JP2013031867A - Casting mold for continuous casting - Google Patents

Casting mold for continuous casting Download PDF

Info

Publication number
JP2013031867A
JP2013031867A JP2011168596A JP2011168596A JP2013031867A JP 2013031867 A JP2013031867 A JP 2013031867A JP 2011168596 A JP2011168596 A JP 2011168596A JP 2011168596 A JP2011168596 A JP 2011168596A JP 2013031867 A JP2013031867 A JP 2013031867A
Authority
JP
Japan
Prior art keywords
short side
continuous casting
casting mold
inner corner
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011168596A
Other languages
Japanese (ja)
Other versions
JP5566972B2 (en
Inventor
Kenya Suenaga
健也 末長
Shinichi Hirano
新一 平野
Osamu Tsutsue
修 筒江
Yuichi Ogawa
勇一 小川
Takeshi Okawa
武士 大川
Kazunori Ueda
和則 植田
Shinichi Fukunaga
新一 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mishima Kosan Co Ltd
Nippon Steel Corp
Original Assignee
Mishima Kosan Co Ltd
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mishima Kosan Co Ltd, Nippon Steel and Sumitomo Metal Corp filed Critical Mishima Kosan Co Ltd
Priority to JP2011168596A priority Critical patent/JP5566972B2/en
Publication of JP2013031867A publication Critical patent/JP2013031867A/en
Application granted granted Critical
Publication of JP5566972B2 publication Critical patent/JP5566972B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a casting mold for continuous casting that can prevent the inner corners of short sides positioned opposite each other between long sides positioned opposite each other from cracking and wearing.SOLUTION: The casting mold 10 for continuous casting includes the opposite long sides 11 and 12, and the opposite short sides 13 and 14 disposed between the long sides 11 and 12. In the device, the inner corners of the short sides 13 and 14 abutting on the interior surfaces of the long sides 11 and 12, or the inner corners which are the lower regions of the short sides 13 and 14 including meniscus parts and abutting on the long sides 11 and 12 are chamfered, and a space 19 is provided between the inner corners and the interior surfaces of the long sides 11 and 12, thus preventing the inner corners of the short sides 13 and 14 from getting damaged.

Description

本発明は、対向配置される長辺と、長辺の間に横移動可能に対向配置される短辺とを有する連続鋳造鋳型に関する。 The present invention relates to a continuous casting mold having long sides opposed to each other and short sides arranged opposite to each other so as to be laterally movable between the long sides.

従来、対向配置される長辺と、長辺の間に横移動可能に対向配置される短辺とを有する連続鋳造鋳型を使用した連続鋳造においては、鋳造される鋳片のコーナー部の凝固遅れを防止して、コーナー凝固遅れに伴う鋳片コーナー割れ等の品質異常を防止するために、例えば長辺の内側に、長辺の対向する内幅が鋳片の凝固収縮形状に応じて鋳片の鋳造方向に狭まるように、マルチテーパを形成した連続鋳造鋳型(マルチテーパ鋳型)が使用されている(例えば、特許文献1参照)。そして、マルチテーパ鋳型では、鋳片のコーナー部が鋳型内面に常時接触しながら移動するため、鋳型内面の磨耗損傷が大きくなるという問題が生じるので、鋳型内側に、耐磨耗性に優れた硬質皮膜(例えば、NiをベースとしたCr−Si−B系の合金からなる溶射皮膜)を形成して、鋳型内面の磨耗を抑制している。 Conventionally, in continuous casting using a continuous casting mold having a long side opposed to each other and a short side arranged so as to be laterally movable between the long sides, the solidification delay of the corner portion of the cast slab is made. In order to prevent quality abnormalities such as slab corner cracking due to corner solidification delay, the inner width of the long side facing the inner side of the long side corresponds to the solidification shrinkage shape of the slab. A continuous casting mold (multi-taper mold) in which a multi-taper is formed so as to narrow in the casting direction is used (see, for example, Patent Document 1). In the multitaper mold, the corner of the slab moves while always contacting the inner surface of the mold, which causes a problem of increased wear damage on the inner surface of the mold. A coating (for example, a thermal spray coating made of a Cr-Si-B alloy based on Ni) is formed to suppress wear on the inner surface of the mold.

一般に、連続鋳造鋳型では、連続鋳造時に外側は水冷され、内側は注入された溶鋼により加熱されるため、短辺の内側表面の熱膨張は、短辺の外側表面の熱膨張より大きくなる。そして、対向配置された短辺は、対向配置された長辺により、短辺の幅方向両側から押圧された状態であるため、短辺の幅方向の熱膨張は拘束され、特に、短辺の内側角部にあって、メニスカス部を含む下側領域には拘束に伴う大きなひずみ(応力集中)が発生する。このため、短辺の内側に硬質皮膜が形成されているマルチテーパ鋳型では、長辺の内側表面に当接する短辺の内側(硬質皮膜)角部に、硬質皮膜の強さを超える高い応力が発生する。そして、硬質皮膜は延性(塑性変形性)に劣るため、硬質皮膜(短辺の内側)角部には、欠けが発生するという問題が生じる。そこで、長辺の内側表面と当接する短辺の側端面に、Niめっき等の延性(塑性変形性)に優れた皮膜を形成して、短辺の内側角部を塑性変形させることで欠けが発生することを防止している。 Generally, in a continuous casting mold, the outer side is water-cooled during continuous casting and the inner side is heated by the injected molten steel, so that the thermal expansion of the inner surface of the short side is larger than the thermal expansion of the outer surface of the short side. And since the short side arranged oppositely is in a state of being pressed from both sides in the width direction of the short side by the long side arranged oppositely, thermal expansion in the width direction of the short side is restricted. A large strain (stress concentration) due to restraint is generated in a lower region including the meniscus portion in the inner corner portion. For this reason, in a multitaper mold in which a hard film is formed on the inner side of the short side, a high stress exceeding the strength of the hard film is applied to the inner corner (hard film) of the short side that contacts the inner surface of the long side. Occur. And since a hard film is inferior to ductility (plastic deformability), the problem that a chip | tip generate | occur | produces in a hard film (inner side of a short side) arises. Therefore, a chip having excellent ductility (plastic deformability) such as Ni plating is formed on the side end surface of the short side that is in contact with the inner surface of the long side, and the inner corner portion of the short side is plastically deformed. It is prevented from occurring.

特開2008−49385号公報JP 2008-49385 A

しかしながら、短辺の側端面に、Niめっき等の延性に優れた皮膜を形成すると、延性に優れた皮膜は耐磨耗性に劣るため、短辺の内側角部に早期に磨耗損傷が発生するという問題が生じる。このため、マルチテーパ鋳型の寿命が非常に短くなるという問題がある。 However, when a film having excellent ductility such as Ni plating is formed on the side edge of the short side, the film having excellent ductility is inferior in wear resistance, and therefore, wear damage occurs early on the inner corner of the short side. The problem arises. For this reason, there exists a problem that the lifetime of a multitaper mold becomes very short.

本発明はかかる事情に鑑みてなされたもので、対向配置された長辺の間に対向配置される短辺の内側角部の欠け及び磨耗を防止することが可能な連続鋳造鋳型を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides a continuous casting mold capable of preventing chipping and abrasion of the inner corners of the short sides arranged oppositely between the long sides arranged opposite to each other. With the goal.

前記目的に沿う本発明に係る連続鋳造鋳型は、対向配置される長辺と、該長辺の間に対向配置される短辺とを有する連続鋳造鋳型において、
前記長辺の内側表面に当接する前記短辺の内側角部、又は前記短辺のメニスカス部を含む下側領域であって前記長辺の内側表面に当接する内側角部に面取りを施し、前記内側角部と前記長辺の内側表面との間に空間部を形成し、前記短辺の内側角部の損傷を防止した。
A continuous casting mold according to the present invention that meets the above-mentioned object is a continuous casting mold having a long side opposed to each other and a short side arranged oppositely between the long sides.
Chamfering the inner corner of the short side that contacts the inner surface of the long side, or the inner corner of the lower side that includes the meniscus portion of the short side and contacting the inner surface of the long side, A space was formed between the inner corner and the inner surface of the long side to prevent damage to the inner corner of the short side.

