JP2013032426A - Thermoplastic resin for reflecting material and reflector - Google Patents

Thermoplastic resin for reflecting material and reflector Download PDF

Info

Publication number
JP2013032426A
JP2013032426A JP2011168455A JP2011168455A JP2013032426A JP 2013032426 A JP2013032426 A JP 2013032426A JP 2011168455 A JP2011168455 A JP 2011168455A JP 2011168455 A JP2011168455 A JP 2011168455A JP 2013032426 A JP2013032426 A JP 2013032426A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
resin composition
reflector
mass
polyester resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011168455A
Other languages
Japanese (ja)
Other versions
JP5731312B2 (en
Inventor
Hideto Ogasawara
英人 小笠原
Takashi Hama
隆司 濱
Kuniaki Kawabe
邦昭 川辺
Hirotaka Kanetani
浩貴 金谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2011168455A priority Critical patent/JP5731312B2/en
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to PCT/JP2012/004872 priority patent/WO2013018360A1/en
Priority to CN201280038450.9A priority patent/CN103717673B/en
Priority to EP12820129.0A priority patent/EP2740766B1/en
Priority to KR1020147002381A priority patent/KR101593852B1/en
Priority to US14/236,450 priority patent/US9153757B2/en
Priority to TW101127806A priority patent/TWI521012B/en
Publication of JP2013032426A publication Critical patent/JP2013032426A/en
Application granted granted Critical
Publication of JP5731312B2 publication Critical patent/JP5731312B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermoplastic resin composition for reflecting materials, the resin composition providing a molding with high mechanical strength and excellent heat resistance, stably having a high reflectance, and showing less reduction in reflectance caused by heating, especially in an LED production step or a reflow soldering step, and to provide a reflector obtained by molding the resin composition.SOLUTION: The thermoplastic resin composition for reflecting materials includes: a polyester resin whose melting point or glass transition temperature is ≥250°C; a low molecular weight thermoplastic resin having an aromatic hydrocarbon structure; a white pigment; and an inorganic filler, so as to achieve the purposes.

Description

本発明は反射材料に適し、高温でも使用可能な樹脂組成物および該樹脂組成物を成形して得られる反射板に関する。さらに詳しくは、特定の熱可塑性樹脂、特定の構造を有する低分子量熱可塑性樹脂、無機充填材、及び白色顔料を含み、光の反射率、耐熱性、機械的特性に優れるとともに、インサート成形に好適である反射材用熱可塑性樹脂組成物、および該樹脂組成物を成形して得られる反射板に関する。   The present invention relates to a resin composition that is suitable for a reflective material and can be used even at high temperatures, and a reflector obtained by molding the resin composition. More specifically, it contains a specific thermoplastic resin, a low molecular weight thermoplastic resin having a specific structure, an inorganic filler, and a white pigment, and is excellent in light reflectance, heat resistance, mechanical properties, and suitable for insert molding. It is related with the thermoplastic resin composition for reflectors which is these, and the reflecting plate obtained by shape | molding this resin composition.

光を効率的に利用するため反射板は種々の局面で利用されている。近年、装置の小型化および光源の小型化のため、光源の半導体化、すなわち光源を半導体レーザー、発光ダイオード(以下、LEDと言う)等に切り替えることが進められている。そのため、反射板をプリント配線基板等へ表面実装すること等も行われ、反射板には機械的強度のみならず、耐熱性が良好で、精密に成形できることが要求されている。また反射板には、光を反射する機能上、安定した高い反射率が得られることが求められ、特にLEDの組立ておよびリフローはんだ工程において、加熱によって反射材料の反射率が低下することを抑制することが求められている。   In order to use light efficiently, the reflector is used in various aspects. In recent years, in order to reduce the size of an apparatus and the size of a light source, semiconductors of the light source, that is, switching the light source to a semiconductor laser, a light emitting diode (hereinafter referred to as an LED), or the like has been promoted. For this reason, the reflection plate is surface-mounted on a printed wiring board or the like, and the reflection plate is required to have not only mechanical strength but also good heat resistance and can be precisely molded. In addition, the reflecting plate is required to have a stable and high reflectance for the function of reflecting light. In particular, in the LED assembly and reflow soldering processes, the reflectance of the reflecting material is prevented from being lowered by heating. It is demanded.

また、近年、反射板を用いた製品へのコストダウン要求は高まる一方であり、TVやモニターなどの最終製品に搭載されるLEDパッケージ数を減少させること、それに伴い素子の高輝度化を図ること、製品の小型化を図ること、および射出成形によるLEDパッケージ製造時の取数を増加させること等が求められている。そのため、反射材料は、高い成形加工性を有することが好ましく、特に溶融流動性が高いことが求められている。   In recent years, there has been an increasing demand for cost reduction of products using reflectors, and the number of LED packages mounted on final products such as TVs and monitors has been reduced. There is a need to reduce the size of products and increase the number of LED packages produced by injection molding. For this reason, the reflective material preferably has high moldability and is particularly required to have high melt fluidity.

反射板の強化材としては一般的に、ガラス繊維が広く用いられている。しかしながら、多数個取の成形に対しては反射材料の溶融流動性が不足すること、さらにゲートカット面が粗くなり、特に小型製品では製品外観への影響が大きくなる傾向がある。   In general, glass fiber is widely used as a reinforcing material for the reflector. However, for multi-piece molding, the melt fluidity of the reflective material is insufficient, and the gate cut surface becomes rough. In particular, the influence on the product appearance tends to be large in small products.

この問題を解決すべく、これまで種々の改良が試みられてきた。特に無機強化材として例えばワラストナイト(特許文献1)、チタン酸カリウム(特許文献2)、チタン酸カリウムと酸化チタンの併用系(特許文献3)が示されている。   In order to solve this problem, various improvements have been attempted so far. In particular, for example, wollastonite (Patent Document 1), potassium titanate (Patent Document 2), and a combined system of potassium titanate and titanium oxide (Patent Document 3) are shown as inorganic reinforcing materials.

しかしながら、これら技術は複数種類の強化材を配合するため、ベースポリマーへの分散不良が生じ、反射率及び機械強度が低下するなどの懸念がある。また、ベースポリマーへ強化材を分散させるための溶融混合において、特殊なスクリュウ構成や、温度設定などが必要となる場合があり、ベースポリマーへの負荷が増大し、分解による機能低下を引き起こす可能性や、コストアップにも繋がり易いという問題がある。   However, since these techniques are blended with a plurality of kinds of reinforcing materials, there is a concern that poor dispersion in the base polymer occurs, and the reflectivity and mechanical strength decrease. In addition, in the melt mixing to disperse the reinforcing material in the base polymer, a special screw configuration and temperature setting may be required, which may increase the load on the base polymer and cause functional degradation due to decomposition. In addition, there is a problem that the cost is likely to increase.

一方で、ベースポリマーの改良により、反射板の反射率低下を抑制する技術も示されている(特許文献4)。反射板にはポリアミド材料が用いられる例が多いが、末端のアミノ基や、アミド結合由来による変色が生じる場合があり、反射率が低下する恐れがある。これに対して、ポリアミド樹脂に代えて耐熱性ポリエステルを用いる試みがなされている。しかしながら、ベースポリマーをポリアミドから耐熱性ポリエステルへ変更する事によって機械強度や流動性がどのように変化するか開示が無く、反射材料としての性能バランスは未知数である。   On the other hand, a technique for suppressing a decrease in the reflectance of the reflector by improving the base polymer is also shown (Patent Document 4). In many cases, a polyamide material is used for the reflector, but discoloration may occur due to an amino group at the terminal or an amide bond, which may reduce the reflectance. In contrast, attempts have been made to use heat-resistant polyester instead of polyamide resin. However, there is no disclosure of how the mechanical strength and fluidity change by changing the base polymer from polyamide to heat resistant polyester, and the performance balance as a reflective material is unknown.

特許第4245716号公報Japanese Patent No. 4245716 特許第4117130号公報Japanese Patent No. 4117130 特開2008−18172号公報JP 2008-18172 A 特表2009−507990号公報Special table 2009-507990

本発明者らが検討した結果によれば、脂環式炭化水素構造を含むポリエステル樹脂は、耐熱性や経時安定性に優れる一方で、実用的な観点では溶融流動性の改善が必要であることが見出された。従って本発明は、成形物の機械強度が高く、耐熱性に優れ、高い反射率を安定して得ることができ、成形性に優れ、更にLEDの製造工程およびリフローはんだ工程での加熱による反射率の低下が少ない反射材用熱可塑性樹脂組成物、および該樹脂組成物を成形して得られる反射板を得ることを課題とする。   According to the results examined by the present inventors, the polyester resin containing an alicyclic hydrocarbon structure is excellent in heat resistance and stability over time, but it is necessary to improve melt fluidity from a practical viewpoint. Was found. Therefore, the present invention has high mechanical strength of the molded product, excellent heat resistance, can stably obtain high reflectance, excellent moldability, and further reflectivity by heating in the LED manufacturing process and reflow soldering process. It is an object of the present invention to obtain a thermoplastic resin composition for a reflective material with a small decrease in the thickness and a reflector obtained by molding the resin composition.

本発明は、このような状況に鑑みて鋭意検討した結果、ポリオレフィン骨格と芳香族炭化水素構造とを有する低分子量熱可塑性樹脂と、脂環式炭化水素構造を含むポリエステル樹脂とが特定の比率で含まれる樹脂組成物が、流動性に優れるだけでなく、反射率も従来以上に高い値を示す、即ち上記課題を解決できることを見出し、本発明を完成した。   As a result of intensive studies in view of such circumstances, the present invention has a specific ratio of a low molecular weight thermoplastic resin having a polyolefin skeleton and an aromatic hydrocarbon structure and a polyester resin having an alicyclic hydrocarbon structure. The present inventors have found that the resin composition contained not only has excellent fluidity but also has a higher reflectance than that of the conventional resin composition, that is, can solve the above-mentioned problems, thereby completing the present invention.

すなわち本発明は、融点もしくはガラス転移温度が250℃以上であり、脂環式炭化水素構造を含むポリエステル樹脂(A)30〜85質量%、ポリオレフィン骨格と芳香族炭化水素構造とを有し、デカリン中135℃で測定した極限粘度[η]が0.04〜1.0dl/gの熱可塑性樹脂(B)0.1〜10質量%、白色顔料(C)5〜50質量%、および無機充填材(D)10〜50質量%を含む反射材用熱可塑性樹脂組成物に関する。(ただし、A,B,C,Dの合計は100質量%である。)   That is, the present invention has a melting point or glass transition temperature of 250 ° C. or higher, a polyester resin (A) having an alicyclic hydrocarbon structure of 30 to 85% by mass, a polyolefin skeleton and an aromatic hydrocarbon structure, and decalin 0.1 to 10% by mass of thermoplastic resin (B) having an intrinsic viscosity [η] measured at 135 ° C. of 0.04 to 1.0 dl / g, 5 to 50% by mass of white pigment (C), and inorganic filling It is related with the thermoplastic resin composition for reflectors containing 10-50 mass% of material (D). (However, the total of A, B, C, and D is 100% by mass.)

