eu is contained in an amount in the range of 0.01 to 0.20 mol, when the content of Mg is 1 mol. さらに、Sc、Y、Gd、Tb及びLaからなる群より選ばれる一種以上のEu以外の希土類金属元素で共付活されている請求項1に記載の青色発光蛍光体。   2. The blue-emitting phosphor according to claim 1, further co-activated with one or more rare earth metal elements other than Eu selected from the group consisting of Sc, Y, Gd, Tb, and La. SrとCaのモル比が、1:0.13〜1:0.23の範囲にある請求項1に記載の青色発光蛍光体。   The blue light-emitting phosphor according to claim 1, wherein the molar ratio of Sr and Ca is in the range of 1: 0.13 to 1: 0.23. 請求項1乃至5のうちのいずれかの項に記載の青色発光蛍光体と、波長350〜430nmの光を放出する半導体発光素子とを含む発光装置。   A light emitting device comprising the blue light emitting phosphor according to any one of claims 1 to 5 and a semiconductor light emitting element that emits light having a wavelength of 350 to 430 nm.
JP2011173867A 2011-08-09 2011-08-09 Blue light emitting phosphor and light emitting device using the blue light emitting phosphor Expired - Fee Related JP5736272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011173867A JP5736272B2 (en) 2011-08-09 2011-08-09 Blue light emitting phosphor and light emitting device using the blue light emitting phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011173867A JP5736272B2 (en) 2011-08-09 2011-08-09 Blue light emitting phosphor and light emitting device using the blue light emitting phosphor

Publications (3)

Publication Number Publication Date
JP2013035957A true JP2013035957A (en) 2013-02-21
JP2013035957A5 JP2013035957A5 (en) 2014-03-27
JP5736272B2 JP5736272B2 (en) 2015-06-17

Family

ID=47885860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011173867A Expired - Fee Related JP5736272B2 (en) 2011-08-09 2011-08-09 Blue light emitting phosphor and light emitting device using the blue light emitting phosphor

Country Status (1)

Country Link
JP (1) JP5736272B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016111200A1 (en) * 2015-01-07 2016-07-14 宇部興産株式会社 Fluorescent material, light-emitting device, and method for producing fluorescent material
CN116410745A (en) * 2021-12-31 2023-07-11 江苏博睿光电股份有限公司 Fluorescent powder material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002171000A (en) * 2000-09-21 2002-06-14 Sharp Corp Semiconductor light emitting device and light emitting display comprising it
JP2003306675A (en) * 2002-02-15 2003-10-31 Mitsubishi Chemicals Corp Light-emitting device and illumination device using the same
JP2003336048A (en) * 2002-05-17 2003-11-28 Matsushita Electric Ind Co Ltd Plasma display device
JP2006012770A (en) * 2004-05-27 2006-01-12 Hitachi Ltd Light-emitting device and image display device using this light-emitting device
JP2006312654A (en) * 2005-04-07 2006-11-16 Sumitomo Chemical Co Ltd Phosphor
US20080048547A1 (en) * 2006-08-28 2008-02-28 Hitoshi Oaku Plasma display device and light emitting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002171000A (en) * 2000-09-21 2002-06-14 Sharp Corp Semiconductor light emitting device and light emitting display comprising it
JP2003306675A (en) * 2002-02-15 2003-10-31 Mitsubishi Chemicals Corp Light-emitting device and illumination device using the same
JP2003336048A (en) * 2002-05-17 2003-11-28 Matsushita Electric Ind Co Ltd Plasma display device
JP2006012770A (en) * 2004-05-27 2006-01-12 Hitachi Ltd Light-emitting device and image display device using this light-emitting device
JP2006312654A (en) * 2005-04-07 2006-11-16 Sumitomo Chemical Co Ltd Phosphor
US20080048547A1 (en) * 2006-08-28 2008-02-28 Hitoshi Oaku Plasma display device and light emitting device
JP2008050523A (en) * 2006-08-28 2008-03-06 Hitachi Ltd Plasma display device and light-emitting device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016111200A1 (en) * 2015-01-07 2016-07-14 宇部興産株式会社 Fluorescent material, light-emitting device, and method for producing fluorescent material
JPWO2016111200A1 (en) * 2015-01-07 2017-11-02 宇部興産株式会社 Phosphor, light emitting device, and method of manufacturing phosphor
US10538702B2 (en) 2015-01-07 2020-01-21 Ube Industries, Ltd. Fluorescent material, light-emitting device, and method for producing fluorescent material
CN116410745A (en) * 2021-12-31 2023-07-11 江苏博睿光电股份有限公司 Fluorescent powder material
CN116410745B (en) * 2021-12-31 2023-10-24 江苏博睿光电股份有限公司 Fluorescent powder material

Also Published As

Publication number Publication date
JP5736272B2 (en) 2015-06-17

Similar Documents

Publication Publication Date Title
JP6315212B2 (en) Silicate phosphor and light emitting device exhibiting high light emission characteristics and moisture resistance
JP5414957B2 (en) White light emitting phosphor blend for LED elements
JP4981042B2 (en) Illumination system containing luminescent material emitting yellow-green
JP5770192B2 (en) Blue light emitting phosphor and light emitting device using the blue light emitting phosphor
JP5092667B2 (en) Light emitting device
US20060049414A1 (en) Novel oxynitride phosphors
Dutta et al. An efficient green-emitting Ba 5 Si 2 O 6 Cl 6: Eu 2+ phosphor for white-light LED application
US20190067530A1 (en) Blue light-emitting phosphor and light emitting device using same
JP2005179498A (en) Red phosphor material, white light-emitting diode using the same, and illuminator using the white light-emitting diode
JP5689407B2 (en) Silicate green light emitting phosphor
JPWO2016076380A1 (en) Phosphor, light emitting device, lighting device, and image display device
JP5770365B2 (en) Deep red light emitting magnesium fluorogermanate phosphor and method for producing the same
JP4904694B2 (en) Oxide phosphor, and light emitting element, image display device, and illumination device using the same
JP5736272B2 (en) Blue light emitting phosphor and light emitting device using the blue light emitting phosphor
US9011718B2 (en) Blue light-emitting phosphor and light-emitting device using the blue light-emitting phosphor
JP5693108B2 (en) Phosphor, method for manufacturing the same, and light emitting device having the same
CN102120932B (en) Fluorescent powder used for warm white LED and andradite thereof
CN102071024B (en) Fluorescent powder for LED (light emitting diode) with warm white light and silicate garnet thereof
JPWO2014167762A1 (en) Phosphor and light emitting device
JP5702569B2 (en) Phosphor manufacturing method and light emitting device
JP2016155893A (en) Aluminate fluophor and light emitting device
JP2013136785A (en) Non-stoichiometric tetragonal copper alkaline earth silicate phosphor and method of preparing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150420

R150 Certificate of patent or registration of utility model

Ref document number: 5736272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees