JP2013031845A - Method for producing fluid catalytic cracking catalyst of hydrocarbon - Google Patents

Method for producing fluid catalytic cracking catalyst of hydrocarbon Download PDF

Info

Publication number
JP2013031845A
JP2013031845A JP2012204458A JP2012204458A JP2013031845A JP 2013031845 A JP2013031845 A JP 2013031845A JP 2012204458 A JP2012204458 A JP 2012204458A JP 2012204458 A JP2012204458 A JP 2012204458A JP 2013031845 A JP2013031845 A JP 2013031845A
Authority
JP
Japan
Prior art keywords
catalyst
catalytic cracking
fluid catalytic
cracking catalyst
phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012204458A
Other languages
Japanese (ja)
Other versions
JP5579236B2 (en
Inventor
Mitsunori Watabe
光徳 渡部
Hiroshi Matsumoto
広 松本
Shintaro Yabe
慎太郎 矢部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2012204458A priority Critical patent/JP5579236B2/en
Publication of JP2013031845A publication Critical patent/JP2013031845A/en
Application granted granted Critical
Publication of JP5579236B2 publication Critical patent/JP5579236B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a fluid catalytic cracking catalyst of hydrocarbons, which has large pore volume and high wear resistance.SOLUTION: The method for producing the fluid catalytic cracking catalyst of hydrocarbons comprises the steps of: spray-drying a slurried mixture of an inorganic oxide matrix precursor containing basic aluminum chloride with zeolite to obtain spherical particles; washing the spherical particles; and drying the washed spherical particles; or further firing the dried spherical particles. Phosphoric acid or a phosphate of 0.1-3 mass% in terms of POis incorporated in an inorganic oxide matrix of the fluid catalytic cracking catalyst but phosphorus is not incorporated in the zeolite thereof.

Description

本発明は、細孔容積が大きく、かつ耐摩耗性が高い炭化水素の流動接触分解触媒の製造方法に関する。   The present invention relates to a method for producing a hydrocarbon fluid catalytic cracking catalyst having a large pore volume and high wear resistance.

従来の炭化水素の流動接触分解触媒は、例えば、粒子径の小さい原料を使用したり、バインダー量を増やしたりして、触媒の粒子密度を高めることにより、耐摩耗性を向上させていた。しかしながら、前記した方法で製造した触媒は、細孔容積が小さいので原料油が触媒粒子内へ拡散し難くなり、触媒の原料油に対する分解活性が低下するという問題があった。そこで、結合力が高い塩基性塩化アルミニウム(アルミニウムクロルヒドロール)をバインダー成分として用い、耐摩耗性が高く、しかも細孔容積が大きい炭化水素の流動接触分解触媒が提案されている(例えば、特許文献1参照)。   Conventional hydrocarbon fluid catalytic cracking catalysts have improved wear resistance by, for example, using raw materials with small particle diameters or increasing the amount of binder to increase the particle density of the catalyst. However, the catalyst produced by the above-described method has a problem that since the pore volume is small, the raw material oil is difficult to diffuse into the catalyst particles, and the cracking activity of the catalyst with respect to the raw material oil is reduced. Therefore, a hydrocarbon fluid catalytic cracking catalyst using basic aluminum chloride (aluminum chlorohydrol) having a high binding force as a binder component and having high wear resistance and a large pore volume has been proposed (for example, patents). Reference 1).

特開昭62−14947号公報JP-A-62-14947

しかしながら、前記した塩基性塩化アルミニウムをバインダー成分として用いた炭化水素の流動接触分解触媒でも、耐摩耗性については充分に満足できるものではなかった。
そこで、本発明は、細孔容積が大きくしかも耐摩耗性が高い、炭化水素の流動接触分解触媒の製造方法の提供を目的とする。
However, even the hydrocarbon fluid catalytic cracking catalyst using basic aluminum chloride as a binder component is not satisfactory in terms of wear resistance.
Therefore, an object of the present invention is to provide a method for producing a hydrocarbon fluid catalytic cracking catalyst having a large pore volume and high wear resistance.

上記課題は、次の1)〜3)の発明によって解決される。
1) 塩基性塩化アルミニウムを含有する無機酸化物マトリックス前駆体とゼオライトの混合スラリーを噴霧乾燥し、得られる球状粒子を洗浄した後、乾燥して又は乾燥後に焼成して炭化水素の流動接触分解触媒を製造する方法であって、前記流動接触分解触媒の無機酸化物マトリックス中に、リン酸又はリン酸塩をPとして0.1〜3質量%含有させ、ゼオライト中にはリンを含有させないことを特徴とする炭化水素の流動接触分解触媒の製造方法。
2) 以下の少なくとも1つの段階で、リン酸又はリン酸塩を含有させることを特徴とする1)記載の炭化水素の流動接触分解触媒の製造方法。
(a)塩基性塩化アルミニウムを含有する無機酸化物マトリックス前駆体とゼオライトよりなる原料の1種又は2種以上に、あらかじめリン酸又はリン酸塩を混合しておく。
(b)混合スラリーの段階で、リン酸又はリン酸塩を混合する。
(c)球状粒子に、リン酸又はリン酸塩を混合する。
(d)洗浄粒子に、リン酸又はリン酸塩を混合する。
(e)洗浄粒子を乾燥し、更に焼成した後、リン酸又はリン酸塩を混合する。

3) ゼオライトがpH2以上の雰囲気にあることを特徴とする1)又は2)に記載の炭化水素の流動接触分解触媒の製造方法。
The above problems are solved by the following inventions 1) to 3).
1) A mixed slurry of an inorganic oxide matrix precursor containing basic aluminum chloride and zeolite is spray-dried, and the resulting spherical particles are washed, then dried or calcined after drying, and a fluidized catalytic cracking catalyst for hydrocarbons In the inorganic oxide matrix of the fluid catalytic cracking catalyst, 0.1 to 3% by mass of phosphoric acid or phosphate as P 2 O 5 is contained, and the zeolite contains phosphorus. A method for producing a fluidized catalytic cracking catalyst for hydrocarbons, wherein
2) The method for producing a hydrocarbon fluid catalytic cracking catalyst according to 1), wherein phosphoric acid or a phosphate is contained in at least one of the following steps.
(A) Phosphoric acid or phosphate is mixed in advance with one or more of raw materials comprising an inorganic oxide matrix precursor containing basic aluminum chloride and zeolite.
(B) In the mixed slurry stage, phosphoric acid or phosphate is mixed.
(C) Phosphoric acid or phosphate is mixed with the spherical particles.
(D) Phosphoric acid or phosphate is mixed with the cleaning particles.
(E) The washed particles are dried and further baked, and then mixed with phosphoric acid or phosphate.

3) The method for producing a hydrocarbon fluid catalytic cracking catalyst according to 1) or 2), wherein the zeolite is in an atmosphere having a pH of 2 or higher.

本発明により製造される炭化水素の流動接触分解触媒は、リンがPとして0.1〜3質量%含有されているので、リン酸根(PO)が、触媒成分である塩基性塩化アルミニウムと反応し、塩基性塩化アルミニウムの結晶の表面にリン酸アルミニウムを形成し、隣り合う塩基性塩化アルミニウムの結晶の接触面の結合力を高めることができる。これによって、触媒性能を維持したまま、耐摩耗性を高くすることができる。従って、大きな細孔容積を持ち、かつ、耐摩耗性に優れた触媒の製造が可能になる。 Since the hydrocarbon fluid catalytic cracking catalyst produced according to the present invention contains 0.1 to 3% by mass of phosphorus as P 2 O 5 , the basic chloride whose phosphate group (PO 4 ) is the catalyst component is used. By reacting with aluminum, aluminum phosphate is formed on the surface of the basic aluminum chloride crystal, and the bonding force between the contact surfaces of the adjacent basic aluminum chloride crystals can be increased. As a result, the wear resistance can be increased while maintaining the catalyst performance. Therefore, it is possible to produce a catalyst having a large pore volume and excellent wear resistance.

リン〔リンとは、リン酸根(PO)をいう〕とアルミニウム化合物(例えば、アルミナ)は親和性が高く、塩基性塩化アルミニウムをリンが架橋して、塩基性塩化アルミニウムの結合力を高めることができる。これにより、触媒の耐摩耗性が向上する。
また、触媒のリンの含有量が、Pとして、0.1質量%未満では、塩基性塩化アルミニウムの結晶の表面に形成されるリン酸アルミニウムが少なくなり、塩基性塩化アルミニウム同士の結合力を高めることができず、3質量%を超えると、余剰のリンが触媒の細孔を塞いで、細孔容積が小さくなる虞がある。
本発明において、「リン酸」とは、正リン酸(オルトリン酸)を意味する。また、リン酸塩としては、リン酸アンモニウム、リン酸水素−アンモニウム、リン酸水素二アンモニウム、第一リン酸アルミニウム、第一リン酸マグネシウム等がある。
Phosphorus (phosphorus refers to phosphate group (PO 4 )) and aluminum compounds (eg, alumina) have high affinity, and basic aluminum chloride is cross-linked with phosphorus to increase the binding strength of basic aluminum chloride. Can do. This improves the wear resistance of the catalyst.
Further, if the phosphorus content of the catalyst is less than 0.1% by mass as P 2 O 5 , the amount of aluminum phosphate formed on the surface of the basic aluminum chloride crystal decreases, and the basic aluminum chloride bonds to each other. If the force cannot be increased and the amount exceeds 3% by mass, excess phosphorus may block the pores of the catalyst, which may reduce the pore volume.
In the present invention, “phosphoric acid” means orthophosphoric acid (orthophosphoric acid). Examples of the phosphate include ammonium phosphate, hydrogen phosphate-ammonium phosphate, diammonium hydrogen phosphate, primary aluminum phosphate, primary magnesium phosphate, and the like.

塩基性塩化アルミニウムは、塩化アルミニウム水溶液に金属アルミニウム(例えば、アルミニウム粉、アルミニウムホイル)を溶解させて製造することができ、下記(1)式で示される。
〔Al(OH)Cl6−n・・・(1)
(ただし、0<n<6、1≦m≦10、好ましくは4.8≦n≦5.3、3≦m≦7である。なお、mは、自然数を示す。)
無機酸化物マトリックス前駆体の構成成分としては、塩基性塩化アルミニウムの他に、カオリン、活性アルミナ、メタルトラップ剤等がある。
ここで、メタルトラップ剤としては、アルミナ粒子、リン−アルミナ粒子、結晶性カルシウムアルミネート、セピオライト、チタン酸バリウム、スズ酸カルシウム、チタン酸ストロンチウム、酸化マンガン、マグネシア、マグネシア−アルミナ等が例示される。
触媒には、レアアース(希土類金属)を含んでもよい。希土類金属としては、セリウム(Ce)、ランタン(La)、プラセオジウム(Pr)、及びネオジム(Nd)等を挙げることができ、通常は、その1種又は2種以上の希土類元素の塩化物(希土類金属塩化物)として用いる。
Basic aluminum chloride can be produced by dissolving metallic aluminum (for example, aluminum powder, aluminum foil) in an aluminum chloride aqueous solution, and is represented by the following formula (1).
[Al 2 (OH) n Cl 6-n ] m (1)
(However, 0 <n <6, 1 ≦ m ≦ 10, preferably 4.8 ≦ n ≦ 5.3, 3 ≦ m ≦ 7, where m represents a natural number.)
Constituent components of the inorganic oxide matrix precursor include kaolin, activated alumina, metal trapping agent and the like in addition to basic aluminum chloride.
Examples of the metal trapping agent include alumina particles, phosphorus-alumina particles, crystalline calcium aluminate, sepiolite, barium titanate, calcium stannate, strontium titanate, manganese oxide, magnesia, magnesia-alumina, and the like. .
The catalyst may contain rare earth (rare earth metal). Examples of the rare earth metal include cerium (Ce), lanthanum (La), praseodymium (Pr), and neodymium (Nd). Usually, one or more rare earth element chlorides (rare earth) are used. Metal chloride).

ゼオライトは、炭化水素の流動接触分解触媒の製造中に、pH2以上の雰囲気にあることが好ましく、より好ましくはpH3〜12である。なお、ゼオライト粒子表面のpHは直接測定できないため、前記pHはゼオライト粒子が存在している系(溶液)のpHである。前記pHが2未満であると、ゼオライト粒子が脱アルミして、ゼオライトが破壊される虞がある。
ゼオライトとしては、Y型ゼオライト、超安定化Y型ゼオライト(USY)、レアアース交換Y型ゼオライト(RE−Y)、レアアース交換超安定化Y型ゼオライト(RE−USY)が使用される。
The zeolite is preferably in an atmosphere having a pH of 2 or more during the production of a fluid catalytic cracking catalyst for hydrocarbons, and more preferably has a pH of 3-12. Since the pH of the zeolite particle surface cannot be measured directly, the pH is the pH of the system (solution) in which the zeolite particles are present. If the pH is less than 2, the zeolite particles may be dealuminated and the zeolite may be destroyed.
As the zeolite, Y-type zeolite, ultra-stabilized Y-type zeolite (USY), rare earth-exchanged Y-type zeolite (RE-Y), and rare-earth exchanged ultra-stabilized Y-type zeolite (RE-USY) are used.

本発明により製造される炭化水素の流動接触分解触媒は、耐摩耗性指数(CCIC Attrition Index.CAI)が6以下で、水銀圧入法によって測定される全細孔容積(細孔径5.5〜500nm)が0.10〜0.40ml/gであることが好ましい。
ここで、耐摩耗性指数は、触媒化成技報Vol.13、No.1、P65、1996に記載された方法により測定される値である。耐摩耗性指数が6を超えると、触媒が使用時に粉化して、触媒の損失、流動接触分解装置のトラブル、触媒粉の製品(特に、HCO)への混入等が起こることがあるので好ましくない。
また、水銀圧入法によって測定される全細孔容積は、細孔径が5.5〜500nmの細孔のものであり、これはマトリックスに形成される細孔である。なお、ゼオライトの細孔は水銀圧入法では測定できない。全細孔容積が0.10ml/g未満では、炭化水素を効率よく分解することができず、0.40ml/gを超えると、強度(耐摩耗性)が低下する虞がある。
洗浄粒子の乾燥は、例えば、100〜200℃程度で行われ、焼成は500〜600℃程度で行われる。
The hydrocarbon fluid catalytic cracking catalyst produced according to the present invention has a wear resistance index (CCIC Attrition Index. CAI) of 6 or less and a total pore volume (pore diameter of 5.5 to 500 nm) measured by mercury porosimetry. ) Is preferably 0.10 to 0.40 ml / g.
Here, the abrasion resistance index is the value of the catalyst chemical technical report Vol. 13, no. 1, P65, a value measured by the method described in 1996. If the wear resistance index exceeds 6, the catalyst is pulverized during use, which may lead to loss of the catalyst, trouble in the fluid catalytic cracking device, mixing of the catalyst powder into the product (particularly HCO), etc., which is not preferable. .
The total pore volume measured by the mercury intrusion method is a pore having a pore diameter of 5.5 to 500 nm, which is a pore formed in the matrix. Note that the pores of zeolite cannot be measured by the mercury intrusion method. If the total pore volume is less than 0.10 ml / g, hydrocarbons cannot be decomposed efficiently, and if it exceeds 0.40 ml / g, the strength (wear resistance) may be reduced.
For example, the cleaning particles are dried at about 100 to 200 ° C., and the baking is performed at about 500 to 600 ° C.