本発明の反射材用熱可塑性樹脂組成物は、前記ポリエステル樹脂(A)が、テレフタル酸から誘導されるジカルボン酸成分単位30〜100モル%、テレフタル酸以外の芳香族ジカルボン酸成分単位0〜70モル%、および/または炭素原子数4〜20の脂肪族ジカルボン酸成分単位0〜70モル%からなるジカルボン酸成分単位(a−1)、並びに、炭素原子数4〜20の脂環族ジアルコール成分単位(a−2)を含むポリエステル樹脂(A−1)であることが好ましい。   In the thermoplastic resin composition for a reflector according to the present invention, the polyester resin (A) is 30 to 100 mol% of a dicarboxylic acid component unit derived from terephthalic acid, and an aromatic dicarboxylic acid component unit 0 to 70 other than terephthalic acid. A dicarboxylic acid component unit (a-1) composed of 0 to 70 mol% of an aliphatic dicarboxylic acid component unit having 4 to 20 carbon atoms, and an alicyclic dialcohol having 4 to 20 carbon atoms. It is preferable that it is a polyester resin (A-1) containing a component unit (a-2).

本発明の反射材用熱可塑性樹脂組成物は、前記ポリエステル樹脂(A−1)に含まれる前記脂環族ジアルコール成分単位(a−2)が、シクロヘキサン骨格を有することが好ましい。   In the thermoplastic resin composition for a reflective material of the present invention, the alicyclic dialcohol component unit (a-2) contained in the polyester resin (A-1) preferably has a cyclohexane skeleton.

本発明の反射材用熱可塑性樹脂組成物は、前記白色顔料(C)が酸化チタンであることが好ましい。   In the thermoplastic resin composition for a reflective material of the present invention, the white pigment (C) is preferably titanium oxide.

また本発明は、前記の反射材用熱可塑性樹脂組成物を成形して得られる反射板に関する。   Moreover, this invention relates to the reflecting plate obtained by shape | molding the said thermoplastic resin composition for reflecting materials.

本発明の反射板は、発光ダイオード素子用の反射板であることが好ましい。   The reflector of the present invention is preferably a reflector for a light emitting diode element.

本発明によれば、成形物の機械強度が高く、耐熱性に優れ、流動性、成形性に優れ、反射率が高く、経時的な反射率低下が少ない反射材用樹脂組成物および、該樹脂組成物を成形して得られる反射板を提供することができる。特に本発明の反射材用樹脂組成物は、初期の反射率が高い上に、LEDの製造工程およびリフローはんだ工程での加熱による反射率の低下が少ないため、その工業的価値は極めて高い。   According to the present invention, the molded product has high mechanical strength, excellent heat resistance, excellent fluidity and moldability, high reflectivity, and little deterioration in reflectivity over time, and the resin. A reflector obtained by molding the composition can be provided. In particular, the resin composition for a reflective material of the present invention has a high initial reflectivity and also has a very high industrial value because of a small decrease in reflectivity due to heating in the LED manufacturing process and reflow soldering process.

図1は、本発明の実施例において、リフロー耐熱性を評価する為のリフロー工程の温度プロファイルを示した図である。FIG. 1 is a diagram showing a temperature profile of a reflow process for evaluating reflow heat resistance in an example of the present invention.

以下、本発明について詳細に説明する。
1.反射材用熱可塑性樹脂組成物
本発明の反射材用熱可塑性樹脂組成物は、ポリエステル樹脂(A)、熱可塑性樹脂(B)(以下、低分子量熱可塑性樹脂(B)ともいう)、白色顔料(C)、および無機充填材(D)を含み、必要に応じて他の添加剤等を含有する。
Hereinafter, the present invention will be described in detail.
1. Thermoplastic resin composition for reflectors The thermoplastic resin composition for reflectors of the present invention comprises a polyester resin (A), a thermoplastic resin (B) (hereinafter also referred to as a low molecular weight thermoplastic resin (B)), a white pigment. (C) and an inorganic filler (D) are contained, and other additives etc. are contained as needed.

[ポリエステル樹脂A]
本発明のポリエステル樹脂(A)は、融点もしくはガラス転移温度が250℃以上であり脂環式炭化水素骨格を構造単位に含むことを特徴とする。
ポリエステル樹脂(A)の、示差走査熱量計(DSC)で測定した融点(Tm)、もしくはガラス転移温度は250℃以上であり、上記融点もしくはガラス転移温度は270℃〜350℃の範囲内にあることが好ましく、特に290〜335℃の範囲内にあることが好ましい。融点もしくはガラス転移温度が250℃以上であると、リフローはんだ時の反射板の変形が抑制される。一方、上限温度は原則的としては制限がないが、融点もしくはガラス転移温度が350℃以下であると、溶融成形に際してポリエステル樹脂の分解を抑制できるので好ましい。
[Polyester resin A]
The polyester resin (A) of the present invention has a melting point or glass transition temperature of 250 ° C. or higher and includes an alicyclic hydrocarbon skeleton in the structural unit.
The melting point (Tm) or glass transition temperature of the polyester resin (A) measured with a differential scanning calorimeter (DSC) is 250 ° C. or higher, and the melting point or glass transition temperature is in the range of 270 ° C. to 350 ° C. It is preferable that it is in the range of 290-335 degreeC especially. When the melting point or glass transition temperature is 250 ° C. or higher, deformation of the reflector during reflow soldering is suppressed. On the other hand, the upper limit temperature is not limited in principle, but a melting point or glass transition temperature of 350 ° C. or lower is preferable because decomposition of the polyester resin can be suppressed during melt molding.

ポリエステル樹脂(A)の極限粘度[η]は、0.3〜1.0dl/gであることが好ましい。極限粘度がこのような範囲にある場合、反射材用熱可塑性樹脂組成物の成形時の流動性が優れるものとし得る。ポリエステル樹脂(A)の極限粘度の調整は、ポリエステル樹脂(A)の分子量を調整すること等でなし得る。
上記極限粘度は、ポリエステル樹脂(A)をフェノールとテトラクロロエタンの50/50質量%の混合溶媒に溶解し、ウベローデ粘度計を使用し、25℃±0.05℃の条件下で試料溶液の流下秒数を測定し、以下の数式で算出される値である。
[η]=ηSP/[C(1+0.205ηSP)]
[η]:極限粘度(dl/g)
ηSP:比粘度
C:試料濃度(g/dl)
t:試料溶液の流下秒数(秒)
t0:ブランク硫酸の流下秒数(秒)
ηSP=(t−t0)/t0
The intrinsic viscosity [η] of the polyester resin (A) is preferably 0.3 to 1.0 dl / g. When the intrinsic viscosity is in such a range, the fluidity at the time of molding of the thermoplastic resin composition for a reflector can be excellent. The intrinsic viscosity of the polyester resin (A) can be adjusted by adjusting the molecular weight of the polyester resin (A).
The above intrinsic viscosity is obtained by dissolving the polyester resin (A) in a 50/50 mass% mixed solvent of phenol and tetrachloroethane, and using the Ubbelohde viscometer, the sample solution flows under the condition of 25 ° C. ± 0.05 ° C. It is a value calculated by the following formula after measuring the number of seconds.
[Η] = ηSP / [C (1 + 0.205ηSP)]
[Η]: Intrinsic viscosity (dl / g)
ηSP: specific viscosity C: sample concentration (g / dl)
t: Number of seconds that the sample solution flows (seconds)
t0: number of seconds (seconds) that the blank sulfuric acid flows down
ηSP = (t−t0) / t0

上記ポリエステル樹脂(A)としては、特定のジカルボン酸成分単位(a−1)及び脂環族ジアルコール成分単位(a−2)を含むポリエステル樹脂(A−1)が好適である。なお、本願発明においては必要に応じ、また本発明の効果を損なわない限り、他のポリエステル樹脂などの熱可塑性樹脂を複数併用しても良い。   As said polyester resin (A), the polyester resin (A-1) containing a specific dicarboxylic acid component unit (a-1) and an alicyclic dialcohol component unit (a-2) is suitable. In addition, in this invention, as long as the effect of this invention is not impaired as needed, you may use multiple thermoplastic resins, such as another polyester resin, together.

[ポリエステル樹脂(A−1)]
本発明に好適に使用されるポリエステル樹脂(A−1)は、下記の芳香族ジカルボン酸由来の構成単位を有するジカルボン酸成分単位(a−1)と、脂環式炭化水素骨格を有する脂環族ジアルコール由来の構成単位を有する脂環族ジアルコール成分単位(a−2)とを含むことが好ましい。
[Polyester resin (A-1)]
The polyester resin (A-1) suitably used in the present invention comprises a dicarboxylic acid component unit (a-1) having a structural unit derived from the following aromatic dicarboxylic acid and an alicyclic ring having an alicyclic hydrocarbon skeleton. And an alicyclic dialcohol component unit (a-2) having a structural unit derived from an aliphatic dialcohol.

[ジカルボン酸成分単位(a−1)]
本発明で使用するポリエステル樹脂(A−1)を構成するジカルボン酸成分単位(a−1)は、テレフタル酸から誘導されるテレフタル酸成分単位30〜100モル%、好ましくは40〜100モル%、さらに好ましくは40〜80モル%、テレフタル酸以外の芳香族ジカルボン酸成分単位が0〜70モル%、好ましくは0〜60モル%、さらに好ましくは20〜60モル%、および/または炭素原子数4〜20の脂肪族ジカルボン酸成分単位が、0〜70モル%、好ましくは0〜60モル%、さらに20〜60モル%の量で含まれることが好ましい。これらのジカルボン酸成分単位(a−1)の合計量は100モル%である。
[Dicarboxylic acid component unit (a-1)]
The dicarboxylic acid component unit (a-1) constituting the polyester resin (A-1) used in the present invention is a terephthalic acid component unit derived from terephthalic acid 30 to 100 mol%, preferably 40 to 100 mol%, More preferably 40 to 80 mol%, aromatic dicarboxylic acid component unit other than terephthalic acid is 0 to 70 mol%, preferably 0 to 60 mol%, more preferably 20 to 60 mol%, and / or 4 carbon atoms. It is preferable that ˜20 aliphatic dicarboxylic acid component units are contained in an amount of 0 to 70 mol%, preferably 0 to 60 mol%, and more preferably 20 to 60 mol%. The total amount of these dicarboxylic acid component units (a-1) is 100 mol%.