本発明に係る連続鋳造鋳型において、前記面取りの寸法は、前記短辺の幅方向に対して0.3mm以上1mm以下であり、前記短辺の厚み方向に対して0.3mm以上2mm以下とすることができる。 In the continuous casting mold according to the present invention, the chamfer dimension is 0.3 mm or more and 1 mm or less with respect to the width direction of the short side, and is 0.3 mm or more and 2 mm or less with respect to the thickness direction of the short side. be able to.

本発明に係る連続鋳造鋳型において、前記面取りが施される前記短辺の内側角部には、溶射皮膜からなる耐磨耗性の補強皮膜が形成されていることが好ましい。 In the continuous casting mold according to the present invention, it is preferable that a wear-resistant reinforcing film made of a sprayed coating is formed on the inner corner portion of the short side where the chamfering is performed.

本発明に係る連続鋳造鋳型において、前記溶射皮膜はNi又はCoをベースとしたCr−Si−B系の合金とすることができる。
また、前記溶射皮膜はCo、Ni、又はCo−Ni系の合金に、炭化物、窒化物、及び硼化物のいずれか1又は2以上を添加した複合材とすることもできる。
In the continuous casting mold according to the present invention, the sprayed coating may be a Ni- or Co-based Cr-Si-B alloy.
The thermal spray coating may be a composite material obtained by adding one or more of carbide, nitride, and boride to a Co, Ni, or Co—Ni alloy.

本発明に係る連続鋳造鋳型においては、長辺の内側表面に当接する短辺の内側角部、又は短辺のメニスカス部を含む下側領域であって、長辺の内側表面に当接する内側角部に面取りを施し、内側角部と長辺の内側表面との間に空間部を形成したので、連続鋳造時に、短辺の内側で熱膨張が顕著な領域にある短辺の内側角部は、拘束されずに長辺の内側表面側に熱膨張することができ、短辺の内側角部に拘束に伴うひずみ(応力集中)が発生することを防止できる。その結果、短辺の内側角部に硬質皮膜を形成することが可能になる。 In the continuous casting mold according to the present invention, the inner corner of the short side, which is in contact with the inner surface of the long side, or the lower region including the meniscus portion of the short side, which is in contact with the inner surface of the long side Since chamfering was performed on the part, and a space was formed between the inner corner and the inner surface of the long side, the inner corner of the short side in the region where thermal expansion is remarkable inside the short side during continuous casting is It is possible to thermally expand to the inner surface side of the long side without being constrained, and to prevent distortion (stress concentration) associated with the constraining from occurring at the inner corner of the short side. As a result, it is possible to form a hard coating on the inner corner of the short side.

本発明に係る連続鋳造鋳型において、面取りの寸法が、短辺の幅方向に対して0.3mm以上1mm以下であり、短辺の厚み方向に対して0.3mm以上2mm以下である場合、連続鋳造鋳型内に注入された溶鋼が空間部に浸入することが防止できる。これにより、鋳片を連続鋳造鋳型内で容易に移動させることができる。 In the continuous casting mold according to the present invention, when the chamfering dimension is 0.3 mm or more and 1 mm or less with respect to the width direction of the short side and is 0.3 mm or more and 2 mm or less with respect to the thickness direction of the short side, It is possible to prevent the molten steel injected into the casting mold from entering the space. Thereby, a slab can be easily moved within a continuous casting mold.

本発明に係る連続鋳造鋳型において、面取りが施される短辺の内側角部に、溶射皮膜からなる耐磨耗性の補強皮膜が形成されている場合、鋳片との接触による短辺の内側角部の磨耗を防止することができる。
そして、溶射皮膜がNi又はCoをベースとしたCr−Si−B系の合金からなる場合、ヒュージング処理を行うことで、補強皮膜の緻密化、短辺との結合性を高めることができ、補強皮膜の寿命を延ばすことができる。
また、溶射皮膜がCo、Ni、又はCo−Ni系の合金に、炭化物、窒化物、及び硼化物のいずれか1又は2以上を添加した複合材からなる場合、補強皮膜に擦り疵が発生することを防止できると共に、耐摩耗性の向上を更に図ることができる。
In the continuous casting mold according to the present invention, when a wear-resistant reinforcing coating made of a thermal spray coating is formed on the inner corner of the short side to be chamfered, the inside of the short side due to contact with the slab Corner wear can be prevented.
And, when the thermal spray coating is made of a Cr-Si-B alloy based on Ni or Co, by performing the fusing treatment, the densification of the reinforcing coating and the bondability with the short side can be improved, The life of the reinforcing film can be extended.
Further, when the sprayed coating is made of a composite material in which any one or more of carbide, nitride, and boride is added to a Co, Ni, or Co—Ni alloy, scuffing occurs in the reinforcing coating. This can be prevented and the wear resistance can be further improved.

本発明の一実施の形態に係る連続鋳造鋳型の斜視図である。It is a perspective view of the continuous casting mold which concerns on one embodiment of this invention. 同連続鋳造鋳型の長辺の断面図である。It is sectional drawing of the long side of the same continuous casting mold. (A)は同連続鋳造鋳型の短辺の部分側面図、(B)は(A)のQ−Q矢視図である。(A) is a partial side view of the short side of the continuous casting mold, and (B) is a view taken in the direction of arrows Q-Q of (A). 短辺の内側角部を示す平断面図である。It is a plane sectional view showing an inner corner part of a short side. 実施例の連続鋳造鋳型において、連続鋳造時に短辺の内側角部のメニスカス部に発生する破断ひずみ率と短辺の内側角部に設ける面取りの面取り寸法との関係を示すグラフである。In the continuous casting mold of an Example, it is a graph which shows the relationship between the fracture | rupture distortion rate which generate | occur | produces in the meniscus part of an inner side corner part of a short side at the time of continuous casting, and the chamfering dimension of the chamfer provided in an inner side corner part of a short side. 実施例の連続鋳造鋳型において、連続鋳造時に短辺の内側角部のメニスカスより下方400mmの位置に発生する破断ひずみ率と短辺の内側角部に設ける面取りの面取り寸法との関係を示すグラフである。In the continuous casting mold of an example, it is a graph which shows the relation between the crushing distortion rate which occurs in the position of 400mm below the meniscus of the short side inner corner at the time of continuous casting, and the chamfer dimension of the chamfer provided in the short side inner corner. is there.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1に示すように、本発明の一実施の形態に係る連続鋳造鋳型10は、対向配置される長辺11、12と、長辺11、12の間に横移動可能に対向配置される短辺13、14とを有して、上下方向(鋳造方向)に貫通した鋳片形成部15を形成し、鋳片形成部15に溶鋼16(図2参照)を供給して冷却しながら鋳片(図示せず)を製造するものである。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As shown in FIG. 1, a continuous casting mold 10 according to an embodiment of the present invention has long sides 11 and 12 that are opposed to each other, and a short side that is arranged so as to be laterally movable between the long sides 11 and 12. The slab forming part 15 which has the sides 13 and 14 and penetrated in the up-and-down direction (casting direction) is formed, and molten steel 16 (see FIG. 2) is supplied to the slab forming part 15 to cool the slab. (Not shown).