[実施例1]
<塩基性塩化アルミニウム水溶液の製造>
33.7kgの純水を入れたスチームジャケット付きのチタン製のタンク(容量70L)に、7245gの塩化アルミニウム6水和物(関東化学社製。1級試薬)を挿入して十分に攪拌し、塩化アルミニウム水溶液を得た。この塩化アルミニウム水溶液を攪拌しながら95℃まで加温した後、液温を保持したまま、純度99.9%のアルミ箔(アルミニウムホイル)4050gを6時間かけて少量づつ(11.25g/分程度で)投入して、アルミ箔を溶解させた。なお、アルミ箔の溶解時には、大量の水素ガスが発生し、水溶液中の水が水蒸気として蒸発するため、タンク内の水溶液の貯留量が一定になるように95℃の純水を適宜補給した。アルミ箔が完全に溶解した後、この水溶液を30℃まで冷却して、45.0kgの塩基性塩化アルミニウム水溶液を得た。この塩基性塩化アルミニウム水溶液は、pH3.9であり、Alとして20.5%の塩基性塩化アルミニウムを含んでいた。なお、以下の実施例、比較例においても、この塩基性塩化アルミニウム水溶液を使用した。
<流動接触分解触媒の製造>
この塩基性塩化アルミニウム水溶液975.6g(触媒基準で10質量%)と、カオリン1093.0g(触媒基準で47質量%)と、活性アルミナ222.2g(触媒基準で10質量%)と、メタルトラップ剤として二酸化マンガン20.0g(触媒基準で1質量%)とを混合して、無機酸化物マトリックス前駆体を得た。更に、得られた無機酸化物マトリックス前駆体に、超安定化Y型ゼオライトスラリー1818.2g(超安定化Y型ゼオライトを600.0g含む。触媒基準で30質量%)を加え、混合スラリーを得た。この混合スラリーに、85%リン酸(オルトリン酸。以下、同様)を16.2g(触媒基準でPとして0.5質量%)加え、十分に攪拌した後、20%水酸化マグネシウム水溶液を添加して、pH4.8に調整し、リン含有スラリーを得た。
このリン含有スラリーを噴霧乾燥して、微小な球状の粒子(平均粒子径が60μm程度)を調製した後、NaO含有量が0.5質量%以下になるまで洗浄し、更に、レアアース含有水溶液を用いてREとして1.5質量%となるようにイオン交換した後、135℃で乾燥し、炭化水素の流動接触分解触媒A(以下、単に「触媒A」ともいう。以下同様)を製造した。得られた触媒Aの性状を表1に示す。
[Example 1]
<Production of basic aluminum chloride aqueous solution>
7245 g of aluminum chloride hexahydrate (manufactured by Kanto Chemical Co., Ltd., first grade reagent) was inserted into a titanium tank with a steam jacket (capacity: 70 L) containing 33.7 kg of pure water, and stirred sufficiently. An aqueous aluminum chloride solution was obtained. After this aluminum chloride aqueous solution was heated to 95 ° C. with stirring, 4050 g of aluminum foil (aluminum foil) having a purity of 99.9% was gradually added over 6 hours while maintaining the liquid temperature (about 11.25 g / min). In) to dissolve the aluminum foil. When the aluminum foil was dissolved, a large amount of hydrogen gas was generated, and water in the aqueous solution evaporated as water vapor. Therefore, 95 ° C. pure water was appropriately replenished so that the amount of the aqueous solution stored in the tank was constant. After the aluminum foil was completely dissolved, the aqueous solution was cooled to 30 ° C. to obtain 45.0 kg of basic aluminum chloride aqueous solution. This basic aluminum chloride aqueous solution had a pH of 3.9 and contained 20.5% basic aluminum chloride as Al 2 O 3 . The basic aluminum chloride aqueous solution was also used in the following examples and comparative examples.
<Production of fluid catalytic cracking catalyst>
975.6 g of this basic aluminum chloride aqueous solution (10% by mass based on catalyst), 1093.0 g of kaolin (47% by mass based on catalyst), 222.2 g of activated alumina (10% by mass based on catalyst), metal trap As an agent, 20.0 g of manganese dioxide (1% by mass on the basis of catalyst) was mixed to obtain an inorganic oxide matrix precursor. Furthermore, 1818.2 g of super-stabilized Y-type zeolite slurry (including 600.0 g of super-stabilized Y-type zeolite. 30% by mass based on catalyst) was added to the obtained inorganic oxide matrix precursor to obtain a mixed slurry. It was. After adding 16.2 g of 85% phosphoric acid (orthophosphoric acid, hereinafter the same) to this mixed slurry (0.5% by mass as P 2 O 5 based on the catalyst) and stirring sufficiently, a 20% magnesium hydroxide aqueous solution was added. Was added to adjust the pH to 4.8 to obtain a phosphorus-containing slurry.
The phosphorus-containing slurry is spray-dried to prepare fine spherical particles (average particle size is about 60 μm), and then washed until the Na 2 O content is 0.5% by mass or less, and further contains rare earth. After ion exchange so that the RE 2 O 3 is 1.5% by mass using an aqueous solution, it is dried at 135 ° C. and fluidized catalytic cracking catalyst A of hydrocarbon (hereinafter simply referred to as “catalyst A”. The same applies hereinafter. ) Was manufactured. The properties of the obtained catalyst A are shown in Table 1.

[実施例2]
カオリンを1081.4g(触媒基準で46.5質量%)、85%リン酸を32.5g(触媒基準でPとして1.0質量%)として、流動接触分解触媒Bを製造した点が、実施例1と異なる。
[Example 2]
The point of producing fluid catalytic cracking catalyst B with 1081.4 g of kaolin (46.5% by mass based on catalyst) and 32.5 g of 85% phosphoric acid (1.0% by mass as P 2 O 5 based on catalyst) However, this is different from the first embodiment.

[実施例3]
カオリンを1058.1g(触媒基準で45.5質量%)、85%リン酸を64.9g(触媒基準でPとして2.0質量%)として、流動接触分解触媒Cを製造した点が、実施例1と異なる。
[Example 3]
Point of producing fluid catalytic cracking catalyst C with 1058.1 g of kaolin (45.5% by mass based on catalyst) and 64.9 g of 85% phosphoric acid (2.0% by mass as P 2 O 5 based on catalyst) However, this is different from the first embodiment.

[比較例1]
カオリンを1104.7g(触媒基準で47.5質量%)とし、85%リン酸を混合せずに、流動接触分解触媒Dを製造した点が、実施例1と異なる。
[Comparative Example 1]
The difference from Example 1 is that the fluid catalytic cracking catalyst D was produced with 1104.7 g of kaolin (47.5 mass% based on the catalyst) and without mixing 85% phosphoric acid.

[比較例2]
カオリンを1011.6g(触媒基準で43.5質量%)、85%リン酸を129.9g(触媒基準でPとして4.0質量%)として、流動接触分解触媒Eを製造した点が、実施例1と異なる。
[Comparative Example 2]
The point of producing fluid catalytic cracking catalyst E with 1011.6 g of kaolin (43.5% by mass based on catalyst) and 129.9 g of 85% phosphoric acid (4.0% by mass as P 2 O 5 based on catalyst) However, this is different from the first embodiment.