テレフタル酸以外の芳香族ジカルボン酸成分単位としては、例えばイソフタル酸、2−メチルテレフタル酸、ナフタレンジカルボン酸から誘導される成分単位が挙げられ、これらは1種単独で、または2種以上を組み合わせて用い得る。   Examples of the aromatic dicarboxylic acid component unit other than terephthalic acid include component units derived from isophthalic acid, 2-methylterephthalic acid, and naphthalenedicarboxylic acid. These may be used alone or in combination of two or more. Can be used.

また、脂肪族ジカルボン酸成分単位は、炭素原子数が4〜20、好ましくは6〜12の脂肪族ジカルボン酸から誘導される成分単位である。脂肪族ジカルボン酸成分単位を誘導するために用いられる脂肪族ジカルボン酸の例としては、例えば、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、デカンジカルボン酸、ウンデカンジカルボン酸、ドデカンジカルボン酸などが挙げられる。これらの中でも、特にアジピン酸が好ましい。   The aliphatic dicarboxylic acid component unit is a component unit derived from an aliphatic dicarboxylic acid having 4 to 20, preferably 6 to 12 carbon atoms. Examples of the aliphatic dicarboxylic acid used to derive the aliphatic dicarboxylic acid component unit include, for example, adipic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, undecanedicarboxylic acid, and dodecanedicarboxylic acid. It is done. Among these, adipic acid is particularly preferable.

本発明では、前記の芳香族ジカルボン酸以外のジカルボン酸成分単位(a−1)としてシクロヘキサンジカルボン酸などの脂環族ジカルボン酸などを使用することもできる。   In the present invention, an alicyclic dicarboxylic acid such as cyclohexanedicarboxylic acid may be used as the dicarboxylic acid component unit (a-1) other than the aromatic dicarboxylic acid.

また、本発明においては、ジカルボン酸成分単位(a−1)として、上記のような構成単位とともに、少量、例えば、10モル%以下の量の多価カルボン酸成分単位が含まれても良い。このような多価カルボン酸成分単位として具体的には、トリメリット酸およびピロメリット酸等のような三塩基酸および多塩基酸を挙げることができる。   In the present invention, the dicarboxylic acid component unit (a-1) may contain a polyvalent carboxylic acid component unit in a small amount, for example, an amount of 10 mol% or less, in addition to the structural unit as described above. Specific examples of such polyvalent carboxylic acid component units include tribasic acids and polybasic acids such as trimellitic acid and pyromellitic acid.

[脂環族ジアルコール成分単位(a−2)]
脂環族ジアルコール成分単位(a−2)は、炭素数4〜20の脂環式炭化水素骨格を有するジアルコールから誘導される成分単位を含む。炭素数4〜20の脂環式炭化水素骨格を有するジアルコールとしては、1,3−シクロペンタンジオール、1,3−シクロペンタンジメタノール、1,4−シクロヘキサンジオール、1,4−シクロヘキサンジメタノール、1,4−シクロヘプタンジオール、1,4−シクロヘプタンジメタノールなどの脂環族グリコールが挙げられる。中でも耐熱性や吸水性、入手容易性などの観点から、シクロヘキサン骨格を有するジアルコール由来の成分単位が好ましく、シクロヘキサンジメタノール由来の成分単位がさらに好ましい。
[Aliphatic dialcohol component unit (a-2)]
The alicyclic dialcohol component unit (a-2) includes a component unit derived from a dialcohol having an alicyclic hydrocarbon skeleton having 4 to 20 carbon atoms. Examples of dialcohol having an alicyclic hydrocarbon skeleton having 4 to 20 carbon atoms include 1,3-cyclopentanediol, 1,3-cyclopentanedimethanol, 1,4-cyclohexanediol, and 1,4-cyclohexanedimethanol. , Alicyclic glycols such as 1,4-cycloheptanediol and 1,4-cycloheptanedimethanol. Among these, from the viewpoints of heat resistance, water absorption, and availability, a component unit derived from a dialcohol having a cyclohexane skeleton is preferable, and a component unit derived from cyclohexanedimethanol is more preferable.

脂環族ジアルコールには、シス、トランス構造などの異性体が存在するが、耐熱性の観点からは、トランス構造が好ましい。ポリエステル樹脂(A)に含まれる脂環族ジアルコール成分単位(a−2)全量中のシス/トランス比は、好ましくは30/70〜0/100、さらに好ましくは、50/50〜0/100である。   The alicyclic dialcohol has isomers such as cis and trans structures, but the trans structure is preferred from the viewpoint of heat resistance. The cis / trans ratio in the total amount of the alicyclic dialcohol component unit (a-2) contained in the polyester resin (A) is preferably 30/70 to 0/100, more preferably 50/50 to 0/100. It is.

脂環族ジアルコール成分単位(a−2)には、前記の脂環式炭化水素骨格有するジアルコール由来の成分単位のほかに、樹脂としての溶融流動性を高める目的などで、脂肪族ジオール由来の成分単位を含み得る。脂肪族ジオールとして具体的には、エチレングリコール、トリメチレングリコール、プロピレングリコール、テトラメチレングリコール、ネオペンチルグリコール、ヘキサメチレングリコール、ドデカメチレングリコールなどを挙げることができる。   The alicyclic dialcohol component unit (a-2) is derived from an aliphatic diol for the purpose of enhancing the melt fluidity as a resin in addition to the above-described dialcohol-derived component unit having an alicyclic hydrocarbon skeleton. Of component units. Specific examples of the aliphatic diol include ethylene glycol, trimethylene glycol, propylene glycol, tetramethylene glycol, neopentyl glycol, hexamethylene glycol, and dodecamethylene glycol.

[ポリエステル樹脂(A)の調製方法]
ポリエステル樹脂(A)は、例えば反応系内に分子量調整剤等を配合してジカルボン酸成分単位(a−1)と脂環族ジアルコール成分単位(a−2)とを反応させることにより得ることができる。上述のように、反応系内に分子量調整剤を配合することで、ポリエステル樹脂(A)の極限粘度を調製し得る。
[Method for Preparing Polyester Resin (A)]
The polyester resin (A) is obtained, for example, by blending a molecular weight regulator in the reaction system and reacting the dicarboxylic acid component unit (a-1) with the alicyclic dialcohol component unit (a-2). Can do. As described above, the intrinsic viscosity of the polyester resin (A) can be prepared by blending a molecular weight modifier in the reaction system.

分子量調整剤としては、モノカルボン酸およびモノアルコールを使用することができる。上記モノカルボン酸の例としては、炭素原子数2〜30の脂肪族モノカルボン酸、芳香族モノカルボン酸および脂環族モノカルボン酸を挙げることができる。なお、芳香族モノカルボン酸および脂環族モノカルボン酸は、環状構造部分に置換基を有していてもよい。例えば、脂肪族モノカルボン酸としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデシル酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸およびリノ−ル酸を挙げることができる。また、芳香族モノカルボン酸の例としては、安息香酸、トルイル酸、ナフタレンカルボン酸、メチルナフタレンカルボン酸およびフェニル酢酸を挙げることができ、脂環族モノカルボン酸の例としては、シクロヘキサンカルボン酸を挙げることができる。   As the molecular weight modifier, monocarboxylic acid and monoalcohol can be used. Examples of the monocarboxylic acid include aliphatic monocarboxylic acids having 2 to 30 carbon atoms, aromatic monocarboxylic acids, and alicyclic monocarboxylic acids. In addition, the aromatic monocarboxylic acid and the alicyclic monocarboxylic acid may have a substituent in the cyclic structure portion. For example, aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecylic acid, myristic acid, palmitic acid, stearic acid, oleic acid and linoleic acid. be able to. Examples of aromatic monocarboxylic acids include benzoic acid, toluic acid, naphthalenecarboxylic acid, methylnaphthalenecarboxylic acid and phenylacetic acid. Examples of alicyclic monocarboxylic acids include cyclohexanecarboxylic acid. Can be mentioned.

このような分子量調整剤は、上述のジカルボン酸成分単位(a−1)と脂環族ジアルコール成分単位(a−2)との反応の際に、反応系におけるジカルボン酸成分単位(a−1)の合計量1モルに対して、通常は、0〜0.07モル、好ましくは0〜0.05モルの量で使用される。   Such a molecular weight regulator is obtained by reacting the dicarboxylic acid component unit (a-1) with the alicyclic dialcohol component unit (a-2) in the reaction system (a-1). ) Is usually used in an amount of 0 to 0.07 mol, preferably 0 to 0.05 mol.

[低分子量熱可塑性樹脂(B)]
本発明で使用する低分子量熱可塑性樹脂(B)は、ポリオレフィン骨格と芳香族炭化水素構造とを有し、デカリン中135℃で測定した極限粘度[η]が、0.04〜1.0dl/gである。この極限粘度の好ましい下限は0.05dl/g、より好ましくは0.07dl/gである。一方、好ましい上限は0.5dl/g、より好ましくは0.2dl/gである。極限粘度が低すぎると本発明の反射材用熱可塑性樹脂組成物から低分子量熱可塑性樹脂(B)が必要以上にブリードアウトし易くなり、反射率が低下する可能性がある。また、成形加工時に臭気や発煙の原因となりやすい。一方で極限粘度が高すぎると、溶融粘度は勿論のこと、反射率向上効果が不充分になることがある。
[Low molecular weight thermoplastic resin (B)]
The low molecular weight thermoplastic resin (B) used in the present invention has a polyolefin skeleton and an aromatic hydrocarbon structure, and has an intrinsic viscosity [η] measured at 135 ° C. in decalin of 0.04 to 1.0 dl / g. The preferable lower limit of this intrinsic viscosity is 0.05 dl / g, more preferably 0.07 dl / g. On the other hand, the preferable upper limit is 0.5 dl / g, more preferably 0.2 dl / g. If the intrinsic viscosity is too low, the low molecular weight thermoplastic resin (B) tends to bleed out more than necessary from the thermoplastic resin composition for a reflector of the present invention, and the reflectance may be lowered. In addition, it tends to cause odor and smoke during molding. On the other hand, if the intrinsic viscosity is too high, not only the melt viscosity but also the reflectance improving effect may be insufficient.

