JP2013032608A - Method for processing exhaust gas - Google Patents

Method for processing exhaust gas Download PDF

Info

Publication number
JP2013032608A
JP2013032608A JP2012142713A JP2012142713A JP2013032608A JP 2013032608 A JP2013032608 A JP 2013032608A JP 2012142713 A JP2012142713 A JP 2012142713A JP 2012142713 A JP2012142713 A JP 2012142713A JP 2013032608 A JP2013032608 A JP 2013032608A
Authority
JP
Japan
Prior art keywords
exhaust gas
furnace
gas treatment
treatment facility
regenerative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012142713A
Other languages
Japanese (ja)
Inventor
Shimpei Kawada
晋平 川田
Yusuke Hamabe
裕介 浜辺
Masatoshi Tsukamoto
正利 塚本
Kenji Yamamoto
健嗣 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2012142713A priority Critical patent/JP2013032608A/en
Publication of JP2013032608A publication Critical patent/JP2013032608A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for processing exhaust gas in a manufacturing process of flameproof fibers or carbon fibers that is to solve problems such as an operation rate, and decreases in energy consumption and atmospheric environmental load of an exhaust gas treatment, and is also inexpensive and excellent from a viewpoint of global environment.SOLUTION: There is provided a method for processing exhaust gas in production processes of flameproof fibers and/or carbon fibers. The method is used in a process for producing flameproof fibers which has a flameproofing furnace for flameproofing precursor fibers by a heated oxidative gas and/or in a process, after the process for producing flameproof fibers, for producing carbons fibers which has a carbonization furnace for carbonizing the flameproof fibers by a heated inert gas. In the method, exhaust gases in the furnaces and/or in the ambient atmosphere of the furnaces are collected and subjected to a degradation treatment. In the exhaust gases, at least an exhaust gas in the flameproofing furnace, an exhaust gas in an ambient atmosphere of the flameproofing furnace, and an exhaust gas in an ambient atmosphere of the carbonization furnace are subjected to a degradation treatment using a heat storage type exhaust gas treatment equipment.

Description

本発明は、耐炎化繊維または炭素繊維の製造工程における排ガス処理方法に関する。さらに詳しくは、排ガスの少なくとも一部を蓄熱式排ガス処理設備で排ガス処理を施す排ガス処理方法に関する。   The present invention relates to an exhaust gas treatment method in a production process of flameproof fiber or carbon fiber. More specifically, the present invention relates to an exhaust gas treatment method in which at least a part of exhaust gas is subjected to exhaust gas treatment with a regenerative exhaust gas treatment facility.

耐炎化繊維は通常、前駆体であるアクリル系繊維やピッチ系繊維等のプリカーサーを耐炎化炉または不融化炉などと呼ばれる熱処理炉(以下、本発明では総称して耐炎化炉と記載する)内にて200〜400℃の空気等の酸化性気体中で加熱処理(以下、耐炎化処理と総称する)することで得られ、また炭素繊維は、耐炎化繊維を炭化炉内にてさらなる高温に保たれた窒素、アルゴンなどの不活性気体中で加熱して炭化することにより製造されている。なお、炭素繊維を製造する場合は、該耐炎化繊維の製造工程(以下、耐炎化工程)とその後の炭素繊維の製造工程(以下、炭化工程)は通常連続したラインで製造されているが、別のラインで切り離して製造することもある。また耐炎化工程の耐炎化炉と炭化工程の炭化炉においては、各々1つの炉とは限らず、複数に分割した炉で処理することもある。   The flame resistant fiber is usually a precursor of acrylic fiber or pitch fiber, which is a precursor, in a heat treatment furnace called a flame resistant furnace or an infusible furnace (hereinafter collectively referred to as a flame resistant furnace in the present invention). Obtained by heat treatment in an oxidizing gas such as air at 200 to 400 ° C. (hereinafter collectively referred to as flameproofing treatment), and the carbon fiber is heated to a higher temperature in a carbonization furnace. It is manufactured by heating and carbonizing in an inert gas such as nitrogen and argon. In addition, when manufacturing carbon fiber, the manufacturing process of the flame-resistant fiber (hereinafter referred to as flame resistance process) and the subsequent manufacturing process of carbon fiber (hereinafter referred to as carbonization process) are usually manufactured in a continuous line. It may be manufactured separately on a separate line. Further, the flameproofing furnace in the flameproofing process and the carbonizing furnace in the carbonizing process are not limited to one furnace each, and may be processed in a plurality of divided furnaces.

ここで、耐炎化工程で排出される排ガス(以下、耐炎化排ガス)および炭化工程で排出される排ガス(以下、炭化排ガス)は、耐炎化炉、炭化炉の炉本体から抜き出した排ガスと、場合によっては炉本体の被処理物出入口から漏れ出たガスを捕集することを目的に炉周辺雰囲気ガスを集めた排ガスで構成されるが、この排ガスの中には、前駆体繊維自身および付与されている油剤の熱分解に起因する多種多様な化合物、アンモニア、一酸化炭素、二酸化炭素、メタン、シアン化水素、気化したタール成分等が含まれており、このような化合物を含む排ガスは、環境衛生等の面から無害化してから大気に放出する必要がある。よって特許文献1では耐炎化排ガスと炭化排ガスをそれぞれ耐炎化炉と炭化炉の外に導き混合させ、混合したガスを酸化触媒式または直接燃焼式の排ガス処理設備において、ガスの中に含まれる有害成分を分解処理してから大気に放出している。   Here, the exhaust gas discharged in the flame-proofing process (hereinafter referred to as flame-resistant exhaust gas) and the exhaust gas discharged in the carbonization process (hereinafter referred to as carbonized exhaust gas) are the exhaust gas extracted from the flame-proofing furnace and the furnace body of the carbonizing furnace, Depending on the type of gas, it is composed of exhaust gas that collects ambient gas around the furnace for the purpose of collecting the gas leaked from the inlet / outlet of the furnace body. It contains a wide variety of compounds resulting from the thermal decomposition of the oil agent, ammonia, carbon monoxide, carbon dioxide, methane, hydrogen cyanide, vaporized tar components, etc. It is necessary to release it to the atmosphere after detoxifying it. Therefore, in Patent Document 1, the flame-resistant exhaust gas and the carbonized exhaust gas are introduced and mixed outside the flame-resistant furnace and the carbonized furnace, respectively, and the mixed gas is contained in the gas in an oxidation catalyst type or direct combustion type exhaust gas treatment facility. Components are decomposed and released to the atmosphere.

しかしながら、この内の酸化触媒式は、処理によって析出した固形物が経時によって触媒を閉塞するため、排ガス中に含まれる被処理化合物の量によってはメンテナンス周期が短く、製造工程の稼動率に影響してしまうことがある。特に、該耐炎化工程では前駆体繊維にシリコン系油剤が付与されていた場合、耐炎化排ガスに耐炎化炉内の熱分解に起因する多量のシリコン系化合物が含有する。また、炭化工程でも炭化炉内にて耐炎化炉内よりはるかに高い雰囲気温度で加熱するため、前駆体繊維に大きな加熱減量が起り、炭化排ガスに多量の熱分解物が含有する。該熱分解物は、炭化炉の外に出て温度が低下するとタール成分として凝縮し酸化触媒機器の劣化速度を飛躍的に高めてしまう。したがって耐炎化繊維または炭素繊維の製造工程における排ガス処理方法としては、直接燃焼式の排ガス処理設備を用いるのが通常である(例えば、特許文献2参照)。   However, in this oxidation catalyst formula, the solid matter deposited by treatment clogs the catalyst over time, so depending on the amount of compound to be treated contained in the exhaust gas, the maintenance cycle is short, which affects the operating rate of the manufacturing process. May end up. In particular, in the flameproofing step, when a silicon-based oil is applied to the precursor fiber, a large amount of silicon-based compounds resulting from thermal decomposition in the flameproofing furnace are contained in the flameproof exhaust gas. Further, in the carbonization process, heating is performed in the carbonization furnace at a much higher atmospheric temperature than in the flameproofing furnace, so that a large amount of heat loss occurs in the precursor fibers, and a large amount of pyrolyzate is contained in the carbonized exhaust gas. When the thermal decomposition product goes out of the carbonization furnace and the temperature decreases, it condenses as a tar component and dramatically increases the deterioration rate of the oxidation catalyst device. Therefore, as an exhaust gas treatment method in the production process of flameproof fiber or carbon fiber, it is usual to use a direct combustion type exhaust gas treatment facility (for example, see Patent Document 2).

一方、直接燃焼式においては、灯油、LNG、LPGなどの燃料を常時燃やし、高温雰囲気下(約750℃以上)で排ガスの分解処理を施すため、エネルギー消費量および燃料燃焼により発生し大気に放出する二酸化炭素、窒素化合物の量が膨大となる。したがって特許文献2または特許文献3のように燃焼後の排ガスの廃熱をチューブ式、多管式、プレート式などの熱交換器で回収して燃焼前の排ガスの予熱、該耐炎化炉の給気用エアの予熱などに利用しているが、設備構造上熱伝達の表面積が大きく取るためには設備サイズを大きく取る必要があり、工業的な設備費採算性を視野に入れた機器サイズでは廃熱回収は充分でなく依然エネルギー消費量は大きい。   On the other hand, in the direct combustion type, fuel such as kerosene, LNG, LPG is always burned and the exhaust gas is decomposed in a high-temperature atmosphere (about 750 ° C or higher), so it is generated by energy consumption and fuel combustion and released to the atmosphere. The amount of carbon dioxide and nitrogen compounds to be produced is enormous. Therefore, as in Patent Document 2 or Patent Document 3, waste heat of exhaust gas after combustion is recovered by a heat exchanger such as a tube type, a multi-tube type, or a plate type to preheat the exhaust gas before combustion, and supply the flameproofing furnace. Although it is used for preheating of air, etc., it is necessary to increase the equipment size in order to increase the heat transfer surface area due to the equipment structure, and in the equipment size considering industrial equipment cost profitability Waste heat recovery is not enough and energy consumption is still large.

なお、他の方式の排ガス処理設備として、一般的には例えば特許文献4に開示されるような蓄熱式排ガス処理設備が知られている。蓄熱式は直接燃焼式と類似しているが、排ガスを燃焼するための燃焼領域の前の予熱熱交として、蓄熱材を収容した複数の蓄熱領域を備えているのが特徴である。排ガスを複数の蓄熱領域のうち何れか一つに通過させて燃焼領域へと導入し、該燃焼領域にて分解処理した後、他の蓄熱領域を出口として排出するように運転されるものである。出口となる蓄熱領域に収容された蓄熱材は、暫く運転を継続すると次第に高温になるため、入口となる蓄熱領域と出口となる蓄熱領域とを所定時間毎に順次切り替え、高温となった蓄熱領域から排ガスが導入されるように運転される。このように、該蓄熱式排ガス処理設備は、燃焼後の排ガスによって持ち出されるエネルギーを最小限に抑え、かつそのエネルギーを排ガスの予熱に有効利用しながら排ガスの分解処理を行うものである。また、蓄熱領域の蓄熱材は例えばハニカム状といったように熱伝達の表面積を大きくとった構造をしており、直接燃焼式排ガス処理設備のチューブ式、多管式、プレート式などの熱交換器と比べ、機器サイズあたりの熱交換量が大きいため、廃熱回収率が高く、エネルギー消費量を大きく抑えることができる方式となっている。   As another type of exhaust gas treatment facility, a heat storage type exhaust gas treatment facility as disclosed in, for example, Patent Document 4 is generally known. The heat storage type is similar to the direct combustion type, but is characterized by having a plurality of heat storage regions containing a heat storage material as preheating heat exchange before the combustion region for burning exhaust gas. The exhaust gas is passed through any one of a plurality of heat storage regions, introduced into the combustion region, decomposed in the combustion region, and then operated to discharge the other heat storage region as an outlet. . Since the heat storage material accommodated in the heat storage area serving as the outlet gradually becomes hot when operation is continued for a while, the heat storage area serving as the inlet and the heat storage area serving as the outlet are sequentially switched every predetermined time, and the heat storage area becomes high temperature. The exhaust gas is operated from the exhaust gas. As described above, the heat storage type exhaust gas treatment facility performs the decomposition treatment of the exhaust gas while minimizing the energy brought out by the exhaust gas after combustion and effectively utilizing the energy for preheating the exhaust gas. In addition, the heat storage material in the heat storage region has a structure with a large heat transfer surface area, such as a honeycomb, and is a tube type, multi-tube type, plate type, etc. heat exchanger for direct combustion exhaust gas treatment equipment. In comparison, since the amount of heat exchange per unit size is large, the waste heat recovery rate is high, and the energy consumption can be greatly suppressed.

蓄熱式排ガス処理設備の蓄熱領域は、前記の酸化触媒方式と比べると閉塞の問題は非常に小さいが、それでも排ガス中に含まれる化合物の固形量によっては長期間運転が困難になるため、耐炎化繊維または炭素繊維の製造工程の排ガス処理に直接適用する例は知られていなかった。特に、従来の蓄熱式排ガス処理設備を耐炎化糸製造工程や炭化糸製造工程にそのまま適用すると、該炭化排ガスに含まれるタール成分の凝縮物が、該蓄熱領域の閉塞を起こしメンテナンス周期を極端に低下させてしまう問題があった。   The heat storage area of the heat storage type exhaust gas treatment facility has a very small problem of clogging compared to the oxidation catalyst method described above, but it is still difficult to operate for a long time depending on the solid amount of the compound contained in the exhaust gas. An example of direct application to exhaust gas treatment in a fiber or carbon fiber production process has not been known. In particular, when a conventional heat storage type exhaust gas treatment facility is applied as it is to a flameproof yarn manufacturing process or a carbonized yarn manufacturing process, the condensate of the tar component contained in the carbonized exhaust gas causes the heat storage region to become clogged, resulting in an extreme maintenance cycle. There was a problem that would decrease.

特開昭59−142826号公報JP 59-142826 A 特開2009−174078号公報JP 2009-174078 A 特開2010−223471号公報JP 2010-223471 A 特開平9−264521号公報Japanese Patent Laid-Open No. 9-264521

本発明の課題は、前記従来技術の問題点である排ガス処理設備の稼動率、エネルギー消費量および大気環境負荷の低減を解決しようとするものであり、低コストで地球環境の観点からも優れた耐炎化繊維または炭素繊維の製造工程における排ガス処理方法を提供することにある。   The problem to be solved by the present invention is to solve the problem of the prior art, which is the reduction of the operating rate of exhaust gas treatment equipment, the energy consumption and the atmospheric environmental load, and is excellent from the viewpoint of the global environment at low cost. An object of the present invention is to provide an exhaust gas treatment method in a process for producing flame-resistant fibers or carbon fibers.

本発明は前記課題を解決するために次の構成を有する。すなわち、
(1)前駆体繊維を加熱された酸化性気体によって耐炎化する耐炎化炉を有する耐炎化繊維の製造工程、および/または耐炎化繊維の製造工程の後、耐炎化繊維を加熱された不活性気体によって炭化する炭化炉を有する炭素繊維の製造工程において、前記炉内の排ガスおよび/または前記炉周辺雰囲気の排ガスを収集して分解処理する、耐炎化繊維、および/または炭素繊維の製造工程における排ガス処理方法であって、前記排ガスのうち、耐炎化炉の炉内の排ガス、耐炎化炉の炉周辺雰囲気の排ガス、および炭化炉の炉周辺雰囲気の排ガスの少なくとも一部を蓄熱式排ガス処理設備で分解処理することを特徴とする排ガス処理方法。
The present invention has the following configuration in order to solve the above problems. That is,
(1) A process for producing a flame-resistant fiber having a flame-resistant furnace for making the precursor fiber flame-resistant by a heated oxidizing gas, and / or a process for producing the flame-resistant fiber, and then heating the flame-resistant fiber to be inert. In the manufacturing process of carbon fiber having a carbonization furnace that is carbonized by gas, in the manufacturing process of flame-resistant fiber and / or carbon fiber that collects and decomposes the exhaust gas in the furnace and / or the exhaust gas in the atmosphere around the furnace An exhaust gas treatment method, wherein at least a part of the exhaust gas in the furnace of the flameproofing furnace, the exhaust gas in the atmosphere around the furnace of the flameproofing furnace, and the exhaust gas in the atmosphere around the furnace of the carbonization furnace among the exhaust gas is a regenerative exhaust gas treatment facility An exhaust gas treatment method comprising:

(2)前記炭素繊維の製造工程の後工程に、サイジング処理液を付着した炭素繊維を熱風で乾燥させる乾燥機を有する乾燥工程を有しており、前記乾燥機の排ガスの少なくとも一部を前記蓄熱式排ガス処理設備で分解処理する、請求項1に記載の排ガス処理方法。   (2) It has a drying process which has a dryer which dries the carbon fiber which adhered sizing processing liquid with hot air in the latter process of the manufacturing process of the above-mentioned carbon fiber, and at least a part of the exhaust gas of the above-mentioned dryer is the above-mentioned The exhaust gas treatment method according to claim 1, wherein the decomposition treatment is performed in a heat storage type exhaust gas treatment facility.

(3)前記排ガスのうち、前記蓄熱式排ガス処理設備で処理する排ガスを除いた他の排ガスを、直接燃焼式排ガス処理設備で分解処理する、(1)または(2)に記載の排ガス処理方法。   (3) The exhaust gas treatment method according to (1) or (2), wherein the exhaust gas other than the exhaust gas to be processed by the regenerative exhaust gas treatment facility is decomposed by the direct combustion exhaust gas treatment facility. .

(4)前記蓄熱式排ガス処理設備の導入側に、前記直接燃焼式排ガス処理設備で排ガスの分解処理を可能とするライン、および前記蓄熱式排ガス処理設備で排ガスの分解処理を可能とするラインの両ラインを切り替える切替手段を有する、(3)に記載の排ガス処理方法。   (4) On the introduction side of the regenerative exhaust gas treatment facility, there is a line that allows the direct combustion exhaust gas treatment facility to decompose exhaust gas, and a line that enables the thermal storage exhaust gas treatment facility to decompose exhaust gas. The exhaust gas treatment method according to (3), further comprising switching means for switching both lines.

(5)前記蓄熱式排ガス処理設備の導入前に、排ガス中に含まれるシリコン系化合物の固形物を捕集する手段が設けられている、(1)〜(4)のいずれかに記載の排ガス処理方法。   (5) The exhaust gas according to any one of (1) to (4), wherein a means for collecting a solid of a silicon compound contained in the exhaust gas is provided before the introduction of the heat storage type exhaust gas treatment facility. Processing method.

(6)前記排ガス中に含まれるシリコン系化合物の固形物を捕集する手段としてバグフィルタを用いる、(5)に記載の排ガス処理方法。   (6) The exhaust gas treatment method according to (5), wherein a bag filter is used as means for collecting the solids of the silicon-based compound contained in the exhaust gas.

本発明によれば、排ガス処理設備の稼動率を損なうことなく、排ガス処理後の廃熱回収率を大きく向上させることが可能となり、エネルギー燃料の消費を抑え、燃料費の削減による低コスト化が実現可能となる。また同時に燃料燃焼によって発生する二酸化炭素、窒素化合物の量も小さくなり、大気環境負荷の低減によるエコロジーの観点から優れた製造が実施可能である。   According to the present invention, it is possible to greatly improve the waste heat recovery rate after exhaust gas treatment without impairing the operation rate of the exhaust gas treatment facility, thereby suppressing the consumption of energy fuel and reducing the cost by reducing the fuel cost. It becomes feasible. At the same time, the amount of carbon dioxide and nitrogen compounds generated by fuel combustion is reduced, and excellent production can be performed from the viewpoint of ecology by reducing the atmospheric environmental load.

本発明の一実施態様に係る熱処理炉の概略構成図である。It is a schematic block diagram of the heat processing furnace which concerns on one embodiment of this invention. 本発明の一実施態様に係る熱処理炉の概略構成図である。It is a schematic block diagram of the heat processing furnace which concerns on one embodiment of this invention. 本発明の一実施態様に係る熱処理炉の概略構成図である。It is a schematic block diagram of the heat processing furnace which concerns on one embodiment of this invention. 従来用いられてきた熱処理炉の一般的な概略構成図である。It is a general schematic block diagram of the heat processing furnace conventionally used. 本発明の一実施態様に係る熱処理炉の概略構成図である。It is a schematic block diagram of the heat processing furnace which concerns on one embodiment of this invention. 従来用いられてきた別の一態様に係る熱処理炉の概略構成図である。It is a schematic block diagram of the heat processing furnace which concerns on another one aspect | mode used conventionally.

以下、図面に示す実施例に基づいて本発明をさらに詳細に説明する。なお、本発明が図面に記載された実施態様に限定されるものではない。   Hereinafter, the present invention will be described in more detail based on embodiments shown in the drawings. In addition, this invention is not limited to the embodiment described in drawing.

図1は、本発明の一実施態様に係る排ガス処理方法の概略構成図である。   FIG. 1 is a schematic configuration diagram of an exhaust gas treatment method according to an embodiment of the present invention.