[実施例4]
85%リン酸16.2g(触媒基準でPとして0.5質量%)を、塩基性塩化アルミニウム水溶液975.6g(触媒基準で10質量%)に予めに加えて得られた水溶液と、カオリン1093.0g(触媒基準で47質量%)と、活性アルミナ222.2g(触媒基準で10質量%)と、メタルトラップ剤として二酸化マンガン20.0g(触媒基準で1質量%)とを混合して、無機酸化物マトリックス前駆体を得た。更に、得られた無機酸化物マトリックス前駆体に、超安定化Y型ゼオライトスラリー1818.2g(超安定化Y型ゼオライトを600.0g含む。触媒基準で30質量%)を加え、混合スラリーを得た。この混合スラリーに、20%水酸化マグネシウム水溶液を添加して、pH4.8に調整し、リン含有スラリーを得た。
このリン含有スラリーを噴霧乾燥して、微小な球状の粒子(平均粒子径が60μm程度)を調製した後、NaO含有量が0.5質量%以下になるまで洗浄し、更に、レアアース含有水溶液を用いてREとして1.5質量%となるようにイオン交換した後、135℃で乾燥し、炭化水素の流動接触分解触媒F(以下、単に「触媒F」ともいう。以下同様)を製造した。
[Example 4]
An aqueous solution obtained by previously adding 16.2 g of 85% phosphoric acid (0.5% by mass as P 2 O 5 on a catalyst basis) to 975.6 g of a basic aqueous aluminum chloride solution (10% by mass on a catalyst basis) , 1093.0 g of kaolin (47% by mass based on catalyst), 222.2 g of activated alumina (10% by mass based on catalyst) and 20.0 g of manganese dioxide (1% by mass based on catalyst) as a metal trapping agent Thus, an inorganic oxide matrix precursor was obtained. Furthermore, 1818.2 g of super-stabilized Y-type zeolite slurry (including 600.0 g of super-stabilized Y-type zeolite. 30% by mass based on catalyst) was added to the obtained inorganic oxide matrix precursor to obtain a mixed slurry. It was. A 20% magnesium hydroxide aqueous solution was added to the mixed slurry to adjust the pH to 4.8 to obtain a phosphorus-containing slurry.
The phosphorus-containing slurry is spray-dried to prepare fine spherical particles (average particle size is about 60 μm), and then washed until the Na 2 O content is 0.5% by mass or less, and further contains rare earth. After ion exchange so that the RE 2 O 3 is 1.5% by mass using an aqueous solution, it is dried at 135 ° C. and fluidized catalytic cracking catalyst F of hydrocarbon (hereinafter also simply referred to as “catalyst F”. ) Was manufactured.

[実施例5]
塩基性塩化アルミニウム水溶液975.6g(触媒基準で10質量%)と、カオリン1093.0g(触媒基準で47質量%)と、活性アルミナ222.2g(触媒基準で10質量%)と、メタルトラップ剤として二酸化マンガン20.0g(触媒基準で1質量%)とを混合して、無機酸化物マトリックス前駆体を得た。更に、得られた無機酸化物マトリックス前駆体に、超安定化Y型ゼオライトスラリー1818.2g(超安定化Y型ゼオライトを600.0g含む。触媒基準で30質量%)を加え、混合スラリーを得た。この混合スラリーに、20%水酸化マグネシウム水溶液を添加して、pH4.8に調整し、スラリーを得た。
このスラリーを噴霧乾燥して、微小な球状の粒子(平均粒子径が60μm程度)を調製した後、NaO含有量が0.5質量%以下になるまで洗浄し、更に、レアアース含有水溶液を用いてREとして1.5質量%となるようにイオン交換した後、この水溶液に、85%オルトリン酸16.2g(触媒基準でPとして0.5質量%)を添加して、充分微小粒子と水溶液を接触させてから、微小粒子を回収・乾燥して炭化水素の流動接触分解触媒G(以下、単に「触媒G」ともいう。以下同様)を製造した。
[Example 5]
975.6 g basic aluminum chloride aqueous solution (10% by mass based on catalyst), 1093.0 g kaolin (47% by mass based on catalyst), 222.2 g activated alumina (10% by mass based on catalyst), metal trapping agent As a mixture, 20.0 g of manganese dioxide (1% by mass on the basis of catalyst) was mixed to obtain an inorganic oxide matrix precursor. Furthermore, 1818.2 g of super-stabilized Y-type zeolite slurry (including 600.0 g of super-stabilized Y-type zeolite. 30% by mass based on catalyst) was added to the obtained inorganic oxide matrix precursor to obtain a mixed slurry. It was. A 20% magnesium hydroxide aqueous solution was added to the mixed slurry to adjust the pH to 4.8 to obtain a slurry.
The slurry is spray-dried to prepare fine spherical particles (average particle size is about 60 μm), and then washed until the Na 2 O content is 0.5 mass% or less. And then ion-exchanged to 1.5% by mass as RE 2 O 3 , and then added to this aqueous solution 16.2 g of 85% orthophosphoric acid (0.5% by mass as P 2 O 5 on a catalyst basis). Then, after sufficiently bringing the microparticles into contact with the aqueous solution, the microparticles were collected and dried to produce a hydrocarbon fluid catalytic cracking catalyst G (hereinafter also simply referred to as “catalyst G”, hereinafter the same).