低分子量熱可塑性樹脂(B)の140℃における溶融粘度(mPa・s)は10〜2000mPa・sであることが好ましく、20〜1500mPa・sであることがさらに好ましく、30〜1200mPa・sであることが特に好ましい。本発明の低分子量熱可塑性樹脂(B)の140℃における溶融粘度が低すぎると反射材用熱可塑性樹脂組成物から低分子量熱可塑性樹脂(B)が必要以上にブリードアウトし易くなり、反射率が低下する可能性がある。また、成形加工時に臭気や発煙の原因となりやすい。一方で低分子量熱可塑性樹脂(B)の140℃における溶融粘度が高すぎると、樹脂組成物の溶融粘度は勿論のこと、反射率向上効果が不充分になることがある。上記粘度はブルックフィールド粘度計で測定し得る。   The melt viscosity (mPa · s) at 140 ° C. of the low molecular weight thermoplastic resin (B) is preferably 10 to 2000 mPa · s, more preferably 20 to 1500 mPa · s, and more preferably 30 to 1200 mPa · s. It is particularly preferred. If the melt viscosity at 140 ° C. of the low molecular weight thermoplastic resin (B) of the present invention is too low, the low molecular weight thermoplastic resin (B) tends to bleed out more than necessary from the thermoplastic resin composition for a reflector, and the reflectance May be reduced. In addition, it tends to cause odor and smoke during molding. On the other hand, if the melt viscosity at 140 ° C. of the low molecular weight thermoplastic resin (B) is too high, not only the melt viscosity of the resin composition but also the effect of improving the reflectivity may be insufficient. The viscosity can be measured with a Brookfield viscometer.

このような低分子量熱可塑性樹脂(B)としては、通常、スチレン類等に代表される芳香族炭化水素構造を有するビニル化合物と、ポリオレフィンワックスと称されるワックス(以下、ポリオレフィンワックス(b)と称することがある)とを、ニトリルや過酸化物などのラジカル発生剤の存在下で反応させて得られる所謂変性ワックスを代表例として挙げることが出来る。   As such a low molecular weight thermoplastic resin (B), usually, a vinyl compound having an aromatic hydrocarbon structure represented by styrene and the like, and a wax called polyolefin wax (hereinafter referred to as polyolefin wax (b)) As a representative example, a so-called modified wax obtained by reacting in the presence of a radical generator such as nitrile or peroxide can be given.

本発明の低分子量熱可塑性樹脂(B)は、特に、上記ポリオレフィンワックス(b)100質量部に対して、スチレンなどの芳香族炭化水素構造を有するビニル化合物を1〜900質量部、より好ましくは10〜300質量部、特に好ましくは20〜200質量部導入したものであること望ましい。芳香族炭化水素由来の構造が少な過ぎると、後述する反射率の向上効果が不充分となることがある。一方、芳香族炭化水素由来の構造が多過ぎると臭気が強くなることがある。   The low molecular weight thermoplastic resin (B) of the present invention is particularly preferably 1 to 900 parts by mass of a vinyl compound having an aromatic hydrocarbon structure such as styrene with respect to 100 parts by mass of the polyolefin wax (b). It is desirable to introduce 10 to 300 parts by mass, particularly preferably 20 to 200 parts by mass. If the structure derived from the aromatic hydrocarbon is too small, the effect of improving the reflectance described later may be insufficient. On the other hand, if there are too many structures derived from aromatic hydrocarbons, the odor may become strong.

このような低分子量熱可塑性樹脂(B)の芳香族炭化水素構造の含有率は、調製時のポリオレフィンワックス(b)と芳香族ビニル化合物と仕込み比や、100〜600MHzクラスの核磁気共鳴スペクトル分析装置(NMR)による構造特定と、フェニル構造炭素と他の炭素との吸収強度の比や、フェニル構造水素と他の炭素との吸収強度の比等の常法によって特定することが出来る。勿論、構造特定には赤外吸収スペクトル分析などを併用することも可能である。   The content of the aromatic hydrocarbon structure of such a low molecular weight thermoplastic resin (B) is determined by the preparation ratio of the polyolefin wax (b) and the aromatic vinyl compound at the time of preparation, and nuclear magnetic resonance spectrum analysis of 100 to 600 MHz class. It can be identified by conventional methods such as structure identification by apparatus (NMR), ratio of absorption intensity between phenyl structure carbon and other carbon, ratio of absorption intensity between phenyl structure hydrogen and other carbon, and the like. Of course, infrared absorption spectrum analysis or the like can also be used in combination for structure identification.

[芳香族炭化水素構造を有するビニル化合物]
前記芳香族炭化水素構造を有するビニル化合物の種類に特に制限はないが、例えばスチレン、α−メチルスチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレンなどを挙げることが出来る。これらの中でも好ましくはスチレンである。
[Vinyl compound having an aromatic hydrocarbon structure]
Although there is no restriction | limiting in particular in the kind of vinyl compound which has the said aromatic hydrocarbon structure, For example, styrene, (alpha) -methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene etc. can be mentioned. Among these, styrene is preferable.

[ポリオレフィンワックス(b)]
前記ポリオレフィンワックス(b)としては、エチレン、プロピレン、1−ブテン1−ヘキセン、4−メチル−1−ペンテン、1−デセンなどのα−オレフィンの単独重合体または2種以上のα−オレフィンを共重合したエチレン系ワックス、プロピレン系ワックス、4−メチル−1−ペンテン系ワックスなどを挙げることができる。これらのポリオレフィンワックスの中では、エチレンを主成分とするエチレン系ワックスが好適である。
[Polyolefin wax (b)]
Examples of the polyolefin wax (b) include homopolymers of α-olefins such as ethylene, propylene, 1-butene 1-hexene, 4-methyl-1-pentene, 1-decene, or two or more α-olefins. Polymerized ethylene wax, propylene wax, 4-methyl-1-pentene wax and the like can be mentioned. Among these polyolefin waxes, ethylene waxes containing ethylene as a main component are suitable.

前記ポリオレフィンワックス(b)の数平均分子量は、400〜12000であることが好ましく、500〜5000であることがさらに好ましく、600〜2000であることが特に好ましい。ポリオレフィンワックス(b)の分子量が低すぎると低分子量熱可塑性樹脂(B)が、反射材用熱可塑性樹脂組成物から必要以上にブリードアウトし易くなり、反射率が低下する可能性がある。一方で分子量が高すぎると、樹脂組成物の溶融粘度は勿論のこと、反射率向上効果が不充分になることがある。   The number average molecular weight of the polyolefin wax (b) is preferably 400 to 12000, more preferably 500 to 5000, and particularly preferably 600 to 2000. If the molecular weight of the polyolefin wax (b) is too low, the low molecular weight thermoplastic resin (B) tends to bleed out more than necessary from the thermoplastic resin composition for a reflector, and the reflectance may be lowered. On the other hand, if the molecular weight is too high, not only the melt viscosity of the resin composition but also the effect of improving the reflectance may be insufficient.

数平均分子量は、下記の様な条件でのGPC測定で求めることが出来る。
装置 : ゲル浸透クロマトグラフAlliance GPC2000型(Waters社製)
溶剤 : o−ジクロロベンゼン
カラム: TSKgelカラム(東ソー社製)×4
流速 : 1.0 ml/分
試料 : 0.15mg/mL o−ジクロロベンゼン溶液
温度 : 140℃
検量線: 市販の単分散標準ポリスチレンを用いて作成。
分子量換算 : PE換算/汎用較正法
The number average molecular weight can be determined by GPC measurement under the following conditions.
Apparatus: Gel permeation chromatograph Alliance GPC2000 (manufactured by Waters)
Solvent: o-dichlorobenzene column: TSKgel column (manufactured by Tosoh Corporation) x 4
Flow rate: 1.0 ml / min Sample: 0.15 mg / mL o-dichlorobenzene solution temperature: 140 ° C.
Calibration curve: Prepared using commercially available monodisperse standard polystyrene.
Molecular weight conversion: PE conversion / General calibration method

なお、汎用較正の計算には、以下に示すMark−Houwink粘度式の下記の係数を用い得る。
ポリスチレン(PS)の係数 :KPS=1.38×10−4,aPS=0.70
ポリエチレン(PE)の係数 :KPE=5.06×10−4,aPE=0.70
In addition, the following coefficient of the Mark-Houwink viscosity formula shown below can be used for calculation of general-purpose calibration.
Coefficient of polystyrene (PS): KPS = 1.38 × 10 −4 , aPS = 0.70
Coefficient of polyethylene (PE): KPE = 0.06 × 10 −4 , aPE = 0.70

[熱可塑性樹脂(B)の調製方法]
熱可塑性樹脂(B)は、上述のように、ポリオレフィンワックス(b)に、芳香族炭化水素構造を有するビニル化合物を導入することにより得られる。
ポリオレフィンワックス(b)は、例えば対応するオレフィンを低圧や中圧で重合することによって得られる。重合に用いる重合触媒の例には、特開昭57−63310号公報、特開昭58−83006号公報、特開平3−706号公報、特許第3476793号公報、特開平4−218508号公報、特開2003−105022号公報等に記載されているマグネシウム担持型チタン触媒や、国際公開第01/53369号、国際公開第01/27124号、特開平3−193796号公報あるいは特開平2−41303号公報などに記載のメタロセン触媒などを代表例とする遷移金属含有オレフィン重合用触媒が好適に用いられる。
また、対応するポリエチレンやポリプロピレンなどのオレフィン重合体を常法により熱分解やラジカル分解する事によって得ることもできる。
[Method for preparing thermoplastic resin (B)]
As described above, the thermoplastic resin (B) is obtained by introducing a vinyl compound having an aromatic hydrocarbon structure into the polyolefin wax (b).
The polyolefin wax (b) can be obtained, for example, by polymerizing a corresponding olefin at a low pressure or an intermediate pressure. Examples of the polymerization catalyst used for the polymerization include JP-A-57-63310, JP-A-58-83006, JP-A-3-706, JP-A-3476793, JP-A-4-218508, Magnesium-supported titanium catalysts described in JP 2003-105022 A, etc., WO 01/53369, WO 01/27124, JP 3-19396 A, or JP 2-41303 A. A transition metal-containing olefin polymerization catalyst represented by a metallocene catalyst described in a gazette or the like as a representative example is preferably used.
It can also be obtained by subjecting a corresponding olefin polymer such as polyethylene or polypropylene to thermal decomposition or radical decomposition by a conventional method.

また、ポリオレフィンワックス(b)への芳香族構造の導入方法としては、前述のニトリルや過酸化物などのラジカル発生剤の存在下でポリオレフィンワックス(b)及び芳香族炭化水素構造を有するビニル化合物とを反応させる方法の他、前記のオレフィン重合体とポリスチレンなどの芳香族ビニル化合物の重合体との存在下で熱分解やラジカル分解する方法も好適な例の一つである。   As a method for introducing an aromatic structure into the polyolefin wax (b), the polyolefin wax (b) and a vinyl compound having an aromatic hydrocarbon structure in the presence of the radical generator such as nitrile and peroxide described above In addition to the method of reacting, a method of thermal decomposition or radical decomposition in the presence of the olefin polymer and a polymer of an aromatic vinyl compound such as polystyrene is also a suitable example.