そして、対向する長辺11、12の内幅が鋳片の引き抜かれる下方へ向けて狭まるマルチテーパが長辺11、12の内側に形成されている。また、短辺13、14のメニスカス部を含む下側領域である短辺下部18にあって、長辺11、12の内側表面に当接する内側角部には面取りが施され、内側角部と長辺11、12の内側表面との間に空間部19が形成されている。更に、長辺11、12の内側には溶射皮膜からなる耐磨耗性の補強皮膜20が、短辺13、14の少なくとも短辺下部18の内側表面及び内側角部には溶射皮膜からなる耐磨耗性の補強皮膜21がそれぞれ形成されている。以下、詳細に説明する。 And the multitaper which the inner width of the opposing long sides 11 and 12 narrows toward the downward direction from which the slab is pulled out is formed inside the long sides 11 and 12. Further, in the short side lower portion 18 which is a lower side region including the meniscus portion of the short sides 13 and 14, the inner corner portion contacting the inner surface of the long sides 11 and 12 is chamfered, and the inner corner portion and A space portion 19 is formed between the inner surfaces of the long sides 11 and 12. Further, a wear-resistant reinforcing film 20 made of a sprayed coating is formed on the inner side of the long sides 11 and 12, and an inner surface and inner corners of at least the short side lower portion 18 of the short sides 13 and 14 are made of a sprayed coating. Abrasive reinforcing films 21 are formed respectively. Details will be described below.

長辺11、12及び短辺13、14の外表面(溶鋼16と接する面とは反対側の面)側には、上下方向(鋳造方向)に並べて配置される複数のボルト(図示せず)からなる締結手段群を介して図示しないバックプレートがそれぞれ取付けられている。これにより、バックプレートの下部に設けられた給水部(図示せず)から、長辺11、12と短辺13、14の外面側に設けられた図示しない多数の導水溝に冷却水を流すことで、長辺11、12及び短辺13、14の冷却を行うと共に鋳片形成部15に供給した溶鋼16の冷却を行なって鋳片を製造することができる。 A plurality of bolts (not shown) arranged in the vertical direction (casting direction) on the outer surfaces of the long sides 11 and 12 and the short sides 13 and 14 (the surface opposite to the surface in contact with the molten steel 16). A back plate (not shown) is attached via a fastening means group consisting of: Thereby, the cooling water is caused to flow from a water supply section (not shown) provided at the lower portion of the back plate to a large number of water guide grooves (not shown) provided on the outer surfaces of the long sides 11 and 12 and the short sides 13 and 14. Thus, the long sides 11 and 12 and the short sides 13 and 14 are cooled, and the molten steel 16 supplied to the slab forming portion 15 is cooled to produce a slab.

短辺13、14は、厚さ(補強皮膜21を含めた厚さ)が、例えば、5mm以上100mm以下程度、幅が50mm以上300mm以下程度で、上下方向の長さが600mm以上1200mm以下程度である。また、長辺11、12は、厚さ(補強皮膜20を含めた厚さ)が、例えば5mm以上100mm以下程度、対向配置される一対の短辺13、14の間隔(鋳片と接触する幅)を、600mm以上3000mm以下の範囲で変更可能とすることのできる幅を有し、上下方向の長さは短辺13、14と同程度である。これにより、例えば、幅が600mm以上3000mm以下程度、厚みが50mm以上300mm以下程度のスラブを製造できる。 The short sides 13 and 14 have a thickness (thickness including the reinforcing coating 21) of, for example, about 5 mm to 100 mm, a width of about 50 mm to 300 mm, and a vertical length of about 600 mm to 1200 mm. is there. In addition, the long sides 11 and 12 have a thickness (thickness including the reinforcing film 20) of, for example, about 5 mm to 100 mm, and a distance between a pair of short sides 13 and 14 that are opposed to each other (a width in contact with the slab). ) In the range of 600 mm or more and 3000 mm or less, and the length in the vertical direction is approximately the same as the short sides 13 and 14. Thereby, for example, a slab having a width of about 600 mm to about 3000 mm and a thickness of about 50 mm to about 300 mm can be manufactured.

先ず、図1に示す長辺11(長辺12も同様)のマルチテーパの構成を説明する。
図2に示すように、長辺11の内側の表面において、長辺11の幅方向に亘って、溶鋼16の溶鋼湯面位置(メニスカス位置、単に湯面位置という場合もある)を上位置P1とし、上位置P1から300mm以上下方の位置を下位置P2として、鋳片形成部15側へ張り出す膨出部22からなるマルチテーパが形成されている。この溶鋼湯面位置は、長辺11の上端位置を基点として、下方へ50mm以上150mm以下の範囲内(ここでは、100mm程度)にある。なお、膨出部22の鋳片形成部15側への張り出し量は僅かであるが、説明の便宜上、図1、図2においては、誇張して示している。
First, the multitaper configuration of the long side 11 shown in FIG. 1 (the same applies to the long side 12) will be described.
As shown in FIG. 2, on the inner surface of the long side 11, the molten steel surface position (meniscus position, sometimes simply referred to as the molten surface position) of the molten steel 16 is the upper position P1 across the width direction of the long side 11. A multitaper formed of a bulging portion 22 projecting toward the cast slab forming portion 15 is formed with a position 300 mm or more lower than the upper position P1 as a lower position P2. The molten steel surface position is within a range of 50 mm or more and 150 mm or less (here, about 100 mm) with the upper end position of the long side 11 as a base point. In addition, although the protrusion amount to the slab formation part 15 side of the bulging part 22 is slight, it has exaggerated in FIG. 1, FIG. 2 for convenience of explanation.

膨出部22の上位置P1を、湯面位置としたのは、溶鋼16の冷却の起点位置だからである。また、膨出部22の下位置P2を、上位置P1から下方へ300mm以上の位置としたのは、溶鋼16の鋳型接触面側に形成される凝固シェルと長辺11の内表面との間に隙間が生じる範囲が、この範囲内であることによる。以上のことから、膨出部22の形成位置を、溶鋼16の湯面位置を上位置P1とし、上位置P1から下方へ300mm以上の下位置P2までとしたが、下位置P2を、上位置P1から500mm以上下方の位置、更には短辺13、14及び長辺11、12の下端位置とすることが好ましい。 The reason why the upper position P1 of the bulging portion 22 is set as the molten metal surface position is that it is the starting position of the cooling of the molten steel 16. Further, the lower position P2 of the bulging portion 22 is set to a position of 300 mm or more downward from the upper position P1 between the solidified shell formed on the mold contact surface side of the molten steel 16 and the inner surface of the long side 11. This is because the range in which the gap is generated is within this range. From the above, the formation position of the bulging portion 22 is set to the upper position P1 from the molten metal surface position of the molten steel 16, and from the upper position P1 to the lower position P2 of 300 mm or more downward, the lower position P2 is the upper position. It is preferable that the position is at least 500 mm below P1 and further the lower end position of the short sides 13 and 14 and the long sides 11 and 12.

膨出部22の縦断面の内表面輪郭線は、上位置P1から下位置P2まで3つ以上8つ以下(本実施の形態では、3つ)の連続する直線部L1〜L3で構成されており、長辺11の内表面が、傾斜角度の異なる3段以上8段以下の傾斜面で構成されている。ここで、膨出部を構成する直線部が3つ未満(2つ以下)の場合、直線部の数が少な過ぎて、膨出部の縦断面形状が、部分的に突出する極端な形状となり、鋳片との接触抵抗が大きくなって、膨出部に摩耗損傷が発生し易くなる。一方、直線部の数が8つを超える(9つ以上)場合、直線部の数が多過ぎて、膨出部の加工が複雑となり、製造コストの増大を招く。以上のことから、膨出部22を、3つの直線部L1〜L3で構成したが、直線部の数の下限を4つとすることが好ましく、また上限を6つとすることが好ましい。 The inner surface contour line of the longitudinal section of the bulging portion 22 is composed of three or more and eight or less (three in the present embodiment) continuous linear portions L1 to L3 from the upper position P1 to the lower position P2. In addition, the inner surface of the long side 11 is composed of three or more inclined surfaces having different inclination angles. Here, when the number of straight portions constituting the bulging portion is less than three (two or less), the number of straight portions is too small, and the vertical cross-sectional shape of the bulging portion becomes an extreme shape that partially protrudes. The contact resistance with the slab increases, and wear damage is likely to occur at the bulge portion. On the other hand, when the number of straight portions exceeds eight (9 or more), the number of straight portions is too large, the processing of the bulging portion becomes complicated, and the manufacturing cost increases. From the above, the bulging portion 22 is composed of the three straight portions L1 to L3. However, the lower limit of the number of straight portions is preferably four, and the upper limit is preferably six.