[実施例6]
塩基性塩化アルミニウム水溶液975.6g(触媒基準で10質量%)と、カオリン1093.0g(触媒基準で47質量%)と、活性アルミナ222.2g(触媒基準で10質量%)と、メタルトラップ剤として二酸化マンガン20.0g(触媒基準で1質量%)とを混合して、無機酸化物マトリックス前駆体を得た。更に、得られた無機酸化物マトリックス前駆体に、超安定化Y型ゼオライトスラリー1818.2g(超安定化Y型ゼオライトを600.0g含む。触媒基準で30質量%)を加え、混合スラリーを得た。この混合スラリーに、20%水酸化マグネシウム水溶液を添加して、pH4.8に調整し、スラリーを得た。
このスラリーを噴霧乾燥して、微小な球状の粒子(平均粒子径が60μm程度)を調製した後、NaO含有量が0.5質量%以下になるまで洗浄し、135℃で乾燥し、更に、600℃で焼成したものに85%リン酸16.2g(触媒基準でPとして0.5質量%)含浸して、流動接触分解触媒H(以下、単に「触媒H」ともいう。以下同様)を製造した。
[Example 6]
975.6 g basic aluminum chloride aqueous solution (10% by mass based on catalyst), 1093.0 g kaolin (47% by mass based on catalyst), 222.2 g activated alumina (10% by mass based on catalyst), metal trapping agent As a mixture, 20.0 g of manganese dioxide (1% by mass on the basis of catalyst) was mixed to obtain an inorganic oxide matrix precursor. Furthermore, 1818.2 g of super-stabilized Y-type zeolite slurry (including 600.0 g of super-stabilized Y-type zeolite. 30% by mass based on catalyst) was added to the obtained inorganic oxide matrix precursor to obtain a mixed slurry. It was. A 20% magnesium hydroxide aqueous solution was added to the mixed slurry to adjust the pH to 4.8 to obtain a slurry.
This slurry is spray-dried to prepare fine spherical particles (average particle size is about 60 μm), then washed until the Na 2 O content is 0.5% by mass or less, and dried at 135 ° C., Further, the product calcined at 600 ° C. was impregnated with 16.2 g of 85% phosphoric acid (0.5% by mass as P 2 O 5 based on the catalyst), and fluidized catalytic cracking catalyst H (hereinafter also simply referred to as “catalyst H”). The same applies hereinafter.

[実施例7]
リン酸の代わりに、リン酸水素二アンモニウムを18.6g(触媒基準で0.5質量%)を含浸して、流動接触分解触媒Iを製造した点が、実施例6と異なる。
[Example 7]
The difference from Example 6 is that fluid catalytic cracking catalyst I was produced by impregnating diammonium hydrogen phosphate with 18.6 g (0.5% by mass based on catalyst) instead of phosphoric acid.

触媒A〜Iについて、それぞれFCC触媒評価装置(ケイザー社製、ACE−MAT モデルR+)を用い、同一原料油、同一反応条件下で接触分解反応を行なった。表1に結果を示す。なお、予め、触媒A〜Iは、触媒の重量基準で、ナフテン酸バナジウムをVとして4000wtppm、ナフテン酸ニッケルをNiOとして2000wtppmをともに含浸し、780℃で13時間100%スチーム雰囲気下で前処理をした。
ここで、接触分解反応条件は、以下の通りであった。
反応温度:520℃
原料油:脱硫常圧蒸留残さ油
Cat./Oil比(触媒と油の質量比):4wt%/wt%(触媒9g、油2.25g),及び、5wt%/wt%(触媒9g、油1.80g)
Catalysts A to I were each subjected to catalytic cracking reaction under the same feedstock and the same reaction conditions using an FCC catalyst evaluation device (manufactured by Kaiser, ACE-MAT model R +). Table 1 shows the results. The catalysts A to I were impregnated with 2,000 wtppm of vanadium naphthenate as V 2 O 5 and 2,000 wtppm of nickel naphthenate as NiO in advance, based on the weight of the catalyst, at 780 ° C. for 13 hours in a 100% steam atmosphere. Pre-processed.
Here, the catalytic cracking reaction conditions were as follows.
Reaction temperature: 520 ° C
Raw material oil: Desulfurized atmospheric distillation residue oil Cat. / Oil ratio (mass ratio of catalyst and oil): 4 wt% / wt% (catalyst 9 g, oil 2.25 g) and 5 wt% / wt% (catalyst 9 g, oil 1.80 g)

Figure 2013031845
Figure 2013031845

(1)比表面積の測定方法
全自動ガス吸着量測定装置(ユアサアイオニクス社製マルチソーブ16)を用いてBET法により測定した。
(2)嵩密度の測定方法
25mlのシリンダーを用いて、触媒の重量を測定し、単位体積当たりの重量から嵩密度を計算した。
(3)耐摩耗性指数(CAI)の測定方法
触媒化成技報 Vol.13、No.1、P65(1996)「触媒の摩耗強度測定法」に記載の装置及び方法により測定した。
(4)転化率(質量%)=(A−B)/A×100
A:原料油の重量
B:生成油中の沸点216℃以上の留分の重量
(5)ガソリン収率(質量%)=C/A×100
C:生成油中のガソリン(沸点範囲:C5〜216℃)の重量
(6)LCO収率(質量%)=D/A×100
D:生成油中のLCO(沸点範囲:216〜343℃)の重量
(7)HCO収率(質量%)=E/A×100
E:生成油中のHCO(沸点範囲:343℃〜)の重量
(8)コーク収率(質量%)=F/A×100
F:触媒混合物上に析出したコーク重量
(1) Method for measuring specific surface area The specific surface area was measured by the BET method using a fully automatic gas adsorption amount measuring device (Multisorb 16 manufactured by Yuasa Ionics).
(2) Method for measuring bulk density The weight of the catalyst was measured using a 25 ml cylinder, and the bulk density was calculated from the weight per unit volume.
(3) Measuring method of abrasion resistance index (CAI) Catalytic conversion technical report Vol. 13, no. 1, measured by the apparatus and method described in P65 (1996) “Method for Measuring Abrasion Strength of Catalyst”.
(4) Conversion (mass%) = (A−B) / A × 100
A: Weight of raw material oil B: Weight of fraction having boiling point of 216 ° C. or higher in product oil (5) Gasoline yield (mass%) = C / A × 100
C: Weight of gasoline (boiling range: C5 to 216 ° C.) in the produced oil (6) LCO yield (% by mass) = D / A × 100
D: Weight of LCO (boiling range: 216 to 343 ° C.) in the product oil (7) HCO yield (% by mass) = E / A × 100
E: Weight of HCO (boiling range: from 343 ° C.) in the product oil (8) Coke yield (% by mass) = F / A × 100
F: Weight of coke deposited on the catalyst mixture