前駆体繊維1は、加熱された酸化性気体雰囲気の耐炎化炉2と、さらに加熱された不活性気体雰囲気の炭化A炉3と炭化B炉4の順に案内され、そこで通常の加熱焼成が行われることで耐炎化繊維5,炭素繊維6が製造される。ここで、耐炎化炉2による処理を耐炎化工程、炭化A炉3ないし炭化B炉4による処理を炭化工程と区分されるが、それぞれの工程において別段炉の数は限らず、さらに複数に分割した炉で処理しても良い。耐炎化工程は200〜400℃の加熱焼成、炭化工程は最大1800℃程度、特定の品種によってはさらに最大3000℃程度の加熱焼成を施すこともできる。   The precursor fiber 1 is guided in the order of a flameproofing furnace 2 in a heated oxidizing gas atmosphere, and a carbonizing furnace A 3 and a carbonizing B furnace 4 in a heated inert gas atmosphere, where ordinary heating and firing are performed. As a result, the flame-resistant fiber 5 and the carbon fiber 6 are produced. Here, the treatment by the flameproofing furnace 2 is classified as a flameproofing process, and the treatment by the carbonizing A furnace 3 or the carbonizing B furnace 4 is classified as a carbonizing process, but the number of separate furnaces is not limited in each process, and further divided into a plurality. It may be processed in a furnace. The flameproofing step can be performed by heating and baking at 200 to 400 ° C., the carbonization step can be performed at a maximum of about 1800 ° C., and depending on the specific product, further heating and baking can be performed at a maximum of about 3000 ° C.

また耐炎化炉2、炭化A炉3、炭化B炉4は、酸化性気体の耐炎化給気7と不活性気体の炭化A炉給気8、炭化B炉給気9により給気され、耐炎化炉内排ガス10、炭化A炉内排ガス11、炭化B炉内排ガス12で排気され、炉内のクリーン化を行っている。さらに耐炎化炉2、炭化A炉3、炭化B炉4における前駆体繊維1の出入り口から炉内ガスが漏れ出てきて、この該ガスの中には、前駆体繊維自身および付与されている油剤の熱分解に起因する多種多様な化合物、有害成分、気化したタール成分等が含まれているため、作業環境面等への影響を防ぐために耐炎化炉周辺雰囲気排ガス13、炭化A炉周辺雰囲気排ガス14、炭化B炉周辺雰囲気排ガス15で局所排気している。ここで、耐炎化炉周辺雰囲気排ガス13、炭化A炉周辺雰囲気排ガス14、炭化B炉周辺雰囲気排ガス15は、炉体から外部の密閉されていない空間の局所排気のことを指し、シールボックス・シール管のような炉体と接続して密閉された空間の排気は、耐炎化炉内排ガス10、炭化A炉内排ガス11、炭化B炉内排ガス12の方に入る。なお、該耐炎化炉内排ガス10、炭化A炉内排ガス11、炭化B炉内排ガス12、耐炎化炉周辺雰囲気排ガス13、炭化A炉周辺雰囲気排ガス14、炭化B炉周辺雰囲気排ガス15の流量は、図示していないが手動調整ダンパ、さらに好ましくは流量検知のフィードバック制御による自動調整ダンパを用いて個別にコントロール可能にすれば生産管理上望ましい。   Further, the flameproofing furnace 2, the carbonization A furnace 3, and the carbonization B furnace 4 are supplied with an oxidizing gas flameproof supply air 7, an inert gas carbonization furnace A supply air 8, and a carbonization B furnace supply air 9, and are flame resistant. Exhaust gas in the furnace 10, exhaust gas 11 in the carbonization furnace A, and exhaust gas 12 in the carbonization furnace B are exhausted to clean the inside of the furnace. Further, in-furnace gas leaks from the entrance / exit of the precursor fiber 1 in the flameproofing furnace 2, the carbonization A furnace 3, and the carbonization B furnace 4, and the precursor fiber itself and the applied oil agent are contained in the gas. Because it contains a wide variety of compounds, harmful components, vaporized tar components, etc. resulting from the thermal decomposition of methane, the flame exhaust furnace ambient atmosphere exhaust gas 13 and the carbonized A furnace ambient atmosphere exhaust gas are used to prevent effects on the work environment. 14. Local exhaust is performed with carbonized B furnace ambient atmosphere exhaust gas 15. Here, the flame exhaust furnace ambient atmosphere exhaust gas 13, the carbonization A furnace ambient atmosphere exhaust gas 14, and the carbonization B furnace ambient atmosphere exhaust gas 15 indicate local exhaust in an unsealed space from the furnace body, and are a seal box / seal Exhaust gas in a space sealed by connecting to a furnace body such as a pipe enters into the flame-resistant furnace exhaust gas 10, the carbonized A furnace exhaust gas 11, and the carbonized B furnace exhaust gas 12. Note that the flow rates of the flue gas 10 in the refractory furnace, the flue gas 11 in the carbonization A furnace, the flue gas 12 in the carbonization B furnace, the flue gas around the flame refractory furnace 13, the flue gas around the carbonization furnace A 14, and the flue gas around the carbonization B furnace Although not shown in the drawing, it is desirable in terms of production management to enable individual control using a manual adjustment damper, more preferably an automatic adjustment damper based on feedback control of flow rate detection.

また耐炎化炉内排ガス10、炭化A炉内排ガス11、炭化B炉内排ガス12、耐炎化炉周辺雰囲気排ガス13、炭化A炉周辺雰囲気排ガス14、炭化B炉周辺雰囲気排ガス15は、屋外に導いて大気に放出させるが、大気放出前に有害成分の分解処理を行う。ここで各排ガスの特性、具体的には排ガス中に含まれる化合物の特性・量によって、処理する排ガス処理設備を分類する。本実施態様においては、耐炎化炉内排ガス10と耐炎化炉周辺雰囲気排ガス13、炭化A炉周辺雰囲気排ガス14、炭化B炉周辺雰囲気排ガス15のうち少なくとも一部を蓄熱式排ガス処理設備16にて処理し、その他のガスを直接燃焼式排ガス処理設備17にて処理するようにする。蓄熱式排ガス処理設備16で処理される排ガスの流量、および直接燃焼式排ガス処理設備17で処理される排ガスの流量のコントロールは、直接燃焼式行きダンパ18のような切替手段で行うことができる。直接燃焼式行きダンパ18は手動調整ダンパであっても良いが、流量検知のフィードバック制御による自動調整ダンパにする方が生産管理上好ましい。   Further, the flue gas 10 in the flameproofing furnace, the flue gas 11 in the carbonizing furnace A, the flue gas 12 in the carbonizing furnace B, the flue gas around the flameproofing furnace 13, the flue gas around the carbonizing furnace A 14, and the flue gas around the carbonizing furnace B 15 are led to the outdoors. Although it is released to the atmosphere, the harmful components are decomposed before being released to the atmosphere. Here, the exhaust gas treatment equipment to be treated is classified according to the characteristics of each exhaust gas, specifically, the characteristics and amount of the compound contained in the exhaust gas. In the present embodiment, at least a part of the flame-resistant furnace exhaust gas 10, the flame-resistant furnace ambient atmosphere exhaust gas 13, the carbonized A furnace ambient atmosphere exhaust gas 14, and the carbonized B furnace ambient atmosphere exhaust gas 15 is stored in the regenerative exhaust gas treatment facility 16. The other gas is directly processed by the combustion type exhaust gas processing equipment 17. Control of the flow rate of the exhaust gas processed by the regenerative exhaust gas treatment facility 16 and the flow rate of the exhaust gas processed by the direct combustion exhaust gas treatment facility 17 can be performed by a switching means such as a direct combustion type damper 18. Although the direct combustion type damper 18 may be a manual adjustment damper, it is preferable in terms of production management to use an automatic adjustment damper by feedback control of flow rate detection.

蓄熱式排ガス処理設備16で処理する排ガスは、蓄熱式行きAライン19の排ガスラインで蓄熱式A熱交20を経由して蓄熱式燃焼領域21で燃料を燃焼させ高温雰囲気下で排ガス中の有害成分の分解処理を施す。処理後の高温の排ガスは蓄熱式B熱交22にて熱交換して温度が低下した後、蓄熱式排ガスブロワ23を経て大気に放出する。なおその後、蓄熱式行きライン切り替えダンパ24にて蓄熱式行きAライン19と蓄熱式行きBライン25を切り替え、蓄熱式行きBライン25は高温となった蓄熱式B熱交22から導入され熱交換により充分に予熱された後蓄熱式燃焼領域21で分解処理を行い、今度は蓄熱式A熱交20にて熱交換して温度が低下した後、蓄熱式排ガスブロワ23を経て大気に放出するようにする。さらにその後も蓄熱式行きAライン19と蓄熱式行きBライン25を交互に切り替えることで、蓄熱式行き排ガスの予熱は常時行われ、蓄熱式燃焼領域21の燃料消費量は少量に抑制することができる。なお、ラインを交互に切り替えるタイミングとしては、未処理排ガスの導入方向および処理済み排ガスの排出方向を、所定間隔(例えば60秒)毎に反転させる(例えば、特許文献4参照)など、所定時間毎の切り替え方式が採用可能であるが、蓄熱式A熱交20、蓄熱式B熱交22の前後付近の排ガス温度、蓄熱材の温度の変化を計測し、その出力によるフィードバックによる切り替えが好ましい。   Exhaust gas to be processed by the regenerative exhaust gas treatment facility 16 is harmful to the exhaust gas in a high temperature atmosphere by burning fuel in the regenerative combustion area 21 via the regenerative A heat exchanger 20 in the exhaust gas line of the regenerative A line 19. Decompose components. The high-temperature exhaust gas after the treatment is heat-exchanged in the regenerative B heat exchanger 22 and the temperature is lowered, and then discharged to the atmosphere through the regenerative exhaust gas blower 23. Thereafter, the heat storage type A line 19 and the heat storage type B line 25 are switched by the heat storage type line switching damper 24, and the heat storage type B line 25 is introduced from the heat storage type B heat exchanger 22 which has become a high temperature and exchanges heat. After being preheated sufficiently by the heat storage, the decomposition process is performed in the regenerative combustion region 21, and this time the heat is exchanged in the regenerative A heat exchanger 20 and the temperature is lowered, and then the heat is discharged to the atmosphere via the regenerative exhaust gas blower 23. To. Further, by alternately switching between the heat storage type A line 19 and the heat storage type B line 25, preheating of the heat storage type exhaust gas is always performed, and the fuel consumption in the heat storage type combustion region 21 can be suppressed to a small amount. it can. In addition, as a timing which switches a line alternately, the introduction direction of untreated exhaust gas and the discharge direction of treated exhaust gas are reversed every predetermined time (for example, refer patent document 4), for example, every predetermined time. However, it is preferable to measure the change in the exhaust gas temperature and the temperature of the heat storage material in the vicinity of the heat storage type A heat exchange 20 and the heat storage type B heat exchange 22 and to switch by feedback based on the output.