[白色顔料(C)]
本発明で使用する白色顔料(C)としては、ポリエステル樹脂(A)等と併用して該樹脂を白色化することで、光反射機能を向上できるものであれば良く、具体的には、酸化チタン、酸化亜鉛、硫化亜鉛、鉛白、硫酸亜鉛、硫酸バリウム、炭酸カルシウム、酸化アルミナなどが上げられる。これらの白色顔料は、単独で用いてもよく、二種以上組み合わせて用いてもよい。また、これらの白色顔料はシランカップリング剤あるいはチタンカップリング剤などで処理して使用することもできる。例えばビニルトリエトキシシラン、2−アミノプロピルトリエトキシシラン、2−グリシドキシプロピルトリエトキシシランなどのシラン系化合物で表面処理されていてもよい。白色顔料としては特に酸化チタンが好ましい。酸化チタンを使用することにより反射率、隠蔽性といった光学特性が向上する。酸化チタンはルチル型が好ましい。酸化チタンの粒子径は、0.1〜0.5μm、好ましくは0.15〜0.3μmである。
[White pigment (C)]
The white pigment (C) used in the present invention is not limited as long as it can improve the light reflection function by whitening the resin in combination with the polyester resin (A). Examples include titanium, zinc oxide, zinc sulfide, lead white, zinc sulfate, barium sulfate, calcium carbonate, and alumina oxide. These white pigments may be used alone or in combination of two or more. These white pigments can also be used after being treated with a silane coupling agent or a titanium coupling agent. For example, the surface treatment may be performed with a silane compound such as vinyltriethoxysilane, 2-aminopropyltriethoxysilane, or 2-glycidoxypropyltriethoxysilane. As the white pigment, titanium oxide is particularly preferable. By using titanium oxide, optical characteristics such as reflectivity and concealability are improved. Titanium oxide is preferably a rutile type. The particle diameter of titanium oxide is 0.1 to 0.5 μm, preferably 0.15 to 0.3 μm.

これらの白色顔料は、反射率を均一化させるためなどの理由で、アスペクト比の小さい、すなわち球状に近いものが好ましい。   These white pigments preferably have a small aspect ratio, that is, a spherical shape, for the purpose of making the reflectance uniform.

[無機充填材(D)]
本発明で使用する無機充填材(D)は、公知の化合物を制限無く用いることが出来る。
[Inorganic filler (D)]
As the inorganic filler (D) used in the present invention, known compounds can be used without limitation.

このような無機充填剤(D)をポリエステル樹脂(A)と併用することで、該樹脂の強度を向上できる。   By using such an inorganic filler (D) in combination with the polyester resin (A), the strength of the resin can be improved.

このような無機充填剤としては、具体的には、繊維状、粉状、粒状、板状、針状、クロス状、マット状等の高いアスペクト比を有する形状の種々の無機補強材を使用することが好ましい。具体的にはガラス繊維、炭酸カルシウムなどの炭酸塩のウィスカー、ハイドロタルサイト、チタン酸カリウムなどのチタン酸塩などを挙げることができる。上記のような無機充填材の平均長さは、通常は、10〜100μm、好ましくは10〜50μmの範囲にあり、アスペクト比(L(繊維の平均長)/D(繊維の平均外径))が、通常は1〜100、好ましくは5〜70の範囲にある。平均長さおよびアスペクト比がこのような範囲内にある無機充填剤を使用すると、強度の向上や線膨張係数の低下などの面で好ましい。   As such an inorganic filler, specifically, various inorganic reinforcing materials having a high aspect ratio such as a fiber shape, a powder shape, a granular shape, a plate shape, a needle shape, a cloth shape, and a mat shape are used. It is preferable. Specific examples include glass fibers, carbonate whiskers such as calcium carbonate, hydrotalcite, and titanates such as potassium titanate. The average length of the inorganic filler as described above is usually in the range of 10 to 100 μm, preferably 10 to 50 μm, and the aspect ratio (L (average fiber length) / D (average fiber outer diameter)) However, it is usually in the range of 1 to 100, preferably 5 to 70. Use of an inorganic filler having an average length and an aspect ratio in such a range is preferable in terms of improvement in strength and reduction in linear expansion coefficient.

[その他の添加剤]
本発明では、発明の効果を損なわない範囲で、用途に応じて、以下の添加剤、すなわち、酸化防止剤(フェノール類、アミン類、イオウ類、リン類等)、耐熱安定剤(ラクトン化合物、ビタミンE類、ハイドロキノン類、ハロゲン化銅、ヨウ素化合物等)、光安定剤(ベンゾトリアゾール類、トリアジン類、ベンゾフェノン類、ベンゾエート類、ヒンダードアミン類、オギザニリド類等)、他の重合体(オレフィン類、変性ポリオレフィン類、エチレン・プロピレン共重合体、エチレン・1−ブテン共重合体等のオレフィン共重合体、プロピレン・1−ブテン共重合体等のオレフィン共重合体、ポリスチレン、ポリアミド、ポリカーボネート、ポリアセタール、ポリスルフォン、ポリフェニレンオキシド、フッ素樹脂、シリコーン樹脂、LCP等)、難燃剤(臭素系、塩素系、リン系、アンチモン系、無機系等)蛍光増白剤、可塑剤、増粘剤、帯電防止剤、離型剤、顔料、結晶核剤、種々公知の配合剤を添加することができる。
[Other additives]
In the present invention, the following additives, that is, antioxidants (phenols, amines, sulfurs, phosphorus, etc.), heat stabilizers (lactone compounds, Vitamins E, hydroquinones, copper halides, iodine compounds, etc.), light stabilizers (benzotriazoles, triazines, benzophenones, benzoates, hindered amines, ogizanides, etc.), other polymers (olefins, modified) Polyolefins, ethylene / propylene copolymers, olefin copolymers such as ethylene / 1-butene copolymer, olefin copolymers such as propylene / 1-butene copolymer, polystyrene, polyamide, polycarbonate, polyacetal, polysulfone , Polyphenylene oxide, fluorine resin, silicone resin, LC Etc.), flame retardants (bromine, chlorine, phosphorus, antimony, inorganic, etc.), fluorescent brighteners, plasticizers, thickeners, antistatic agents, mold release agents, pigments, crystal nucleating agents, variously known The compounding agent can be added.

[本発明の反射材用熱可塑性樹脂組成物]
本発明の反射材用熱可塑性樹脂組成物は、上記の各成分を、公知の方法、例えばヘンシェルミキサー、Vブレンダー、リボンブレンダー、タンブラーブレンダーなどで混合する方法、あるいは混合後さらに一軸押出機、多軸押出機、ニーダー、バンバリーミキサーなどで溶融混練後、造粒あるいは粉砕する方法により製造することができる。
[Thermoplastic resin composition for reflective material of the present invention]
The thermoplastic resin composition for a reflective material of the present invention is prepared by mixing the above-described components by a known method such as a Henschel mixer, a V blender, a ribbon blender, a tumbler blender or the like, or after mixing, a single screw extruder, It can be produced by a method of granulation or pulverization after melt-kneading with a shaft extruder, kneader, Banbury mixer or the like.

本発明の反射材用熱可塑性樹脂組成物は、ポリエステル樹脂(A)、熱可塑性樹脂(B)、白色顔料(C)および無機充填材(D)の総量(100質量%)中にポリエステル樹脂(A)を30〜85質量%、好ましくは35〜80質量%、より好ましくは40〜75質量%、さらに45〜70質量%の割合で含むことが好ましい。ポリエステル樹脂(A)が30質量%以上、85質量%以下であると、成形性を損なうことなく、はんだリフロー工程に耐え得る耐熱性に優れた反射材用熱可塑性樹脂組成物を得ることができる。   The thermoplastic resin composition for a reflective material of the present invention comprises a polyester resin (A), a thermoplastic resin (B), a white pigment (C), and a total amount (100% by mass) of an inorganic filler (D). It is preferable that A) is contained in a proportion of 30 to 85% by mass, preferably 35 to 80% by mass, more preferably 40 to 75% by mass, and further 45 to 70% by mass. When the polyester resin (A) is 30% by mass or more and 85% by mass or less, it is possible to obtain a thermoplastic resin composition for a reflector having excellent heat resistance that can withstand a solder reflow process without impairing moldability. .

また、本発明の反射材用熱可塑性樹脂組成物は、ポリエステル樹脂(A)、熱可塑性樹脂(B)、白色顔料(C)および無機充填材(D)の総量(100質量%)中に熱可塑性樹脂(B)を、0.1〜10質量%、好ましくは0.5〜5質量%、さらに1〜4質量%の割合で含むことが好ましい。   Moreover, the thermoplastic resin composition for a reflective material of the present invention is heated in the total amount (100% by mass) of the polyester resin (A), the thermoplastic resin (B), the white pigment (C), and the inorganic filler (D). It is preferable to contain the plastic resin (B) in a proportion of 0.1 to 10% by mass, preferably 0.5 to 5% by mass, and further 1 to 4% by mass.

本発明の熱可塑性樹脂組成物は、特定の量熱可塑性樹脂(B)を有しているので、成形性に優れ、さらに反射率が従来よりも高い材料を得ることが出来る。この理由は定かではないが、以下の様に推測される。   Since the thermoplastic resin composition of the present invention has a specific amount of the thermoplastic resin (B), it is possible to obtain a material having excellent moldability and higher reflectivity than before. The reason for this is not clear, but is presumed as follows.

芳香族炭化水素構造を有する重合体は、その光沢性が高いことが知られている。また、比較的低分子量の重合体は、樹脂組成物の表面に偏在し易い傾向があると考えられる。本発明の熱可塑性樹脂(B)は、比較的低分子量であり、かつ芳香族炭化水素構造を有することから、反射材用熱可塑性樹脂組成物の表面に偏在しやすく、反射用熱可塑性樹脂組成物の反射率が優れると推測される。
また、また芳香族炭化水素構造はポリエステル樹脂(A)のエステル構造など、極性構造と比較的馴染みが良いため、樹脂組成物内で安定であり、反射率の経時変化が少ないことに繋がっていると推測される。
A polymer having an aromatic hydrocarbon structure is known to have high gloss. Moreover, it is considered that the relatively low molecular weight polymer tends to be unevenly distributed on the surface of the resin composition. Since the thermoplastic resin (B) of the present invention has a relatively low molecular weight and has an aromatic hydrocarbon structure, it tends to be unevenly distributed on the surface of the thermoplastic resin composition for a reflector, and the thermoplastic resin composition for reflection It is estimated that the reflectance of the object is excellent.
In addition, since the aromatic hydrocarbon structure is relatively familiar with the polar structure such as the ester structure of the polyester resin (A), the aromatic hydrocarbon structure is stable in the resin composition and leads to less change in reflectance over time. It is guessed.