直線部L1〜L3については、最上の直線部L1と、この直線部L1に隣接する上から2番目の直線部L2のなす角θ1、この直線部L2と上から3番目の直線部L3のなす角θ2を、それぞれ174度以上179.97度以下の範囲内としている。なお、各角θ1、θ2は、同一角度であるが、異なる角度にしてもよい。ここで、隣り合う直線部のなす角θが174度未満の場合、膨出部の側断面視した形状が、部分的に突出する極端な形状となり、鋳片との接触抵抗が大きくなって、膨出部に摩耗損傷が発生し易くなる。一方、隣り合う直線部のなす角θが179.97度を超える場合、直線部の数が多くなって膨出部の加工が複雑となり、製造コストの増大を招く。以上のことから、隣り合う直線部L1〜L3のなす角θ1、θ2を、それぞれ174度以上179.97度以下の範囲内としたが、下限を178.0度、更には179.0度とすることが好ましく、上限を179.90度とすることが好ましい。 For the straight line portions L1 to L3, the uppermost straight line portion L1, the angle θ1 formed by the second straight line portion L2 adjacent to the straight line portion L1, and the straight line portion L2 and the third straight line portion L3 from the top are formed. The angle θ2 is in the range of 174 degrees or more and 179.97 degrees or less, respectively. Note that the angles θ1 and θ2 are the same angle, but may be different angles. Here, when the angle θ formed by the adjacent straight portions is less than 174 degrees, the shape of the bulging portion in a side cross-sectional view becomes an extreme shape that partially protrudes, and the contact resistance with the slab increases. Wear damage is likely to occur in the bulging portion. On the other hand, when the angle θ formed by the adjacent straight portions exceeds 179.97 degrees, the number of straight portions increases and the processing of the bulging portion becomes complicated, resulting in an increase in manufacturing cost. From the above, the angles θ1 and θ2 formed by the adjacent straight line portions L1 to L3 are set in the range of 174 degrees or more and 179.97 degrees or less, respectively, but the lower limit is 178.0 degrees, and further 179.0 degrees. It is preferable to set the upper limit to 179.90 degrees.

上記した最上の直線部L1と次の直線部L2の連接箇所X1と、直線部L2と次の直線部L3の連接箇所X2と、下位置P2は、長辺11の上端位置から、長辺11の上下方向に異なる間隔S1〜S3で設けられている。なお、各連接箇所X1、X2と下位置P2は、長辺11の上下方向の一部又は全部について、均等な間隔Sで設けてもよい。ここで、均等な間隔Sとは、各間隔の平均値に対して、±20%(好ましくは±5%)の範囲内で、各間隔が異なる場合も含む。 The above-mentioned connection point X1 between the uppermost straight line portion L1 and the next straight line portion L2, the connection point X2 between the straight line portion L2 and the next straight line portion L3, and the lower position P2 from the upper end position of the long side 11 to the long side 11 Are provided at different intervals S1 to S3 in the vertical direction. In addition, you may provide each connection location X1, X2 and the lower position P2 by the equal space | interval S about a part or all of the up-down direction of the long side 11. FIG. Here, the uniform interval S includes a case where each interval differs within a range of ± 20% (preferably ± 5%) with respect to an average value of each interval.

図2に示すように、上位置P1と下位置P2を結ぶ直線L4を底辺とする膨出部22の最大高さh(上から1番目の直線部L1と2番目の直線部L2との連接箇所X1の高さ)を、0.2mm以上5mm以下の範囲内としている。ここで、最大高さhが0.2mm未満の場合、膨出部の空間部側への張り出し量が小さ過ぎて、膨出部の表面形状がスラブの凝固収縮に追従できず、膨出部の表面と溶鋼の鋳型接触面側に形成される凝固シェルとの間に隙間が生じる。一方、最大高さhが5mmを超える場合、膨出部の縦断面が、部分的に突出する極端な形状となり、鋳片との接触抵抗が大きくなって、膨出部に摩耗損傷が発生し易くなる。以上のことから、膨出部22の最大高さhを0.2mm以上5mm以下の範囲内としたが、下限を0.5mm、更には0.55mmとすることが好ましく、上限を2.5mm、更には2.2mmとすることが好ましい。 As shown in FIG. 2, the maximum height h of the bulging portion 22 with the straight line L4 connecting the upper position P1 and the lower position P2 as the base (the connection between the first straight portion L1 and the second straight portion L2 from the top). The height of the portion X1) is in the range of 0.2 mm or more and 5 mm or less. Here, when the maximum height h is less than 0.2 mm, the amount of protrusion of the bulging portion toward the space is too small, and the surface shape of the bulging portion cannot follow the solidification shrinkage of the slab, and the bulging portion A gap is formed between the surface of the steel and the solidified shell formed on the mold contact surface side of the molten steel. On the other hand, when the maximum height h exceeds 5 mm, the longitudinal section of the bulge part becomes an extreme shape that partially protrudes, the contact resistance with the slab increases, and wear damage occurs in the bulge part. It becomes easy. From the above, the maximum height h of the bulging portion 22 is set in the range of 0.2 mm to 5 mm, but the lower limit is preferably 0.5 mm, more preferably 0.55 mm, and the upper limit is 2.5 mm. Furthermore, it is preferable to set it as 2.2 mm.

以上に示した膨出部の形成位置、膨出部を構成する直線部の数、隣り合う直線部のなす角、及び膨出部の最大高さh(即ち、マルチテーパの形成位置及び形状)は、以下に示す条件を考慮したり、また実際に測定した結果を基にして、3次元の鋳片の凝固収縮及び鋳型の熱変形を考慮したFEM解析(有限要素法を用いた解析)により、前記した範囲内で決定するのがよい。
1)鋳片の形状、鋳片のサイズ、又は鋳込み条件(例えば、鋳込み温度、引き抜き速度、鋳型冷却条件等)。
2)鋳込み鋼種の成分に由来する物理量(例えば、液相温度、固相温度、変態温度、線膨張率、剛性値等)。
3)鋳型と鋳片との間の接触熱移動量(鋳片の収縮量は、この量に大きく影響される)。
この接触熱移動量については、特開2008−49385号公報に開示されているため、その詳細内容については省略する。
The formation position of the bulge part shown above, the number of straight parts constituting the bulge part, the angle formed by the adjacent straight parts, and the maximum height h of the bulge part (that is, the formation position and shape of the multitaper) Is based on FEM analysis (analysis using the finite element method) considering the solidification shrinkage of the three-dimensional slab and the thermal deformation of the mold based on the conditions shown below and the actual measurement results. It is preferable to determine within the above-mentioned range.
1) Shape of slab, size of slab, or casting conditions (for example, casting temperature, drawing speed, mold cooling conditions, etc.).
2) Physical quantities derived from components of cast steel (for example, liquid phase temperature, solid phase temperature, transformation temperature, linear expansion coefficient, rigidity value, etc.).
3) The amount of contact heat transfer between the mold and the slab (the amount of shrinkage of the slab is greatly affected by this amount).
Since this contact heat transfer amount is disclosed in Japanese Patent Application Laid-Open No. 2008-49385, the detailed contents thereof are omitted.

長辺11、12はそれぞれ、銅又は銅合金で形成された長辺母材23と、長辺母材23の内側表面に形成された補強皮膜20とを有している。また、図1、図3に示すように、短辺13、14はそれぞれ、銅又は銅合金で形成された短辺母材24を有し、短辺母材24は、短辺下部18の上端に連接する短辺上部17の母材である短辺上部母材25と、短辺下部18の母材である短辺下部母材26で構成されている。更に、短辺13、14は、短辺母材24(短辺上部母材25及び短辺下部母材26)の内側表面及び短辺下部母材26の内側角部にそれぞれ形成された補強皮膜21と、短辺上部母材25の側端面に形成され、延性を有する保護皮膜27とを有する。 Each of the long sides 11 and 12 has a long side base material 23 formed of copper or a copper alloy, and a reinforcing coating 20 formed on the inner surface of the long side base material 23. 1 and 3, each of the short sides 13 and 14 has a short side base material 24 formed of copper or a copper alloy, and the short side base material 24 is an upper end of the short side lower part 18. The short side upper base material 25 which is a base material of the short side upper portion 17 and the short side lower base material 26 which is a base material of the short side lower portion 18 are connected. Further, the short sides 13 and 14 are reinforcing films formed respectively on the inner surface of the short side base material 24 (short side upper base material 25 and short side lower base material 26) and on the inner corner of the short side lower base material 26. 21 and a protective coating 27 formed on the side end face of the short side upper base material 25 and having ductility.