一方、直接燃焼式排ガス処理設備17では、耐炎化炉内排ガス10と耐炎化炉周辺雰囲気排ガス13、炭化A炉周辺雰囲気排ガス14、炭化B炉周辺雰囲気排ガス15のうち、蓄熱式排ガス処理設備16で処理した以外の排ガスと、炭化A炉内排ガス11、炭化B炉内排ガス12の分解処理を施す。   On the other hand, in the direct combustion type exhaust gas treatment facility 17, the regenerative exhaust gas treatment facility 16 out of the flame resistant furnace exhaust gas 10, the flame resistant furnace surrounding atmosphere exhaust gas 13, the carbonized A furnace surrounding atmosphere exhaust gas 14, and the carbonized B furnace surrounding atmosphere exhaust gas 15. The exhaust gas other than that treated with the above, the carbonized A furnace exhaust gas 11 and the carbonized B furnace exhaust gas 12 are subjected to decomposition treatment.

炭化A炉3と炭化B炉4は耐炎化炉2よりはるかに高い雰囲気温度で加熱するため、耐炎化繊維5は重量基準で大きな加熱減量が起り、多量の熱分解物が発生する。炭化A炉内排ガス11、炭化B炉内排ガス12のなかの該熱分解物は、炉の外に出た際にタール成分として凝縮し、この凝縮物は蓄熱式排ガス処理設備16の蓄熱式A熱交20、蓄熱式B熱交22の閉塞を促進しメンテナンス周期を極端に落としてしまう。よって炭化A炉内排ガス11、炭化B炉内排ガス12は、蓄熱式排ガス処理設備16で処理するのには適さないため蓄熱式以外の排ガス処理設備、好ましくは本実施例にあるように、その中でも排ガス中に含まれる化合物の影響を受けにくい直接燃焼式排ガス処理設備17を用いて処理することが好ましい。   Since the carbonization A furnace 3 and the carbonization B furnace 4 are heated at an atmosphere temperature much higher than that of the flameproofing furnace 2, the flameproofing fiber 5 undergoes a large heating loss on a weight basis, and a large amount of pyrolyzate is generated. The pyrolyzate in the carbonized A exhaust gas 11 and the carbonized B exhaust gas 12 is condensed as a tar component when it comes out of the furnace, and this condensate is stored in the heat storage type A of the heat storage type exhaust gas treatment facility 16. The blockage of the heat exchanger 20 and the regenerative B heat exchanger 22 is promoted, and the maintenance cycle is extremely reduced. Therefore, the carbonized A in-furnace exhaust gas 11 and the carbonized B in-furnace exhaust gas 12 are not suitable for treatment by the regenerative exhaust gas treatment facility 16, and therefore, as in the present embodiment, In particular, it is preferable to perform treatment using the direct combustion type exhaust gas treatment equipment 17 which is not easily affected by the compounds contained in the exhaust gas.

また炭化A炉内排ガス11、炭化B炉内排ガス12は主成分が不活性気体であるため、直接燃焼式排ガス処理設備17で燃焼するに際し、酸化性気体が必要である。このため新たに外気等の空気を供給しても良いが、本実施態様においては、さらなる省エネのため耐炎化炉内排ガス10と耐炎化炉周辺雰囲気排ガス13、炭化A炉周辺雰囲気排ガス14、炭化B炉周辺雰囲気排ガス15で代用することとしている。炭化A炉周辺雰囲気排ガス14、炭化B炉周辺雰囲気排ガス15においては不活性気体を含有しているが、同時に外気も吸い込んで混合しているため酸化性気体として活用できる。なお、直接燃焼式排ガス処理設備17に持っていく耐炎化炉内排ガス10と耐炎化炉周辺雰囲気排ガス13、炭化A炉周辺雰囲気排ガス14、炭化B炉周辺雰囲気排ガス15の量は、炭化A炉内排ガス11、炭化B炉内排ガス12を燃焼するのに必要な酸化性気体分のみとし、なるべく燃料消費量が少ない蓄熱式排ガス処理設備16に多く排ガス量を持っていく方が省エネの観点から好ましい。また、必要な酸化性気体の少なくとも一部を、上記排ガスを使用せず外部からの取り込み、例えば大気とすることも可能である。直接燃焼式排ガス処理設備17に導入する耐炎化炉内排ガス10と耐炎化炉周辺雰囲気排ガス、炭化A炉周辺雰囲気排ガス14と炭化B炉周辺雰囲気排ガス15の量は、直接燃焼式排ガス処理設備で処理する全体の排ガス中の酸素濃度を19体積%以下、13%体積以上とするのが好ましく、さらに好ましくは、17体積%以下、15体積%以上である。なお、酸素濃度は19体積%以下とすることで、省エネ効率を高めることが可能となり、13体積%以上とすることによって燃焼性を確保できる。前記した直接燃焼式排ガス処理設備17で処理する耐炎化炉内排ガス10と耐炎化炉周辺雰囲気排ガス13、炭化A炉周辺雰囲気排ガス14、炭化B炉周辺雰囲気排ガス15の一部の量は、直接燃焼式行きダンパ18で流量コントロールして、直接燃焼式行きAライン26の排ガスラインで直接燃焼式熱交27を経由して直接燃焼式燃焼領域28で燃料を燃焼させて高温雰囲気下で排ガス中の有害成分の分解処理を施す。直接燃焼式熱交27にて燃焼後の排ガスとの熱交換により、直接燃焼式行きAライン26の排ガスは予熱されることで、直接燃焼式燃焼領域28での燃料消費量を抑制することができる。   Further, since the main component of the carbonized A in-furnace exhaust gas 11 and the carbonized B in-situ exhaust gas 12 is an inert gas, an oxidizing gas is required for combustion in the direct combustion exhaust gas treatment facility 17. For this reason, air such as outside air may be newly supplied. However, in this embodiment, for further energy saving, the flue gas 10 in the flame-resistant furnace, the ambient gas 13 around the flame-resistant furnace, the ambient gas 14 around the carbonized A furnace, the carbonization B atmosphere surrounding exhaust gas 15 is to be substituted. The carbonized A furnace ambient atmosphere exhaust gas 14 and the carbonized B furnace ambient atmosphere exhaust gas 15 contain an inert gas, but can also be used as an oxidizing gas since the outside air is also sucked and mixed at the same time. Note that the amounts of the flue gas 10 in the flame-proofing furnace, the flue gas around the flame-proofing furnace 13, the flue gas around the carbonized A furnace 14 and the flue gas around the carbonized B furnace 15 which are directly taken to the flue gas treatment facility 17 are as follows. From the viewpoint of energy saving, it is preferable to use only the oxidizing gas necessary to burn the internal exhaust gas 11 and the carbonized B furnace exhaust gas 12 and bring the exhaust gas amount to the regenerative exhaust gas treatment facility 16 with as little fuel consumption as possible. preferable. Further, at least a part of the necessary oxidizing gas can be taken from outside without using the exhaust gas, for example, the atmosphere. The amount of the flue gas 10 in the flameproofing furnace and the ambient exhaust gas around the flameproofing furnace 14 and the ambient exhaust gas 14 around the carbonization A furnace 14 and the ambient exhaust gas 15 around the carbonization B furnace introduced into the direct combustion exhaust gas treatment equipment 17 are the direct combustion exhaust gas treatment equipment. The oxygen concentration in the exhaust gas to be treated is preferably 19% by volume or less and 13% by volume or more, and more preferably 17% by volume or less and 15% by volume or more. In addition, it becomes possible to raise energy-saving efficiency by making oxygen concentration into 19 volume% or less, and combustibility can be ensured by setting it as 13 volume% or more. A part of the amount of the flue gas 10 in the flameproofing furnace, the atmospheric exhaust gas 13 around the flameproofing furnace, the ambient exhaust gas 14 around the carbonization A furnace, and the ambient exhaust gas 15 around the carbonization B furnace processed directly by the direct combustion exhaust gas treatment facility 17 is directly The flow rate is controlled by the combustion type damper 18 and the fuel is burned in the direct combustion type combustion region 28 via the direct combustion type heat exchanger 27 in the exhaust gas line of the direct combustion type A line 26, and in the exhaust gas in a high temperature atmosphere. Decomposes harmful components. By direct heat exchange with the exhaust gas after combustion in the direct combustion type heat exchanger 27, the exhaust gas of the direct combustion type A line 26 is preheated, thereby suppressing the fuel consumption in the direct combustion type combustion region 28. it can.

一方、炭化A炉内排ガス11、炭化B炉内排ガス12は、前記したように前駆体繊維の多量の熱分解物が含有されているので、タール成分の凝縮を減らすため、直接燃焼式行きBライン29に炭化炉内排ガス用電気ヒーター30で加熱保温して、直接燃焼式燃焼領域28に送るようにする。炭化炉内排ガス用電気ヒーター30の加熱保温は200℃以上、より好ましくは500℃以上の設定が望ましい。なお直接燃焼式行きBライン29は、排ガス中のタール成分の凝縮物による直接燃焼式熱交27への閉塞を防止するため、直接燃焼式行きAライン26のように直接燃焼式熱交27を経由せずに直接燃焼式燃焼領域28に接続するのが好ましい。直接燃焼式燃焼領域28に送られた直接燃焼式行きAライン26の排ガスと、直接燃焼式行きBライン29の排ガスは、混合して高温雰囲気下で排ガス中の有害成分の分解処理を施された後、直接燃焼式排ガスブロワ31を経て大気に放出する。   On the other hand, since the carbonized A in-furnace exhaust gas 11 and the carbonized B in-situ exhaust gas 12 contain a large amount of thermal decomposition products of precursor fibers as described above, in order to reduce condensation of tar components, direct combustion type B In line 29, heat is maintained by an electric heater 30 for exhaust gas in the carbonization furnace, and it is sent directly to the combustion type combustion region 28. The heat insulation of the electric heater 30 for exhaust gas in the carbonization furnace is preferably set to 200 ° C. or higher, more preferably 500 ° C. or higher. The direct combustion type B line 29 is connected to the direct combustion type heat exchange 27 like the direct combustion type A line 26 in order to prevent the direct combustion type heat exchange 27 from being blocked by the condensate of the tar component in the exhaust gas. It is preferable to connect directly to the combustion combustion zone 28 without going through. The exhaust gas of the direct combustion type A line 26 sent to the direct combustion type combustion region 28 and the exhaust gas of the direct combustion type B line 29 are mixed and subjected to decomposition treatment of harmful components in the exhaust gas in a high temperature atmosphere. After that, it is discharged directly to the atmosphere through the combustion exhaust gas blower 31.