また、本発明の反射材用熱可塑性樹脂組成物は、ポリエステル樹脂(A)、熱可塑性樹脂(B)、白色顔料(C)および無機充填材(D)の総量(100質量%)中に白色顔料(C)を、5〜50質量%、好ましくは10〜40質量%、さらに好ましくは10〜30質量%の割合で含む。白色顔料(C)の量が5質量%以上であると、反射率等の十分な光の反射特性を得ることができる。また50質量%以下であれば、成形性を損なうことがなく好ましい。   Moreover, the thermoplastic resin composition for a reflective material of the present invention is white in the total amount (100% by mass) of the polyester resin (A), the thermoplastic resin (B), the white pigment (C), and the inorganic filler (D). The pigment (C) is contained in a proportion of 5 to 50% by mass, preferably 10 to 40% by mass, and more preferably 10 to 30% by mass. When the amount of the white pigment (C) is 5% by mass or more, sufficient light reflection characteristics such as reflectance can be obtained. Moreover, if it is 50 mass% or less, a moldability is not impaired and it is preferable.

また、本発明の反射材用熱可塑性樹脂組成物は、ポリエステル樹脂(A)、熱可塑性樹脂(B)、白色顔料(C)および無機充填材(D)の総量(100質量%)中に、無機充填材(D)を、10〜50質量%、好ましくは10〜40質量%、さらに好ましくは10〜30質量%の割合で含むことが好ましい。無機充填材(D)の量が10質量%以上であると、射出成形時やはんだリフロー工程で成形物が変形することが無く、また、反射率の経時安定性に優れる傾向がある。また50質量%以下であると、成形性および外観が良好な成形品を得ることができる。   In addition, the thermoplastic resin composition for a reflective material of the present invention includes a polyester resin (A), a thermoplastic resin (B), a white pigment (C), and an inorganic filler (D) in the total amount (100% by mass). It is preferable to contain the inorganic filler (D) in a proportion of 10 to 50% by mass, preferably 10 to 40% by mass, and more preferably 10 to 30% by mass. When the amount of the inorganic filler (D) is 10% by mass or more, the molded product is not deformed at the time of injection molding or a solder reflow process, and the stability of reflectance with time tends to be excellent. Moreover, a molded article with favorable moldability and external appearance can be obtained as it is 50 mass% or less.

上記のような組成範囲にある、本発明の反射材用熱可塑性樹脂組成物は、機械的特性、反射率および耐熱性に優れ、反射板用途に好適に使用することができる。   The thermoplastic resin composition for a reflector of the present invention in the above composition range is excellent in mechanical properties, reflectance and heat resistance, and can be suitably used for reflector applications.

[用途]
本発明の反射材用熱可塑性樹脂組成物は、成形物の機械強度が高く、耐熱性に優れ、流動性、成形性に優れ、反射率が高く、経時的な反射率低下が少ないことから、種々の反射板に好適であり、特に半導体レーザーや発光ダイオード等の光源からの光線を反射する反射板に好適である。
[Usage]
The thermoplastic resin composition for a reflector of the present invention has high mechanical strength of a molded article, excellent heat resistance, excellent fluidity, moldability, high reflectivity, and little decrease in reflectivity over time. It is suitable for various reflectors, and particularly suitable for a reflector that reflects light rays from a light source such as a semiconductor laser or a light emitting diode.

2.反射板、発光ダイオード素子用反射板
本発明の反射板は、上述の反射材用熱可塑性樹脂組成物を任意の形状に硬化したものとし得る。
反射板とは、少なくとも光を放射する方向の面が開放された、または開放されていないケーシングやハウジング一般を包括し、より具体的には、箱状または函状の形状を有するもの、漏斗状の形状を有するもの、お椀状の形状を有するもの、パラボラ状の形状を有するもの、円柱状の形状を有するもの、円錐状の形状を有するもの、ハニカム状の形状を有するもの等、光を反射する面(平面、球面、曲面等の面)を有する三次元形状の成形体一般をも包含する。
2. Reflector, reflector for light-emitting diode element The reflector of the present invention can be obtained by curing the thermoplastic resin composition for a reflector described above into an arbitrary shape.
Reflector includes general casings and housings that are open or not open at least in the direction of light emission. More specifically, the reflector has a box shape or a box shape, or a funnel shape. Reflecting light, such as those having the shape of a bowl, those having a bowl shape, those having a parabolic shape, those having a cylindrical shape, those having a conical shape, those having a honeycomb shape, etc. In general, a three-dimensional shaped article having a surface (plane, spherical surface, curved surface, or the like) is included.

本発明の反射板の用途として、特に好ましくは発光ダイオード素子用の反射板が挙げられる。本発明の発光ダイオード(LED)素子用反射板は、上述の反射材用熱可塑性樹脂組成物を、射出成形、特にフープ成形等の金属のインサート成形、溶融成形、押出し成形、インフレーション成形、ブロー成形等の加熱成形により、所望の形状に賦形することで得られ、該反射板にLED素子とその他の部品を組み込み、封止用樹脂により封止、接合、接着等して使用される。   The use of the reflector of the present invention is particularly preferably a reflector for a light-emitting diode element. The light-emitting diode (LED) element reflector of the present invention is obtained by injection-molding the above-mentioned thermoplastic resin composition for reflectors, particularly metal insert molding such as hoop molding, melt molding, extrusion molding, inflation molding, and blow molding. It is obtained by shaping into a desired shape by thermoforming, etc., and the LED element and other parts are incorporated into the reflecting plate and used by sealing, bonding, bonding, etc. with a sealing resin.

また、本発明の熱可塑性樹脂組成物および反射板はLED用途のみならず、その他の光線を反射する用途にも適応することができる。具体的な例としては、各種電気電子部品、室内照明、天井照明、屋外照明、自動車照明、表示機器、ヘッドライト等の発光装置用の反射板として使用できる。   Moreover, the thermoplastic resin composition and reflector of the present invention can be applied not only to LED applications but also to other applications that reflect light rays. As a specific example, it can be used as a reflector for light emitting devices such as various electric and electronic components, indoor lighting, ceiling lighting, outdoor lighting, automobile lighting, display equipment, and headlights.

[曲げ試験(靭性)]
下記の射出成形機を用い、下記の成形条件で調製した長さ64mm、幅6mm、厚さ0.8mmの試験片を、温度23℃、窒素雰囲気下で24時間放置した。次いで、温度23℃、相対湿度50%の雰囲気下で曲げ試験機:NTESCO社製 AB5、スパン26mm、曲げ速度5mm/分で曲げ試験を行い、曲げ強度、歪量、弾性率、およびその試験片を破壊するのに要するエネルギー(靭性)を測定した。
成形機:(株)ソディック プラステック、ツパールTR40S3A
成形機シリンダー温度:融点(Tm)+10℃、金型温度:120℃
[Bending test (toughness)]
Using the following injection molding machine, a test piece having a length of 64 mm, a width of 6 mm, and a thickness of 0.8 mm prepared under the following molding conditions was allowed to stand at a temperature of 23 ° C. and a nitrogen atmosphere for 24 hours. Next, a bending test was performed at a temperature of 23 ° C. and a relative humidity of 50% under a bending test machine: ABSCO, AB5, span 26 mm, bending speed 5 mm / min, bending strength, strain amount, elastic modulus, and a test piece thereof. The energy (toughness) required to break down was measured.
Molding machine: Sodick Plustech Co., Ltd. Tupar TR40S3A
Molding machine cylinder temperature: melting point (Tm) + 10 ° C., mold temperature: 120 ° C.

[リフロー耐熱性]
下記の射出成形機を用い、下記の成形条件で調製した長さ64mm、幅6mm、厚さ0.8mmの試験片を、温度40℃、相対湿度95%で96時間調湿した。
成形機:(株)ソディック プラステック、ツパールTR40S3A
成形機シリンダー温度:融点(Tm)+10℃、金型温度:120℃
エアーリフローはんだ装置(エイテックテクトロン(株)製AIS−20−82−C)を用いて、図1に示す温度プロファイルのリフロー工程を行った。
[Reflow heat resistance]
Using the following injection molding machine, a specimen having a length of 64 mm, a width of 6 mm, and a thickness of 0.8 mm prepared under the following molding conditions was conditioned for 96 hours at a temperature of 40 ° C. and a relative humidity of 95%.
Molding machine: Sodick Plustech Co., Ltd. Tupar TR40S3A
Molding machine cylinder temperature: melting point (Tm) + 10 ° C., mold temperature: 120 ° C.
The reflow process of the temperature profile shown in FIG. 1 was performed using an air reflow soldering apparatus (AIS-20-82-C manufactured by Atec Techtron Co., Ltd.).

上記調湿処理を行った試験片を、厚み1mmのガラスエポキシ基板上に載置すると共に、この基板上に温度センサーを設置して、プロファイルを測定した。図1において、所定の速度で温度230℃まで昇温。次いで20秒間で所定の温度(aは270℃、bは265℃、cは260℃、dは255℃、eは250℃)まで加熱した後230℃まで降温した場合において、試験片が溶融せず、且つ表面にブリスターが発生しない設定温度の最大値を求め、この設定温度の最大値をリフロー耐熱温度とした。実施例、比較例の結果を表1に示した。   The test piece subjected to the humidity conditioning treatment was placed on a glass epoxy substrate having a thickness of 1 mm, and a temperature sensor was placed on the substrate to measure the profile. In FIG. 1, the temperature is raised to a temperature of 230 ° C. at a predetermined rate. Next, when the sample is heated to a predetermined temperature (a is 270 ° C., b is 265 ° C., c is 260 ° C., d is 255 ° C., and e is 250 ° C.) for 20 seconds and then cooled to 230 ° C., the test piece melts. The maximum value of the set temperature at which no blisters occur on the surface was determined, and the maximum value of the set temperature was defined as the reflow heat resistance temperature. The results of Examples and Comparative Examples are shown in Table 1.

一般的に、吸湿した試験片のリフロー耐熱温度は、絶乾状態のそれと比較して低い傾向がある。   In general, the reflow heat resistance temperature of the moisture-absorbed test piece tends to be lower than that in the absolutely dry state.