<流動接触分解触媒A〜Eについて>
リンがPとして0.5〜2質量%含有されている流動接触分解触媒A〜Cは、比表面積が219m/g以上と大きく、しかも、耐摩耗性指数が6以下と高くなった。これにより、触媒性能を維持したまま、耐摩耗性を高くすることができる。従って、大きな細孔容積を持ち、かつ、耐摩耗性に優れた触媒の調製が可能になる。しかしながら、リンを含まない流動接触分解触媒Dは、耐摩耗性が悪く、リンがPとして4質量%含有されている流動接触分解触媒Eは、細孔容積が0.198ml/gと低くなった。
<About fluid catalytic cracking catalysts A to E>
Fluid catalytic cracking catalysts A to C containing 0.5 to 2% by mass of phosphorus as P 2 O 5 have a large specific surface area of 219 m 2 / g or more and a high wear resistance index of 6 or less. It was. Thereby, abrasion resistance can be made high, maintaining catalyst performance. Therefore, a catalyst having a large pore volume and excellent wear resistance can be prepared. However, the fluid catalytic cracking catalyst D containing no phosphorus has poor wear resistance, and the fluid catalytic cracking catalyst E containing 4% by mass of phosphorus as P 2 O 5 has a pore volume of 0.198 ml / g. It became low.

<流動接触分解触媒A、F〜Iについて>
として0.5質量%のリンを製造工程で含有させている流動接触分解触媒A及び流動接触分解触媒F〜Iは、細孔容積が0.228ml/g以上と大きく、しかも、耐摩耗性指数が6以下と高くなった。これにより、触媒性能を維持したまま、耐摩耗性を高くすることができる。従って、大きな細孔容積を持ち、かつ、耐摩耗性に優れた触媒の調製が可能になる。また、流動接触分解触媒Hでは、洗浄粒子を乾燥した後、リン酸を添加した場合、ゼオライトがpH2以下の雰囲気にあり、ゼオライトの結晶が壊れ易くなる傾向にあるため、流動接触分解触媒Iのように、リン酸水素二アンモニウムを添加して、ゼオライトがpH2以上(pH3〜12)の雰囲気にし、ゼオライト結晶の破壊を防ぐことにより、耐摩耗性を良くすることができる。
<About fluid catalytic cracking catalysts A and F to I>
The fluid catalytic cracking catalyst A and fluid catalytic cracking catalysts F to I containing 0.5% by mass of phosphorus as P 2 O 5 in the production process have a large pore volume of 0.228 ml / g or more, The wear resistance index was as high as 6 or less. Thereby, abrasion resistance can be made high, maintaining catalyst performance. Therefore, a catalyst having a large pore volume and excellent wear resistance can be prepared. Further, in the fluid catalytic cracking catalyst H, when phosphoric acid is added after drying the washing particles, the zeolite is in an atmosphere having a pH of 2 or less, and the crystals of the zeolite tend to be broken. Thus, by adding diammonium hydrogen phosphate to make the zeolite in an atmosphere having a pH of 2 or more (pH 3 to 12) and preventing destruction of the zeolite crystals, the wear resistance can be improved.

本発明は、前記した実施の形態に限定されるものではなく、本発明の要旨を変更しない範囲での変更は可能であり、例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組み合わせて本発明の流動接触分解触媒の製造方法を構成する場合も本発明の権利範囲に含まれる。   The present invention is not limited to the above-described embodiment, and can be changed without changing the gist of the present invention. For example, some or all of the above-described embodiments and modifications are possible. A combination of these is also included in the scope of the right of the present invention.

Claims (3)

塩基性塩化アルミニウムを含有する無機酸化物マトリックス前駆体とゼオライトの混合スラリーを噴霧乾燥し、得られる球状粒子を洗浄した後、乾燥して又は乾燥後に焼成して炭化水素の流動接触分解触媒を製造する方法であって、前記流動接触分解触媒の無機酸化物マトリックス中に、リン酸又はリン酸塩をPとして0.1〜3質量%含有させ、ゼオライト中にはリンを含有させないことを特徴とする炭化水素の流動接触分解触媒の製造方法。 Spray-drying a mixed slurry of inorganic oxide matrix precursor containing basic aluminum chloride and zeolite, washing the resulting spherical particles, drying or calcining after drying to produce hydrocarbon fluid catalytic cracking catalyst In the inorganic oxide matrix of the fluid catalytic cracking catalyst, 0.1 to 3% by mass of phosphoric acid or phosphate as P 2 O 5 is contained, and phosphorus is not contained in the zeolite. A process for producing a fluidized catalytic cracking catalyst for hydrocarbons. 以下の少なくとも1つの段階で、リン酸又はリン酸塩を含有させることを特徴とする請求項1記載の炭化水素の流動接触分解触媒の製造方法。
(a)塩基性塩化アルミニウムを含有する無機酸化物マトリックス前駆体とゼオライトよりなる原料の1種又は2種以上に、あらかじめリン酸又はリン酸塩を混合しておく。
(b)混合スラリーの段階で、リン酸又はリン酸塩を混合する。
(c)球状粒子に、リン酸又はリン酸塩を混合する。
(d)洗浄粒子に、リン酸又はリン酸塩を混合する。
(e)洗浄粒子を乾燥し、更に焼成した後、リン酸又はリン酸塩を混合する。
The method for producing a hydrocarbon fluid catalytic cracking catalyst according to claim 1, wherein phosphoric acid or phosphate is contained in at least one of the following steps.
(A) Phosphoric acid or phosphate is mixed in advance with one or more of raw materials comprising an inorganic oxide matrix precursor containing basic aluminum chloride and zeolite.
(B) In the mixed slurry stage, phosphoric acid or phosphate is mixed.
(C) Phosphoric acid or phosphate is mixed with the spherical particles.
(D) Phosphoric acid or phosphate is mixed with the cleaning particles.
(E) The washed particles are dried and further baked, and then mixed with phosphoric acid or phosphate.
ゼオライトがpH2以上の雰囲気にあることを特徴とする請求項1又は2に記載の炭化水素の流動接触分解触媒の製造方法。   The method for producing a hydrocarbon fluid catalytic cracking catalyst according to claim 1 or 2, wherein the zeolite is in an atmosphere having a pH of 2 or more.
JP2012204458A 2012-09-18 2012-09-18 Process for producing hydrocarbon fluid catalytic cracking catalyst Active JP5579236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012204458A JP5579236B2 (en) 2012-09-18 2012-09-18 Process for producing hydrocarbon fluid catalytic cracking catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012204458A JP5579236B2 (en) 2012-09-18 2012-09-18 Process for producing hydrocarbon fluid catalytic cracking catalyst