図2は、本発明の別の実施態様に係る排ガス処理方法の概略構成図である。蓄熱式排ガス処理設備16のメンテナンスの際に、蓄熱式行きダンパ32を全閉にし、直接燃焼式行きダンパ18を全開にすることで全ての排ガスを直接燃焼式排ガス処理設備17で処理するよう直接燃焼式排ガス処理設備17の排ガス処理能力を設定・設計するようにすれば、生産を連続しながら蓄熱式排ガス処理設備16のメンテナンスを行うことが可能となり好ましい。なお、その際直接燃焼式燃焼領域行きダンパ33で流量調整することで、設置スペースと設備費などから決定された適切な直接燃焼式熱交27の機器サイズによる流量上限までは排ガスを直接燃焼式行きAライン26に通し、それ以上の流量の排ガスは直接燃焼式燃焼領域28に接続するようにすれば、極力廃熱の回収を考慮した省エネの観点で好ましい運転形態となる。また、直接燃焼式燃焼領域行きダンパ33は手動調整ダンパであっても良いが、流量検知のフィードバック制御による自動調整ダンパにする方が生産管理上好ましい。   FIG. 2 is a schematic configuration diagram of an exhaust gas treatment method according to another embodiment of the present invention. When the heat storage type exhaust gas treatment facility 16 is maintained, the heat storage type damper 32 is fully closed and the direct combustion type damper 18 is fully opened so that all exhaust gases are directly processed by the direct combustion type exhaust gas treatment facility 17. If the exhaust gas treatment capacity of the combustion exhaust gas treatment facility 17 is set and designed, it is possible to perform maintenance of the regenerative exhaust gas treatment facility 16 while continuing production. At that time, by adjusting the flow rate with the damper 33 for the direct combustion type combustion region, the exhaust gas is directly combusted up to the upper limit of the flow rate according to the equipment size of an appropriate direct combustion type heat exchanger 27 determined from the installation space and equipment cost. If the exhaust gas having a flow rate higher than that through the outbound A line 26 is directly connected to the combustion combustion region 28, the operation mode is preferable from the viewpoint of energy saving considering the recovery of waste heat as much as possible. Further, the direct combustion type combustion region-bound damper 33 may be a manual adjustment damper, but it is preferable in terms of production management to use an automatic adjustment damper by feedback control of flow rate detection.

図3は、本発明のさらに別の実施態様に係る排ガス処理方法の概略構成図である。前駆体繊維1にシリコン系油剤が付与されており、耐炎化炉内排ガス10には油剤の熱分解に起因する多量のシリコン系化合物の固形物が含有している場合に特に好ましい態様である。ここで、前記したシリコン系化合物の固形物による蓄熱式A熱交20、蓄熱式B熱交22の閉塞を防止するために、耐炎化炉内排ガス10は蓄熱式排ガス処理設備16ではなく、直接燃焼式排ガス処理設備17で処理するようラインを構成し、さらに耐炎化炉内排ガスダンパ34で直接燃焼式熱交27行きと直接燃焼式燃焼領域28行きの流量も調整可能なようにすれば、直接燃焼式熱交27への閉塞または前記の直接燃焼式行きAライン26の流量上限への回避も可能となりより好ましくなる。また、耐炎化炉内排ガスダンパ34は手動調整ダンパであっても良いが、流量検知のフィードバック制御による自動調整ダンパにする方が生産管理上好ましい。   FIG. 3 is a schematic configuration diagram of an exhaust gas treatment method according to still another embodiment of the present invention. This is a particularly preferable embodiment in which a silicon-based oil agent is applied to the precursor fiber 1 and the exhaust gas 10 in the flameproofing furnace contains a large amount of a solid material of a silicon compound resulting from the thermal decomposition of the oil agent. Here, in order to prevent the heat storage type A heat exchange 20 and the heat storage type B heat exchange 22 from being blocked by the solid material of the silicon compound, the flue gas 10 in the flameproofing furnace is not directly stored in the heat storage type exhaust gas treatment facility 16. If a line is configured to treat with the combustion type exhaust gas treatment equipment 17, and the flow rate to the direct combustion type heat exchanger 27 and the direct combustion type combustion region 28 can be adjusted by the exhaust gas damper 34 in the flameproofing furnace, It becomes possible to obstruct the direct combustion type heat exchanger 27 or avoid the upper limit of the flow rate of the direct combustion type A line 26. In addition, the flame-resistant furnace exhaust gas damper 34 may be a manual adjustment damper, but it is preferable in terms of production management to use an automatic adjustment damper by feedback control of flow rate detection.

さらに耐炎化炉周辺雰囲気排ガス13でもシリコン系化合物の固形物が多少含有していることを想定し、蓄熱式行きダンパ32の後で、かつ蓄熱式行きAライン19と蓄熱式行きBライン25の分岐する前にダスト捕捉手段35を設置する。なお、ダスト捕捉手段35は電気集塵機、遠心分離機、バグフィルタ等あるが、設置スペース、設備費の観点からバグフィルタが最も望ましい。バグフィルタは一般のボイラなどに用いられるもので構わないが、耐熱温度200℃以上、集塵効率99%以上であり、定期的に圧空などにより堆積したダストを払い落とし別途破棄することが可能なものであればバグフィルタの長寿命化が期待出来、より好ましい。   Further, assuming that the silicon-based compound solids are contained in the flue gas around the refractory furnace 13 as well, after the heat storage type damper 32, the heat storage type A line 19 and the heat storage type B line 25 The dust catching means 35 is installed before branching. The dust capturing means 35 includes an electric dust collector, a centrifuge, a bag filter, and the like, but a bag filter is most desirable from the viewpoint of installation space and equipment cost. The bag filter may be used for a general boiler or the like, but has a heat-resistant temperature of 200 ° C. or higher and a dust collection efficiency of 99% or higher, and dust accumulated by compressed air or the like can be periodically removed and discarded separately. If it is a thing, the lifetime improvement of a bug filter can be anticipated and it is more preferable.

図5は、本発明のさらに別の実施態様に係る排ガス処理方法の概略構成図である。図5は、図1の炭化工程の後に、高次加工性を高めるためサイジング処理液を付与した炭素繊維を乾燥する乾燥機36を有するものであり、特に好ましい態様のひとつである。乾燥機36は、ドラム式乾燥機や熱風式乾燥機など、機器から排出される排ガスを収集可能な構造を有していれば良く、また乾燥機の数に特段の制約はなく、複数に分割した乾燥機であっても良い。なお乾燥工程は、酸化性気体雰囲気において100℃〜400℃で行うことが好ましい。   FIG. 5 is a schematic configuration diagram of an exhaust gas treatment method according to still another embodiment of the present invention. FIG. 5 includes a dryer 36 that dries carbon fibers to which a sizing treatment liquid is applied in order to improve the high-order workability after the carbonization step in FIG. 1, and is one of particularly preferable embodiments. The dryer 36 only needs to have a structure capable of collecting exhaust gas discharged from equipment such as a drum dryer or a hot air dryer, and there is no particular limitation on the number of dryers, and the dryer 36 is divided into a plurality of dryers. It may be a dryer. In addition, it is preferable to perform a drying process at 100 to 400 degreeC in oxidizing gas atmosphere.

なお、乾燥機内排ガス38は、屋外に導いて大気に放出されるが、大気放出前に有害成分の分解処理を行うことが望ましい。乾燥機内排ガス38の中には、サイジング処理液の蒸発によって生じる有害成分、気化したタール成分等が含まれるため、図5の乾燥機内排ガス38以外の他の排ガスと同様に、排ガス処理設備においてガスの中に含まれる有害成分を分解処理してから大気に放出するのが望ましい。本実施態様においては、乾燥機内排ガス38のうち少なくとも一部を他の排ガスと同じく蓄熱式排ガス処理設備16にて処理するようにする。前記した直接燃焼式排ガス処理設備17で処理する乾燥機内排ガス38の一部の量は、乾燥機排ガスダンパ42で流量コントロールして、直接燃焼式行きAライン26の排ガスラインで直接燃焼式熱交27を経由して直接燃焼式燃焼領域28で燃料を燃焼させて高温雰囲気下で排ガス中の有害成分の分解処理を施す。   The exhaust gas 38 in the dryer is led to the outside and released to the atmosphere, but it is desirable to perform a harmful component decomposition process before releasing to the atmosphere. Since the exhaust gas 38 in the dryer includes harmful components generated by evaporation of the sizing treatment liquid, vaporized tar components, and the like, the exhaust gas in the exhaust gas treatment facility is the same as other exhaust gases other than the exhaust gas 38 in the dryer in FIG. It is desirable to decompose the harmful components contained in the product before releasing it into the atmosphere. In the present embodiment, at least a part of the exhaust gas 38 in the dryer is treated by the heat storage type exhaust gas treatment facility 16 like the other exhaust gases. A part of the amount of the exhaust gas 38 in the dryer to be processed by the direct combustion type exhaust gas treatment facility 17 is controlled by the dryer exhaust gas damper 42, and the direct combustion type heat exchange is performed in the exhaust line of the direct combustion type A line 26. 27, the fuel is burned in the direct combustion type combustion region 28 to decompose the harmful components in the exhaust gas in a high temperature atmosphere.

また、図5の配管の接続方法は、乾燥機排ガスダンパ42により乾燥機内排ガス38の蓄熱式排ガス処理設備16と直接燃焼式排ガス処理設備17への流量をコントロール可能な機構となっているが、配管分岐点41の前に乾燥機内排ガス38を接続し、直接燃焼式行きダンパ18と蓄熱式行きライン切り替えダンパ24により流量をコントロールしても良く、図5において具体的に開示される態様に限定される訳ではない。   5 is a mechanism that can control the flow rate of the exhaust gas 38 in the dryer to the regenerative exhaust gas treatment facility 16 and the direct combustion exhaust gas treatment facility 17 by the dryer exhaust gas damper 42. The exhaust gas 38 in the dryer may be connected in front of the pipe branch point 41, and the flow rate may be controlled by the direct combustion type damper 18 and the regenerative type line switching damper 24, which is limited to the mode specifically disclosed in FIG. It is not done.

乾燥機内排ガス38の中には、前記したようにサイジング処理液の蒸発によって生じる有害成分、気化したタール成分等が含有されているため、それらの凝縮を減らすため、直接燃焼式行きCライン40、蓄熱式行きCライン39、蓄熱式行きCライン39が蓄熱式行きBライン25に接続した後の蓄熱式燃焼領域21までのライン、直接燃焼式行きCライン40が直接燃焼式行きAライン26に接続した後の蓄熱式燃焼領域28までのラインを乾燥機内排ガス用電気ヒーター43で加熱保温し、直接燃焼式燃焼領域28と蓄熱式燃焼領域21に送るようにする。乾燥機内排ガス用電気ヒーター43の加熱保温は100℃以上、より好ましくは200℃以上の設定が望ましい。その他態様は図1と同様である。   Since the exhaust gas 38 in the dryer contains harmful components generated by evaporation of the sizing treatment liquid, vaporized tar components, and the like as described above, the direct combustion type C line 40, C-line 39 for the regenerative type, C-line 39 for the regenerative type connected to the B-line 25 for the regenerative type, the line to the regenerative combustion region 21, and the C-line 40 for the direct combustion type become the A-line 26 for the direct combustion The line to the regenerative combustion region 28 after being connected is heated and kept warm by the electric heater 43 for exhaust gas in the dryer, and sent directly to the combustion combustion region 28 and the regenerative combustion region 21. The heating and keeping temperature of the electric heater 43 for exhaust gas in the dryer is preferably set to 100 ° C. or higher, more preferably 200 ° C. or higher. Other aspects are the same as in FIG.