ここで、補強皮膜20、21には、Ni又はCoをベースとしたCr−Si−B系の合金からなる溶射皮膜、あるいはCo、Ni、又はCo−Ni系の合金に、炭化物(例えばWC)、窒化物(例えばTiN)、及び硼化物(例えばCrB)のいずれか1又は2以上を添加した複合材からなる溶射皮膜を使用することができる。補強皮膜20、21を溶射皮膜とすることで、補強皮膜20、21の厚み調整が容易にできる。また、保護皮膜27は、例えばNiめっき等の延性に優れた金属皮膜とすることができる。 Here, the reinforcing coatings 20 and 21 may be a thermal spray coating made of a Cr—Si—B alloy based on Ni or Co, or a carbide (eg, WC) on a Co, Ni, or Co—Ni alloy. In addition, a sprayed coating made of a composite material to which any one or more of nitride (for example, TiN) and boride (for example, CrB) is added can be used. By making the reinforcing coatings 20 and 21 sprayed coatings, the thickness of the reinforcing coatings 20 and 21 can be easily adjusted. The protective film 27 can be a metal film having excellent ductility such as Ni plating.

なお、Ni又はCoをベースとしたCr−Si−B系の合金からなる溶射皮膜の場合、ヒュージング処理を行うことで、補強皮膜20、21の緻密化、補強皮膜20と長辺母材23、補強皮膜21と短辺母材24との結合性を高めることができ、補強皮膜20、21の寿命を延ばすことができる。一方、Co、Ni、又はCo−Ni系の合金に、炭化物、窒化物、及び硼化物のいずれか1又は2以上を添加した複合材からなる溶射皮膜の場合、補強皮膜20、21に発生する擦り疵の防止、補強皮膜20、21の耐摩耗性の向上を更に図ることができる。 In the case of a thermal spray coating made of a Cr-Si-B alloy based on Ni or Co, the reinforcing coatings 20 and 21 are densified by performing a fusing treatment, and the reinforcing coating 20 and the long-side base material 23 are formed. The connectivity between the reinforcing coating 21 and the short side base material 24 can be improved, and the life of the reinforcing coatings 20 and 21 can be extended. On the other hand, in the case of a thermal spray coating made of a composite material in which any one or more of carbide, nitride, and boride is added to a Co, Ni, or Co—Ni alloy, it occurs in the reinforcing coatings 20 and 21. It is possible to further prevent abrasion and improve the abrasion resistance of the reinforcing coatings 20 and 21.

長辺母材23の内側表面に形成した補強皮膜20と、短辺母材24の内側表面に形成した補強皮膜21の厚さは、0.01mm以上5mm以下、例えば0.5mmである。
短辺上部母材25に設ける保護皮膜27は、図3(A)、(B)に示すように、短辺上部母材25を側端面28から短辺上部母材25の幅方向中央側に距離a(0.5mm以上1mm以下、例えば0.8mm)の範囲除去(例えば研削)し、除去した部分に延性に優れた金属皮膜を充填し、更に短辺母材24の内側表面に形成する補強皮膜21の表面と同一高さ位置となるまで積層することにより形成される。
The thicknesses of the reinforcing film 20 formed on the inner surface of the long side base material 23 and the reinforcing film 21 formed on the inner surface of the short side base material 24 are 0.01 mm or more and 5 mm or less, for example, 0.5 mm.
As shown in FIGS. 3A and 3B, the protective film 27 provided on the short side upper base material 25 is arranged so that the short side upper base material 25 extends from the side end surface 28 to the center in the width direction of the short side upper base material 25. The distance a (0.5 mm or more and 1 mm or less, for example, 0.8 mm) is removed (for example, ground), the removed portion is filled with a metal film having excellent ductility, and further formed on the inner surface of the short side base material 24. It is formed by laminating until the same height as the surface of the reinforcing film 21 is reached.

また、短辺下部母材26の内側角部に形成される補強皮膜21は、図3(A)、(B)、図4に示すように、短辺下部母材26を側端面28から短辺下部母材26の幅方向中央側に距離b(0.5mm以上1mm以下、例えば0.8mm)、かつ短辺下部母材26の内側表面から外側表面側に距離c(0.3mm以上1mm以下、例えば0.7mm)の範囲除去(例えば研削)し、除去した部分に溶射皮膜を充填し、更に短辺母材24の内側表面に形成する補強皮膜21の表面と同一高さ位置となるまで積層することにより形成される。 Further, as shown in FIGS. 3A, 3B, and 4, the reinforcing film 21 formed on the inner corner of the short side lower base material 26 has the short side lower base material 26 short from the side end face 28. A distance b (0.5 mm or more and 1 mm or less, for example, 0.8 mm) at the center in the width direction of the lower side base material 26, and a distance c (0.3 mm or more and 1 mm from the inner surface to the outer surface side of the short side lower base material 26. In the following, for example, 0.7 mm) is removed (for example, ground), and the removed portion is filled with a sprayed coating, and further, the surface is the same height as the surface of the reinforcing coating 21 formed on the inner surface of the short side base material 24. It is formed by laminating.

そして、図4に示すように、短辺13、14の幅方向に対して行う面取りの寸法dは0.3mm以上1mm以下、例えば0.35mmであり、短辺13、14の厚み方向に対して行う面取りの寸法eは0.3mm以上2mm以下、例えば0.35mmである。したがって、短辺下部18の内側角部に施す面取りは、短辺下部母材26の内側角部に形成された補強皮膜21の部分に施されることになる。その結果、短辺下部18の内側角部と長辺11、12の内側表面との間に空間部19が形成される。 And as shown in FIG. 4, the dimension d of the chamfering performed with respect to the width direction of the short sides 13 and 14 is 0.3 mm or more and 1 mm or less, for example, 0.35 mm, and with respect to the thickness direction of the short sides 13 and 14. The dimension e of the chamfering performed is 0.3 mm or more and 2 mm or less, for example 0.35 mm. Therefore, the chamfering applied to the inner corner portion of the short side lower portion 18 is applied to the portion of the reinforcing film 21 formed on the inner corner portion of the short side lower base material 26. As a result, a space portion 19 is formed between the inner corner portion of the short side lower portion 18 and the inner surfaces of the long sides 11 and 12.

本実施の形態では、空間部19を、短辺13、14のメニスカス部を含む下側領域である短辺下部18の内側角部に形成したが、長辺11、12の内側表面に当接する短辺の内側角部の全体に面取りを施し、短辺の内側角部が長辺11、12の内側表面に当接しないようにすることもできる。なお、短辺の内側角部の全体に設ける面取りの形状は、実施の形態で説明した面取りの形状と同一とすることができ、短辺の内側角部と長辺11、12の内側表面との間に形成される空間部の形状も、実施の形態で説明した空間部19の形状と同一とすることができる。 In the present embodiment, the space portion 19 is formed at the inner corner portion of the short side lower portion 18, which is the lower region including the meniscus portion of the short sides 13, 14, but abuts against the inner surface of the long sides 11, 12. It is also possible to chamfer the entire inner corner of the short side so that the inner corner of the short side does not contact the inner surfaces of the long sides 11 and 12. In addition, the shape of the chamfer provided on the entire inner corner of the short side can be the same as the shape of the chamfer described in the embodiment, and the inner corner of the short side and the inner surfaces of the long sides 11 and 12 The shape of the space formed between the two can be the same as the shape of the space 19 described in the embodiment.