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008254364A Division JP5258488B2 (en) 2008-09-30 2008-09-30 Hydrocarbon catalytic cracking catalyst

Publications (2)

Publication Number Publication Date
JP2013031845A true JP2013031845A (en) 2013-02-14
JP5579236B2 JP5579236B2 (en) 2014-08-27

Family

ID=47788191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012204458A Active JP5579236B2 (en) 2012-09-18 2012-09-18 Process for producing hydrocarbon fluid catalytic cracking catalyst

Country Status (1)

Country Link
JP (1) JP5579236B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08173816A (en) * 1994-12-27 1996-07-09 Catalysts & Chem Ind Co Ltd Catalyst composition for fluidized catalytic cracking of hydrocarbon and its production
JP2006142273A (en) * 2004-11-24 2006-06-08 Catalysts & Chem Ind Co Ltd Process for producing catalyst composition for hydrocarbon fluid catalytic cracking
JP2008055416A (en) * 2006-08-30 2008-03-13 Petrochina Co Ltd Method for increasing solid content of catalytic cracking catalyst slurry
JP2010509044A (en) * 2006-11-13 2010-03-25 アルベマール・ネーザーランズ・ベー・ブイ Manufacturing method of FCC catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08173816A (en) * 1994-12-27 1996-07-09 Catalysts & Chem Ind Co Ltd Catalyst composition for fluidized catalytic cracking of hydrocarbon and its production
JP2006142273A (en) * 2004-11-24 2006-06-08 Catalysts & Chem Ind Co Ltd Process for producing catalyst composition for hydrocarbon fluid catalytic cracking
JP2008055416A (en) * 2006-08-30 2008-03-13 Petrochina Co Ltd Method for increasing solid content of catalytic cracking catalyst slurry
JP2010509044A (en) * 2006-11-13 2010-03-25 アルベマール・ネーザーランズ・ベー・ブイ Manufacturing method of FCC catalyst

Also Published As

Publication number Publication date
JP5579236B2 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
JP5258488B2 (en) Hydrocarbon catalytic cracking catalyst
JP6793004B2 (en) Residual oil cracking active flow catalytic cracking catalyst and its manufacturing method
JP5628027B2 (en) Fluid catalytic cracking catalyst of hydrocarbon oil and fluid catalytic cracking method of hydrocarbon oil using the same
JP4820919B2 (en) Catalyst for producing monocyclic aromatic hydrocarbon and method for producing monocyclic aromatic hydrocarbon
JP6915985B2 (en) Metal scavengers, methods for producing metal scavengers, and fluid catalytic cracking catalysts
TWI650176B (en) Fcc catalyst compositions containing boron oxide and phosphorus
JP5390833B2 (en) Fluid catalytic cracking catalyst for hydrocarbon oil
JP2019141845A (en) Mesoporous fcc catalysts with excellent attrition resistance
KR102089608B1 (en) Method for manufacturing catalytic cracking catalyst for hydrocarbon oil
JP2018167213A (en) Method for producing fluid catalytic cracking catalyst
WO2012091092A1 (en) Catalyst for producing monocylic aromatic hydrocarbon and method for producing monocyclic aromatic hydrocarbon
US20160303547A1 (en) Method of producing fcc catalysts with reduced attrition rates
CN104014361A (en) Catalytic cracking catalyst and preparation method thereof
JP2019523705A (en) FCC catalyst with alumina obtained from crystalline boehmite
JP2006142273A (en) Process for producing catalyst composition for hydrocarbon fluid catalytic cracking
JP5954970B2 (en) Hydrocarbon catalytic cracking catalyst and process for producing the same
KR102151830B1 (en) Magnesium stabilized ultra low soda cracking catalysts
JP5579236B2 (en) Process for producing hydrocarbon fluid catalytic cracking catalyst
JP2020032352A (en) Fluid contact cracking catalyst for hydrocarbon oil
JP7123864B2 (en) Fluid catalytic cracking catalyst for hydrocarbon oil
JP2020032350A (en) Fluid contact cracking catalyst for hydrocarbon oil
JP2009160496A (en) Catalyst composition for catalytic cracking of hydrocarbon oil
JP2004337758A (en) Catalyst composition for hydrocarbon fluid catalytic cracking and fluid catalytic cracking method for heavy hydrocarbon using it
WO2020129455A1 (en) Metal scavenger, method for manufacturing metal scavenger, and fluid catalytic cracking catalyst
US20210316283A1 (en) Fluid catalytic cracking catalyst for hydrocarbon oil

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140708

R150 Certificate of patent or registration of utility model

Ref document number: 5579236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250