以下、本発明を実施例によりさらに具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

[実施例1]
太さ1.1デシテックスのPAN系のプリカーサー単糸を12,000本束ねた糸条を図2のような工程フローにて耐炎化および炭化処理を行った。ただし耐炎化炉2の炉数は2つで、炭化A炉3、炭化B炉4の炉数は各1つである。また耐炎化炉2の雰囲気気体は空気を用い、炭化A炉3と炭化B炉4の雰囲気気体は窒素を用いている。各排ガス量は耐炎化炉内排ガス10で2炉併せ12,000Nm/hr、炭化A炉内排ガス11は1,000Nm/hr、炭化B炉内排ガス12は500Nm/hrでコントロールされ、耐炎化炉周辺雰囲気排ガス13、炭化A炉周辺雰囲気排ガス14、炭化B炉周辺雰囲気排ガス15はすべて合わせて16,000Nm/hrである。なお炭化A炉内排ガス11と炭化B炉内排ガス12は、炭化炉内排ガス用電気ヒーター30で500℃に加熱保温している。
[Example 1]
A yarn in which 12,000 PAN-precursor single yarns having a thickness of 1.1 dtex were bundled was subjected to flame resistance and carbonization treatment in the process flow as shown in FIG. However, the number of furnaces of the flameproofing furnace 2 is two, and the number of furnaces of the carbonization A furnace 3 and the carbonization B furnace 4 is one each. The atmosphere gas in the flameproofing furnace 2 uses air, and the atmosphere gas in the carbonization A furnace 3 and the carbonization B furnace 4 uses nitrogen. Each exhaust gas amount is 12,000 3 / hr, carbonizing A furnace exhaust gas 11 is 1,000 Nm 3 / hr, carbonizing B furnace flue gas 12 together 2 furnace in oxidization furnace exhaust gas 10 is controlled by 500 Nm 3 / hr, The flame exhaust furnace ambient atmosphere exhaust gas 13, the carbonization A furnace ambient atmosphere exhaust gas 14, and the carbonization B furnace ambient atmosphere exhaust gas 15 are all 16,000 Nm 3 / hr. The carbonized A in-furnace exhaust gas 11 and the carbonized B in-furnace exhaust gas 12 are heated and kept at 500 ° C. by an electric heater 30 for carbonized furnace exhaust gas.

蓄熱式行きダンパ32は全開、直接燃焼式行きダンパ18は流量自動調整式にし、直接燃焼式行きAライン26の流量を5,000Nm/hr、蓄熱式行きAライン19または蓄熱式行きBライン25の流量、すなわち蓄熱式排ガス処理設備16にて処理する排ガス量を23,000Nm/hrに設定した。なお、蓄熱式行きライン切り替えダンパ24は、蓄熱式行きAライン19と蓄熱式行きBライン25を60秒ごとに切り替えるよう自動制御している。一方直接燃焼式排ガス処理設備17にて処理する排ガスは、炭化A炉内排ガス11と炭化B炉内排ガス12の流量1,500Nm/hrと前記直接燃焼式行きAライン26の流量5,000Nm/hrで合計6,500Nm/hrとなる。なお、直接燃焼式燃焼領域行きダンパ33は全閉にし、前記直接燃焼式行きAライン26の流量5,000Nm/hrはすべて直接燃焼式熱交27を経由し予備加熱されてから直接燃焼式燃焼領域28で処理されている。 The heat storage type damper 32 is fully open, the direct combustion type damper 18 is an automatic flow rate adjustment type, the flow rate of the direct combustion type A line 26 is 5,000 Nm 3 / hr, the heat storage type A line 19 or the heat storage type B line. The flow rate of 25, that is, the amount of exhaust gas treated by the regenerative exhaust gas treatment facility 16 was set to 23,000 Nm 3 / hr. The heat storage type line switching damper 24 automatically controls to switch between the heat storage type A line 19 and the heat storage type B line 25 every 60 seconds. On the other hand, the exhaust gas to be processed by the direct combustion exhaust gas treatment equipment 17 is a flow rate of 1,500 Nm 3 / hr of the carbonized A furnace exhaust gas 11 and the carbonized B furnace exhaust gas 12 and a flow rate of 5,000 Nm of the direct combustion type A line 26. The total is 6,500 Nm 3 / hr at 3 / hr. The direct combustion type combustion region damper 33 is fully closed, and the flow rate 5,000 Nm 3 / hr of the direct combustion type A line 26 is all preliminarily heated via the direct combustion type heat exchanger 27, and then the direct combustion type. Processed in the combustion zone 28.

蓄熱式燃焼領域21と直接燃焼式燃焼領域28の内部雰囲気温度は800℃設定となるよう、燃料は灯油を用いて燃焼させ、該運転条件にて30日間の連続運転を行い、各炉の燃料消費量を実測し、排ガス環境負荷と設備の内部状態を観察した。結果を表1に示す。   The fuel is burned with kerosene so that the internal atmosphere temperature in the regenerative combustion region 21 and the direct combustion combustion region 28 is set to 800 ° C., and is continuously operated for 30 days under the operating conditions. The consumption was measured and the exhaust gas environmental load and the internal state of the equipment were observed. The results are shown in Table 1.

[実施例2]
シリコン系油剤が付与された、太さ1.1デシテックスのPAN系のプリカーサー単糸を12,000本束ねた糸条を図3のような工程フローにて耐炎化および炭化処理を行った。このとき直接燃焼式行きダンパ18は全閉、蓄熱式行きダンパ32を全開にし、耐炎化炉周辺雰囲気排ガス13、炭化A炉周辺雰囲気排ガス14、炭化B炉周辺雰囲気排ガス15はすべて蓄熱式排ガス処理設備16にて処理するようにした。ただし蓄熱式行きダンパ32の後で、かつ蓄熱式行きAライン19と蓄熱式行きBライン25の分岐する前のダスト捕捉手段35は、何も設けなかった。その他耐炎化炉内排ガスダンパ34で耐炎化炉内排ガス10の9割程度を直接燃焼式熱交27、残りの1割を直接燃焼式燃焼領域28に振り分けている。
[Example 2]
A yarn obtained by bundling 12,000 PAN-based precursor yarns having a thickness of 1.1 dtex to which a silicone-based oil was applied was subjected to flame resistance and carbonization treatment in a process flow as shown in FIG. At this time, the direct combustion type damper 18 is fully closed and the heat storage type damper 32 is fully opened, and the flame-resistant furnace ambient atmosphere exhaust gas 13, the carbonized carbon A furnace ambient atmosphere exhaust gas 14, and the carbonized B furnace ambient atmosphere exhaust gas 15 are all regenerative exhaust gas treatment. It was made to process with the installation 16. However, no dust capturing means 35 is provided after the heat storage type damper 32 and before the heat storage type A line 19 and the heat storage type B line 25 branch off. In addition, about 90% of the flame-resistant furnace exhaust gas 10 is distributed to the direct combustion type heat exchanger 27 and the remaining 10% to the direct combustion type combustion region 28 by the flame resistant furnace exhaust gas damper 34.

その他の条件はすべて実施例1と同じにし、蓄熱式排ガス処理設備16にて処理する排ガス量を16,000Nm/hr、直接燃焼式排ガス処理設備17にて処理する排ガスを13,500Nm/hrとした。該運転条件にて30日間の連続運転を行い、各炉の燃料消費量を実測した。結果を表1に示す。 All other conditions were the same as in Example 1, the amount of exhaust gas treated by the regenerative exhaust gas treatment facility 16 was 16,000 Nm 3 / hr, and the exhaust gas treated by the direct combustion exhaust gas treatment facility 17 was 13,500 Nm 3 / hr. Under these operating conditions, continuous operation was performed for 30 days, and the fuel consumption of each furnace was measured. The results are shown in Table 1.

なお実施例2の30日間の連続運転の後、蓄熱式A熱交20と蓄熱式B熱交22の内部をチェックしたが、一部シリコン系化合物の固形物による閉塞状態が見られ、これ以上の連続運転にはメンテナンスを要する可能性があることが確認された。   In addition, after the 30-day continuous operation of Example 2, the inside of the regenerative type A heat exchanger 20 and the regenerative type B heat exchanger 22 was checked. It has been confirmed that the continuous operation may require maintenance.

[実施例3]
実施例2と同じ条件で、ダスト捕捉手段35として耐熱温度200℃以上、集塵効率99%以上であり、定期的に圧空などにより堆積したダストを払い落とし別途破棄することが可能なバグフィルタを設置した。該運転条件で30日間の連続運転を行い、各炉の燃料消費量を実測した。結果を表1に示す。
[Example 3]
Under the same conditions as in the second embodiment, a dust filter having a heat-resistant temperature of 200 ° C. or more and a dust collection efficiency of 99% or more as dust capturing means 35, and dust that is periodically deposited by compressed air can be removed and discarded separately. installed. Under these operating conditions, continuous operation was performed for 30 days, and the fuel consumption of each furnace was measured. The results are shown in Table 1.

なお実施例2と同じく、30日間の連続運転の後、蓄熱式A熱交20と蓄熱式B熱交22の内部をチェックしたが、シリコン系化合物の固形物は微量見られた程度でメンテナンス周期としては充分に余裕があることが確認された。   As in Example 2, after 30 days of continuous operation, the inside of the heat storage type A heat exchange 20 and the heat storage type B heat exchange 22 was checked. As a result, it was confirmed that there was a sufficient margin.

[実施例4]
図5のような乾燥機36を含む工程フローで連続運転を行った。ただし乾燥機36の機数は1つである。また乾燥機36の雰囲気気体は空気を用いている。乾燥機内排ガス38の排ガス量は7,000Nm/hrでコントロールされる。なお乾燥機内排ガス38は乾燥機内排ガス用電気ヒーター43で200℃に加熱保温している。
[Example 4]
The continuous operation was performed in the process flow including the dryer 36 as shown in FIG. However, the number of dryers 36 is one. Air is used as the atmosphere gas of the dryer 36. The amount of exhaust gas in the dryer exhaust gas 38 is controlled at 7,000 Nm 3 / hr. The exhaust gas 38 in the dryer is heated and kept at 200 ° C. by the electric heater 43 for exhaust gas in the dryer.

その他の条件はすべて実施例1と同じにし、乾燥機排ガスダンパ42は全閉、直接燃焼式行きダンパ18は流量自動調整式にし、蓄熱式行きAライン19または蓄熱式行きBライン25の流量、すなわち蓄熱式排ガス処理設備16にて処理する排ガス量を30,000Nm/hrに設定した。 All other conditions are the same as in Example 1, the dryer exhaust gas damper 42 is fully closed, the direct combustion type damper 18 is an automatic flow rate adjustment type, and the flow rate of the heat storage type A line 19 or the heat storage type B line 25, That is, the amount of exhaust gas processed by the regenerative exhaust gas processing facility 16 was set to 30,000 Nm 3 / hr.