続いて、本発明の一実施の形態に係る連続鋳造鋳型10の作用について説明する。
連続鋳造時に、短辺13、14の内側で熱膨張が顕著な領域を含む短辺下部18の内側角部を面取りして、短辺下部18の内側角部と長辺11、12の内側表面との間に空間部19を形成することにより、連続鋳造時に、短辺下部18の内側角部は、拘束されずに長辺11、12の内側表面側に熱膨張することができる。このため、短辺13、14の内側角部に熱膨張の拘束に伴うひずみが局在することが防止され、局在するひずみに伴う応力集中の発生を防止できる。
Then, the effect | action of the continuous casting mold 10 which concerns on one embodiment of this invention is demonstrated.
During continuous casting, the inner corners of the short side lower portion 18 including the region where the thermal expansion is remarkable inside the short sides 13 and 14 are chamfered, and the inner corners of the short side lower portion 18 and the inner surfaces of the long sides 11 and 12 are chamfered. By forming the space 19 therebetween, the inner corner portion of the short side lower portion 18 can be thermally expanded to the inner surface side of the long sides 11 and 12 without being restricted during continuous casting. For this reason, it is possible to prevent the strain associated with the thermal expansion constraint from being localized in the inner corners of the short sides 13 and 14 and to prevent the occurrence of stress concentration due to the localized strain.

その結果、対向配置された長辺11、12の間に対向配置される短辺13、14の内側角部に硬質皮膜からなる補強被膜を形成しても、連続鋳造時に形成した補強皮膜に欠けが発生することを防止できる。これにより、短辺13、14の内側角部に硬質皮膜からなる補強被膜を安定して存在させることが可能になって、マルチテーパ鋳型で問題となっていた短辺13、14の内側角部の早期磨耗損傷を防止することができ、マルチテーパ鋳型の寿命を延長することができる。 As a result, even if a reinforcing film made of a hard film is formed on the inner corners of the short sides 13 and 14 opposed to each other between the long sides 11 and 12 opposed to each other, the reinforcing film formed during continuous casting is lacking. Can be prevented. As a result, it becomes possible to stably provide a reinforcing coating made of a hard coating on the inner corners of the short sides 13 and 14, and the inner corners of the short sides 13 and 14 that have been a problem in the multitaper mold. Thus, it is possible to prevent early wear damage of the multi-taper mold and to extend the life of the multi-taper mold.

また、短辺下部18の内側角部に形成する面取りの寸法は、短辺13、14の幅方向に対して0.3mm以上1mm以下であり、短辺13、14の厚み方向に対して0.3mm以上2mm以下であるので、長辺11、12の内側表面と短辺下部18の内側角部との間に空間部19が形成されても、溶鋼が浸入する(差し込む)ことを防止できる。このため、空間部19内で溶鋼が固化することはなく、連続鋳造鋳型10内で鋳片を容易に移動させることができる。 The chamfer dimension formed at the inner corner of the short side lower portion 18 is 0.3 mm or more and 1 mm or less with respect to the width direction of the short sides 13 and 14, and 0 with respect to the thickness direction of the short sides 13 and 14. Since it is 3 mm or more and 2 mm or less, even if the space portion 19 is formed between the inner surface of the long sides 11 and 12 and the inner corner portion of the short side lower portion 18, it is possible to prevent the molten steel from entering (inserting). . For this reason, molten steel does not solidify in the space part 19, and the slab can be easily moved in the continuous casting mold 10.

(実験例1)
長辺母材の内側表面にCoをベースとしたCr−Si−B系の合金の溶射皮膜からなる補強皮膜が形成された長辺と、短辺上部母材の内側表面、短辺下部母材の内側表面、及び短辺下部母材の内側角部にCoをベースとしたCr−Si−B系の合金の溶射皮膜からなる補強皮膜が、短辺上部母材の側部にNiめっきからなる保護皮膜が形成された短辺とを用いて連続鋳造鋳型を構成し、連続鋳造時に短辺の内側角部に発生するひずみを有限要素法により求めた。ここで、短辺下部の内側角部には、短辺(短辺下部)の内側表面と45度の角度をなす面取り加工を施している。
面取りにより形成する面の幅(斜辺面取り寸法)を変化させた際に、メニスカス部に発生するひずみレベルを図5に、メニスカスより下方400mmの位置に発生するひずみレベルを図6にそれぞれ示す。なお、図5、図6では、計算で得られたひずみを補強皮膜の破断時のひずみで除した(規格化した)破断ひずみ率を用いている。
(Experimental example 1)
The long side in which a reinforcing coating made of a thermal spray coating of a Cr-Si-B alloy based on Co is formed on the inner surface of the long side base material, the inner surface of the short side upper base material, and the short side lower base material A reinforcing coating made of a thermal spray coating of a Cr-Si-B alloy based on Co is formed on the inner surface of the lower side base metal and Ni plating on the side of the upper side base metal. A continuous casting mold was constructed using the short side on which the protective film was formed, and the strain generated at the inner corner of the short side during continuous casting was determined by the finite element method. Here, a chamfering process is performed on the inner corner of the lower part of the short side to form an angle of 45 degrees with the inner surface of the short side (lower part of the short side).
FIG. 5 shows the strain level generated in the meniscus portion when the width (chamfer chamfer dimension) of the surface formed by chamfering is changed, and FIG. 6 shows the strain level generated at a position 400 mm below the meniscus. 5 and 6, the fracture strain rate obtained by dividing the strain obtained by calculation by the strain at the time of fracture of the reinforcing film (standardized) is used.

図5、図6に示すように、CoをベースとしたCr−Si−B系の合金からなる補強皮膜を設け、短辺下部の内側角部に面取りを施すことで、発生する破断ひずみ率を、短辺の側端面にNiめっきを形成した際に短辺の内側角部のメニスカス部に生じる破断ひずみ率(即ち、短辺の内側角部に欠けが発生しない「好ましい破断ひずみ率の上限レベル」)である6.3%未満の値にすることができ、短辺下部の内側角部の欠けを防止できる。また、斜辺面取り寸法の増加に伴って、破断ひずみ率は徐々に低下するが、斜辺面取り寸法が0.5mm以上では破断ひずみ率の低下効果は見られなくなる。したがって、補強皮膜の内側角部に設ける面取りの斜辺面取り寸法は0.5mmとすれば十分であることが判る。 As shown in FIGS. 5 and 6, by providing a reinforcing coating made of a Co-based Cr-Si-B alloy and chamfering the inner corner of the lower part of the short side, the breaking strain rate generated can be reduced. , Fracture strain rate generated in the meniscus portion of the inner corner portion of the short side when Ni plating is formed on the side end surface of the short side (that is, the upper limit level of the preferred fracture strain rate in which no chipping occurs in the inner corner portion of the short side )), Which is less than 6.3%, and chipping of the inner corners at the bottom of the short side can be prevented. In addition, as the oblique chamfer dimension increases, the breaking strain rate gradually decreases. However, when the oblique chamfer dimension is 0.5 mm or more, the effect of decreasing the fracture strain rate is not observed. Therefore, it can be seen that it is sufficient that the bevel chamfer dimension of the chamfer provided at the inner corner of the reinforcing coating is 0.5 mm.

(実験例2)
長辺母材の内側表面にCoをベースとしたCr−Si−B系の合金の溶射皮膜からなる補強皮膜が形成された長辺と、短辺母材の内側表面及び短辺母材の内側角部にCoをベースとしたCr−Si−B系の合金の溶射皮膜からなる補強皮膜が形成された短辺とを用いて連続鋳造鋳型を構成し、連続鋳造時に短辺の内側角部に発生するひずみを有限要素法により求めた。ここで、短辺の内側角部には、短辺の内側表面と45度の角度をなす面取り加工を施している。
面取りにより形成する斜辺面取り寸法を変化させた際にメニスカス部に発生するひずみレベルを図5に、メニスカスより下方400mmの位置に発生するひずみレベルを図6にそれぞれ示す。
(Experimental example 2)
The long side in which a reinforcing coating made of a thermal spray coating of a Cr-Si-B alloy based on Co is formed on the inner surface of the long side base material, the inner surface of the short side base material, and the inner side of the short side base material A continuous casting mold is formed using a short side on which a reinforcing coating made of a thermal spray coating of a Co-based Cr-Si-B alloy based on Co is formed at the corner, and at the inner corner of the short side during continuous casting The generated strain was determined by the finite element method. Here, the inner corner of the short side is chamfered to form an angle of 45 degrees with the inner surface of the short side.
FIG. 5 shows the strain level generated at the meniscus portion when the oblique chamfer dimension formed by chamfering is changed, and FIG. 6 shows the strain level generated at a position 400 mm below the meniscus.