[ポリエステル樹脂(A)の極限粘度[η]]
ポリエステル樹脂0.5gをフェノールとテトラクロロエタンの50/50wt%の混合溶媒に溶解し、ウベローデ粘度計を使用し、25℃±0.05℃の条件下で試料溶液の流下秒数を測定し、以下の数式(2)に基づき算出した。
[η]=ηSP/[C(1+0.205ηSP)] (2)
[η]:極限粘度(dl/g)
ηSP:比粘度
C:試料濃度(g/dl)
t:試料溶液の流下秒数(秒)
t0:ブランク硫酸の流下秒数(秒)
ηSP=(t−t0)/t0
[Intrinsic viscosity of polyester resin (A) [η]]
Dissolve 0.5 g of polyester resin in a 50/50 wt% mixed solvent of phenol and tetrachloroethane, measure the number of seconds that the sample solution flows under conditions of 25 ° C. ± 0.05 ° C. using an Ubbelohde viscometer, It calculated based on the following numerical formula (2).
[Η] = ηSP / [C (1 + 0.205ηSP)] (2)
[Η]: Intrinsic viscosity (dl / g)
ηSP: specific viscosity C: sample concentration (g / dl)
t: Number of seconds that the sample solution flows (seconds)
t0: number of seconds (seconds) that the blank sulfuric acid flows down
ηSP = (t−t0) / t0

[熱可塑性樹脂(B)の極限粘度[η]の測定方法]
デカリン溶媒を用いて、135℃で測定した。サンプル約20mgを、デカリン15mlに溶解し、135℃のオイルバス中で比粘度ηspを測定した。このデカリン溶液に、デカリン溶媒を5ml追加して希釈した後に、同様にして比粘度ηspを測定した。この希釈操作をさらに2回繰り返し、濃度(C)を0に外挿した時のηsp/Cの値を極限粘度として求めた。
[η]= lim(ηsp/C) (C→0[分子量])
[Method of measuring intrinsic viscosity [η] of thermoplastic resin (B)]
It measured at 135 degreeC using the decalin solvent. About 20 mg of the sample was dissolved in 15 ml of decalin, and the specific viscosity ηsp was measured in an oil bath at 135 ° C. After diluting the decalin solution with 5 ml of decalin solvent, the specific viscosity ηsp was measured in the same manner. This dilution operation was further repeated twice, and the value of ηsp / C when the concentration (C) was extrapolated to 0 was determined as the intrinsic viscosity.
[Η] = lim (ηsp / C) (C → 0 [molecular weight])

[熱可塑性樹脂(B)の140℃の溶融粘度の測定方法]
ブルックフィールド粘度計を用いて140℃で測定した。
[Measuring method of 140 ° C. melt viscosity of thermoplastic resin (B)]
Measurements were made at 140 ° C. using a Brookfield viscometer.

[融点(Tm)]
樹脂サンプル約10mgを測定用容器に秤量し、常法に基づき行った。即ち、PerkinElemer社製DSC7を用いて、前記サンプルを一旦330℃で5分間保持し、次いで10℃/分の速度で23℃まで降温せしめた後、10℃/分で昇温した。このときの融解に基づく吸熱ピ−クの頂点を融点とした。
[Melting point (Tm)]
About 10 mg of a resin sample was weighed into a measurement container, and was performed based on a conventional method. That is, using a DSC7 manufactured by PerkinElmer, the sample was once held at 330 ° C. for 5 minutes, then cooled to 23 ° C. at a rate of 10 ° C./minute, and then heated at 10 ° C./minute. The peak of the endothermic peak based on the melting at this time was defined as the melting point.

[初期反射率]
下記の成形機を用い、下記の成形条件で射出成形して調製した長さ30mm、幅30mm、厚さ0.5mmの試験片を得た。
成形機:(株)ソディック プラステック社製、ツパールTR40S3A
シリンダー温度:融点(Tm)+10℃、金型温度:120℃
[Initial reflectance]
A test piece having a length of 30 mm, a width of 30 mm, and a thickness of 0.5 mm prepared by injection molding under the following molding conditions was obtained using the following molding machine.
Molding machine: Sodick Plustech Co., Ltd. Tupar TR40S3A
Cylinder temperature: melting point (Tm) + 10 ° C., mold temperature: 120 ° C.

得られた試験片をミノルタ(株)CM3500dを用いて、波長領域360nmから740nmの反射率を求めた。470nmと550nmの反射率を代表値として初期反射率を評価した。   The reflectance of the wavelength region from 360 nm to 740 nm was determined for the obtained test piece using Minolta CM3500d. The initial reflectance was evaluated using the reflectances at 470 nm and 550 nm as representative values.

[加熱後反射率]
初期反射率測定に用いたサンプルを、170℃のオーブンに2時間放置した。続いてエアーリフローはんだ装置(エイテックテクトロン(株)製AIS−20−82−C)を用いて、設定温度を20秒間保持する温度プロファイルとし、ピーク温度は設定温度より10℃高く設定したリフロー工程と同様の熱処理を施した。この際、ピーク温度はサンプル表面で260℃となるよう設定した。
[Reflectance after heating]
The sample used for the initial reflectance measurement was left in an oven at 170 ° C. for 2 hours. Subsequently, using an air reflow soldering apparatus (AIS-20-82-C manufactured by Atec Techtron Co., Ltd.), a reflow process in which the set temperature is kept for 20 seconds and the peak temperature is set 10 ° C. higher than the set temperature; A similar heat treatment was applied. At this time, the peak temperature was set to 260 ° C. on the sample surface.

このサンプルを徐冷後、初期反射率と同様の方法で反射率を測定し、加熱後反射率とした。   After slowly cooling this sample, the reflectivity was measured by the same method as the initial reflectivity to obtain the reflectivity after heating.

[実施例]
ポリエステル樹脂(A)、低分子量熱可塑性樹脂(B)、白色顔料(C)、無機充填材(D)を表1に示す割合でタンブラーブレンダーを用いて混合し、二軸押出機(株)日本製鋼所製 TEX30αにてシリンダー温度300℃で原料を溶融混錬後、ストランド状に押出し、水槽で冷却後、ペレタイザーでストランドを引き取り、カットすることでペレット状組成物を得た。次いで、得られた樹脂組成物について各物性を評価した結果を表1に示す。
[Example]
A polyester resin (A), a low molecular weight thermoplastic resin (B), a white pigment (C), and an inorganic filler (D) are mixed in a ratio shown in Table 1 using a tumbler blender, and a twin screw extruder Japan A raw material was melted and kneaded at a cylinder temperature of 300 ° C. at TEX30α manufactured by Steel Works, extruded into a strand shape, cooled in a water tank, taken up with a pelletizer, and cut to obtain a pellet-shaped composition. Next, Table 1 shows the results of evaluating the physical properties of the obtained resin composition.

・ポリエステル樹脂(A)
組成:ジカルボン酸成分単位(テレフタル酸100モル%)、ジオール成分単位(シクロヘキサンジメタノール100モル%)
極限粘度[η]:0.6dl/g
融点:290℃
・低分子量熱可塑性樹脂(B)
公知の固体状チタン触媒成分で得られたエチレン重合体系ワックスとスチレンとの混合物を公知のラジカル発生剤の存在下に反応させて、以下の低分子量熱可塑性樹脂(B)を得た。
デカリン中135℃で測定した粘度 :0.10dl/g
140℃での溶融粘度 :1,100mPs・s
スチレン単位含有率 :60質量%
・白色顔料(C)酸化チタン(粉末状、平均粒径0.21μm)
・無機充填材(D):炭酸カルシウムウィスカー(長さ25μm、アスペクト比33)
・ Polyester resin (A)
Composition: dicarboxylic acid component unit (terephthalic acid 100 mol%), diol component unit (cyclohexanedimethanol 100 mol%)
Intrinsic viscosity [η]: 0.6 dl / g
Melting point: 290 ° C
・ Low molecular weight thermoplastic resin (B)
A mixture of an ethylene polymer wax obtained with a known solid titanium catalyst component and styrene was reacted in the presence of a known radical generator to obtain the following low molecular weight thermoplastic resin (B).
Viscosity measured at 135 ° C. in decalin: 0.10 dl / g
Melt viscosity at 140 ° C .: 1,100 mPs · s
Styrene unit content: 60% by mass
White pigment (C) titanium oxide (powder, average particle size 0.21 μm)
Inorganic filler (D): calcium carbonate whisker (length 25 μm, aspect ratio 33)

[比較例]
低分子量熱可塑性樹脂(B)を添加せずにポリエステル樹脂の含有率を変更した以外は、実施例と同様に行なった。
[Comparative example]
It carried out similarly to the Example except having changed the content rate of the polyester resin, without adding a low molecular weight thermoplastic resin (B).

Figure 2013032426
Figure 2013032426

上記の様に本発明の樹脂組成物は、従来に比して成形物の機械強度、耐熱性、流動性、反射率のバランスに優れる。特に高い反射率を安定して得ることができる。本発明の樹脂組成物によれば、例えばLEDの製造工程およびリフローはんだ工程での加熱による反射率の低下が少ない反射板を得ることができると考えられる。故に、例えば、反射板用の材料として適している。特に好ましい例として、高い耐熱性と反射保持率を要求されるLED反射板用の材料として適している事を示唆している。   As described above, the resin composition of the present invention is excellent in the balance of mechanical strength, heat resistance, fluidity, and reflectance of the molded product as compared with the conventional one. In particular, a high reflectance can be obtained stably. According to the resin composition of the present invention, for example, it is considered that a reflection plate with little decrease in reflectance due to heating in the LED manufacturing process and the reflow soldering process can be obtained. Therefore, it is suitable as a material for a reflector, for example. As a particularly preferable example, it is suggested that the material is suitable as a material for an LED reflector that requires high heat resistance and reflection retention.

このような高い性能バランスを示すのは、前述した通り本発明に用いられる特定の低分子量樹脂と高耐熱樹脂との分散性、親和性が良好であるためと推測される。   The high performance balance is presumed to be because the dispersibility and affinity between the specific low molecular weight resin used in the present invention and the high heat resistant resin are good as described above.