該運転条件にて30日間の連続運転を行い、各炉の燃料消費量を実測し、排ガス環境負荷と設備の内部状態を観察した。結果を表2に示す。   Under these operating conditions, continuous operation was performed for 30 days, the fuel consumption of each furnace was measured, and the exhaust gas environmental load and the internal state of the equipment were observed. The results are shown in Table 2.

[比較例1]
太さ1.1デシテックスのPAN系のプリカーサー単糸を12,000本束ねた糸条を、図4のような工程フローにて耐炎化および炭化処理を行った。発生した排ガスはすべて直接燃焼式排ガス処理設備17に持っていって燃焼処理している。直接燃焼式燃焼領域行きダンパ33で耐炎化炉内排ガス10の8割程度を直接燃焼式熱交27、残りの2割を直接燃焼式燃焼領域28に振り分けた。その他の条件はすべて実施例1と同じにした。該運転条件にて30日間の連続運転を行い、各炉の燃料消費量を実測した。結果を表1に示す。
[Comparative Example 1]
A yarn obtained by bundling 12,000 PAN-precursor single yarns having a thickness of 1.1 dtex was subjected to flame resistance and carbonization treatment in a process flow as shown in FIG. All the generated exhaust gas is directly brought into the combustion type exhaust gas treatment facility 17 for combustion treatment. About 80% of the flue gas in the flameproofing furnace 10 is distributed to the direct combustion type heat exchanger 27 and the remaining 20% is distributed to the direct combustion type combustion area 28 by the damper 33 for the direct combustion type combustion area. All other conditions were the same as in Example 1. Under these operating conditions, continuous operation was performed for 30 days, and the fuel consumption of each furnace was measured. The results are shown in Table 1.

[比較例2]
太さ1.1デシテックスのPAN系のプリカーサー単糸を12,000本束ねた糸条を、図6のような工程フローにて耐炎化および炭化処理を行った。発生した排ガスはすべて直接燃焼式排ガス処理設備17に持っていって燃焼処理している。直接燃焼式燃焼領域行きダンパ33で耐炎化炉内排ガス10の8割程度を直接燃焼式熱交27、残りの2割を直接燃焼式燃焼領域28に振り分けた。その他の条件はすべて実施例4と同じにした。該運転条件にて30日間の連続運転を行い、各炉の燃料消費量を実測した。結果を表2に示す。
[Comparative Example 2]
A yarn obtained by bundling 12,000 PAN-based precursor yarns having a thickness of 1.1 dtex was subjected to flame resistance and carbonization treatment in a process flow as shown in FIG. All the generated exhaust gas is directly brought into the combustion type exhaust gas treatment facility 17 for combustion treatment. About 80% of the flue gas in the flameproofing furnace 10 is distributed to the direct combustion type heat exchanger 27 and the remaining 20% is distributed to the direct combustion type combustion area 28 by the damper 33 for the direct combustion type combustion area. All other conditions were the same as in Example 4. Under these operating conditions, continuous operation was performed for 30 days, and the fuel consumption of each furnace was measured. The results are shown in Table 2.

実施例1と実施例2は、前駆体繊維にシリコン系油剤が含まれているかどうかで蓄熱式排ガス処理設備の熱交の閉塞を防止するため運転条件を変えている。対し比較例1は、排ガス中に含まれるシリコン系化合物の直接燃焼式排ガス処理設備への影響は小さいため、前駆体繊維にシリコン系油剤が含まれていてもいなくても運転条件は同一であり、一定の灯油消費量と環境負荷を示す。表1から実施例1、実施例2ともに蓄熱式排ガス処理設備の活用により、比較例1と比較して灯油の消費量は大きく削減され、またそれにより環境負荷も大きく低下していることが確認される。特に実施例1では前駆体繊維にシリコン系油剤が含まれていないため、蓄熱式排ガス処理設備を積極的に活用でき、前記効果は大きい。さらに実施例3では実施例2にダスト補足手段を設けることで、メンテナンス周期を大きく延長させることが可能となり、さらにシリコン系化合物の付着による熱交性能の低下も防げるため、若干ではあるが灯油の消費量もさらに低下し、より好ましい運転形態となっている。   In Example 1 and Example 2, the operating conditions are changed in order to prevent heat exchange blockage of the regenerative exhaust gas treatment facility depending on whether the precursor fiber contains a silicon-based oil. On the other hand, in Comparative Example 1, since the influence of the silicon compound contained in the exhaust gas on the direct combustion type exhaust gas treatment facility is small, the operating conditions are the same regardless of whether the precursor fiber contains the silicon oil. Shows constant kerosene consumption and environmental load. It is confirmed from Table 1 that the consumption of kerosene is greatly reduced by using heat storage type exhaust gas treatment equipment in comparison with Comparative Example 1, and the environmental load is also greatly reduced. Is done. In particular, in Example 1, since the silicon-based oil agent is not contained in the precursor fiber, the heat storage type exhaust gas treatment facility can be actively used, and the effect is great. Furthermore, in Example 3, it is possible to greatly extend the maintenance cycle by providing the dust capturing means in Example 2, and furthermore, it is possible to prevent the heat exchange performance from being deteriorated due to adhesion of the silicon compound. The amount of consumption is further reduced, which is a more preferable operation mode.

さらに実施例4では実施例1に加え、乾燥機を有する工程フローからの排ガスを蓄熱式排ガス処理設備にて処理することで、比較例2と比較して灯油の消費量は大きく削減され、またそれにより環境負荷も大きく低下していることが確認される。なお、実施例1と比較例1を比較した効果と実施例4と比較例2を比較した効果では、実施例4における効果がより大きく、実施例1に比べ、灯油消費量及び環境負荷量の観点から、より好ましい運転形態となっている。   Furthermore, in Example 4, in addition to Example 1, by treating the exhaust gas from the process flow having a dryer with a heat storage type exhaust gas treatment facility, the consumption of kerosene is greatly reduced compared to Comparative Example 2, and As a result, it is confirmed that the environmental load is greatly reduced. In addition, in the effect which compared Example 1 and Comparative Example 1, and the effect which compared Example 4 and Comparative Example 2, the effect in Example 4 is larger, and compared with Example 1, the amount of kerosene consumption and environmental load amount of From the viewpoint, it is a more preferable operation mode.

このように、本発明によって、耐炎化炉の炉内排ガス、耐炎化炉周辺雰囲気の排ガス、炭化炉の炉周辺雰囲気の排ガスの少なくとも一部、またはこれに加え乾燥機内排ガスの少なくとも一部を蓄熱式排ガス処理設備で処理し、ダスト捕捉手段を設けることで、排ガス処理設備の稼動率を損なうことなく、燃焼エネルギーの燃料を大きく削減でき、エネルギー燃料によって発生される環境負荷の量も削減することができるといえる。   As described above, according to the present invention, at least a part of the exhaust gas in the furnace of the flameproofing furnace, the exhaust gas in the atmosphere around the flameproofing furnace, the exhaust gas in the atmosphere around the furnace of the carbonization furnace, or in addition to this, at least a part of the exhaust gas in the dryer is stored. By using a waste gas treatment facility and providing dust capture means, the fuel of combustion energy can be greatly reduced without impairing the operation rate of the waste gas treatment facility, and the amount of environmental load generated by energy fuel can be reduced. Can be said.

Figure 2013032608
Figure 2013032608

Figure 2013032608
Figure 2013032608

本発明に係る排ガス処理方法は、耐炎化繊維または炭素繊維の製造工程に用いて好適なものである。   The exhaust gas treatment method according to the present invention is suitable for use in the production process of flameproof fiber or carbon fiber.

1:前駆体繊維
2:耐炎化炉
3:炭化A炉
4:炭化B炉
5:耐炎化繊維
6:炭素繊維
7:耐炎化給気
8:炭化A炉給気
9:炭化B炉給気
10:耐炎化炉内排ガス
11:炭化A炉内排ガス
12:炭化B炉内排ガス
13:耐炎化炉周辺雰囲気排ガス
14:炭化A炉周辺雰囲気排ガス
15:炭化B炉周辺雰囲気排ガス
16:蓄熱式排ガス処理設備
17:直接燃焼式排ガス処理設備
18:直接燃焼式行きダンパ
19:蓄熱式行きAライン19
20:蓄熱式A熱交
21:蓄熱式燃焼領域
22:蓄熱式B熱交
23:蓄熱式排ガスブロワ
24:蓄熱式行きライン切り替えダンパ
25:蓄熱式行きBライン
26:直接燃焼式行きAライン
27:直接燃焼式熱交
28:直接燃焼式燃焼領域
29:直接燃焼式行きBライン
30:炭化炉内排ガス用電気ヒーター
31:直接燃焼式排ガスブロワ
32:蓄熱式行きダンパ
33:直接燃焼式燃焼領域行きダンパ
34:耐炎化炉内排ガスダンパ
35:ダスト捕捉手段
36:乾燥機
37:乾燥機給気
38:乾燥機内排ガス
39:蓄熱式行きCライン
40:直接燃焼式行きCライン
41:配管分岐点
42:乾燥機排ガスダンパ
43:乾燥機内排ガス用電気ヒーター
1: Precursor fiber 2: Flame resistance furnace 3: Carbonization furnace A 4: Carbonization furnace B 5: Flame resistance fiber 6: Carbon fiber 7: Flame resistance supply air 8: Carbonization furnace A supply 9: Carbonization furnace B supply 10 : Exhaust gas in a flame-resistant furnace 11: Exhaust gas in a carbonization A furnace 12: Exhaust gas in a carbonization B furnace 13: Exhaust gas around a flame-resistant furnace 14: Exhaust gas around a carbonization A furnace 15: Exhaust gas around a carbonization B furnace 16: Regenerative exhaust gas treatment Equipment 17: Direct combustion type exhaust gas treatment equipment 18: Direct combustion type damper 19: Thermal storage type A line 19
20: Thermal storage type A heat exchange 21: Thermal storage type combustion area 22: Thermal storage type B heat exchange 23: Thermal storage type exhaust gas blower 24: Thermal storage type line switching damper 25: Thermal storage type B line 26: Direct combustion type A line 27 : Direct combustion type heat exchange 28: Direct combustion type combustion area 29: Direct combustion type B line 30: Electric heater for exhaust gas in carbonization furnace 31: Direct combustion type exhaust gas blower 32: Regenerative type damper 33: Direct combustion type combustion area Outbound damper 34: Exhaust gas exhaust damper 35: Dust trapping means 36: Dryer 37: Dryer air supply 38: Dryer exhaust gas 39: Thermal storage type C line 40: Direct combustion type C line 41: Piping branch point 42: Dryer exhaust gas damper 43: Electric heater for exhaust gas in dryer

Claims (6)

前駆体繊維を加熱された酸化性気体によって耐炎化する耐炎化炉を有する耐炎化繊維の製造工程、および/または耐炎化繊維の製造工程の後、耐炎化繊維を加熱された不活性気体によって炭化する炭化炉を有する炭素繊維の製造工程において、前記炉内の排ガスおよび/または前記炉周辺雰囲気の排ガスを収集して分解処理する、耐炎化繊維、および/または炭素繊維の製造工程における排ガス処理方法であって、前記排ガスのうち、耐炎化炉の炉内の排ガス、耐炎化炉の炉周辺雰囲気の排ガス、および炭化炉の炉周辺雰囲気の排ガスの少なくとも一部を蓄熱式排ガス処理設備で分解処理することを特徴とする排ガス処理方法。 After the production process of the flameproof fiber having a flameproofing furnace for making the precursor fiber flameproof with a heated oxidizing gas, and / or after the production process of the flameproof fiber, the flameproof fiber is carbonized with a heated inert gas. In the manufacturing process of carbon fiber having a carbonizing furnace, the exhaust gas in the furnace and / or the exhaust gas in the atmosphere around the furnace is collected and decomposed, and the flue gas treatment method in the manufacturing process of the flame resistant fiber and / or carbon fiber Of the exhaust gas, at least a part of the exhaust gas in the furnace of the flameproofing furnace, the exhaust gas in the atmosphere around the furnace of the flameproofing furnace, and the exhaust gas in the atmosphere around the furnace of the carbonization furnace is decomposed by a regenerative exhaust gas treatment facility. An exhaust gas treatment method comprising: 前記炭素繊維の製造工程の後工程に、サイジング処理液を付着した炭素繊維を熱風で乾燥させる乾燥機を有する乾燥工程を有しており、前記乾燥機の排ガスの少なくとも一部を前記蓄熱式排ガス処理設備で分解処理する、請求項1に記載の排ガス処理方法。 The carbon fiber manufacturing process has a drying process having a dryer for drying the carbon fiber to which the sizing treatment liquid is attached with hot air, and at least a part of the exhaust gas of the dryer is the regenerative exhaust gas. The exhaust gas treatment method according to claim 1, wherein the decomposition treatment is performed in a treatment facility. 前記排ガスのうち、前記蓄熱式排ガス処理設備で処理する排ガスを除いた他の排ガスを、直接燃焼式排ガス処理設備で分解処理する、請求項1または2に記載の排ガス処理方法。 The exhaust gas treatment method according to claim 1 or 2, wherein the exhaust gas other than the exhaust gas to be processed by the regenerative exhaust gas treatment facility is decomposed by the direct combustion exhaust gas treatment facility. 前記蓄熱式排ガス処理設備の導入側に、前記直接燃焼式排ガス処理設備で排ガスの分解処理を可能とするライン、および前記蓄熱式排ガス処理設備で排ガスの分解処理を可能とするラインの両ラインを切り替える切替手段を有する、請求項3に記載の排ガス処理方法。 On the introduction side of the regenerative exhaust gas treatment facility, both a line that enables exhaust gas decomposition treatment with the direct combustion exhaust gas treatment facility and a line that enables exhaust gas decomposition treatment with the regenerative exhaust gas treatment facility are provided. The exhaust gas treatment method according to claim 3, comprising switching means for switching. 前記蓄熱式排ガス処理設備の導入前に、排ガス中に含まれるシリコン系化合物の固形物を捕集する手段が設けられている、請求項1〜4のいずれかに記載の排ガス処理方法。 The exhaust gas treatment method according to any one of claims 1 to 4, wherein means for collecting a solid material of a silicon compound contained in the exhaust gas is provided before the introduction of the heat storage type exhaust gas treatment facility. 前記排ガス中に含まれるシリコン系化合物の固形物を捕集する手段としてバグフィルタを用いる、請求項5に記載の排ガス処理方法。 The exhaust gas treatment method according to claim 5, wherein a bag filter is used as a means for collecting a solid substance of a silicon-based compound contained in the exhaust gas.
JP2012142713A 2011-06-29 2012-06-26 Method for processing exhaust gas Pending JP2013032608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012142713A JP2013032608A (en) 2011-06-29 2012-06-26 Method for processing exhaust gas

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011143853 2011-06-29
JP2011143853 2011-06-29
JP2012142713A JP2013032608A (en) 2011-06-29 2012-06-26 Method for processing exhaust gas

Publications (1)

Publication Number Publication Date
JP2013032608A true JP2013032608A (en) 2013-02-14

Family

ID=47788684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012142713A Pending JP2013032608A (en) 2011-06-29 2012-06-26 Method for processing exhaust gas

Country Status (1)

Country Link
JP (1) JP2013032608A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015021196A (en) * 2013-07-18 2015-02-02 株式会社 サン・テクトロ Sizing agent removal device and sizing agent removal method
JP5946550B1 (en) * 2015-02-10 2016-07-06 中外炉工業株式会社 Regenerative gas treatment facility and method for improving regenerative gas treatment facility
JP2016133286A (en) * 2015-01-21 2016-07-25 大陽日酸株式会社 Exhaust gas treatment method and exhaust gas treatment device
WO2016136814A1 (en) * 2015-02-25 2016-09-01 三菱レイヨン株式会社 Heat treatment furnace device and method for producing carbon fiber bundle
WO2018016583A1 (en) * 2016-07-20 2018-01-25 大陽日酸株式会社 Exhaust gas treatment method, exhaust gas treatment device, and carbon fiber manufacturing system
WO2018230055A1 (en) * 2017-06-13 2018-12-20 東レ株式会社 Carbon fiber production method
CN111778630A (en) * 2020-07-31 2020-10-16 常州市新创智能科技有限公司 Waste silk suction device of carbon fiber warp knitting machine and using method
WO2021235722A1 (en) * 2020-05-22 2021-11-25 케이씨코트렐 주식회사 Tenter device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015021196A (en) * 2013-07-18 2015-02-02 株式会社 サン・テクトロ Sizing agent removal device and sizing agent removal method
KR101973957B1 (en) * 2015-01-21 2019-04-30 다이요 닛산 가부시키가이샤 Exhaust gas treatment method and exhaust gas treatment device
JP2016133286A (en) * 2015-01-21 2016-07-25 大陽日酸株式会社 Exhaust gas treatment method and exhaust gas treatment device
WO2016117167A1 (en) * 2015-01-21 2016-07-28 大陽日酸株式会社 Exhaust gas treatment method and exhaust gas treatment device
KR20170093904A (en) * 2015-01-21 2017-08-16 다이요 닛산 가부시키가이샤 Exhaust gas treatment method and exhaust gas treatment device
US20170370580A1 (en) * 2015-01-21 2017-12-28 Taiyo Nippon Sanso Corporation Exhaust gas treatment method and exhaust gas treatment device
US10502417B2 (en) 2015-01-21 2019-12-10 Taiyo Nippon Sanso Corporation Exhaust gas treatment method and exhaust gas treatment device
JP5946550B1 (en) * 2015-02-10 2016-07-06 中外炉工業株式会社 Regenerative gas treatment facility and method for improving regenerative gas treatment facility
WO2016136814A1 (en) * 2015-02-25 2016-09-01 三菱レイヨン株式会社 Heat treatment furnace device and method for producing carbon fiber bundle
JPWO2016136814A1 (en) * 2015-02-25 2017-04-27 三菱レイヨン株式会社 Heat treatment furnace apparatus and carbon fiber bundle manufacturing method
JP2017218720A (en) * 2015-02-25 2017-12-14 三菱ケミカル株式会社 Production method of oxydation fiber bundle, and production method of carbon fiber bundle
US10940400B2 (en) 2015-02-25 2021-03-09 Mitsubishi Chemical Corporation Heat treatment furnace device and method for producing carbon fiber bundle
JP2018013292A (en) * 2016-07-20 2018-01-25 大陽日酸株式会社 Exhaust gas treatment method, exhaust gas treatment device and carbon fiber manufacturing system
KR20190016576A (en) * 2016-07-20 2019-02-18 다이요 닛산 가부시키가이샤 An exhaust gas treatment method, an exhaust gas treatment apparatus and a carbon fiber manufacturing system
KR102216266B1 (en) 2016-07-20 2021-02-16 다이요 닛산 가부시키가이샤 Exhaust gas treatment method, exhaust gas treatment device and carbon fiber manufacturing system
WO2018016583A1 (en) * 2016-07-20 2018-01-25 大陽日酸株式会社 Exhaust gas treatment method, exhaust gas treatment device, and carbon fiber manufacturing system
WO2018230055A1 (en) * 2017-06-13 2018-12-20 東レ株式会社 Carbon fiber production method
CN110709542A (en) * 2017-06-13 2020-01-17 东丽株式会社 Method for producing carbon fiber
US11261545B2 (en) 2017-06-13 2022-03-01 Toray Industries, Inc. Carbon fiber production method
WO2021235722A1 (en) * 2020-05-22 2021-11-25 케이씨코트렐 주식회사 Tenter device
CN111778630A (en) * 2020-07-31 2020-10-16 常州市新创智能科技有限公司 Waste silk suction device of carbon fiber warp knitting machine and using method

Similar Documents

Publication Publication Date Title
JP2013032608A (en) Method for processing exhaust gas
JP2012531480A (en) Method and apparatus for keeping the coke oven chamber warm when the waste heat boiler is stopped
KR101685735B1 (en) Method for reducing nitrogen oxides from the exhaust gas of a coke oven
CN102192511B (en) Waste treating system
CN104487550B (en) Improvement in waste process
JP2008142684A (en) Heat utilization system, operating method when this system starts or stops, and heat treatment system
WO2011032354A1 (en) External combustion and internal heating type coal retort furnace
CN108036665A (en) Carbon baking furnace flue gas pollutant thermal accumulating incinerator and its processing method
TWI332563B (en)
KR20160023829A (en) Direct-fired heating method and facility for implementing same
CN104315524A (en) Low-temperature carbonization waste gas treatment method for carbon fibers
JP5097564B2 (en) Carbon fiber production equipment
JP5351397B2 (en) Flameproof device
CN104197725B (en) The method of comprehensive utilization of mine heat furnace smelting flue-gas dust removal and purification and sensible heat and latent heat
CN101373070A (en) Heat decomposition gas processing method and apparatus of carbonization processing system containing water
CN205535842U (en) Two room heat accumulation after burner of domestic waste
CN101862592A (en) System and method for purifying waste gas containing flammable components
CN111207401B (en) Heat accumulating type oxidation furnace and dirt removing and anti-blocking process
CN205590305U (en) Carbomorphism tail gas waste heat recovery's oxidation carbomorphism device
JP5496286B2 (en) Carbon fiber manufacturing method
CN211847164U (en) Activated carbon production equipment
CN107642789A (en) A kind of staged air distribution type thermal accumulating incinerator
CN111609415A (en) Self-cleaning heat accumulating type thermal incineration device
CN209279177U (en) A kind of heat accumulating type Catalytic oxidation furnace
CN207035156U (en) Modified RTO emission-control equipments