図5、図6に示すように、CoをベースとしたCr−Si−B系の合金からなる補強皮膜を設け、短辺の内側角部に面取りを施すことで、破断ひずみ率を6.3%未満の値にすることができ、短辺の内側角部の欠けを防止できる。また、補強皮膜の内側角部に設ける面取りの面取り寸法は0.5mmとすれば十分であることが判る。 As shown in FIGS. 5 and 6, a reinforcing coating made of a Cr-Si-B alloy based on Co is provided, and the inner corner of the short side is chamfered to give a fracture strain rate of 6.3. The value can be made less than%, and chipping of the inner corners of the short sides can be prevented. It can also be seen that the chamfer dimension of the chamfer provided at the inner corner of the reinforcing coating is sufficient to be 0.5 mm.

(実験例3)
長辺母材の内側表面にNi−Cr系の合金の溶射皮膜からなる補強皮膜が形成された長辺と、短辺母材の内側表面及び短辺母材の内側角部にそれぞれNi−Cr系の合金の溶射皮膜からなる補強皮膜が形成され、短辺母材の内側角部に形成された補強皮膜の内側角部に傾き45度の面が形成されるように面取りを施した短辺とを用いて連続鋳造鋳型を構成し、連続鋳造時に短辺の内側角部に発生するひずみを有限要素法により求めた。ここで、短辺の内側角部には、短辺の内側表面と45度の角度をなす面取り加工を施している。
面取りにより形成する斜辺面取り寸法を変化させた際にメニスカス部に発生するひずみレベルを図5に、メニスカスより下方400mmの位置に発生するひずみレベルを図6にそれぞれ示す。
(Experimental example 3)
A long side formed with a thermal spray coating of a Ni—Cr alloy spray coating on the inner surface of the long-side base material, and an inner surface of the short-side base material and an inner corner of the short-side base material are respectively Ni—Cr. Short side chamfered so that a 45 ° sloped surface is formed at the inner corner of the reinforcing coating formed at the inner corner of the short side base material, with a reinforcing coating made of a thermal spray coating of an alloy The continuous casting mold was constructed using and, and the strain generated at the inner corner of the short side during continuous casting was determined by the finite element method. Here, the inner corner of the short side is chamfered to form an angle of 45 degrees with the inner surface of the short side.
FIG. 5 shows the strain level generated at the meniscus portion when the oblique chamfer dimension formed by chamfering is changed, and FIG. 6 shows the strain level generated at a position 400 mm below the meniscus.

Ni−Cr系の合金からなる補強皮膜を形成し、しかも、補強皮膜の内側角部に面取りを施さない(斜辺面取り寸法が0mm)と、図5に示すように、メニスカス部に発生する破断ひずみ率は約115%となり、短辺の内側角部に欠けが発生することが予想できる。また、短辺の内側角部に施す斜辺面取り寸法を大きくすることに伴って、メニスカス部に発生する破断ひずみ率を減少させることは可能となるが、補強皮膜の内側角部に設ける斜辺面取り寸法を0.6mm以上としても、破断ひずみ率は約30%となって、連続鋳造鋳型の実使用により経験から得られた「欠け損傷の少ない破断ひずみ率の上限レベル」である15.6%を超えている。そして、メニスカスより下方400mmの位置に発生する破断ひずみ率も、図6に示すように、斜辺面取り寸法の大きさに依存せず15.6%近傍の値となる。このため、短辺の内側角部に欠けが発生する可能性が高い。 When a reinforcing film made of a Ni-Cr alloy is formed and the inner corner of the reinforcing film is not chamfered (the chamfer dimension is 0 mm), as shown in FIG. 5, the breaking strain generated in the meniscus part The rate is about 115%, and it can be expected that chipping occurs at the inner corner of the short side. In addition, as the oblique chamfer dimension applied to the inner corner of the short side increases, it is possible to reduce the breaking strain rate generated in the meniscus, but the oblique chamfer dimension provided at the inner corner of the reinforcing coating. Even when the thickness is 0.6 mm or more, the fracture strain rate is about 30%, and the “upper limit level of the fracture strain rate with less chipping damage” obtained from experience through actual use of a continuous casting mold is 15.6%. Over. The breaking strain rate generated at a position 400 mm below the meniscus is a value near 15.6% regardless of the size of the chamfer chamfer dimension as shown in FIG. For this reason, there is a high possibility that the inner corner portion of the short side is chipped.

(実験例4)
長辺母材の内側表面にCoをベースとしたCr−Si−B系の合金の溶射皮膜からなる補強皮膜が形成された長辺と、短辺母材の内側表面にCoをベースとしたCr−Si−B系の合金の溶射皮膜からなる補強皮膜が、短辺母材の側部にCo−Ni系の合金めっきからなる保護皮膜が形成された短辺とを用いて連続鋳造鋳型を構成し、連続鋳造時に短辺の内側角部に発生するひずみを有限要素法により求めた。ここで、短辺の内側角部には、短辺の内側表面と45度の角度をなす面取り加工を施している。
面取りにより形成する斜辺面取り寸法を変化させた際にメニスカス部に発生するひずみレベルを図5に、メニスカスより下方400mmの位置に発生するひずみレベルを図6にそれぞれ示す。
(Experimental example 4)
A long side with a Co-based Cr-Si-B alloy spray coating formed on the inner surface of the long side base metal, and a Co-based Cr base on the inner surface of the short side base material -A continuous casting mold is formed by using a reinforcing coating made of a thermal spray coating of an Si-B alloy and a short side formed with a protective coating made of a Co-Ni alloy plating on the side of the short side base material. The strain generated at the inner corner of the short side during continuous casting was determined by the finite element method. Here, the inner corner of the short side is chamfered to form an angle of 45 degrees with the inner surface of the short side.
FIG. 5 shows the strain level generated at the meniscus portion when the oblique chamfer dimension formed by chamfering is changed, and FIG. 6 shows the strain level generated at a position 400 mm below the meniscus.

図5に示すように、Co−Ni系の合金めっきからなる保護皮膜を設け、しかも、保護皮膜の内側角部に面取りを施さないと、図5に示すように、メニスカス部に発生する破断ひずみ率は約55%となり、短辺の内側角部に欠けが発生する可能性が高い。また、短辺の内側角部に施す斜辺面取り寸法を大きくすることに伴って、メニスカス部に発生する破断ひずみ率を減少させることは可能となるが、保護皮膜の内側角部に設ける斜辺面取り寸法を0.6mm以上としても、破断ひずみ率は約10%となって、「好ましい破断ひずみ率の上限レベル」である6.3%を超えている。一方、メニスカスより下方400mmの位置に発生する破断ひずみ率は、図6に示すように、6.3%未満の値となっている。その結果、このため、Co−Ni系の合金めっきからなる保護皮膜を設けた場合は、保護皮膜の内側角部に面取りを施しても、メニスカス部に相当する短辺の内側角部に欠けが発生する可能性がある。 As shown in FIG. 5, if a protective film made of Co—Ni alloy plating is provided and the inner corner of the protective film is not chamfered, the breaking strain generated in the meniscus portion as shown in FIG. The rate is about 55%, and there is a high possibility of chipping at the inner corners of the short sides. In addition, as the oblique chamfer dimension applied to the inner corner of the short side is increased, it is possible to reduce the breaking strain rate generated in the meniscus, but the oblique chamfer dimension provided at the inner corner of the protective coating. Is 0.6 mm or more, the breaking strain rate is about 10%, exceeding the “preferable upper limit level of breaking strain rate” of 6.3%. On the other hand, the breaking strain rate generated at a position 400 mm below the meniscus has a value of less than 6.3% as shown in FIG. As a result, for this reason, when a protective film made of Co-Ni alloy plating is provided, even if the inner corner of the protective film is chamfered, the inner corner of the short side corresponding to the meniscus is not chipped. May occur.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載した構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。
更に、本実施の形態とその他の実施の形態や変形例にそれぞれ含まれる構成要素を組合わせたものも、本発明に含まれる。
例えば、本実施の形態では、長辺をマルチテーパとしたが、長辺及び短辺をマルチテーパとすることもできる。
また、本実施の形態では、短辺を構成する短辺母材の側部に設けた補強皮膜の内側角部に面取りを施したが、短辺母材上に補強皮膜が存在していない場合に、短辺母材の内側角部に面取りを施すことも本発明に含まれる。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above-described embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included.
Further, the present invention also includes a combination of components included in the present embodiment and other embodiments and modifications.
For example, in this embodiment, the long side is a multitaper, but the long side and the short side may be a multitaper.
In this embodiment, chamfering is performed on the inner corner of the reinforcing film provided on the side of the short side base material constituting the short side, but the reinforcing film does not exist on the short side base material. Furthermore, it is also included in the present invention to chamfer the inner corner of the short side base material.

10:連続鋳造鋳型、11、12:長辺、13、14:短辺、15:鋳片形成部、16:溶鋼、17:短辺上部、18:短辺下部、19:空間部、20、21:補強皮膜、22:膨出部、23:長辺母材、24:短辺母材、25:短辺上部母材、26:短辺下部母材、27:保護皮膜、28:側端面 10: Continuous casting mold, 11, 12: Long side, 13, 14: Short side, 15: Cast piece forming part, 16: Molten steel, 17: Upper part of short side, 18: Lower part of short side, 19: Space part, 20, 21: Reinforcing film, 22: bulging part, 23: long side base material, 24: short side base material, 25: short side upper base material, 26: short side lower base material, 27: protective film, 28: side end face

Claims (5)

対向配置される長辺と、該長辺の間に対向配置される短辺とを有する連続鋳造鋳型において、
前記長辺の内側表面に当接する前記短辺の内側角部、又は前記短辺のメニスカス部を含む下側領域であって前記長辺の内側表面に当接する内側角部に面取りを施し、前記内側角部と前記長辺の内側表面との間に空間部を形成し、前記短辺の内側角部の損傷を防止したことを特徴とする連続鋳造鋳型。
In a continuous casting mold having a long side opposed to each other and a short side arranged oppositely between the long sides,
Chamfering the inner corner of the short side that contacts the inner surface of the long side, or the inner corner of the lower side that includes the meniscus portion of the short side and contacting the inner surface of the long side, A continuous casting mold, wherein a space is formed between an inner corner and an inner surface of the long side to prevent damage to the inner corner of the short side.
請求項1記載の連続鋳造鋳型において、前記面取りの寸法は、前記短辺の幅方向に対して0.3mm以上1mm以下であり、前記短辺の厚み方向に対して0.3mm以上2mm以下であることを特徴とする連続鋳造鋳型。 2. The continuous casting mold according to claim 1, wherein the dimension of the chamfer is 0.3 mm or more and 1 mm or less with respect to the width direction of the short side and is 0.3 mm or more and 2 mm or less with respect to the thickness direction of the short side. A continuous casting mold characterized by being. 請求項1又は2記載の連続鋳造鋳型において、前記面取りが施される前記短辺の内側角部には、溶射皮膜からなる耐磨耗性の補強皮膜が形成されていることを特徴とする連続鋳造鋳型。 3. The continuous casting mold according to claim 1, wherein a wear-resistant reinforcing film made of a sprayed coating is formed on an inner corner portion of the short side where the chamfering is performed. Casting mold. 請求項3記載の連続鋳造鋳型において、前記溶射皮膜はNi又はCoをベースとしたCr−Si−B系の合金からなることを特徴とする連続鋳造鋳型。 4. The continuous casting mold according to claim 3, wherein the thermal spray coating is made of a Cr-Si-B alloy based on Ni or Co. 請求項3記載の連続鋳造鋳型において、前記溶射皮膜はCo、Ni、又はCo−Ni系の合金に、炭化物、窒化物、及び硼化物のいずれか1又は2以上を添加した複合材からなることを特徴とする連続鋳造鋳型。 4. The continuous casting mold according to claim 3, wherein the thermal spray coating is made of a composite material obtained by adding one or more of carbide, nitride, and boride to a Co, Ni, or Co—Ni alloy. Continuous casting mold characterized by.
JP2011168596A 2011-08-01 2011-08-01 Continuous casting mold Active JP5566972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011168596A JP5566972B2 (en) 2011-08-01 2011-08-01 Continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011168596A JP5566972B2 (en) 2011-08-01 2011-08-01 Continuous casting mold

Publications (2)

Publication Number Publication Date
JP2013031867A true JP2013031867A (en) 2013-02-14
JP5566972B2 JP5566972B2 (en) 2014-08-06

Family

ID=47788208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011168596A Active JP5566972B2 (en) 2011-08-01 2011-08-01 Continuous casting mold

Country Status (1)

Country Link
JP (1) JP5566972B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105983665A (en) * 2015-02-28 2016-10-05 宝山钢铁股份有限公司 Narrow-edge copper plate for slab mold with continuous variable taper at corner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61172638U (en) * 1985-04-10 1986-10-27
JPH04178246A (en) * 1990-11-13 1992-06-25 Nkk Corp Builtup casting mold
JP2007160346A (en) * 2005-12-13 2007-06-28 Mishima Kosan Co Ltd Casting mold for continuous casting
JP2008049385A (en) * 2006-08-28 2008-03-06 Mishima Kosan Co Ltd Continuous casting mold

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61172638U (en) * 1985-04-10 1986-10-27
JPH04178246A (en) * 1990-11-13 1992-06-25 Nkk Corp Builtup casting mold
JP2007160346A (en) * 2005-12-13 2007-06-28 Mishima Kosan Co Ltd Casting mold for continuous casting
JP2008049385A (en) * 2006-08-28 2008-03-06 Mishima Kosan Co Ltd Continuous casting mold

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105983665A (en) * 2015-02-28 2016-10-05 宝山钢铁股份有限公司 Narrow-edge copper plate for slab mold with continuous variable taper at corner

Also Published As

Publication number Publication date
JP5566972B2 (en) 2014-08-06

Similar Documents

Publication Publication Date Title
JP4659706B2 (en) Continuous casting mold
KR101941506B1 (en) Continuous casting mold and method for continuous casting of steel
JP6003850B2 (en) Manufacturing method of continuous casting mold and continuous casting method of steel
JP5180876B2 (en) Continuous casting mold
JP5566972B2 (en) Continuous casting mold
JP6085571B2 (en) Continuous casting mold
JP6787359B2 (en) Continuous steel casting method
KR101443788B1 (en) Casting mold
JP6740924B2 (en) Continuous casting mold and steel continuous casting method
CN109475930B (en) Continuous casting mold and method for continuous casting of steel
JP5463189B2 (en) Method for repairing continuous casting mold and repaired continuous casting mold
CN109843473B (en) Continuous casting mold and method for continuous casting of steel
JP6817498B1 (en) Mold for continuous casting
JP5639960B2 (en) Continuous casting mold
JP5525966B2 (en) Continuous casting mold
JP2009160632A (en) Mold for continuous casting
JP5525925B2 (en) Continuous casting mold
JP5525896B2 (en) Continuous casting mold
CN113015587B (en) Mold for continuous casting of steel and method for continuous casting of steel
JP2010188399A (en) Mold for continuous casting
JP5624007B2 (en) Continuous casting method
JP2010515583A (en) Mold with coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140618

R150 Certificate of patent or registration of utility model

Ref document number: 5566972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250