Claims (6)

融点もしくはガラス転移温度が250℃以上であり、脂環式炭化水素構造を含むポリエステル樹脂(A)30〜85質量%、
ポリオレフィン骨格と芳香族炭化水素構造とを有し、デカリン中135℃で測定した極限粘度[η]が0.04〜1.0dl/gの熱可塑性樹脂(B)0.1〜10質量%、
白色顔料(C)5〜50質量%、および
無機充填材(D)10〜50質量%
(ただし、A,B,C,Dの合計は100質量%である)
を含む反射材用熱可塑性樹脂組成物。
30 to 85% by mass of a polyester resin (A) having a melting point or glass transition temperature of 250 ° C. or higher and containing an alicyclic hydrocarbon structure,
0.1-10% by mass of a thermoplastic resin (B) having a polyolefin skeleton and an aromatic hydrocarbon structure and having an intrinsic viscosity [η] measured in decalin at 135 ° C. of 0.04 to 1.0 dl / g,
White pigment (C) 5-50% by mass, and inorganic filler (D) 10-50% by mass
(However, the total of A, B, C, and D is 100% by mass)
A thermoplastic resin composition for reflectors, comprising:
前記ポリエステル樹脂(A)が、テレフタル酸から誘導されるジカルボン酸成分単位30〜100モル%、テレフタル酸以外の芳香族ジカルボン酸成分単位0〜70モル%、および/または炭素原子数4〜20の脂肪族ジカルボン酸成分単位0〜70モル%からなるジカルボン酸成分単位(a−1)、
並びに、炭素原子数4〜20の脂環族ジアルコール成分単位(a−2)
を含むポリエステル樹脂(A−1)である、請求項1に記載の反射材用熱可塑性樹脂組成物。
The polyester resin (A) has 30 to 100 mol% of dicarboxylic acid component units derived from terephthalic acid, 0 to 70 mol% of aromatic dicarboxylic acid component units other than terephthalic acid, and / or 4 to 20 carbon atoms. A dicarboxylic acid component unit (a-1) comprising 0 to 70 mol% of an aliphatic dicarboxylic acid component unit,
And an alicyclic dialcohol component unit (a-2) having 4 to 20 carbon atoms.
The thermoplastic resin composition for a reflector according to claim 1, which is a polyester resin (A-1) containing
前記ポリエステル樹脂(A−1)に含まれる前記脂環族ジアルコール成分単位(a−2)が、シクロヘキサン骨格を有する、請求項2に記載の反射材用熱可塑性樹脂組成物。   The thermoplastic resin composition for a reflector according to claim 2, wherein the alicyclic dialcohol component unit (a-2) contained in the polyester resin (A-1) has a cyclohexane skeleton. 前記白色顔料(C)が酸化チタンである、請求項1に記載の反射材用熱可塑性樹脂組成物。   The thermoplastic resin composition for a reflector according to claim 1, wherein the white pigment (C) is titanium oxide. 請求項1に記載の反射材用熱可塑性樹脂組成物を含む反射板。   A reflector comprising the thermoplastic resin composition for a reflector according to claim 1. 発光ダイオード素子用の反射板であることを特徴とする請求項5に記載の反射板。   6. The reflector according to claim 5, which is a reflector for a light emitting diode element.
JP2011168455A 2011-08-01 2011-08-01 Thermoplastic resin for reflector and reflector Expired - Fee Related JP5731312B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2011168455A JP5731312B2 (en) 2011-08-01 2011-08-01 Thermoplastic resin for reflector and reflector
CN201280038450.9A CN103717673B (en) 2011-08-01 2012-07-31 Reflecting material thermoplastic resin composition, reflector and light-emitting diode
EP12820129.0A EP2740766B1 (en) 2011-08-01 2012-07-31 Thermoplastic resin composition for reflective material, reflective plate, and light-emitting diode element
KR1020147002381A KR101593852B1 (en) 2011-08-01 2012-07-31 Thermoplastic resin composition for reflective material, reflective plate, and light-emitting diode element
PCT/JP2012/004872 WO2013018360A1 (en) 2011-08-01 2012-07-31 Thermoplastic resin composition for reflective material, reflective plate, and light-emitting diode element
US14/236,450 US9153757B2 (en) 2011-08-01 2012-07-31 Thermoplastic resin composition for reflective material, reflective plate, and light-emitting diode element
TW101127806A TWI521012B (en) 2011-08-01 2012-08-01 Thermoplastic resin composition for reflector, reflective plate and light emitting diode element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011168455A JP5731312B2 (en) 2011-08-01 2011-08-01 Thermoplastic resin for reflector and reflector

Publications (2)

Publication Number Publication Date
JP2013032426A true JP2013032426A (en) 2013-02-14
JP5731312B2 JP5731312B2 (en) 2015-06-10

Family

ID=47788558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011168455A Expired - Fee Related JP5731312B2 (en) 2011-08-01 2011-08-01 Thermoplastic resin for reflector and reflector

Country Status (1)

Country Link
JP (1) JP5731312B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189783A (en) * 2013-03-28 2014-10-06 Shiraishi Kogyo Kaisha Ltd Heat shielding resin composition, heat shielding resin sheet, and heat shielding paint
WO2015004927A1 (en) * 2013-07-12 2015-01-15 パナソニックIpマネジメント株式会社 Resin molding material for light-reflecting bodies, light-reflecting body and lighting device
JP2015023101A (en) * 2013-07-17 2015-02-02 大日本印刷株式会社 Semiconductor light emitting device, component for semiconductor light emitting device and method for manufacturing them, reflector, and method for manufacturing reflector, and composition for forming reflector
JP2015074763A (en) * 2013-10-11 2015-04-20 パナソニックIpマネジメント株式会社 Molding material for light reflector, light reflector and lighting apparatus
JP2015134885A (en) * 2014-01-20 2015-07-27 三菱樹脂株式会社 polyester resin composition
JP2015178580A (en) * 2014-03-20 2015-10-08 日本ゼオン株式会社 Resin composition and use thereof
JP2016147962A (en) * 2015-02-12 2016-08-18 三井化学株式会社 Polyester resin composition for camera module, and camera module
JP2016166355A (en) * 2015-03-04 2016-09-15 東レ株式会社 White polyester film
KR101782204B1 (en) * 2014-04-01 2017-09-26 롯데첨단소재(주) Polyester resin composition having improved mechanical properties and moldability
US10468568B2 (en) 2014-04-01 2019-11-05 Lotte Advanced Materials Co., Ltd. Polyester resin composition having improved mechanical properties and moldability

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03223340A (en) * 1989-11-21 1991-10-02 Sumitomo Chem Co Ltd Method for surface-treating and coating molded article of resin composition
JPH04142362A (en) * 1990-10-03 1992-05-15 Nippon G Ii Plast Kk Highly heat-resistant resin composition having high reflectance
JPH07242810A (en) * 1994-03-08 1995-09-19 Mitsubishi Gas Chem Co Inc Flame-retardant resin composition
JP2009507990A (en) * 2005-09-14 2009-02-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Light emitting diode assembly housing comprising a poly (cyclohexanedimethanol terephthalate) composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03223340A (en) * 1989-11-21 1991-10-02 Sumitomo Chem Co Ltd Method for surface-treating and coating molded article of resin composition
JPH04142362A (en) * 1990-10-03 1992-05-15 Nippon G Ii Plast Kk Highly heat-resistant resin composition having high reflectance
JPH07242810A (en) * 1994-03-08 1995-09-19 Mitsubishi Gas Chem Co Inc Flame-retardant resin composition
JP2009507990A (en) * 2005-09-14 2009-02-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Light emitting diode assembly housing comprising a poly (cyclohexanedimethanol terephthalate) composition

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189783A (en) * 2013-03-28 2014-10-06 Shiraishi Kogyo Kaisha Ltd Heat shielding resin composition, heat shielding resin sheet, and heat shielding paint
JPWO2015004927A1 (en) * 2013-07-12 2017-03-02 パナソニックIpマネジメント株式会社 Resin molding material for light reflector, light reflector and lighting apparatus
CN105209941A (en) * 2013-07-12 2015-12-30 松下知识产权经营株式会社 Resin molding material for light-reflecting bodies, light-reflecting body and lighting device
WO2015004927A1 (en) * 2013-07-12 2015-01-15 パナソニックIpマネジメント株式会社 Resin molding material for light-reflecting bodies, light-reflecting body and lighting device
JP2015023101A (en) * 2013-07-17 2015-02-02 大日本印刷株式会社 Semiconductor light emitting device, component for semiconductor light emitting device and method for manufacturing them, reflector, and method for manufacturing reflector, and composition for forming reflector
JP2015074763A (en) * 2013-10-11 2015-04-20 パナソニックIpマネジメント株式会社 Molding material for light reflector, light reflector and lighting apparatus
JP2015134885A (en) * 2014-01-20 2015-07-27 三菱樹脂株式会社 polyester resin composition
JP2015178580A (en) * 2014-03-20 2015-10-08 日本ゼオン株式会社 Resin composition and use thereof
KR101782204B1 (en) * 2014-04-01 2017-09-26 롯데첨단소재(주) Polyester resin composition having improved mechanical properties and moldability
US10468568B2 (en) 2014-04-01 2019-11-05 Lotte Advanced Materials Co., Ltd. Polyester resin composition having improved mechanical properties and moldability
US10998477B2 (en) 2014-04-01 2021-05-04 Lotte Chemical Corporation Polyester resin composition having improved mechanical properties and moldability
JP2016147962A (en) * 2015-02-12 2016-08-18 三井化学株式会社 Polyester resin composition for camera module, and camera module
JP2016166355A (en) * 2015-03-04 2016-09-15 東レ株式会社 White polyester film

Also Published As

Publication number Publication date
JP5731312B2 (en) 2015-06-10

Similar Documents

Publication Publication Date Title
JP5731312B2 (en) Thermoplastic resin for reflector and reflector
KR102403465B1 (en) Transparent polyamide moulding compositions with high tensile strain at break
WO2013018360A1 (en) Thermoplastic resin composition for reflective material, reflective plate, and light-emitting diode element
JP4913051B2 (en) RESIN COMPOSITION FOR REFLECTOR AND REFLECTOR
JP5871920B2 (en) Thermoplastic resin composition for reflector, reflector and light-emitting diode element
TWI500698B (en) Polyamide resin composition
JP6454639B2 (en) Polyester resin composition for reflector and reflector including the same
JPWO2015199062A1 (en) Resin composition and molded body thereof
JP6492078B2 (en) RESIN COMPOSITION FOR REFLECTOR AND REFLECTOR CONTAINING THE SAME
JP2018059044A (en) Polyester resin composition, method for manufacturing reflection plate, and method for manufacturing light-emitting diode (led) element
WO2016002193A1 (en) Polyester resin composition for reflective materials and reflection plate containing same
JP6042271B2 (en) Polyester resin composition for reflector and reflector
JP5919071B2 (en) Thermoplastic resin for reflector and reflector
JP2019143097A (en) Polyester resin composition for reflective material, and reflective material
JP2016147962A (en) Polyester resin composition for camera module, and camera module
JP2018172511A (en) Polyester resin composition for reflector, and reflector using the same
JP2019142986A (en) Polyester resin composition for reflective material, and reflective material
WO2015151463A1 (en) Polyester resin composition for reflective material, and reflective material comprising same
JP2019112501A (en) Polyester resin composition for reflector, and reflector
JP2019151800A (en) Polyester resin composition for reflecting material, and reflecting material containing the same
JP2020204013A (en) Method for producing resin composition
JP2018168288A (en) Polyester resin composition for reflector, and reflector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130904

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20131111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150409

R150 Certificate of patent or registration of utility model

Ref document number: 5731312

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees