JP2013029852A - Electronic musical instrument - Google Patents

Electronic musical instrument Download PDF

Info

Publication number
JP2013029852A
JP2013029852A JP2012209695A JP2012209695A JP2013029852A JP 2013029852 A JP2013029852 A JP 2013029852A JP 2012209695 A JP2012209695 A JP 2012209695A JP 2012209695 A JP2012209695 A JP 2012209695A JP 2013029852 A JP2013029852 A JP 2013029852A
Authority
JP
Japan
Prior art keywords
sound
waveform data
musical
key
stereo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012209695A
Other languages
Japanese (ja)
Inventor
Yasushi Sato
康史 佐藤
Gen Izumisawa
玄 和泉沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawai Musical Instrument Manufacturing Co Ltd
Original Assignee
Kawai Musical Instrument Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawai Musical Instrument Manufacturing Co Ltd filed Critical Kawai Musical Instrument Manufacturing Co Ltd
Priority to JP2012209695A priority Critical patent/JP2013029852A/en
Publication of JP2013029852A publication Critical patent/JP2013029852A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To make sound transitions natural and ensure a sufficient number of simultaneously produced sounds even in the case that one of two sound production sources producing stereo sounds is attenuated when ensuring a sound production source to cope with new key on.SOLUTION: When a sound production source 40a assigned to the right channel side out of two sound production sources 40a producing stereo sounds is attenuated to cope with new key on, the sound production source 40a on the left channel side still outputs a musical sound waveform A after the change, and a left channel component L and a right channel component R are mixed in the musical sound waveform A after the change. Therefore, sounds including the left channel component L and the right channel component R are produced though the number of sound production sources 40a assigned for musical sound production is reduced from two to one.

Description

本発明は、ステレオサンプリング方式の電子楽器の楽音発生装置およびステレオサンプリングした楽音の波形データを記憶する波形データ記憶装置に関する。   The present invention relates to a musical sound generator for a stereo sampling electronic musical instrument and a waveform data storage device for storing waveform data of stereo-sampled musical sounds.

近年、電子ピアノ等においてステレオサンプリング方式のものが広く用いられている。ステレオサンプリング方式の音源は、ピアノ等、発音体の出力が大きい場合や、ストリングス等臨場感のある音を表現する場合に、発音された音を左右のステレオ音として録音する。   In recent years, stereo sampling systems have been widely used in electronic pianos and the like. A stereo sampling type sound source records the sound produced as left and right stereo sound when the output of a sounding body such as a piano is large, or when expressing a realistic sound such as strings.

そして、このようなステレオサンプリング方式を採用する電子楽器の楽音発生装置は、録音された両チャンネルのデータをサンプリングして音源データ(波形データ)として保持し、キーオン情報によって両方のデータを読み出して左右のスピーカから発音させることによって、元の音の広がり感、臨場感を再現することができる。このため、ステレオサンプリング方式の電子楽器の発振器(デジタルコントロールオシレータ)においては、1音発音するために左右それぞれの発振器が必要であり、同時発音数に対する発振器の所要数が大きくなり、価格が非常に高価になってしまうという問題点があった。   Then, a musical sound generator for an electronic musical instrument that employs such a stereo sampling method samples and stores the recorded data of both channels as sound source data (waveform data), reads both data by key-on information, The sound of the original sound can be reproduced by reproducing the sound from the speaker. For this reason, an oscillator (digital control oscillator) of a stereo sampling type electronic musical instrument requires left and right oscillators to generate one sound, and the required number of oscillators with respect to the number of simultaneous sounds increases, and the price is very high. There was a problem of becoming expensive.

一方、モノサンプリング方式の場合、音質的には若干の問題点はあるが、ステレオサンプリングに対し、1つの発振器があればよいので、同時発音数に対する発振器の所要数はステレオサンプリング方式の場合の半分で済む利点もある。   On the other hand, in the case of the mono sampling method, although there are some problems in sound quality, since only one oscillator is required for stereo sampling, the required number of oscillators for the number of simultaneous sounds is half that of the stereo sampling method. There is also an advantage that can be done.

また、音の特性として、例えば、ピアノの場合、時間経過に伴って音が減衰する。従って、発音されている音の数が多い場合は、一部の音がモノラル音になっても気付きにくく、音楽に大きな影響を与えることは少ない。   As a sound characteristic, for example, in the case of a piano, the sound attenuates with time. Therefore, when the number of sounds that are pronounced is large, even if some sounds become monaural sounds, it is difficult to notice and there is little effect on music.

そこで、上述のようなステレオサンプリング方式の電子楽器において、全ての発振器が発音中に新たに鍵盤が押下された場合には、最も音楽に支障のない(通常は最も発音の古い)2音の発振器を減衰させて逐次モノラル音にして、空いた発振器を新たな発音に割り当ててステレオ音を発音することにより、発振器を効率的に使い、同時発音数を増やすことが考えられている(例えば、特許文献1参照。)。なおこの場合、左右の音量バランスを取るために定位制御および音量制御を行っている。   Therefore, in the stereo sampling type electronic musical instrument as described above, when all the oscillators are sounded and a new key is pressed, a two-tone oscillator that has the least trouble with music (usually the oldest sound). It is considered to increase the number of simultaneous sounds by using the oscillator efficiently by assigning a free oscillator to a new sound and assigning a free sound to a new sound, thereby generating stereo sound. Reference 1). In this case, localization control and volume control are performed to balance the left and right volume.

特開平10−49159号公報(第4頁、図3)Japanese Patent Laid-Open No. 10-49159 (page 4, FIG. 3)

しかし、上述のようなステレオサンプリング方式の電子楽器においては、新たなキーオンに対応するためにステレオ発音を行っている2つの発振器の一方を減衰させるために、一方のチャンネルの成分が消音して他方のチャンネルの成分のみの出力となり、仮に上述のように左右の音量バランスを取るために定位制御や音量制御を行っても、一方のチャンネル成分の消音をカバーしきれず、音の移り変わりが不自然になるという問題があった。   However, in the stereo sampling type electronic musical instrument as described above, in order to attenuate one of the two oscillators that produce stereo sound in order to cope with a new key-on, the component of one channel is muted and the other The output of only the channel component is output, and even if localization control or volume control is performed to balance the left and right volumes as described above, it is not possible to cover the silencing of one channel component and the transition of the sound is unnatural. There was a problem of becoming.

本発明は、このような不具合に鑑みなされたものであり、その目的とするところは、新たなキーオンに対応するために発音ソースを確保する際にステレオ発音を行っている2つ
の発音ソースの一方を減衰させる場合でも音の移り変わりが自然なものとなり、且つ十分な同時発音数を確保することにある。
The present invention has been made in view of such a problem, and an object of the present invention is to provide one of two sound sources that perform stereo sound when securing a sound source in order to cope with a new key-on. Even when the sound is attenuated, the transition of the sound becomes natural, and a sufficient number of simultaneous sounds is ensured.

上記課題を解決するためになされた請求項1に係る電子楽器の楽音発生装置は、複数の発音ソースを備え、キーオンに対応する楽音を発音ソースが生成した楽音波形に基づき発生する。なお、この発音ソースは、ステレオサンプリングした音の波形データをキーオンに応じて取得し、その取得された波形データを復調するとともに定位制御することによって楽音波形を生成する。   The musical sound generating device for an electronic musical instrument according to claim 1 made to solve the above-mentioned problem is provided with a plurality of sound generation sources, and generates a musical sound corresponding to a key-on based on a musical sound waveform generated by the sound generation source. The sound source acquires waveform data of stereo-sampled sound in response to key-on, demodulates the acquired waveform data, and generates a sound waveform by performing localization control.

なお、上述の波形データには、左右チャンネルのうちの一方であるチャンネルA側の波形データAと左右チャンネルのうちの他方であるチャンネルB側の波形データBとがある。このうち波形データAは、ステレオサンプリングした音の左チャンネル成分Lの正相成分と右チャンネル成分Rの正相成分とを所定の比率で混合することで生成される。一方、波形データBは、ステレオサンプリングした音の左チャンネル成分Lの正相成分と右チャンネル成分Rの逆相成分とを前記比率で混合するかステレオサンプリングした音の左チャンネル成分Lの逆相成分と右チャンネル成分Rの正相成分とを前記比率で混合することで生成される。   The waveform data includes waveform data A on the channel A side which is one of the left and right channels and waveform data B on the channel B side which is the other of the left and right channels. Of these, the waveform data A is generated by mixing the positive phase component of the left channel component L and the positive phase component of the right channel component R of the stereo sampled sound at a predetermined ratio. On the other hand, the waveform data B is obtained by mixing the positive phase component of the left channel component L and the negative phase component of the right channel component R of the stereo sampled sound in the above ratio or the negative phase component of the left channel component L of the stereo sampled sound. And the right-phase component of the right channel component R are mixed at the above ratio.

また、上述の楽音波形には、チャンネルA側の楽音波形AとチャンネルB側の楽音波形Bとがある。そして、ステレオ音を発生する場合には、二つの発音ソースがそのステレオ音のチャンネルA側およびチャンネルB側にそれぞれ割り当てられ、ステレオ音のチャンネルA側に割り当てられた発音ソースが楽音波形Aを出力するとともにステレオ音のチャンネルB側に割り当てられた発音ソースが楽音波形Bを出力する。この場合、ステレオ音のチャンネルA側に割り当てられた発音ソースは、波形データAおよび波形データBを取得し、その取得した波形データAと波形データBとを加算することで復調するとともに定位制御することによって楽音波形Aを生成する。また、ステレオ音のチャンネルB側に割り当てられた発音ソースは、波形データAおよび波形データBを取得し、その取得した波形データAから波形データBを減算することで復調するとともに定位制御することによって楽音波形Bを生成する。   Further, the above-described musical sound waveform includes a musical sound waveform A on the channel A side and a musical sound waveform B on the channel B side. When a stereo sound is generated, two sound sources are assigned to the channel A side and the channel B side of the stereo sound, respectively, and the sound source assigned to the channel A side of the stereo sound outputs a musical sound waveform A. At the same time, the sound source assigned to the channel B side of the stereo sound outputs the musical sound waveform B. In this case, the sound source assigned to the channel A side of the stereo sound acquires waveform data A and waveform data B, adds the acquired waveform data A and waveform data B, and performs demodulation and localization control. The musical sound waveform A is generated by this. The sound source assigned to the stereo sound channel B side acquires waveform data A and waveform data B, and subtracts the waveform data B from the acquired waveform data A to perform demodulation and localization control. A musical sound waveform B is generated.

一方、モノラル音を発生する場合には、一つの発音ソースがそのモノラル音に割り当てられ、その割り当てられた発音ソースが楽音波形Aを出力する。この場合、モノラル音に割り当てられた発音ソースは、波形データAを取得し、その取得した波形データAを復調するとともに定位制御することによって楽音波形Aを生成する。   On the other hand, when a monaural sound is generated, one sound source is assigned to the monaural sound, and the assigned sound source outputs a musical sound waveform A. In this case, the sound source assigned to the monaural sound acquires the waveform data A, demodulates the acquired waveform data A, and generates a sound waveform A by performing localization control.

このように構成された本発明の電子楽器の楽音発生装置によれば、例えば、新たなキーオンに対応するためにステレオ発音中の二つの発音ソースのうちチャンネルB側に割り当てられた発音ソースを減衰させると、チャンネルA側の発音ソースについては変更後も楽音波形Aを出力し、この変更後の楽音波形Aには、左チャンネル成分Lと右チャンネル成分Rとが混合されており、楽音発生に割り当てられる発音ソースの数量が二つから一つに減少したにもかかわらず左チャンネル成分Lと右チャンネル成分Rとを含む音が発生することとなる。   According to the musical sound generating device for an electronic musical instrument of the present invention configured as described above, for example, the sound source assigned to the channel B side among the two sound sources during stereo sounding is attenuated to cope with a new key-on. As a result, the tone generator A on the channel A side outputs the tone waveform A even after the change, and the tone waveform A after the change is mixed with the left channel component L and the right channel component R. A sound including the left channel component L and the right channel component R is generated even though the number of sound source sources assigned is reduced from two to one.

したがって、キーオンに対応する楽音に割り当てる発音ソースを確保するために、ステレオ発音中の二つの発音ソースの一方を減衰させる場合でも、音の移り変わりが自然なものとすることができる。また、ステレオ発音中の二つの発音ソースの一方を減衰させることで、新たなキーオンに対応するために発音ソースを確保でき、十分な同時発音数を確保することができる。また、従来構成で行っていたような定位制御および音量制御が不要となり、その分キーオンから楽音発生までに要する反応時間が短縮されて反応速度が向上し
、キーオンされた楽音をより忠実に再現することができる。
Therefore, even when one of the two sound sources during stereo sounding is attenuated in order to secure a sound source to be assigned to the musical sound corresponding to the key-on, the sound transition can be made natural. Further, by attenuating one of the two sound sources during stereo sound generation, it is possible to secure a sound source to cope with a new key-on, and to secure a sufficient number of simultaneous sounds. In addition, the localization control and volume control that was performed in the conventional configuration is no longer necessary, and the reaction time required from the key-on to the generation of the music is shortened, the response speed is improved, and the key-on music is reproduced more faithfully. be able to.

この場合、上述の波形データAについては、ステレオサンプリングした音の左チャンネル成分Lの正相成分と右チャンネル成分Rの正相成分とを所定の比率で混合することで生成される場合に次の関係式(1)を満たし、一方、波形データBについては、ステレオサンプリングした音の左チャンネル成分Lの正相成分と右チャンネル成分Rの逆相成分とを前記比率で混合することで生成される場合に次の関係式(2)を満たし、ステレオサンプリングした音の左チャンネル成分Lの逆相成分と右チャンネル成分Rの正相成分とを前記比率で混合することで生成される場合に次の関係式(3)を満たすことが考えられる(請求項2)。但し、WAは波形データAを示し、WBは波形データBを示す。また、係数kは次の関係式(4)を満たすこととする。

関係式(1):WA=L/2k+R/2(1−k)
関係式(2):WB=L/2k−R/2(1−k)
関係式(3):WB=−L/2k+R/2(1−k)
関係式(4):0<k<1

なお、上述の係数kについては、前記関係式(4)の代わりに次の関係式(5)を満たすものとしてもよい(請求項3)。

関係式(5):0.25≦k≦0.75

このようにすれば、左右の音量バランスを3倍以内に納めることができ、より自然な音の移り変わりとすることができる。
In this case, when the waveform data A is generated by mixing the positive phase component of the left channel component L and the positive phase component of the right channel component R of the stereo sampled sound at a predetermined ratio, the following is performed. On the other hand, the waveform data B is generated by mixing the normal phase component of the left channel component L and the reverse phase component of the right channel component R of the stereo sampled sound at the above ratio, while satisfying the relational expression (1). In the case where the following relational expression (2) is satisfied, and the negative phase component of the left channel component L and the positive phase component of the right channel component R of the stereo sampled sound are generated by mixing at the above ratio, It is conceivable that the relational expression (3) is satisfied (claim 2). However, W A indicates waveform data A, and W B indicates waveform data B. The coefficient k satisfies the following relational expression (4).

Relational expression (1): W A = L / 2k + R / 2 (1-k)
Relational expression (2): W B = L / 2k−R / 2 (1-k)
Relational expression (3): W B = −L / 2k + R / 2 (1-k)
Relational expression (4): 0 <k <1

The coefficient k described above may satisfy the following relational expression (5) instead of the relational expression (4).

Relational expression (5): 0.25 ≦ k ≦ 0.75

In this way, the left and right volume balance can be kept within three times, and a more natural sound transition can be achieved.

また、係数kの値については、キーオンされた楽音の音域に応じて発音ソースごとに設定されることが考えられる(請求項4)。このようにすれば、キーオンされた楽音の音域をより忠実に再現することができる。   Further, the value of the coefficient k may be set for each sound generation source in accordance with the musical tone range that is keyed on. In this way, it is possible to more faithfully reproduce the key range of the musical tone that is keyed on.

ところで、キーオンされた楽音の音程が低音である場合には左チャンネルの音量が大きくなり、高音である場合には右チャンネルの音量が小さくなる傾向にある。そこで、キーオンされた楽音の音域が低音側になるほど係数kの値を大きく設定し、キーオンされた楽音の音域が高音側になるほど係数kの値を小さく設定することが考えられる(請求項5)。このようにすれば、キーオンされた楽音の音域を更に忠実に再現することができる。   By the way, the volume of the left channel tends to increase when the pitch of the key-on tone is low, and the volume of the right channel tends to decrease when the pitch is high. Therefore, it is conceivable that the value of the coefficient k is set to be larger as the key range of the musical sound that is keyed on becomes lower, and the value of the coefficient k is set to be smaller as the frequency range of the keyed musical sound becomes higher. . In this way, it is possible to more faithfully reproduce the range of the key-on musical tone.

また、上述の係数kについては、前記関係式(4)の代わりに次の関係式(6)を満たすものとしてもよい(請求項6)。

関係式(6):k=0.5

このようにすれば、発音ソースBを減衰させたのちも、左右の出力が均等で左右のバランスが良いという効果がある。
The coefficient k described above may satisfy the following relational expression (6) instead of the relational expression (4).

Relational expression (6): k = 0.5

In this way, after the sound source B is attenuated, there is an effect that the left and right outputs are equal and the left and right balance is good.

ところで、上述の波形データの生成については次のような様々な手法が挙げられる。
まず、上述の波形データを製造時などに生成し、当該電子楽器の楽音発生装置内に予め記憶しておくことが考えられる。具体的には、請求項7のように、波形データを記憶する波形データ記憶部を備え、発音ソースが、キーオンに応じて波形データ記憶部から波形データを取得することが考えられる。
By the way, the following various methods are mentioned about the production | generation of the above-mentioned waveform data.
First, it is conceivable that the above-described waveform data is generated at the time of manufacture or the like and stored in advance in the musical sound generator of the electronic musical instrument. Specifically, as in claim 7, it is conceivable that a waveform data storage unit for storing waveform data is provided, and the sound source acquires waveform data from the waveform data storage unit in response to key-on.

また、上述の波形データを、例えば演奏者による電源投入時や音色選択時などの設定内
容に応じて、当該電子楽器の楽音発生装置内で生成することが考えられる。具体的には、請求項8ように、さらに、波形データを生成する波形データ生成部を備え、波形データ生成部が、設定内容に応じて波形データを生成し、波形データ記憶部が、波形データ生成部が生成した波形データを記憶することが考えられる。
In addition, it is conceivable that the above-described waveform data is generated in the musical tone generator of the electronic musical instrument in accordance with the setting contents such as when the player turns on the power or selects a timbre. Specifically, as in claim 8, further comprising a waveform data generation unit that generates waveform data, the waveform data generation unit generates waveform data according to the set contents, and the waveform data storage unit includes waveform data It is conceivable to store the waveform data generated by the generation unit.

また、上述の波形データをキーオン時に生成することが考えられる。具体的には、請求項9のように、波形データを生成する波形データ生成部を備え、波形データ生成部が、キーオンに応じて波形データを生成し、発音ソースが、キーオンに応じて波形データ生成部が生成した波形データを取得することが考えられる。   It is also conceivable to generate the above waveform data at key-on. Specifically, as in claim 9, a waveform data generation unit that generates waveform data is provided, the waveform data generation unit generates waveform data in response to key-on, and the sound source is waveform data in response to key-on. It is conceivable to acquire the waveform data generated by the generation unit.

また、上述の波形データをキーオン時に生成した後に一旦記憶し、その記憶した波形データを読み出して用いることが考えられる。具体的には、請求項10のように、さらに、波形データを記憶する波形データ記憶部を備え、波形データ記憶部が、キーオンに応じて波形データ生成部が生成した波形データを記憶し、発音ソースが、キーオンに応じて波形データ生成部が生成した波形データを波形データ記憶部から取得することが考えられる。   It is also conceivable that the waveform data described above is generated at the time of key-on and then temporarily stored, and the stored waveform data is read and used. Specifically, as in claim 10, further comprising a waveform data storage unit for storing waveform data, wherein the waveform data storage unit stores the waveform data generated by the waveform data generation unit in response to key-on, and generates a sound. It is conceivable that the source acquires the waveform data generated by the waveform data generation unit in response to the key-on from the waveform data storage unit.

ところで、楽音に対する発音ソースの割当手法については、例えば、次の(a)〜(e)のような手法が考えられる。
(a)キーオンされた際に、発音中でない発音ソースが二つ以上存在するときには、発音中でない二つ以上の発音ソースのうちの二つをキーオンに対応してステレオ音として発生する楽音に割り当てることが考えられる。具体的には、請求項11のように、発音ソースが四つ以上存在し、さらに、キーオンされた際に、発音中でない発音ソースが二つ以上存在するときには、キーオンに対応する楽音をステレオ音として発生させるために、発音中でない二つ以上の発音ソースのうちの二つをキーオンに対応してステレオ音として発生する楽音に割り当てる割当部を備えることが考えられる。
By the way, as the sound source allocation method for the musical sound, for example, the following methods (a) to (e) are conceivable.
(A) When there are two or more sound sources that are not sounding when the key is turned on, two of the two or more sound sources that are not sounded are assigned to the musical sound generated as a stereo sound corresponding to the key-on. It is possible. Specifically, as in claim 11, when there are four or more sound sources, and there are two or more sound sources that are not sounded when the key is turned on, the musical sound corresponding to the key-on is stereo sound. Therefore, it is conceivable to include an allocating unit that allocates two of two or more sound sources that are not sounding to a musical sound generated as a stereo sound corresponding to a key-on.

このようにすれば、発音中でない二つの発音ソースを確保して、ステレオ音への発音ソースの割り当てを確実に行うことができる。
(b)また、キーオンされた際に、発音中でない発音ソースが一つ存在し、且つステレオ発音中の発音ソースの組が一つ以上存在するときには、割当部が、キーオンに対応する楽音をステレオ音として発生させるために、ステレオ発音中の発音ソースの組のうちの一つに含まれるチャンネルB側に割り当てられた発音ソースを減衰させてモノラル音化することで発音中でない二つの発音ソースを確保し、その確保した発音中でない二つの発音ソースをキーオンに対応してステレオ音として発生する楽音に割り当てることが考えられる(請求項12)。
In this way, it is possible to secure two sound sources that are not sounding and to reliably assign sound sources to the stereo sound.
(B) When there is one sound source that is not sounding and one or more sound source pairs that are sounded in stereo when the key is turned on, the assigning unit converts the musical sound corresponding to the key-on to stereo. Two sound sources that are not sounding are generated by attenuating the sound source assigned to the channel B side included in one of the sound source pairs that are sounding in stereo to produce a monaural sound. It is conceivable that two sound sources that are secured and not sounded are assigned to musical sounds generated as stereo sounds corresponding to key-on (claim 12).

このようにすれば、発音中でない二つの発音ソースを確保して、ステレオ音への発音ソースの割り当てを確実に行うことができる。また、ステレオ音をモノラル音としても、音の移り変わりを自然なものとすることができる。また、同時発音数を増加させることができる。   In this way, it is possible to secure two sound sources that are not sounding and to reliably assign sound sources to the stereo sound. Even if the stereo sound is a monaural sound, the transition of the sound can be made natural. In addition, the number of simultaneous pronunciations can be increased.

(c)また、キーオンされた際に、発音中でない発音ソースが存在せず、且つステレオ発音中の発音ソースの組が二つ以上存在するときには、割当部が、キーオンに対応する楽音をステレオ音として発生させるために、ステレオ発音中の発音ソースの組のうちの二つに含まれるチャンネルB側に割り当てられた発音ソースをそれぞれ減衰させてモノラル音化することで発音中でない二つの発音ソースを確保し、その確保した発音中でない二つの発音ソースをキーオンに対応してステレオ音として発生する楽音に割り当てることが考えられる(請求項13)。   (C) When there is no sound source that is not sounding and there are two or more sound sound source pairs that are sounded in stereo when the key is turned on, the assigning unit converts the musical sound corresponding to the key-on to a stereo sound. In order to generate two sound sources that are not sounding by attenuating the sound sources assigned to the channel B side included in two of the sound source pairs that are sounding in stereo, respectively, It is conceivable that two sound sources that are secured and not sounded are assigned to musical sounds generated as stereo sounds corresponding to key-on (claim 13).

このようにすれば、発音中でない二つの発音ソースを確保して、ステレオ音への発音ソ
ースの割り当てを確実に行うことができる。また、ステレオ音をモノラル音としても、音の移り変わりを自然なものとすることができる。また、同時発音数を増加させることができる。
In this way, it is possible to secure two sound sources that are not sounding and to reliably assign sound sources to the stereo sound. Even if the stereo sound is a monaural sound, the transition of the sound can be made natural. In addition, the number of simultaneous pronunciations can be increased.

(d)また、キーオンされた際に、発音中でない発音ソースが存在せず、且つステレオ発音中の発音ソースの組が一つ存在するときには、割当部が、キーオンに対応する楽音をモノラル音として発生させるために、そのステレオ発音中の発音ソースの組に含まれるチャンネルB側に割り当てられた発音ソースを減衰させてモノラル音化することで発音中でない一つの発音ソースを確保し、その確保した発音中でない一つの発音ソースをキーオンに対応してモノラル音として発生する楽音に割り当てることが考えられる(請求項14)。   (D) When there is no sound source that is not sounding when a key is turned on and there is one sound source set that is sounding in stereo, the assigning unit sets the tone corresponding to the key-on as a monaural sound. In order to generate the sound source, the sound source assigned to the channel B side included in the sound source group that is currently sounding in stereo is attenuated to produce a monaural sound, thereby securing one sound source that is not sounding. It is conceivable that one sound source that is not sounding is assigned to a musical sound generated as a monaural sound corresponding to the key-on (claim 14).

このようにすれば、発音中でない発音ソースが少ない状況であっても、キーオンに対応する楽音をモノラル音として発生させることができる。また、ステレオ音をモノラル音としても、音の移り変わりを自然なものとすることができる。また、同時発音数を増加させることができる。   In this way, even in a situation where there are few sound sources that are not sounding, it is possible to generate a musical sound corresponding to a key-on as a monaural sound. Even if the stereo sound is a monaural sound, the transition of the sound can be made natural. In addition, the number of simultaneous pronunciations can be increased.

(e)また、キーオンされた際に、発音中でない発音ソースが存在せず、ステレオ発音中の発音ソースの組が存在せず、且つモノラル発音中の発音ソースが存在するときには、割当部が、キーオンに対応する楽音をモノラル音として発生させるために、モノラル発音中の発音ソースのうちの一つを減衰させることで発音中でない一つの発音ソースを確保し、その確保した発音中でない一つの発音ソースをキーオンに対応してモノラル音として発生する楽音に割り当てることが考えられる(請求項15)。   (E) Also, when the key-on, there is no sound source that is not sounding, there is no sound source set that is sounding in stereo, and there is a sound source that is monaural sounding, the assigning unit In order to generate a sound corresponding to key-on as a monaural sound, one sound source that is not sounding is secured by attenuating one of the sound sources that are sounding monaural, and one sound that is not being sounded is secured It is conceivable that the source is assigned to a musical sound generated as a monaural sound corresponding to the key-on (claim 15).

このようにすれば、発音中でない発音ソースが少ない状況であっても、キーオンに対応する楽音をモノラル音として発生させることができる。また、同時発音数を増加させることができる。   In this way, even in a situation where there are few sound sources that are not sounding, it is possible to generate a musical sound corresponding to a key-on as a monaural sound. In addition, the number of simultaneous pronunciations can be increased.

なお、本発明を波形データ記憶装置として実現することができる。具体的には、請求項16に記載の波形データ記憶装置は、請求項1〜請求項6の何れかに記載の波形データAおよび波形データBを記憶することを特徴とする。   The present invention can be realized as a waveform data storage device. Specifically, a waveform data storage device according to a sixteenth aspect stores the waveform data A and the waveform data B according to any one of the first to sixth aspects.

このように構成された本発明の波形データ記憶装置によれば、波形データ記憶装置に波形データAおよび波形データBを記憶しておくことで波形データの装置間での移動が可能となる。また、波形データAには、左チャンネル成分Lと右チャンネル成分Rとが前記比率にて混合されており、一つの発音ソースでも左チャンネル成分Lと右チャンネル成分Rとを含む音が発生することとなるので、ステレオ発音できない機種との間でも、上述の波形データを記憶させた波形データ記憶装置を共有することができる。   According to the waveform data storage device of the present invention configured as described above, waveform data A and waveform data B are stored in the waveform data storage device, so that waveform data can be moved between the devices. In the waveform data A, the left channel component L and the right channel component R are mixed in the above ratio, and a sound including the left channel component L and the right channel component R is generated even with one sound source. Therefore, the waveform data storage device storing the waveform data described above can be shared with models that cannot produce stereo sound.

電子鍵盤楽器の概略構成を表すブロック図である。It is a block diagram showing schematic structure of an electronic keyboard instrument. 音源回路40の概略構成を表す説明図である。3 is an explanatory diagram illustrating a schematic configuration of a sound source circuit 40. FIG. メイン処理のフローチャートである。It is a flowchart of a main process. イベント処理のフローチャートである。It is a flowchart of an event process. 押鍵処理のフローチャートである。It is a flowchart of a key pressing process. 減数処理のフローチャートである。It is a flowchart of a reduction process. 離鍵処理のフローチャートである。It is a flowchart of a key release process.

以下に本発明の実施形態を図面とともに説明する。
[第一実施形態]
図1は電子鍵盤楽器1の概略構成を表すブロック図である。また、図2は音源回路40の概略構成を表す説明図である。
Embodiments of the present invention will be described below with reference to the drawings.
[First embodiment]
FIG. 1 is a block diagram showing a schematic configuration of the electronic keyboard instrument 1. FIG. 2 is an explanatory diagram showing a schematic configuration of the tone generator circuit 40.

[電子鍵盤楽器1の構成の説明]
楽音発生装置としての電子鍵盤楽器1は、図1に示すように、鍵盤10、パネルSW/LCD11、ペダル12、MIDI規格に基づくMIDI信号が入出力されるMIDI15、CPU30、プログラムデータなどを記憶したプログラム・データメモリ(ROM)31、CPU30がデータを一時記憶するためのワークRAM32、I/F33、種々の波形データを記憶した波形メモリ42、波形メモリ42から波形データを読み込んで楽音波形を生成する音源回路(T.G)40、音源回路40が生成した楽音波形を加工して出力するDSP50、ディジタル信号をアナログ信号に変換するDAC60(R、L)、アナログ信号を増幅するアンプ70(R、L)および放音装置であるスピーカ80(R、L)を備えている。また、鍵盤10、パネルSW/LCD11、ペダル12およびMIDI15は、I/F33を介してバスライン90に接続されており、鍵盤10、パネルSW/LCD11、ペダル12、MIDI15、CPU30、プログラム・データメモリ31、ワークRAM32、音源回路40およびDSP50は、バスライン90によりそれぞれデータ送受可能に接続されている。なお、ペダル12およびMIDI15の構成については公知技術に従っているのでここではその詳細な説明は省略する。
[Description of the configuration of the electronic keyboard instrument 1]
As shown in FIG. 1, an electronic keyboard instrument 1 as a musical tone generator stores a keyboard 10, a panel SW / LCD 11, a pedal 12, a MIDI 15 that receives and outputs MIDI signals based on the MIDI standard, a CPU 30, and program data. A program / data memory (ROM) 31, a work RAM 32 for temporarily storing data by the CPU 30, an I / F 33, a waveform memory 42 storing various waveform data, and a waveform memory 42, read waveform data and generate a musical sound waveform. A tone generator circuit (TG) 40, a DSP 50 that processes and outputs a musical sound waveform generated by the tone generator circuit 40, a DAC 60 (R, L) that converts a digital signal into an analog signal, and an amplifier 70 (R, that amplifies the analog signal) L) and a speaker 80 (R, L) which is a sound emitting device. The keyboard 10, panel SW / LCD 11, pedal 12, and MIDI 15 are connected to the bus line 90 via the I / F 33, and the keyboard 10, panel SW / LCD 11, pedal 12, MIDI 15, CPU 30, program data memory 31, work RAM 32, tone generator circuit 40 and DSP 50 are connected to each other via a bus line 90 so as to be able to transmit and receive data. Note that the configuration of the pedal 12 and the MIDI 15 is in accordance with a publicly known technique, and therefore detailed description thereof is omitted here.

[鍵盤10の構成の説明]
これらのうち、鍵盤10は、発生すべき楽音の音高を選択するための複数の鍵(キー、本実施形態では88鍵)を備えている。各音高の楽音にはそれぞれ番号(キーコード)が付与されており、キーを押下することによりキーコードを指定して、所望の音高の楽音を発音させることができる。また各キーに対応して、そのキーの押鍵・離鍵を検出するための鍵スイッチが設けられている。この鍵スイッチは、2つの接点(第1接点、第2接点)を備えており、キーが押下されるとまず第1接点がオンされ、更に押下されると第2接点がオンされるよう構成されている。また、離鍵の場合には、反対に第2接点、第1接点の順にオフされる。これら接点がオン又はオフされた旨の情報は、内蔵するスキャン回路が各鍵スイッチをスキャンすることにより検出され、キーコードと共に、I/F33を介してバスライン90に送出する。バスラインに送出されたキーオン/オフ情報及びキーコードは、CPU30及び音源回路40に取込まれ、またCPU30の制御下でワークRAM32に記憶される。
[Description of configuration of keyboard 10]
Of these, the keyboard 10 includes a plurality of keys (keys, 88 keys in the present embodiment) for selecting the pitch of the musical sound to be generated. A number (key code) is assigned to each musical tone of each pitch, and a musical tone having a desired pitch can be generated by designating a key code by pressing the key. Corresponding to each key, a key switch for detecting key press / release of the key is provided. This key switch has two contacts (a first contact and a second contact). The first contact is first turned on when the key is pressed, and the second contact is turned on when the key is further pressed. Has been. In the case of key release, the second contact and the first contact are turned off in the reverse order. Information indicating that these contacts are turned on or off is detected by the built-in scan circuit scanning each key switch, and is sent to the bus line 90 via the I / F 33 together with the key code. The key on / off information and the key code sent to the bus line are taken into the CPU 30 and the tone generator circuit 40, and stored in the work RAM 32 under the control of the CPU 30.

[パネルSW/LCD11の構成の説明]
また、パネルSW/LCD11には、液晶表示板、LED等のパネル表示装置や、当該電子鍵盤楽器1に各種の情報および指令を入力するための操作子が多数設けられている。このうちパネル表示装置はCPU30の指示を受けて電子鍵盤楽器1の状態等を表示するためのLEDを点灯・消灯させる。一方、操作子としては、例えば、当該電子鍵盤楽器1をAOCモードやAUTOモード(自動伴奏モード)にするためのモード選択スイッチや、当該電子鍵盤楽器1がAUTOモードであるときに自動演奏のリズム伴奏を開始および停止させるためのSTART/STOPスイッチ、音色を選択するための音色スイッチ、エフェクトを選択するためのエフェクトスイッチ、リバーブを選択するためのリバーブスイッチ、効果音を選択するための効果音スイッチ、ボリュームコントローラ、演奏テンポを設定するためのタップスイッチ、などが設けられている。そして、これら各種スイッチ、ボリュームコントローラのオン/オフやポジション等は、内蔵するパネルスキャンにて検出される。それらのスイッチ情報は、パネルスキャンからI/F33を介してバスライン90に送出され、CPU30の制御下でワークRAM32に記憶される。
[Description of Configuration of Panel SW / LCD 11]
Further, the panel SW / LCD 11 is provided with a panel display device such as a liquid crystal display panel and LEDs, and a number of operators for inputting various information and commands to the electronic keyboard instrument 1. Among these, the panel display device turns on / off an LED for displaying the state of the electronic keyboard instrument 1 and the like in response to an instruction from the CPU 30. On the other hand, as an operator, for example, a mode selection switch for setting the electronic keyboard instrument 1 to AOC mode or AUTO mode (automatic accompaniment mode), or an automatic performance rhythm when the electronic keyboard instrument 1 is in the AUTO mode. START / STOP switch for starting and stopping accompaniment, tone switch for selecting tone, effect switch for selecting effect, reverb switch for selecting reverb, sound effect switch for selecting effect sound , A volume controller, a tap switch for setting the performance tempo, and the like are provided. The various switches, volume controller on / off, position, and the like are detected by a built-in panel scan. The switch information is sent from the panel scan to the bus line 90 via the I / F 33 and stored in the work RAM 32 under the control of the CPU 30.

[RAM32の構成の説明]
RAM32には、後述するCPU30の割当部30aが後述する音源回路40の発音ソ
ース40aの割り当てを行う際に参照される使用状況メモリ32aおよび発音数記憶レジスタ32bが設けられている。このうち使用状況メモリ32aは、発音中の発音ソース40aをステレオ音の左右およびモノラル音ごとに発音開始時期の古い順に記憶する。また、発音数記憶レジスタ32bは、発音ソース40aの装備総数(N)、ステレオ発音中の音の数(S)、およびモノラル発音中の音の数(M)を記憶するレジスタであり、発音数が変化すると、後述するCPU30の制御部30bにより逐次書き換えられる。また、発音数記憶レジスタ32bは、割当部30aが発音ソース40aの割り当てを行う際にその記憶内容が参照される。
[Description of configuration of RAM 32]
The RAM 32 is provided with a usage status memory 32a and a pronunciation number storage register 32b that are referred to when an allocation unit 30a of the CPU 30 described later allocates a sound source 40a of a sound source circuit 40 described later. Of these, the usage status memory 32a stores the sound source 40a that is being sounded in the order of the sound generation start time for each of the left and right stereo sounds and the monaural sound. The sound generation number storage register 32b is a register for storing the total number (N) of the sound generation source 40a, the number of sounds being generated in stereo (S), and the number of sounds being generated in monaural (M). Is changed, it is sequentially rewritten by the control unit 30b of the CPU 30 described later. The pronunciation number storage register 32b is referred to when the allocation unit 30a allocates the sound source 40a.

[CPU30およびプログラム・データメモリ31の構成の説明]
さらに、CPU30は、このプログラム・データメモリ31のプログラムデータに従って動作し、電子鍵盤楽器1の各部の動作を制御する。また、プログラム・データメモリ31には上述のプログラムデータとともに、音色の種類、リバーブの種類および効果音群の種類が互いに関連付けられたデータが記憶されている。なお、音色の種類としては例えばコンサートグランドなどが挙げられる。また、リバーブの種類としては例えばホールリバーブなどが挙げられる。また、効果音群の種類としては、音源回路40による弦共鳴音などが挙げられる。なお、上記データに、イコライザやコーラスなどのDSP50による効果やエフェクトを含めてもよい。
[Description of Configuration of CPU 30 and Program Data Memory 31]
Further, the CPU 30 operates according to the program data in the program / data memory 31 to control the operation of each part of the electronic keyboard instrument 1. The program data memory 31 stores, in addition to the above-described program data, data in which the timbre type, the reverb type, and the sound effect group type are associated with each other. In addition, as a kind of timbre, a concert ground etc. are mentioned, for example. Moreover, as a kind of reverb, hall reverb etc. are mentioned, for example. In addition, examples of the sound effect group include string resonance sound generated by the sound source circuit 40. Note that the data may include effects and effects of the DSP 50 such as an equalizer and a chorus.

なお、同時発音数に応じた音源回路40の発音ソース40aの割り当て制御はこのCPU30で行う。このため、CPU30には割当部30aおよび制御部30bが設けられている。   Note that the CPU 30 performs assignment control of the sound source 40a of the tone generator circuit 40 in accordance with the number of simultaneous sounds. Therefore, the CPU 30 is provided with an allocation unit 30a and a control unit 30b.

割当部30aは、発音中のステレオ音及びモノラル音の同時発音数に応じて、新たにキーオンされた音に発音ソース40aを割り当てる制御を行う。
制御部30bは、使用状況メモリ32aや発音数記憶レジスタ32bへの書込みや読出し、割当部30aによる発音ソース割当機能の制御、発音/消音のためのタイミングのコントロール等、当該電子鍵盤楽器1全体の制御を行う。
The assigning unit 30a performs control for assigning the sound generation source 40a to the newly keyed sound according to the number of simultaneous sounds of the stereo sound and monaural sound being sounded.
The control unit 30b writes and reads the usage status memory 32a and the pronunciation number storage register 32b, controls the sound source allocation function by the allocation unit 30a, controls the timing for sound generation / mute, etc. Take control.

また、CPU30は、波形データを生成する波形データ生成部30cを有している。なお、波形データには、左チャンネル側の波形データAと右チャンネル側の波形データBとがある。なお、本実施形態では、左右チャンネルの一方であるチャンネルAが左チャンネルに相当するとともに左右チャンネルの他方であるチャンネルBが右チャンネルに相当する例を説明し、チャンネルAが右チャンネルに相当するとともにチャンネルBが左チャンネルに相当する例についてはその詳細な説明は省略する。   The CPU 30 has a waveform data generation unit 30c that generates waveform data. The waveform data includes waveform data A on the left channel side and waveform data B on the right channel side. In this embodiment, an example in which channel A, which is one of the left and right channels, corresponds to the left channel and channel B, which is the other of the left and right channels, corresponds to the right channel, and channel A corresponds to the right channel. Detailed description of an example in which channel B corresponds to the left channel will be omitted.

波形データ生成部30cは、下記の式(1)を用いてステレオサンプリングした楽音の左チャンネル成分Lの正相成分と右チャンネル成分Rの正相成分とを、1/k:1/(1−k)の比率で混合した波形データAを生成するとともに、下記の式(2)を用いてステレオサンプリングした楽音の左チャンネル成分Lの正相成分と右チャンネル成分Rの逆相成分とを、同じく1/k:1/(1−k)の比率で混合した波形データBを生成する。

A=L/2k+R/2(1−k)・・・式(1)
B=L/2k−R/2(1−k)・・・式(2)

但し、WAは波形データAを示し、WBは波形データBを示す。また、係数kは次の式(3)を満たすこととする。
The waveform data generation unit 30c converts the positive phase component of the left channel component L and the positive phase component of the right channel component R of the tone sampled stereo using the following equation (1) to 1 / k: 1 / (1- The waveform data A mixed at the ratio of k) is generated, and the normal phase component of the left channel component L and the reverse phase component of the right channel component R of the stereo sound sampled using the following equation (2) are similarly used. Waveform data B mixed at a ratio of 1 / k: 1 / (1-k) is generated.

W A = L / 2k + R / 2 (1-k) (1)
W B = L / 2k−R / 2 (1-k) (2)

However, W A indicates waveform data A, and W B indicates waveform data B. Further, the coefficient k satisfies the following formula (3).

0<k<1・・・式(3)

なお、本願出願人が行った試験結果により、係数kの値に応じて、レベル比、成分比および定位については次の(A)〜(G)のようになる。
0 <k <1 Formula (3)

The level ratio, component ratio, and localization are as shown in the following (A) to (G) according to the value of the coefficient k based on the test results conducted by the applicant of the present application.

(A)係数k=0.125の場合には、レベル比がL:R=1:7となり、成分比がL:R=7:1となり、定位がかなり右寄りとなる。
(B)係数k=0.250の場合には、レベル比がL:R=2:6となり、成分比がL:R=6:2となり、定位が右寄りとなり、高音域に適する。
(A) When the coefficient k = 0.125, the level ratio is L: R = 1: 7, the component ratio is L: R = 7: 1, and the localization is considerably to the right.
(B) When the coefficient k = 0.250, the level ratio is L: R = 2: 6, the component ratio is L: R = 6: 2, the localization is rightward, and this is suitable for the high sound range.

(C)係数k=0.375の場合には、レベル比がL:R=3:5となり、成分比がL:R=5:3となり、定位がやや右寄りとなり、中高音域に適する。
(D)係数k=0.500の場合には、レベル比がL:R=4:4(1:1)となり、成分比がL:R=4:4(1:1)となり、定位が中央となり、中音域に適する。
(C) When the coefficient k = 0.375, the level ratio is L: R = 3: 5, the component ratio is L: R = 5: 3, and the localization is slightly to the right, which is suitable for the mid-high range.
(D) When the coefficient k = 0.500, the level ratio is L: R = 4: 4 (1: 1), the component ratio is L: R = 4: 4 (1: 1), and the localization is Centered and suitable for midrange.

(E)係数k=0.625の場合には、レベル比がL:R=5:3となり、成分比がL:R=3:5となり、定位がやや左寄りとなり、中低音域に適する。
(F)係数k=0.750の場合には、レベル比がL:R=6:2となり、成分比がL:R=2:6となり、定位が左寄りとなり、低音域に適する。
(E) When the coefficient k = 0.625, the level ratio is L: R = 5: 3, the component ratio is L: R = 3: 5, and the localization is slightly leftward, which is suitable for the mid-low range.
(F) When the coefficient k = 0.750, the level ratio is L: R = 6: 2, the component ratio is L: R = 2: 6, the localization is to the left, which is suitable for the low sound range.

(G)係数k=0.875の場合には、レベル比がL:R=7:1となり、成分比がL:R=1:7となり、定位がかなり左寄りとなる。
なお、このような波形データの生成については、電源投入時あるいは音色選択時などの演奏設定が発音に先立つ何れかの時点で行われたときに予め行い、波形メモリ42に記憶され、新たなキーオンにより実際に楽音を放音する時点で発音ソース40aによって波形メモリ42から読み出されて利用される。また、上述の波形データ生成の機能を有する機器を本機の外部に設け、その機器で生成された波形データのみを本機製造時に波形メモリ42に記憶するように構成してもよい。また、新たなキーオンの際に上述の波形データ生成部30cが上記のような波形データの生成を行い、その生成した波形データを波形メモリ42に記憶させるようにしてもよい。また、新たなキーオンの際に波形データ生成部30cが生成した波形データを、波形メモリ42を経由せずに発音ソース40aに直接送るようにしてもよい。
(G) When the coefficient k = 0.875, the level ratio is L: R = 7: 1, the component ratio is L: R = 1: 7, and the localization is considerably leftward.
Such waveform data is generated in advance when performance settings such as power-on or tone selection are performed at any time prior to sound generation, stored in the waveform memory 42, and a new key-on. Thus, when the musical sound is actually emitted, it is read from the waveform memory 42 by the sound source 40a and used. Alternatively, a device having the above-described waveform data generation function may be provided outside the machine, and only the waveform data generated by the machine may be stored in the waveform memory 42 when the machine is manufactured. Further, the waveform data generation unit 30c described above may generate the waveform data as described above when a new key is turned on, and the generated waveform data may be stored in the waveform memory 42. Further, the waveform data generated by the waveform data generation unit 30c at the time of a new key-on may be sent directly to the sound generation source 40a without going through the waveform memory 42.

[音源回路40および波形メモリ42の構成の説明]
また、音源回路40は、同時に例えば192音を発音可能な、Wave Table Look Up方式のPCM波形読み出しタイプであり、楽音波形を生成する機能を有する。また、効果音波形を生成する効果音波形生成手段としても機能する。具体的には、音源回路40は、種々の波形データを格納している波形データ記憶部としての波形メモリ42から読み込んだ波形データに基づいて楽音波形および効果音波形を生成する。
[Description of Configuration of Sound Source Circuit 40 and Waveform Memory 42]
The tone generator circuit 40 is a Wave Table Look Up PCM waveform readout type capable of simultaneously producing, for example, 192 sounds, and has a function of generating a musical sound waveform. It also functions as an effect sound waveform generating means for generating an effect sound waveform. Specifically, the tone generator circuit 40 generates a musical tone waveform and an effect sound waveform based on waveform data read from a waveform memory 42 as a waveform data storage unit that stores various waveform data.

より具体的には、音源回路40は、図2に示すように、波形データから楽音波形を生成する発音ソース40a、左チャンネル系列加算器40e、および右チャンネル系列加算器40fを有する。なお、音源回路40は、192個の発音ソース40a、1個の左チャンネル系列加算器40e、および1個の右チャンネル系列加算器40fを有するが、図2では、2個の発音ソース40a、1個の左チャンネル系列加算器40e、および1個の右チャンネル系列加算器40fのみを図示し、それ以外の構成の図示を省略している。   More specifically, as shown in FIG. 2, the tone generator circuit 40 includes a sound source 40a that generates a musical sound waveform from waveform data, a left channel series adder 40e, and a right channel series adder 40f. The tone generator circuit 40 has 192 sound sources 40a, one left channel series adder 40e, and one right channel series adder 40f. In FIG. 2, two sound sources 40a, 1 are provided. Only one left channel series adder 40e and one right channel series adder 40f are shown, and the other configurations are not shown.

この音源回路40は、上述のように192個の発音ソース40aを有するため、ステレオ音であれば最大96音のステレオ音を同時に発生可能であり、モノラル音であれば最大192音のモノラル音を同時に発生可能である。   Since the sound source circuit 40 has 192 sound sources 40a as described above, it can simultaneously generate a maximum of 96 stereo sounds for stereo sounds and a maximum of 192 monaural sounds for monaural sounds. It can occur at the same time.

なお、発音ソース40aによって生成される楽音波形には、左チャンネル側の楽音波形
Aと右チャンネル側の楽音波形Bとがあり、キーオンに対応する楽音をステレオ音として発生する場合には、二つの発音ソース40aがそのステレオ音のチャンネルA側およびチャンネルB側にそれぞれ割り当てられ、ステレオ音のチャンネルA側に割り当てられた発音ソース40aが楽音波形Aを出力するとともに、ステレオ音のチャンネルB側に割り当てられた発音ソース40aが楽音波形Bを出力する。一方、キーオンに応じてモノラル音を発生する場合には、一つの発音ソース40aがそのモノラル音に割り当てられ、その割り当てられた一つの発音ソース40aが楽音波形Aを出力する。
Note that the musical sound waveforms generated by the sound source 40a include a musical sound waveform A on the left channel side and a musical sound waveform B on the right channel side. When a musical sound corresponding to key-on is generated as a stereo sound, two sound waves are generated. The sound source 40a is assigned to the channel A side and the channel B side of the stereo sound, and the sound source 40a assigned to the channel A side of the stereo sound outputs the musical sound waveform A and is assigned to the channel B side of the stereo sound. The generated sound source 40a outputs a musical sound waveform B. On the other hand, when a monaural sound is generated in response to a key-on, one sound source 40a is assigned to the monaural sound, and the assigned sound source 40a outputs a musical sound waveform A.

発音ソース40aは、波形データ読出部40bと、復調回路40cと、定位制御回路40dとを有しており、(イ)ステレオ音の左チャンネル側に割り当てられた場合と、(ロ)ステレオ音の右チャンネル側に割り当てられた場合と、(ハ)モノラル音に割り当てられた場合とでそれぞれ次のように楽音波形を生成する。   Pronunciation source 40a includes a waveform data reading section 40b, and if the demodulation circuit 40c, has a localization control circuit 40d, which is assigned to the left channel side (b) stereo sound, the (b) Stereo sound A musical sound waveform is generated as follows for each of the cases assigned to the right channel side and (c) the case assigned to a monaural sound.

(イ)ステレオ音の左チャンネル側に割り当てられた場合の発音ソース40aは、次のように楽音波形を生成する。まず、波形データ読出部40bが波形データAを波形メモリ42から読み出す。次に、復調回路40cが波形データAと波形データBとを加算することで復調する。なお、この波形データAは、ステレオ音の左チャンネル側に割り当てられた発音ソース40aの波形データ読出部40bによって波形メモリ42から読み出され、波形データBは、ステレオ音の右チャンネル側に割り当てられた発音ソース40aの波形データ読出部40bによって波形メモリ42から読み出される。さらに、定位制御回路40dが、復調回路40cによる計算結果と係数kとを乗算することで楽音波形Aを生成する。なお、この係数kは、波形データAを生成する際に用いた比率(1/k:1/(1−k))の左チャンネル側の値(1/k)の逆数である。このように生成された楽音波形Aは、左チャンネル系列加算器40eに出力される。   (A) The sound source 40a when assigned to the left channel side of the stereo sound generates a musical sound waveform as follows. First, the waveform data reading unit 40 b reads the waveform data A from the waveform memory 42. Next, the demodulation circuit 40c demodulates by adding the waveform data A and the waveform data B. The waveform data A is read from the waveform memory 42 by the waveform data reading unit 40b of the sound source 40a assigned to the left channel side of the stereo sound, and the waveform data B is assigned to the right channel side of the stereo sound. The waveform data is read from the waveform memory 42 by the waveform data reading unit 40b of the sound source 40a. Further, the localization control circuit 40d multiplies the calculation result by the demodulation circuit 40c and the coefficient k to generate the musical sound waveform A. The coefficient k is the reciprocal of the value (1 / k) on the left channel side of the ratio (1 / k: 1 / (1-k)) used when generating the waveform data A. The musical sound waveform A generated in this way is output to the left channel series adder 40e.

(ロ)ステレオ音の右チャンネル側に割り当てられた場合の発音ソース40aは、次のように楽音波形を生成する。まず、波形データ読出部40bが波形データBを波形メモリ42から読み出す。次に、復調回路40cが波形データAから波形データBを減算することで復調する。なお、波形データAは、ステレオ音の左チャンネル側に割り当てられた発音ソース40aの波形データ読出部40bによって波形メモリ42から読み出され、波形データBは、ステレオ音の右チャンネル側に割り当てられた発音ソース40aの波形データ読出部40bによって波形メモリ42から読み出される。さらに、定位制御回路40dが、復調回路40cによる計算結果と係数(1−k)とを乗算することで楽音波形Bを生成する。なお、この係数(1−k)は、波形データBを生成する際に用いた比率(1/k:1/(1−k))の右チャンネル側の値(1/(1−k))の逆数である。このように生成された楽音波形Bは、右チャンネル系列加算器40fに出力される。   (B) The sound source 40a when assigned to the right channel side of the stereo sound generates a musical sound waveform as follows. First, the waveform data reading unit 40 b reads the waveform data B from the waveform memory 42. Next, the demodulation circuit 40c demodulates by subtracting the waveform data B from the waveform data A. The waveform data A is read from the waveform memory 42 by the waveform data reading unit 40b of the sound source 40a assigned to the left channel side of the stereo sound, and the waveform data B is assigned to the right channel side of the stereo sound. The waveform data is read from the waveform memory 42 by the waveform data reading unit 40b of the sound source 40a. Further, the localization control circuit 40d multiplies the calculation result by the demodulation circuit 40c and the coefficient (1-k) to generate a musical sound waveform B. The coefficient (1-k) is a value (1 / (1-k)) on the right channel side of the ratio (1 / k: 1 / (1-k)) used when generating the waveform data B. Is the reciprocal of The tone waveform B generated in this way is output to the right channel series adder 40f.

(ハ)モノラル音に割り当てられた場合の発音ソース40aは、次のように楽音波形を生成する。まず、波形データ読出部40bが波形データAを波形メモリ42から読み出す。次に、復調回路40cが、波形データAをそのまま出力する。つまり、この場合の復調回路40cは単に出力分配器として動作する。さらに、定位制御回路40dが、復調回路40cからの出力結果と係数kとを乗算することで楽音波形Aを生成する。なお、この係数kは、波形データAを生成する際に用いた比率(1/k:1/(1−k))の左チャンネル側の値(1/k)の逆数である。このように生成された楽音波形Aは、左チャンネル系列加算器40eに出力される。   (C) The sound source 40a when assigned to a monaural sound generates a musical sound waveform as follows. First, the waveform data reading unit 40 b reads the waveform data A from the waveform memory 42. Next, the demodulation circuit 40c outputs the waveform data A as it is. That is, the demodulation circuit 40c in this case simply operates as an output distributor. Further, the localization control circuit 40d multiplies the output result from the demodulation circuit 40c and the coefficient k to generate the musical sound waveform A. The coefficient k is the reciprocal of the value (1 / k) on the left channel side of the ratio (1 / k: 1 / (1-k)) used when generating the waveform data A. The musical sound waveform A generated in this way is output to the left channel series adder 40e.

なお、発音中にステレオ発音からモノラル発音になる場合には、音源回路40においては、そのステレオ発音中の左右チャンネルの発音ソース40aのうち右チャンネル側である発音ソース40aの出力レベルを数値「0」まで漸減させ、その後復調動作を分配動作に切り替える制御を行う。   When the stereo sound is changed to monaural during sound generation, the sound source circuit 40 sets the output level of the sound source 40a on the right channel side among the sound source 40a of the left and right channels during the stereo sound to the numerical value “0”. ”And then control to switch the demodulation operation to the distribution operation.

左チャンネル系列加算器40eは、発音中のステレオ音の左チャンネル側に割り当てられたすべての発音ソース40aが生成したすべての楽音波形Aと、発音中のモノラル音に割り当てられたすべての発音ソース40aが生成したすべての楽音波形Aとを加算してDSP50へ出力する。   The left channel series adder 40e includes all musical sound waveforms A generated by all the sound source sources 40a assigned to the left channel side of the stereo sound being sounded, and all sound source sources 40a assigned to the monaural sound being sounded. All the musical sound waveforms A generated by are added and output to the DSP 50.

右チャンネル系列加算器40fは、発音中のステレオ音の右チャンネル側に割り当てられたすべての発音ソース40aが生成したすべての楽音波形Bを加算してDSP50へ出力する。   The right channel series adder 40f adds all the musical sound waveforms B generated by all the sound source sources 40a assigned to the right channel side of the stereo sound being sounded, and outputs the result to the DSP 50.

また、音源回路40は、アサイメントメモリ(図示省略)を内包しており、このアサイメントメモリにはキーアサイメント情報(キーコード、そのオン/オフ情報、各種スイッチのオン/オフ情報、エフェクトデータなど)が記憶される。   The tone generator circuit 40 includes an assignment memory (not shown). The assignment memory includes key assignment information (key code, on / off information thereof, on / off information of various switches, effect data). Etc.) are stored.

[DSP50の構成の説明]
DSP50は、音源回路40が生成した楽音波形や効果音波形にエフェクト付与処理を行うようにプログラミングされたディジタル信号処理装置である。さらにこのDSP50は、その内部にプログラムやエフェクトデータ、リバーブデータなどを記憶している。また、DSP50には、ディジタル信号を一時記憶可能なディレイメモリ52が接続されており、ディレイメモリ52を利用してディレイやリバーブ、エコー(ディレイ)、コーラスなどの効果を付与することができる。
[Description of Configuration of DSP 50]
The DSP 50 is a digital signal processing device programmed to perform an effect applying process on the musical tone waveform and the effect sound waveform generated by the tone generator circuit 40. Further, the DSP 50 stores therein programs, effect data, reverb data, and the like. The DSP 50 is connected to a delay memory 52 capable of temporarily storing digital signals. The delay memory 52 can be used to provide effects such as delay, reverb, echo (delay), and chorus.

このように構成されたDSP50は、音源回路40が生成した楽音波形や効果音波形が入力されると、パネルSW/LCD11の音色スイッチで選択・設定された音色に対応したエフェクトを、音源回路40が生成した楽音波形に付与する。続いて、エフェクトが付与された楽音波形と、効果音波形とを加算し(以下、合成波形と称す。)、パネルSW/LCD11のリバーブスイッチで選択・設定されたリバーブをこの合成波形に付与してDAC60に出力する。なお、効果音波形のみが入力された際には、その効果音波形にリバーブを付与して出力する。   The DSP 50 configured as described above receives an effect corresponding to the tone selected and set by the tone switch of the panel SW / LCD 11 when the musical tone waveform or the effect waveform generated by the tone generator 40 is input. Is added to the musical sound waveform generated by. Subsequently, the musical sound waveform to which the effect is applied and the effect sound waveform are added (hereinafter referred to as a composite waveform), and the reverb selected and set by the reverb switch of the panel SW / LCD 11 is applied to the composite waveform. To the DAC 60. When only the effect sound waveform is input, the effect sound waveform is output with reverb.

[その他の構成の説明]
また、DSP50にはディジタルアナログコンバータ(DAC)60L、アンプ(Amp)70L及びスピーカ(SP)80Lからなる左出力系と同様にDAC60R、Amp70R及びSP80Rからなる右出力系とが接続されており、左右出力系は、それぞれDSP50から出力される合成波形(デジタル信号)をアナログ信号に変換し、増幅し、音声出力する。
[Description of other configurations]
The DSP 50 is connected to a right output system consisting of a DAC 60R, Amp 70R and SP80R as well as a left output system consisting of a digital / analog converter (DAC) 60L, an amplifier (Amp) 70L and a speaker (SP) 80L. The output system converts the combined waveform (digital signal) output from the DSP 50 into an analog signal, amplifies it, and outputs the sound.

なお、電子鍵盤楽器1の他の構成は公知技術に従っているのでここではその詳細な説明は省略する。
[メイン処理の説明]
次に、電子鍵盤楽器1のCPU30が実行するメイン処理を、図3のフローチャートを参照して説明する。
Since the other structure of the electronic keyboard instrument 1 is in accordance with a known technique, detailed description thereof is omitted here.
[Description of main processing]
Next, main processing executed by the CPU 30 of the electronic keyboard instrument 1 will be described with reference to the flowchart of FIG.

まず、初期化を実行する(S110)。例えばCPU30の各ポートの設定を行ったり、RAM32内の音色の設定を行ったりする。
続いて、鍵操作やスイッチ操作などのイベントがあるか否かを判断する(S120)。イベントがあると判断された場合には(S120:YES)、イベント処理(S130)を実行し、さらに定常処理(S140)を実行してS120に戻る。なお、イベント処理については後述する。また、定常処理については、公知技術に従っているのでここではその詳細な説明は省略する。一方、イベントがないと判断された場合には(S120:NO
)、イベント処理(S130)を実行せずに定常処理(S140)を実行し、S120に戻る。
First, initialization is executed (S110). For example, each port of the CPU 30 is set, and a tone color in the RAM 32 is set.
Subsequently, it is determined whether there is an event such as a key operation or a switch operation (S120). If it is determined that there is an event (S120: YES), the event process (S130) is executed, the steady process (S140) is executed, and the process returns to S120. The event processing will be described later. Further, since the steady process is in accordance with a known technique, detailed description thereof is omitted here. On the other hand, if it is determined that there is no event (S120: NO)
), The steady process (S140) is executed without executing the event process (S130), and the process returns to S120.

[イベント処理の説明]
次に、電子鍵盤楽器1のCPU30が実行するイベント処理を、図4のフローチャートを参照して説明する。このイベント処理は上述のメイン処理のサブルーチンであり、メイン処理のS130に移行した際に実行される。
[Explanation of event processing]
Next, event processing executed by the CPU 30 of the electronic keyboard instrument 1 will be described with reference to the flowchart of FIG. This event process is a subroutine of the main process described above, and is executed when the process proceeds to S130 of the main process.

まず、イベントが押鍵であるか否かを判断する(S310)。イベントが押鍵であると判断された場合には(S310:YES)、押鍵処理を実行し(S340)、本サブルーチンを終了する。なお、押鍵処理については後述する。   First, it is determined whether or not the event is a key depression (S310). If it is determined that the event is a key depression (S310: YES), a key depression process is executed (S340), and this subroutine is terminated. The key pressing process will be described later.

一方、イベントが押鍵ではないと判断された場合には(S310:NO)、イベントが離鍵であるか否かを判断する(S320)。イベントが離鍵であると判断された場合には(S320:YES)、離鍵処理を実行し(S350)、本サブルーチンを終了する。なお、離鍵処理については後述する。   On the other hand, if it is determined that the event is not a key press (S310: NO), it is determined whether the event is a key release (S320). If it is determined that the event is a key release (S320: YES), a key release process is executed (S350), and this subroutine is terminated. The key release process will be described later.

一方、イベントが離鍵ではないと判断された場合には(S320:NO)、イベントが「その他の処理」であるか否かを判断する(S330)。イベントが「その他の処理」であると判断された場合には(S330:YES)、その他の処理を実行し(S360)、本サブルーチンを終了する。なお、「その他の処理」については、公知技術に従っているのでここではその詳細な説明は省略する。   On the other hand, when it is determined that the event is not a key release (S320: NO), it is determined whether or not the event is “other processing” (S330). If it is determined that the event is “other processing” (S330: YES), other processing is executed (S360), and this subroutine is terminated. Since “other processing” is in accordance with a known technique, a detailed description thereof is omitted here.

一方、イベントが「その他の処理」ではないと判断された場合には(S330:NO)、エラー処理を実行し(S370)、本サブルーチンを終了する。なお、エラー処理については、公知技術に従っているのでここではその詳細な説明は省略する。   On the other hand, if it is determined that the event is not “other processing” (S330: NO), error processing is executed (S370), and this subroutine is terminated. Since error processing is in accordance with a known technique, detailed description thereof is omitted here.

[押鍵処理の説明]
次に、電子鍵盤楽器1のCPU30が実行する押鍵処理を、図5のフローチャートを参照して説明する。この押鍵処理は上述のイベント処理のサブルーチンであり、イベント処理のS340に移行した際に実行される。なお、以下の説明において、「発音ソース40aが発音する」とは、発音ソース40aが楽音波形を生成することと同義である。
[Explanation of key press processing]
Next, a key pressing process executed by the CPU 30 of the electronic keyboard instrument 1 will be described with reference to the flowchart of FIG. This key pressing process is the above-described event processing subroutine, and is executed when the process proceeds to S340 of the event processing. In the following description, “the sound source 40a generates sound” is synonymous with the sound source 40a generating a musical sound waveform.

まず、走査処理を実行する(S410)。この走査処理では、音源回路40が備える192個の発音ソース40aを対象に、発音が終了した発音ソース40aまたは最も消音が進んだ発音ソース40aを走査する。走査結果として、発音中の発音ソース40aを左右のステレオ音、モノラル音ごとに発音開始時期の古い順にRAM32の使用状況メモリ32aに記憶し、発音ソース40aの装備総数(N)、ステレオ発音中の音の数(S)およびモノラル発音中の音の数(M)をRAM32の発音数記憶レジスタ32bに記憶する。   First, a scanning process is executed (S410). In this scanning process, the 192 sound sources 40a included in the sound source circuit 40 are scanned, and the sound source 40a that has finished sounding or the sound source 40a that has been muffled most is scanned. As a scanning result, the sound source 40a being sounded is stored in the usage status memory 32a of the RAM 32 in order of the sound generation start time for each of the left and right stereo sounds and monaural sounds, and the total number (N) of the sound source 40a equipped, The number of sounds (S) and the number of sounds during monaural sound generation (M) are stored in the sound generation number storage register 32 b of the RAM 32.

続いて、変数ctrの値が数値「N−1」以上であるか否かを判断する(S420)。なお、変数ctrとは、発音中でない発音ソース40aの数量を示し、定数Nとは発音ソース40aの装備総数を示す。変数ctrの値が数値「N−1」以上であると判断された場合、つまり発音中でない発音ソース40aの数量が零または一つである場合には(S420:YES)、発音中でない発音ソース40aの数量を増加させて新たなキーオンに対応する音を割り当てるための減数処理を実行し(S430)、S440に移行する。なお、減数処理については後述する。一方、変数ctrの値が数値「N−1」未満であると判断された場合には(S420:NO)、現段階では発音中でない発音ソース40aの数量を増加させる必要がないため、上述の減数処理を実行せずにS440に移行する。   Subsequently, it is determined whether or not the value of the variable ctr is greater than or equal to the numerical value “N−1” (S420). The variable ctr indicates the number of the sound source 40a that is not sounding, and the constant N indicates the total number of equipment of the sound source 40a. If it is determined that the value of the variable ctr is greater than or equal to the numerical value “N−1”, that is, if the number of the sound source 40a not sounding is zero or one (S420: YES), the sound source not sounding A reduction process for increasing the quantity 40a and assigning a sound corresponding to a new key-on is executed (S430), and the process proceeds to S440. The reduction process will be described later. On the other hand, when it is determined that the value of the variable ctr is less than the numerical value “N−1” (S420: NO), it is not necessary to increase the quantity of the sound source 40a that is not sounding at this stage. The process proceeds to S440 without executing the reduction process.

続いて、割当処理を実行する(S440)。具体的には、減数処理を実行せずにS440に移行した場合には、発音中でない二つの発音ソース40aに対してキーオンに対応する音をステレオ音として割り当て、一方、減数処理を実行した後にS440に移行した場合には、減数処理による決定内容に従って、発音中でない発音ソース40aに対してキーオンに対応する音を割り当てる。   Subsequently, an allocation process is executed (S440). Specifically, when the process proceeds to S440 without executing the reduction process, the sound corresponding to the key-on is assigned as a stereo sound to the two sound generation sources 40a that are not generating sound, while the reduction process is executed. When the process proceeds to S440, the sound corresponding to the key-on is assigned to the sound source 40a that is not sounding according to the content determined by the reduction process.

そして、発音処理を実行する(S450)。具体的には、各発音ソース40aに、S440にて割り当てられた音を発音させる。
さらに、上述の割当処理および発音処理によって発音中でない発音ソース40aの数量が減少したため、変数ctrの値に変数ADDの値を加算し(S460)、本サブルーチンを終了する。
Then, sound generation processing is executed (S450). Specifically, each sound source 40a is caused to sound the sound assigned in S440.
Further, since the quantity of the sound source 40a that is not sounding has been reduced by the above allocation process and sound generation process, the value of the variable ADD is added to the value of the variable ctr (S460), and this subroutine is terminated.

[減数処理の説明]
次に、電子鍵盤楽器1のCPU30が実行する減数処理を、図6のフローチャートを参照して説明する。この減数処理は上述の押鍵処理のサブルーチンであり、押鍵処理のS430に移行した際に実行される。
[Explanation of reduction processing]
Next, the reduction process executed by the CPU 30 of the electronic keyboard instrument 1 will be described with reference to the flowchart of FIG. This decrementing process is a subroutine for the key pressing process described above, and is executed when the process proceeds to S430 of the key pressing process.

まず、発音数記憶レジスタ32bの記憶内容を参照して、すべての発音ソース40aがモノラル音として発音中であるか否かを判断する(S505)。すべての発音ソース40aがモノラル音として発音中であると判断された場合には(S505:YES)、発音中でない発音ソース40aの数量を一つ増加させるために、モノラル音として発音中の発音ソース40aのうち発音開始時期が最も古い発音ソース40aを一つ消音し(S510)、新たにキーオンされた楽音をその発音中でない発音ソース40aに対してモノラル音として割り当てることとし(S515)、変数ADDの値を数値「1」とし(S520)、本サブルーチンを終了する。   First, with reference to the stored contents of the pronunciation number storage register 32b, it is determined whether or not all the pronunciation sources 40a are producing a monaural sound (S505). If it is determined that all the sound sources 40a are sounding as monaural sound (S505: YES), the sound source that is sounding as a monaural sound is increased in order to increase the number of sound sources 40a that are not sounding by one. One of the sound sources 40a with the earliest sound generation start time is muted (S510), and the newly keyed musical sound is assigned as a monaural sound to the sound source 40a not sounding (S515), and the variable ADD is set. Is set to a numerical value “1” (S520), and this subroutine is terminated.

一方、すべての発音ソース40aがモノラル音として発音中ではない、つまり、発音中でない発音ソース40aが一つあるか、すべての発音ソース40aが発音中であるがステレオ音で発音中の発音ソース40aが一組以上あると判断された場合には(S505:NO)、半端な発音ソース40aが存在する、つまり、発音中でない発音ソース40aが一つ存在するか否かを判断する(S525)。発音中でない発音ソース40aが一つ存在すると判断された場合には(S525:YES)、発音中でない発音ソース40aの数量を2つに増加させて一組の発音ソース40aを確保するために、ステレオ音として発音中の発音ソース40aのうち発音開始時期が最も古い発音ソース40aをモノラル化し(S530)、新たにキーオンされた楽音を、その確保された発音中でない二つの発音ソース40aにステレオ音として割り当てることとし(S535)、変数ADDの値を数値「2」とし(S540)、本サブルーチンを終了する。   On the other hand, not all the sound sources 40a are sounding as monaural sounds, that is, there is one sound source 40a that is not sounding, or all sound sources 40a are sounding but sound sources 40a that are sounding in stereo. If it is determined that there is one or more sets (S505: NO), it is determined whether or not there is an odd sound source 40a, that is, there is one sound source 40a that is not sounding (S525). If it is determined that there is one sound source 40a that is not sounding (S525: YES), in order to increase the number of sound sources 40a that are not sounding to two and secure a set of sound sources 40a, The sound source 40a with the earliest pronunciation start time among the sound sources 40a that are being sounded as a stereo sound is converted to monaural (S530), and the newly keyed musical sound is sent to the two sound sources 40a that are not sounded as stereo sound. (S535), the value of the variable ADD is set to a numerical value “2” (S540), and this subroutine is terminated.

一方、発音中でない発音ソース40aが一つも存在しない、つまり、すべての発音ソース40aが発音中であるがステレオ音として発音中の発音ソース40aが一組以上あると判断された場合には(S525:NO)、ステレオ音として発音中の発音ソース40aが二組以上存在するか否かを判断する(S545)。ステレオ音として発音中の発音ソース40aが二組以上存在すると判断された場合には(S545:YES)、発音中でない発音ソース40aの数量を2つ増加させるために、ステレオ音として発音中の発音ソース40aのうち発音開始時期が最も古い二組の発音ソース40aをそれぞれモノラル化し(S550)、新たにキーオンされた楽音を、その確保された発音中でない二つの発音ソース40aにステレオ音として割り当てることとし(S555)、変数ADDの値を数値「2」とし(S560)、本サブルーチンを終了する。   On the other hand, when it is determined that there is no sound source 40a that is not sounding, that is, all sound sources 40a are sounding but there are one or more sound sound sources 40a that are sounded as stereo sound (S525). : NO), it is determined whether or not there are two or more sets of sound generation sources 40a that are sounding as stereo sound (S545). If it is determined that there are two or more pairs of sound sources 40a that are sounding as stereo sounds (S545: YES), the sound sources that are sounding as stereo sounds are increased in order to increase the number of sound sources 40a that are not sounding by two. Of the sources 40a, the two sets of pronunciation sources 40a with the earliest pronunciation start time are monauralized (S550), and the newly keyed musical sound is assigned as stereo sound to the two pronunciation sources 40a that are not in the reserved pronunciation. (S555), the value of the variable ADD is set to a numerical value “2” (S560), and this subroutine is terminated.

一方、ステレオ音として発音中の発音ソース40aが一組だけ存在すると判断された場
合には(S545:NO)、発音中でない発音ソース40aの数量を一つ増加させるために、そのステレオ音として発音中の発音ソース40aをモノラル化し(S565)、新たにキーオンされた楽音をその発音中でない一つの発音ソース40aにモノラル音として割り当てることとし(S515)、変数ADDの値を数値「1」とし(S575)、本サブルーチンを終了する。
On the other hand, when it is determined that there is only one set of sound source 40a that is sounding as a stereo sound (S545: NO), sound is generated as the stereo sound in order to increase the number of sound sources 40a that are not sounding by one. The sound source 40a in the middle is converted to monaural (S565), and the newly keyed musical sound is assigned as a monaural sound to one sounding source 40a that is not currently sounding (S515), and the value of the variable ADD is set to a numerical value “1” ( (S575) This subroutine is terminated.

[離鍵処理の説明]
次に、電子鍵盤楽器1のCPU30が実行する離鍵処理を、図7のフローチャートを参照して説明する。この離鍵処理は上述のイベント処理のサブルーチンであり、イベント処理のS350に移行した際に実行される。
[Explanation of key release processing]
Next, a key release process executed by the CPU 30 of the electronic keyboard instrument 1 will be described with reference to a flowchart of FIG. This key release processing is the event processing subroutine described above, and is executed when the process proceeds to S350 of the event processing.

まず、検索処理を実行する(S610)。具体的には、離鍵イベントによって発音する必要がなくなった発音ソース40aを検索する。
続いて、S610にて検索された発音ソース40aについて消音処理を実行する(S620)。この際、変数SUBを設定する。なお、変数SUBとは、発音の種別を示す変数であり、離鍵処理される楽音がモノラル音である場合には数値「1」に設定し、一方、離鍵処理される楽音がステレオ音である場合には数値「2」に設定する。
First, search processing is executed (S610). Specifically, the pronunciation source 40a that no longer needs to be pronounced by the key release event is searched.
Subsequently, a mute process is executed for the sound source 40a searched in S610 (S620). At this time, a variable SUB is set. Note that the variable SUB is a variable indicating the type of sound generation, and is set to a numerical value “1” when the tone to be released is a monaural tone, while the tone to be released is a stereo tone. In some cases, the value is set to “2”.

さらに、変数ctrの値を変数SUBの値だけ減算する(S630)。
そして、本サブルーチンを終了する。
[第一実施形態の効果]
(1)このように第一実施形態の電子鍵盤楽器1によれば、例えば、新たなキーオンに対応するためにステレオ発音中の二つの発音ソース40aのうち右チャンネル側に割り当てられた発音ソース40aを減衰させると、左チャンネル側の発音ソース40aについては変更後も楽音波形Aを出力し、この変更後の楽音波形Aには、左チャンネル成分Lと右チャンネル成分Rとが混合されており、楽音発生に割り当てられる発音ソース40aの数量が二つから一つに減少したにもかかわらず左チャンネル成分Lと右チャンネル成分Rとを含む音が発生することとなる。
Further, the value of the variable ctr is subtracted by the value of the variable SUB (S630).
Then, this subroutine ends.
[Effect of the first embodiment]
(1) As described above, according to the electronic keyboard instrument 1 of the first embodiment, for example, the sound source 40a assigned to the right channel side among the two sound sources 40a during stereo sounding to cope with a new key-on. When the sound source 40a on the left channel side is attenuated, the tone waveform A is output after the change, and the tone waveform A after the change is mixed with the left channel component L and the right channel component R, The sound including the left channel component L and the right channel component R is generated even though the number of the sound generation sources 40a allocated to the generation of the musical sound is decreased from two to one.

したがって、キーオンに対応する楽音に割り当てる発音ソース40aを確保するために、ステレオ発音中の二つの発音ソース40aの一方を減衰させる場合でも、音の移り変わりが自然なものとすることができる。また、ステレオ発音中の二つの発音ソース40aの一方を減衰させることで、新たなキーオンに対応するために発音ソース40aを確保でき、十分な同時発音数を確保することができる。また、従来構成で行っていたような定位制御および音量制御が不要となり、その分キーオンから楽音発生までに要する反応時間が短縮されて反応速度が向上し、キーオンされた楽音をより忠実に再現することができる。   Therefore, even when one of the two sound sources 40a during stereo sounding is attenuated in order to secure the sound source 40a assigned to the musical sound corresponding to the key-on, the sound transition can be made natural. Further, by attenuating one of the two sound sources 40a during stereo sound generation, the sound source 40a can be secured to cope with a new key-on, and a sufficient number of simultaneous sounds can be secured. In addition, the localization control and volume control that was performed in the conventional configuration is no longer necessary, and the reaction time required from the key-on to the generation of the music is shortened, the response speed is improved, and the key-on music is reproduced more faithfully. be able to.

(2)また、第一実施形態の電子鍵盤楽器1によれば、キーオンされた際に、発音中でない発音ソースが二つ以上存在するときには(S420:NO)、キーオンに対応する楽音をステレオ音として発生させるために、発音中でない二つ以上の発音ソースのうちの二つをキーオンに対応してステレオ音として発生する楽音に割り当てる(S440)。このことにより、発音中でない二つの発音ソース40aを確保して、ステレオ音への発音ソース40aの割り当てを確実に行うことができる。   (2) Also, according to the electronic keyboard instrument 1 of the first embodiment, when there are two or more sound sources that are not sounding when the key is turned on (S420: NO), the musical sound corresponding to the key-on is stereo sound. Therefore, two of the two or more sound sources that are not sounding are assigned to the musical sound generated as a stereo sound corresponding to the key-on (S440). As a result, two sound sources 40a that are not sounding can be secured and the sound sources 40a can be reliably assigned to stereo sounds.

(3)また、第一実施形態の電子鍵盤楽器1によれば、キーオンされた際に、発音中でない発音ソースが一つ存在し、且つステレオ発音中の発音ソースの組が一つ以上存在するときには(S525:YES)、キーオンに対応する楽音をステレオ音として発生させるために、ステレオ発音中の発音ソース40aの組のうちの一つに含まれる右チャンネル側に割り当てられた発音ソース40aを減衰させてモノラル音化することで発音中でない二つの発音ソース40aを確保し(S530)、その確保した発音中でない二つの発音ソー
ス40aをキーオンに対応してステレオ音として発生する楽音に割り当てる(S535、S440)。
(3) Also, according to the electronic keyboard instrument 1 of the first embodiment, when the key is turned on, there is one sound source that is not sounding, and there is one or more sound source sets that are sounding in stereo. Sometimes (S525: YES), the sound source 40a assigned to the right channel side included in one of the groups of sound sources 40a during stereo sounding is attenuated in order to generate a musical sound corresponding to key-on as a stereo sound. The two sound sources 40a that are not sounding are secured by making them into monaural sounds (S530), and the two sound sources 40a that are not sounded are allocated to musical sounds generated as stereo sounds corresponding to key-on (S535). , S440).

このことにより、発音中でない二つの発音ソース40aを確保して、ステレオ音への発音ソース40aの割り当てを確実に行うことができる。また、ステレオ音をモノラル音としても、音の移り変わりを自然なものとすることができる。また、同時発音数を増加させることができる。   As a result, two sound sources 40a that are not sounding can be secured and the sound sources 40a can be reliably assigned to stereo sounds. Even if the stereo sound is a monaural sound, the transition of the sound can be made natural. In addition, the number of simultaneous pronunciations can be increased.

(4)また、第一実施形態の電子鍵盤楽器1によれば、キーオンされた際に、発音中でない発音ソース40aが存在せず、且つステレオ発音中の発音ソース40aの組が二つ以上存在するときには(S545:YES)、キーオンに対応する楽音をステレオ音として発生させるために、ステレオ発音中の発音ソース40aの組のうちの二つに含まれる右チャンネル側に割り当てられた発音ソース40aをそれぞれ減衰させてモノラル音化することで発音中でない二つの発音ソース40aを確保し、その確保した発音中でない二つの発音ソース40aをキーオンに対応してステレオ音として発生する楽音に割り当てる(S555、S440)。   (4) According to the electronic keyboard instrument 1 of the first embodiment, when the key is turned on, there is no sound source 40a that is not sounding, and there are two or more pairs of sound sources 40a that are sounding in stereo. When generating (S545: YES), in order to generate a musical sound corresponding to key-on as a stereo sound, the sound source 40a assigned to the right channel side included in two of the sound source sources 40a in the stereo sound generation is selected. The two sound sources 40a that are not sounding are secured by attenuating each to make a monaural sound, and the two sound sources 40a that are not sounded are assigned to musical sounds generated as stereo sounds corresponding to key-on (S555, S440).

このことにより、発音中でない二つの発音ソース40aを確保して、ステレオ音への発音ソース40aの割り当てを確実に行うことができる。また、ステレオ音をモノラル音としても、音の移り変わりを自然なものとすることができる。また、同時発音数を増加させることができる。   As a result, two sound sources 40a that are not sounding can be secured and the sound sources 40a can be reliably assigned to stereo sounds. Even if the stereo sound is a monaural sound, the transition of the sound can be made natural. In addition, the number of simultaneous pronunciations can be increased.

(5)また、第一実施形態の電子鍵盤楽器1によれば、キーオンされた際に、発音中でない発音ソース40aが存在せず、且つステレオ発音中の発音ソース40aの組が一つ存在するときには(S545:NO)、キーオンに対応する楽音をモノラル音として発生させるために、そのステレオ発音中の発音ソース40aの組に含まれる右チャンネル側に割り当てられた発音ソース40aを減衰させてモノラル音化することで発音中でない一つの発音ソース40aを確保し、その確保した発音中でない一つの発音ソース40aをキーオンに対応してモノラル音として発生する楽音に割り当てる(S570、S440)。   (5) Also, according to the electronic keyboard instrument 1 of the first embodiment, when the key is turned on, there is no sound source 40a that is not sounding and there is one set of sound sources 40a that are sounding in stereo. Sometimes (S545: NO), in order to generate a musical sound corresponding to the key-on as a monaural sound, the sound source 40a assigned to the right channel side included in the set of sound sources 40a during the stereo sounding is attenuated to produce a monaural sound. Thus, one sound source 40a that is not sounding is secured, and one sound source 40a that is not sounded is assigned to a musical sound generated as a monaural sound corresponding to the key-on (S570, S440).

このことにより、発音中でない発音ソース40aが少ない状況であっても、キーオンに対応する楽音をモノラル音として発生させることができる。また、ステレオ音をモノラル音としても、音の移り変わりを自然なものとすることができる。また、同時発音数を増加させることができる。   As a result, even in a situation where there are few sound sources 40a that are not sounding, it is possible to generate a musical sound corresponding to key-on as a monaural sound. Even if the stereo sound is a monaural sound, the transition of the sound can be made natural. In addition, the number of simultaneous pronunciations can be increased.

(6)また、第一実施形態の電子鍵盤楽器1によれば、キーオンされた際に、発音中でない発音ソース40aが存在せず、ステレオ発音中の発音ソース40aの組が存在せず、且つモノラル発音中の発音ソース40aが存在するとき、つまり、すべての発音ソースがモノラル音に割り当てられているときには(S505:NO)、キーオンに対応する楽音をモノラル音として発生させるために、モノラル発音中の発音ソース40aのうちの一つを減衰させることで発音中でない一つの発音ソース40aを確保し、その確保した発音中でない一つの発音ソース40aをキーオンに対応してモノラル音として発生する楽音に割り当てる(S515、S440)。   (6) According to the electronic keyboard instrument 1 of the first embodiment, when the key is turned on, there is no sound source 40a that is not sounding, no sound source 40a pair that is sounding in stereo is present, and When there is a sound source 40a during monaural sound generation, that is, when all sound source sources are assigned to monaural sounds (S505: NO), in order to generate a musical sound corresponding to key-on as a monaural sound, One sound source 40a that is not sounding is secured by attenuating one of the sound source 40a, and the sound source 40a that is not sounding is secured as a musical sound that is generated as a monaural sound corresponding to the key-on. Assign (S515, S440).

このようにすれば、発音中でない発音ソース40aが少ない状況であっても、キーオンに対応する楽音をモノラル音として発生させることができる。また、同時発音数を増加させることができる。   In this way, even in a situation where there are few sound sources 40a that are not being sounded, it is possible to generate a musical sound corresponding to key-on as a monaural sound. In addition, the number of simultaneous pronunciations can be increased.

[他の実施形態]
以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるも
のではなく、以下のような様々な態様にて実施することが可能である。
[Other Embodiments]
As mentioned above, although one Embodiment of this invention was described, this invention is not limited to the said embodiment, It is possible to implement in the following various aspects.

(1)上実施形態では、係数kについては式(3)を満たすものとしているが、これには限られず、上述の(A)および(G)ように、(A)係数k=0.125の場合には定位がかなり右寄りとなり、(G)係数k=0.875の場合には定位がかなり左寄りとなることを考慮して、係数kが次の関係式(4)を満たすものとしてもよい。   (1) In the above embodiment, the coefficient k is assumed to satisfy the expression (3), but is not limited to this, and (A) coefficient k = 0.125 as described in (A) and (G) above. In the case of (4), the localization is considerably leftward. (G) Considering that the localization is considerably leftward when the coefficient k = 0.875, the coefficient k may satisfy the following relational expression (4). Good.

0.25≦k≦0.75・・・式(4)
このように左右の音量バランスを3倍以内に納めることで、より不自然さを解消することができる。
0.25 ≦ k ≦ 0.75 Formula (4)
Thus, the unnaturalness can be further eliminated by keeping the left and right volume balance within three times.

(2)また、係数kが次の式(5)を満たすものとしてもよい。
k=0.5・・・式(5)
このようにすれば、ステレオ発音をモノラル化するために一組の発音ソース40aのうちの一方の発音ソース40aを減衰させたのちも、左右の出力が均等で左右のバランスが良いという効果がある。
(2) The coefficient k may satisfy the following expression (5).
k = 0.5 (5)
In this way, even when one sound source 40a of the set of sound sources 40a is attenuated in order to make the stereo sound into monaural, there is an effect that the left and right outputs are equal and the right and left balance is good. .

(3)また、係数kの値については、新たにキーオンされた楽音の音域に応じて発音ソース40aごとに設定されるようにしてもよい。一例を挙げると、新たにキーオンされた楽音の音域が低音側になるほど係数kの値を大きく設定し、一方、新たにキーオンされた楽音の音域が高音側になるほど係数kの値を小さく設定するといった具合である。このようにすれば、キーオンされた楽音の音域を忠実に再現することができる。   (3) The value of the coefficient k may be set for each sound generation source 40a in accordance with the range of the newly keyed musical sound. As an example, the value of the coefficient k is set to be larger as the range of the newly keyed musical sound becomes lower, while the value of the coefficient k is set to be smaller as the range of the newly keyed musical sound becomes higher. And so on. In this way, it is possible to faithfully reproduce the range of the key-on musical tone.

(4)上記実施形態では、波形データ生成部30cが、上記式(1)を用いてステレオサンプリングした楽音の左チャンネル成分Lの正相成分と右チャンネル成分Rの正相成分とを、1/k:1/(1−k)の比率で混合した波形データAを生成するとともに、上記式(2)を用いてステレオサンプリングした楽音の左チャンネル成分Lの正相成分と右チャンネル成分Rの逆相成分とを、同じく1/k:1/(1−k)の比率で混合した波形データBを生成するが、これには限られず、波形データBについては、波形データ生成部30cが、下記の式(6)を用いてステレオサンプリングした楽音の左チャンネル成分Lの逆相成分と右チャンネル成分Rの正相成分とを、同じく1/k:1/(1−k)の比率で混合して生成するようにしてもよい。

B=―L/2k+R/2(1−k)・・・式(6)

このように構成しても上記実施形態と同様の作用効果を奏する。
(4) In the above embodiment, the waveform data generation unit 30c converts the positive phase component of the left channel component L and the positive phase component of the right channel component R of the musical sound stereo-sampled using the above equation (1) to 1 / Waveform data A mixed at a ratio of k: 1 / (1-k) is generated, and the normal phase component of the left channel component L and the inverse of the right channel component R of the tone sampled using the above formula (2) Similarly, the waveform data B is generated by mixing the phase components at a ratio of 1 / k: 1 / (1-k). However, the waveform data B is not limited to this, and the waveform data generation unit 30c performs the following processing. The opposite phase component of the left channel component L and the right phase component of the right channel component R of the tone sampled in stereo using the equation (6) are similarly mixed at a ratio of 1 / k: 1 / (1-k). To generate There.

W B = −L / 2k + R / 2 (1-k) (6)

Even if comprised in this way, there exists an effect similar to the said embodiment.

(5)また、上述のような波形データをUSBメモリ装置などの波形データ記憶装置に記憶しておき、波形データ記憶装置を必要に応じて当該電子鍵盤楽器1に接続して利用するようにしてもよい。このようにすれば、波形データ記憶装置に波形データAおよび波形データBを記憶しておくことで波形データの装置間での移動が可能となる。また、波形データAには、左チャンネル成分Lと右チャンネル成分Rとが前記比率にて混合されており、一つの発音ソース40aでも左チャンネル成分Lと右チャンネル成分Rとを含む音が発生することとなるので、ステレオ発音できない機種との間でも、上述の波形データを記憶させた波形データ記憶装置を共有することができる。   (5) Further, the waveform data as described above is stored in a waveform data storage device such as a USB memory device, and the waveform data storage device is connected to the electronic keyboard instrument 1 and used as necessary. Also good. In this way, by storing the waveform data A and the waveform data B in the waveform data storage device, the waveform data can be moved between the devices. In the waveform data A, the left channel component L and the right channel component R are mixed in the above ratio, and a sound including the left channel component L and the right channel component R is generated even in one sound source 40a. Therefore, the waveform data storage device storing the waveform data described above can be shared with models that cannot produce stereo sound.

1…電子鍵盤楽器、10…鍵盤、11…パネルSW/LED、12…ペダル、15…MIDI、30…CPU、30a…割当部、30b…制御部、30c…波形データ生成部、31…プログラム・データメモリ、32…ワークRAM、32a…使用状況メモリ、32b
…発音数記憶レジスタ、33…I/F、40…音源回路、40a…発音ソース、40b…波形データ読出部、40c…復調回路、40d…定位制御回路、40e…左チャンネル系列加算器、40f…右チャンネル系列加算器、42…波形メモリ、50…DSP、52…ディレイメモリ、60…DAC、70…アンプ、80…スピーカ、90…バスライン
DESCRIPTION OF SYMBOLS 1 ... Electronic keyboard instrument, 10 ... Keyboard, 11 ... Panel SW / LED, 12 ... Pedal, 15 ... MIDI, 30 ... CPU, 30a ... Assignment part, 30b ... Control part, 30c ... Waveform data generation part, 31 ... Program Data memory, 32 ... work RAM, 32a ... usage status memory, 32b
... Sound generation number register 33 ... I / F, 40 ... Sound source circuit, 40a ... Sound generation source, 40b ... Waveform data reading unit, 40c ... Demodulation circuit, 40d ... Localization control circuit, 40e ... Left channel series adder, 40f ... Right channel series adder, 42 ... waveform memory, 50 ... DSP, 52 ... delay memory, 60 ... DAC, 70 ... amplifier, 80 ... speaker, 90 ... bus line

本発明は、ステレオサンプリング方式の電子楽器に関する。 The present invention relates to an electronic musical instrument stereo sampling method.

近年、電子ピアノ等においてステレオサンプリング方式のものが広く用いられている。ステレオサンプリング方式の音源は、ピアノ等、発音体の出力が大きい場合や、ストリングス等臨場感のある音を表現する場合に、発音された音を左右のステレオ音として録音する。   In recent years, stereo sampling systems have been widely used in electronic pianos and the like. A stereo sampling type sound source records the sound produced as left and right stereo sound when the output of a sounding body such as a piano is large, or when expressing a realistic sound such as strings.

そして、このようなステレオサンプリング方式を採用する電子楽器の楽音発生装置は、録音された両チャンネルのデータをサンプリングして音源データ(波形データ)として保持し、キーオン情報によって両方のデータを読み出して左右のスピーカから発音させることによって、元の音の広がり感、臨場感を再現することができる。このため、ステレオサンプリング方式の電子楽器の発振器(デジタルコントロールオシレータ)においては、1音発音するために左右それぞれの発振器が必要であり、同時発音数に対する発振器の所要数が大きくなり、価格が非常に高価になってしまうという問題点があった。   Then, a musical sound generator for an electronic musical instrument that employs such a stereo sampling method samples and stores the recorded data of both channels as sound source data (waveform data), reads both data by key-on information, The sound of the original sound can be reproduced by reproducing the sound from the speaker. For this reason, an oscillator (digital control oscillator) of a stereo sampling type electronic musical instrument requires left and right oscillators to generate one sound, and the required number of oscillators with respect to the number of simultaneous sounds increases, and the price is very high. There was a problem of becoming expensive.

一方、モノサンプリング方式の場合、音質的には若干の問題点はあるが、ステレオサンプリングに対し、1つの発振器があればよいので、同時発音数に対する発振器の所要数はステレオサンプリング方式の場合の半分で済む利点もある。   On the other hand, in the case of the mono sampling method, although there are some problems in sound quality, since only one oscillator is required for stereo sampling, the required number of oscillators for the number of simultaneous sounds is half that of the stereo sampling method. There is also an advantage that can be done.

また、音の特性として、例えば、ピアノの場合、時間経過に伴って音が減衰する。従って、発音されている音の数が多い場合は、一部の音がモノラル音になっても気付きにくく、音楽に大きな影響を与えることは少ない。   As a sound characteristic, for example, in the case of a piano, the sound attenuates with time. Therefore, when the number of sounds that are pronounced is large, even if some sounds become monaural sounds, it is difficult to notice and there is little effect on music.

そこで、上述のようなステレオサンプリング方式の電子楽器において、全ての発振器が発音中に新たに鍵盤が押下された場合には、最も音楽に支障のない(通常は最も発音の古い)2音の発振器を減衰させて逐次モノラル音にして、空いた発振器を新たな発音に割り当ててステレオ音を発音することにより、発振器を効率的に使い、同時発音数を増やすことが考えられている(例えば、特許文献1参照。)。なおこの場合、左右の音量バランスを取るために定位制御および音量制御を行っている。   Therefore, in the stereo sampling type electronic musical instrument as described above, when all the oscillators are sounded and a new key is pressed, a two-tone oscillator that has the least trouble with music (usually the oldest sound). It is considered to increase the number of simultaneous sounds by using the oscillator efficiently by assigning a free oscillator to a new sound and assigning a free sound to a new sound, thereby generating stereo sound. Reference 1). In this case, localization control and volume control are performed to balance the left and right volume.

特開平10−49159号公報(第4頁、図3)Japanese Patent Laid-Open No. 10-49159 (page 4, FIG. 3)

しかし、上述のようなステレオサンプリング方式の電子楽器においては、新たなキーオンに対応するためにステレオ発音を行っている2つの発振器の一方を減衰させるために、一方のチャンネルの成分が消音して他方のチャンネルの成分のみの出力となり、仮に上述のように左右の音量バランスを取るために定位制御や音量制御を行っても、一方のチャンネル成分の消音をカバーしきれず、音の移り変わりが不自然になるという問題があった。   However, in the stereo sampling type electronic musical instrument as described above, in order to attenuate one of the two oscillators that produce stereo sound in order to cope with a new key-on, the component of one channel is muted and the other The output of only the channel component is output, and even if localization control or volume control is performed to balance the left and right volumes as described above, it is not possible to cover the silencing of one channel component and the transition of the sound is unnatural. There was a problem of becoming.

本発明は、このような不具合に鑑みなされたものであり、その目的とするところは、新たなキーオンに対応するために発音ソースを確保する際にステレオ発音を行っている2つの発音ソースの一方を減衰させる場合でも音の移り変わりが自然なものとなり、且つ十分な同時発音数を確保することにある。   The present invention has been made in view of such a problem, and an object of the present invention is to provide one of two sound sources that perform stereo sound when securing a sound source in order to cope with a new key-on. Even when the sound is attenuated, the transition of the sound becomes natural, and a sufficient number of simultaneous sounds is ensured.

上記課題を解決するためになされた請求項1に係る電子楽器はステレオで採取された楽音を波形データとして保持し、押鍵に応じて該波形データの発音を複数の発音手段の1組に割り当ててステレオチャンネルにて発音させる電子楽器において、上記波形データは上記ステレオで採取された楽音の左右両方の所定比率の正相加算成分(以下正相成分)、および一方の正相と他方の逆相との所定比率の加算成分(以下逆相成分)からなり、上記押鍵による発音の総数が所定数以下の場合は上記正相成分と上記逆相成分の和を上記ステレオチャンネルの一方から、上記正相成分と上記逆相成分の差を上記ステレオチャンネルの他方から再生させ、上記押鍵による発音の総数が所定数以上の場合は上記正相成分を上記ステレオチャンネルの両方から両方させることを特徴とする。 Electronic musical instrument according to claim 1 which has been made to solve the above problem is to retain the tone taken in stereo as the waveform data, a set of a plurality of sound generating means Pronunciation waveform data in response to key depression In the electronic musical instrument that is assigned to the sound channel and is generated on the stereo channel, the waveform data includes a positive phase addition component (hereinafter referred to as a positive phase component) of a predetermined ratio of both the left and right of the musical sound collected in the stereo, and one positive phase and the other. When the total number of sounds produced by the key depression is less than a predetermined number, the sum of the normal phase component and the reverse phase component is calculated from one of the stereo channels. The difference between the positive phase component and the negative phase component is reproduced from the other stereo channel, and if the total number of keystrokes is greater than or equal to a predetermined number, the normal phase component is Characterized in that to both.

したがって、キーオンに対応する楽音に割り当てる発音ソースを確保するために、ステレオ発音中の二つの発音ソースの一方を減衰させる場合でも、音の移り変わりが自然なものとすることができる。また、ステレオ発音中の二つの発音ソースの一方を減衰させることで、新たなキーオンに対応するために発音ソースを確保でき、十分な同時発音数を確保することができる。また、従来構成で行っていたような定位制御および音量制御が不要となり、その分キーオンから楽音発生までに要する反応時間が短縮されて反応速度が向上し、キーオンされた楽音をより忠実に再現することができる。   Therefore, even when one of the two sound sources during stereo sounding is attenuated in order to secure a sound source to be assigned to the musical sound corresponding to the key-on, the sound transition can be made natural. Further, by attenuating one of the two sound sources during stereo sound generation, it is possible to secure a sound source to cope with a new key-on, and to secure a sufficient number of simultaneous sounds. In addition, the localization control and volume control that was performed in the conventional configuration is no longer necessary, and the reaction time required from the key-on to the generation of the music is shortened, the response speed is improved, and the key-on music is reproduced more faithfully. be able to.

この場合、上記正相成分の加算時の比率は次の関係式(1)に従う1/kであり、上記逆相成分の加算時の比率は次の関係式(1)に従う1/(1−k)であり、上記和を再生する際には乗算係数kを乗じ、上記差を再生する際には乗算係数(1−k)を乗じることが考えられる(請求項2)。

関係式(1):0<k<1

なお、上述の係数kについては、前記関係式(1)の代わりに次の関係式(2)を満たすものとしてもよい(請求項3)。

関係式(2):0.25≦k≦0.75

このようにすれば、左右の音量バランスを3倍以内に納めることができ、より自然な音の移り変わりとすることができる。
In this case, the ratio at the time of addition of the positive phase component is 1 / k according to the following relational expression (1), and the ratio at the time of addition of the negative phase component is 1 / (1- k), and it is conceivable to multiply the multiplication coefficient k when reproducing the sum and to multiply the multiplication coefficient (1-k) when reproducing the difference.

Relational expression (1) : 0 <k <1

Note that the coefficient k of the above, the following relational expression (2) may be as satisfying (claim 3) instead of the equation (1).

Relational expression (2) : 0.25 ≦ k ≦ 0.75

In this way, the left and right volume balance can be kept within three times, and a more natural sound transition can be achieved.

また、上述の係数kについては、前記関係式(1)の代わりに次の関係式(3)を満たすものとしてもよい(請求項)。

関係式(3):k=0.5

このようにすれば、発音ソースBを減衰させたのちも、左右の出力が均等で左右のバランスが良いという効果がある。
As for the coefficient k described above, it may be as to satisfy the following relationship (3) instead of the equation (1) (claim 4).

Relational expression (3) : k = 0.5

In this way, after the sound source B is attenuated, there is an effect that the left and right outputs are equal and the left and right balance is good.

ところで、楽音に対する発音ソースの割当手法については、請求項5のように、上記押鍵による発音の総数が上記発音手段の組数に切迫して新たな押鍵による発音をステレオで行うことができない場合、上記ステレオで発音中の発音手段のうち、選択された組の上記差成分の発音を中止するとともに、上記発音を中止した発音手段を含む発音手段にて新たな組を選択して該新たな押鍵による発音を割り当てることが考えられる。 By the way, as for the method of assigning the sound source to the musical sound, as in claim 5, the total number of sound generation by the key depression is imminent to the number of pairs of the sound generation means, and the sound generation by the new key depression cannot be performed in stereo. In this case, among the sounding means that are sounding in the stereo, the sound generation of the difference component of the selected set is stopped, and a new set is selected by the sounding means including the sounding means for which the sounding is stopped, It is conceivable to assign a pronunciation by pressing a key.

電子鍵盤楽器の概略構成を表すブロック図である。It is a block diagram showing schematic structure of an electronic keyboard instrument. 音源回路40の概略構成を表す説明図である。3 is an explanatory diagram illustrating a schematic configuration of a sound source circuit 40. FIG. メイン処理のフローチャートである。It is a flowchart of a main process. イベント処理のフローチャートである。It is a flowchart of an event process. 押鍵処理のフローチャートである。It is a flowchart of a key pressing process. 減数処理のフローチャートである。It is a flowchart of a reduction process. 離鍵処理のフローチャートである。It is a flowchart of a key release process.

以下に本発明の実施形態を図面とともに説明する。
[第一実施形態]
図1は電子鍵盤楽器1の概略構成を表すブロック図である。また、図2は音源回路40の概略構成を表す説明図である。
Embodiments of the present invention will be described below with reference to the drawings.
[First embodiment]
FIG. 1 is a block diagram showing a schematic configuration of the electronic keyboard instrument 1. FIG. 2 is an explanatory diagram showing a schematic configuration of the tone generator circuit 40.

[電子鍵盤楽器1の構成の説明]
楽音発生装置としての電子鍵盤楽器1は、図1に示すように、鍵盤10、パネルSW/LCD11、ペダル12、MIDI規格に基づくMIDI信号が入出力されるMIDI15、CPU30、プログラムデータなどを記憶したプログラム・データメモリ(ROM)31、CPU30がデータを一時記憶するためのワークRAM32、I/F33、種々の波形データを記憶した波形メモリ42、波形メモリ42から波形データを読み込んで楽音波形を生成する音源回路(T.G)40、音源回路40が生成した楽音波形を加工して出力するDSP50、ディジタル信号をアナログ信号に変換するDAC60(R、L)、アナログ信号を増幅するアンプ70(R、L)および放音装置であるスピーカ80(R、L)を備えている。また、鍵盤10、パネルSW/LCD11、ペダル12およびMIDI15は、I/F33を介してバスライン90に接続されており、鍵盤10、パネルSW/LCD11、ペダル12、MIDI15、CPU30、プログラム・データメモリ31、ワークRAM32、音源回路40およびDSP50は、バスライン90によりそれぞれデータ送受可能に接続されている。なお、ペダル12およびMIDI15の構成については公知技術に従っているのでここではその詳細な説明は省略する。
[Description of the configuration of the electronic keyboard instrument 1]
As shown in FIG. 1, an electronic keyboard instrument 1 as a musical tone generator stores a keyboard 10, a panel SW / LCD 11, a pedal 12, a MIDI 15 that receives and outputs MIDI signals based on the MIDI standard, a CPU 30, and program data. A program / data memory (ROM) 31, a work RAM 32 for temporarily storing data by the CPU 30, an I / F 33, a waveform memory 42 storing various waveform data, and a waveform memory 42, read waveform data and generate a musical sound waveform. A tone generator circuit (TG) 40, a DSP 50 that processes and outputs a musical sound waveform generated by the tone generator circuit 40, a DAC 60 (R, L) that converts a digital signal into an analog signal, and an amplifier 70 (R, that amplifies the analog signal) L) and a speaker 80 (R, L) which is a sound emitting device. The keyboard 10, panel SW / LCD 11, pedal 12, and MIDI 15 are connected to the bus line 90 via the I / F 33, and the keyboard 10, panel SW / LCD 11, pedal 12, MIDI 15, CPU 30, program data memory 31, work RAM 32, tone generator circuit 40 and DSP 50 are connected to each other via a bus line 90 so as to be able to transmit and receive data. Note that the configuration of the pedal 12 and the MIDI 15 is in accordance with a publicly known technique, and therefore detailed description thereof is omitted here.

[鍵盤10の構成の説明]
これらのうち、鍵盤10は、発生すべき楽音の音高を選択するための複数の鍵(キー、本実施形態では88鍵)を備えている。各音高の楽音にはそれぞれ番号(キーコード)が付与されており、キーを押下することによりキーコードを指定して、所望の音高の楽音を発音させることができる。また各キーに対応して、そのキーの押鍵・離鍵を検出するための鍵スイッチが設けられている。この鍵スイッチは、2つの接点(第1接点、第2接点)を備えており、キーが押下されるとまず第1接点がオンされ、更に押下されると第2接点がオンされるよう構成されている。また、離鍵の場合には、反対に第2接点、第1接点の順にオフされる。これら接点がオン又はオフされた旨の情報は、内蔵するスキャン回路が各鍵スイッチをスキャンすることにより検出され、キーコードと共に、I/F33を介してバスライン90に送出する。バスラインに送出されたキーオン/オフ情報及びキーコードは、CPU30及び音源回路40に取込まれ、またCPU30の制御下でワークRAM32に記憶される。
[Description of configuration of keyboard 10]
Of these, the keyboard 10 includes a plurality of keys (keys, 88 keys in the present embodiment) for selecting the pitch of the musical sound to be generated. A number (key code) is assigned to each musical tone of each pitch, and a musical tone having a desired pitch can be generated by designating a key code by pressing the key. Corresponding to each key, a key switch for detecting key press / release of the key is provided. This key switch has two contacts (a first contact and a second contact). The first contact is first turned on when the key is pressed, and the second contact is turned on when the key is further pressed. Has been. In the case of key release, the second contact and the first contact are turned off in the reverse order. Information indicating that these contacts are turned on or off is detected by the built-in scan circuit scanning each key switch, and is sent to the bus line 90 via the I / F 33 together with the key code. The key on / off information and the key code sent to the bus line are taken into the CPU 30 and the tone generator circuit 40, and stored in the work RAM 32 under the control of the CPU 30.

[パネルSW/LCD11の構成の説明]
また、パネルSW/LCD11には、液晶表示板、LED等のパネル表示装置や、当該電子鍵盤楽器1に各種の情報および指令を入力するための操作子が多数設けられている。このうちパネル表示装置はCPU30の指示を受けて電子鍵盤楽器1の状態等を表示するためのLEDを点灯・消灯させる。一方、操作子としては、例えば、当該電子鍵盤楽器1をAOCモードやAUTOモード(自動伴奏モード)にするためのモード選択スイッチや、当該電子鍵盤楽器1がAUTOモードであるときに自動演奏のリズム伴奏を開始および停止させるためのSTART/STOPスイッチ、音色を選択するための音色スイッチ、エフェクトを選択するためのエフェクトスイッチ、リバーブを選択するためのリバーブスイッチ、効果音を選択するための効果音スイッチ、ボリュームコントローラ、演奏テンポを設定するためのタップスイッチ、などが設けられている。そして、これら各種スイッチ、ボリュームコントローラのオン/オフやポジション等は、内蔵するパネルスキャンにて検出される。それらのスイッチ情報は、パネルスキャンからI/F33を介してバスライン90に送出され、CPU30の制御下でワークRAM32に記憶される。
[Description of Configuration of Panel SW / LCD 11]
Further, the panel SW / LCD 11 is provided with a panel display device such as a liquid crystal display panel and LEDs, and a number of operators for inputting various information and commands to the electronic keyboard instrument 1. Among these, the panel display device turns on / off an LED for displaying the state of the electronic keyboard instrument 1 and the like in response to an instruction from the CPU 30. On the other hand, as an operator, for example, a mode selection switch for setting the electronic keyboard instrument 1 to AOC mode or AUTO mode (automatic accompaniment mode), or an automatic performance rhythm when the electronic keyboard instrument 1 is in the AUTO mode. START / STOP switch for starting and stopping accompaniment, tone switch for selecting tone, effect switch for selecting effect, reverb switch for selecting reverb, sound effect switch for selecting effect sound , A volume controller, a tap switch for setting the performance tempo, and the like are provided. The various switches, volume controller on / off, position, and the like are detected by a built-in panel scan. The switch information is sent from the panel scan to the bus line 90 via the I / F 33 and stored in the work RAM 32 under the control of the CPU 30.

[RAM32の構成の説明]
RAM32には、後述するCPU30の割当部30aが後述する音源回路40の発音ソース40aの割り当てを行う際に参照される使用状況メモリ32aおよび発音数記憶レジスタ32bが設けられている。このうち使用状況メモリ32aは、発音中の発音ソース40aをステレオ音の左右およびモノラル音ごとに発音開始時期の古い順に記憶する。また、発音数記憶レジスタ32bは、発音ソース40aの装備総数(N)、ステレオ発音中の音の数(S)、およびモノラル発音中の音の数(M)を記憶するレジスタであり、発音数が変化すると、後述するCPU30の制御部30bにより逐次書き換えられる。また、発音数記憶レジスタ32bは、割当部30aが発音ソース40aの割り当てを行う際にその記憶内容が参照される。
[Description of configuration of RAM 32]
The RAM 32 is provided with a usage status memory 32a and a pronunciation number storage register 32b that are referred to when an allocation unit 30a of the CPU 30 described later allocates a sound source 40a of a sound source circuit 40 described later. Of these, the usage status memory 32a stores the sound source 40a that is being sounded in the order of the sound generation start time for each of the left and right stereo sounds and the monaural sound. The sound generation number storage register 32b is a register for storing the total number (N) of the sound generation source 40a, the number of sounds being generated in stereo (S), and the number of sounds being generated in monaural (M). Is changed, it is sequentially rewritten by the control unit 30b of the CPU 30 described later. The pronunciation number storage register 32b is referred to when the allocation unit 30a allocates the sound source 40a.

[CPU30およびプログラム・データメモリ31の構成の説明]
さらに、CPU30は、このプログラム・データメモリ31のプログラムデータに従って動作し、電子鍵盤楽器1の各部の動作を制御する。また、プログラム・データメモリ31には上述のプログラムデータとともに、音色の種類、リバーブの種類および効果音群の種類が互いに関連付けられたデータが記憶されている。なお、音色の種類としては例えばコンサートグランドなどが挙げられる。また、リバーブの種類としては例えばホールリバーブなどが挙げられる。また、効果音群の種類としては、音源回路40による弦共鳴音などが挙げられる。なお、上記データに、イコライザやコーラスなどのDSP50による効果やエフェクトを含めてもよい。
[Description of Configuration of CPU 30 and Program Data Memory 31]
Further, the CPU 30 operates according to the program data in the program / data memory 31 to control the operation of each part of the electronic keyboard instrument 1. The program data memory 31 stores, in addition to the above-described program data, data in which the timbre type, the reverb type, and the sound effect group type are associated with each other. In addition, as a kind of timbre, a concert ground etc. are mentioned, for example. Moreover, as a kind of reverb, hall reverb etc. are mentioned, for example. In addition, examples of the sound effect group include string resonance sound generated by the sound source circuit 40. Note that the data may include effects and effects of the DSP 50 such as an equalizer and a chorus.

なお、同時発音数に応じた音源回路40の発音ソース40aの割り当て制御はこのCPU30で行う。このため、CPU30には割当部30aおよび制御部30bが設けられている。   Note that the CPU 30 performs assignment control of the sound source 40a of the tone generator circuit 40 in accordance with the number of simultaneous sounds. Therefore, the CPU 30 is provided with an allocation unit 30a and a control unit 30b.

割当部30aは、発音中のステレオ音及びモノラル音の同時発音数に応じて、新たにキーオンされた音に発音ソース40aを割り当てる制御を行う。
制御部30bは、使用状況メモリ32aや発音数記憶レジスタ32bへの書込みや読出し、割当部30aによる発音ソース割当機能の制御、発音/消音のためのタイミングのコントロール等、当該電子鍵盤楽器1全体の制御を行う。
The assigning unit 30a performs control for assigning the sound generation source 40a to the newly keyed sound according to the number of simultaneous sounds of the stereo sound and monaural sound being sounded.
The control unit 30b writes and reads the usage status memory 32a and the pronunciation number storage register 32b, controls the sound source allocation function by the allocation unit 30a, controls the timing for sound generation / mute, etc. Take control.

また、CPU30は、波形データを生成する波形データ生成部30cを有している。なお、波形データには、左チャンネル側の波形データAと右チャンネル側の波形データBとがある。なお、本実施形態では、左右チャンネルの一方であるチャンネルAが左チャンネルに相当するとともに左右チャンネルの他方であるチャンネルBが右チャンネルに相当する例を説明し、チャンネルAが右チャンネルに相当するとともにチャンネルBが左チャンネルに相当する例についてはその詳細な説明は省略する。   The CPU 30 has a waveform data generation unit 30c that generates waveform data. The waveform data includes waveform data A on the left channel side and waveform data B on the right channel side. In this embodiment, an example in which channel A, which is one of the left and right channels, corresponds to the left channel and channel B, which is the other of the left and right channels, corresponds to the right channel, and channel A corresponds to the right channel. Detailed description of an example in which channel B corresponds to the left channel will be omitted.

波形データ生成部30cは、下記の式(1)を用いてステレオサンプリングした楽音の左チャンネル成分Lの正相成分と右チャンネル成分Rの正相成分とを、1/k:1/(1−k)の比率で混合した波形データAを生成するとともに、下記の式(2)を用いてステレオサンプリングした楽音の左チャンネル成分Lの正相成分と右チャンネル成分Rの逆相成分とを、同じく1/k:1/(1−k)の比率で混合した波形データBを生成する。

WA=L/2k+R/2(1−k)・・・式(1)
WB=L/2k−R/2(1−k)・・・式(2)

但し、WAは波形データAを示し、WBは波形データBを示す。また、係数kは次の式(3)を満たすこととする。
The waveform data generation unit 30c converts the positive phase component of the left channel component L and the positive phase component of the right channel component R of the tone sampled stereo using the following equation (1) to 1 / k: 1 / (1- The waveform data A mixed at the ratio of k) is generated, and the normal phase component of the left channel component L and the reverse phase component of the right channel component R of the stereo sound sampled using the following equation (2) are similarly used. Waveform data B mixed at a ratio of 1 / k: 1 / (1-k) is generated.

WA = L / 2k + R / 2 (1-k) (1)
WB = L / 2k−R / 2 (1-k) (2)

However, WA indicates waveform data A and WB indicates waveform data B. Further, the coefficient k satisfies the following formula (3).

0<k<1・・・式(3)

なお、本願出願人が行った試験結果により、係数kの値に応じて、レベル比、成分比および定位については次の(A)〜(G)のようになる。
0 <k <1 Formula (3)

The level ratio, component ratio, and localization are as shown in the following (A) to (G) according to the value of the coefficient k based on the test results conducted by the applicant of the present application.

(A)係数k=0.125の場合には、レベル比がL:R=1:7となり、成分比がL:R=7:1となり、定位がかなり右寄りとなる。
(B)係数k=0.250の場合には、レベル比がL:R=2:6となり、成分比がL:R=6:2となり、定位が右寄りとなり、高音域に適する。
(A) When the coefficient k = 0.125, the level ratio is L: R = 1: 7, the component ratio is L: R = 7: 1, and the localization is considerably to the right.
(B) When the coefficient k = 0.250, the level ratio is L: R = 2: 6, the component ratio is L: R = 6: 2, the localization is rightward, and this is suitable for the high sound range.

(C)係数k=0.375の場合には、レベル比がL:R=3:5となり、成分比がL:R=5:3となり、定位がやや右寄りとなり、中高音域に適する。
(D)係数k=0.500の場合には、レベル比がL:R=4:4(1:1)となり、成分比がL:R=4:4(1:1)となり、定位が中央となり、中音域に適する。
(C) When the coefficient k = 0.375, the level ratio is L: R = 3: 5, the component ratio is L: R = 5: 3, and the localization is slightly to the right, which is suitable for the mid-high range.
(D) When the coefficient k = 0.500, the level ratio is L: R = 4: 4 (1: 1), the component ratio is L: R = 4: 4 (1: 1), and the localization is Centered and suitable for midrange.

(E)係数k=0.625の場合には、レベル比がL:R=5:3となり、成分比がL:R=3:5となり、定位がやや左寄りとなり、中低音域に適する。
(F)係数k=0.750の場合には、レベル比がL:R=6:2となり、成分比がL:R=2:6となり、定位が左寄りとなり、低音域に適する。
(E) When the coefficient k = 0.625, the level ratio is L: R = 5: 3, the component ratio is L: R = 3: 5, and the localization is slightly leftward, which is suitable for the mid-low range.
(F) When the coefficient k = 0.750, the level ratio is L: R = 6: 2, the component ratio is L: R = 2: 6, the localization is to the left, which is suitable for the low sound range.

(G)係数k=0.875の場合には、レベル比がL:R=7:1となり、成分比がL:R=1:7となり、定位がかなり左寄りとなる。
なお、このような波形データの生成については、電源投入時あるいは音色選択時などの演奏設定が発音に先立つ何れかの時点で行われたときに予め行い、波形メモリ42に記憶され、新たなキーオンにより実際に楽音を放音する時点で発音ソース40aによって波形メモリ42から読み出されて利用される。また、上述の波形データ生成の機能を有する機器を本機の外部に設け、その機器で生成された波形データのみを本機製造時に波形メモリ42に記憶するように構成してもよい。また、新たなキーオンの際に上述の波形データ生成部30cが上記のような波形データの生成を行い、その生成した波形データを波形メモリ42に記憶させるようにしてもよい。また、新たなキーオンの際に波形データ生成部30cが生成した波形データを、波形メモリ42を経由せずに発音ソース40aに直接送るようにしてもよい。
(G) When the coefficient k = 0.875, the level ratio is L: R = 7: 1, the component ratio is L: R = 1: 7, and the localization is considerably leftward.
Such waveform data is generated in advance when performance settings such as power-on or tone selection are performed at any time prior to sound generation, stored in the waveform memory 42, and a new key-on. Thus, when the musical sound is actually emitted, it is read from the waveform memory 42 by the sound source 40a and used. Alternatively, a device having the above-described waveform data generation function may be provided outside the machine, and only the waveform data generated by the machine may be stored in the waveform memory 42 when the machine is manufactured. Further, the waveform data generation unit 30c described above may generate the waveform data as described above when a new key is turned on, and the generated waveform data may be stored in the waveform memory 42. Further, the waveform data generated by the waveform data generation unit 30c at the time of a new key-on may be sent directly to the sound generation source 40a without going through the waveform memory 42.

[音源回路40および波形メモリ42の構成の説明]
また、音源回路40は、同時に例えば192音を発音可能な、Wave Table Look Up方式のPCM波形読み出しタイプであり、楽音波形を生成する機能を有する。また、効果音波形を生成する効果音波形生成手段としても機能する。具体的には、音源回路40は、種々の波形データを格納している波形データ記憶部としての波形メモリ42から読み込んだ波形データに基づいて楽音波形および効果音波形を生成する。
[Description of Configuration of Sound Source Circuit 40 and Waveform Memory 42]
The tone generator circuit 40 is a Wave Table Look Up PCM waveform readout type capable of simultaneously producing, for example, 192 sounds, and has a function of generating a musical sound waveform. It also functions as an effect sound waveform generating means for generating an effect sound waveform. Specifically, the tone generator circuit 40 generates a musical tone waveform and an effect sound waveform based on waveform data read from a waveform memory 42 as a waveform data storage unit that stores various waveform data.

より具体的には、音源回路40は、図2に示すように、波形データから楽音波形を生成する発音ソース40a、左チャンネル系列加算器40e、および右チャンネル系列加算器40fを有する。なお、音源回路40は、192個の発音ソース40a、1個の左チャンネル系列加算器40e、および1個の右チャンネル系列加算器40fを有するが、図2では、2個の発音ソース40a、1個の左チャンネル系列加算器40e、および1個の右チャンネル系列加算器40fのみを図示し、それ以外の構成の図示を省略している。   More specifically, as shown in FIG. 2, the tone generator circuit 40 includes a sound source 40a that generates a musical sound waveform from waveform data, a left channel series adder 40e, and a right channel series adder 40f. The tone generator circuit 40 has 192 sound sources 40a, one left channel series adder 40e, and one right channel series adder 40f. In FIG. 2, two sound sources 40a, 1 are provided. Only one left channel series adder 40e and one right channel series adder 40f are shown, and the other configurations are not shown.

この音源回路40は、上述のように192個の発音ソース40aを有するため、ステレオ音であれば最大96音のステレオ音を同時に発生可能であり、モノラル音であれば最大192音のモノラル音を同時に発生可能である。   Since the sound source circuit 40 has 192 sound sources 40a as described above, it can simultaneously generate a maximum of 96 stereo sounds for stereo sounds and a maximum of 192 monaural sounds for monaural sounds. It can occur at the same time.

なお、発音ソース40aによって生成される楽音波形には、左チャンネル側の楽音波形Aと右チャンネル側の楽音波形Bとがあり、キーオンに対応する楽音をステレオ音として発生する場合には、二つの発音ソース40aがそのステレオ音のチャンネルA側およびチャンネルB側にそれぞれ割り当てられ、ステレオ音のチャンネルA側に割り当てられた発音ソース40aが楽音波形Aを出力するとともに、ステレオ音のチャンネルB側に割り当てられた発音ソース40aが楽音波形Bを出力する。一方、キーオンに応じてモノラル音を発生する場合には、一つの発音ソース40aがそのモノラル音に割り当てられ、その割り当てられた一つの発音ソース40aが楽音波形Aを出力する。   Note that the musical sound waveforms generated by the sound source 40a include a musical sound waveform A on the left channel side and a musical sound waveform B on the right channel side. When a musical sound corresponding to key-on is generated as a stereo sound, two sound waves are generated. The sound source 40a is assigned to the channel A side and the channel B side of the stereo sound, and the sound source 40a assigned to the channel A side of the stereo sound outputs the musical sound waveform A and is assigned to the channel B side of the stereo sound. The generated sound source 40a outputs a musical sound waveform B. On the other hand, when a monaural sound is generated in response to a key-on, one sound source 40a is assigned to the monaural sound, and the assigned sound source 40a outputs a musical sound waveform A.

発音ソース40aは、波形データ読出部40bと、復調回路40cと、定位制御回路40dとを有しており、(イ)ステレオ音の左チャンネル側に割り当てられた場合と、(ロ)ステレオ音の右チャンネル側に割り当てられた場合と、(ハ)モノラル音に割り当てられた場合とでそれぞれ次のように楽音波形を生成する。   Pronunciation source 40a includes a waveform data reading section 40b, and if the demodulation circuit 40c, has a localization control circuit 40d, which is assigned to the left channel side (b) stereo sound, the (b) Stereo sound A musical sound waveform is generated as follows for each of the cases assigned to the right channel side and (c) the case assigned to a monaural sound.

(イ)ステレオ音の左チャンネル側に割り当てられた場合の発音ソース40aは、次のように楽音波形を生成する。まず、波形データ読出部40bが波形データAを波形メモリ42から読み出す。次に、復調回路40cが波形データAと波形データBとを加算することで復調する。なお、この波形データAは、ステレオ音の左チャンネル側に割り当てられた発音ソース40aの波形データ読出部40bによって波形メモリ42から読み出され、波形データBは、ステレオ音の右チャンネル側に割り当てられた発音ソース40aの波形データ読出部40bによって波形メモリ42から読み出される。さらに、定位制御回路40dが、復調回路40cによる計算結果と係数kとを乗算することで楽音波形Aを生成する。なお、この係数kは、波形データAを生成する際に用いた比率(1/k:1/(1−k))の左チャンネル側の値(1/k)の逆数である。このように生成された楽音波形Aは、左チャンネル系列加算器40eに出力される。   (A) The sound source 40a when assigned to the left channel side of the stereo sound generates a musical sound waveform as follows. First, the waveform data reading unit 40 b reads the waveform data A from the waveform memory 42. Next, the demodulation circuit 40c demodulates by adding the waveform data A and the waveform data B. The waveform data A is read from the waveform memory 42 by the waveform data reading unit 40b of the sound source 40a assigned to the left channel side of the stereo sound, and the waveform data B is assigned to the right channel side of the stereo sound. The waveform data is read from the waveform memory 42 by the waveform data reading unit 40b of the sound source 40a. Further, the localization control circuit 40d multiplies the calculation result by the demodulation circuit 40c and the coefficient k to generate the musical sound waveform A. The coefficient k is the reciprocal of the value (1 / k) on the left channel side of the ratio (1 / k: 1 / (1-k)) used when generating the waveform data A. The musical sound waveform A generated in this way is output to the left channel series adder 40e.

(ロ)ステレオ音の右チャンネル側に割り当てられた場合の発音ソース40aは、次のように楽音波形を生成する。まず、波形データ読出部40bが波形データBを波形メモリ42から読み出す。次に、復調回路40cが波形データAから波形データBを減算することで復調する。なお、波形データAは、ステレオ音の左チャンネル側に割り当てられた発音ソース40aの波形データ読出部40bによって波形メモリ42から読み出され、波形データBは、ステレオ音の右チャンネル側に割り当てられた発音ソース40aの波形データ読出部40bによって波形メモリ42から読み出される。さらに、定位制御回路40dが、復調回路40cによる計算結果と係数(1−k)とを乗算することで楽音波形Bを生成する。なお、この係数(1−k)は、波形データBを生成する際に用いた比率(1/k:1/(1−k))の右チャンネル側の値(1/(1−k))の逆数である。このように生成された楽音波形Bは、右チャンネル系列加算器40fに出力される。   (B) The sound source 40a when assigned to the right channel side of the stereo sound generates a musical sound waveform as follows. First, the waveform data reading unit 40 b reads the waveform data B from the waveform memory 42. Next, the demodulation circuit 40c demodulates by subtracting the waveform data B from the waveform data A. The waveform data A is read from the waveform memory 42 by the waveform data reading unit 40b of the sound source 40a assigned to the left channel side of the stereo sound, and the waveform data B is assigned to the right channel side of the stereo sound. The waveform data is read from the waveform memory 42 by the waveform data reading unit 40b of the sound source 40a. Further, the localization control circuit 40d multiplies the calculation result by the demodulation circuit 40c and the coefficient (1-k) to generate a musical sound waveform B. The coefficient (1-k) is a value (1 / (1-k)) on the right channel side of the ratio (1 / k: 1 / (1-k)) used when generating the waveform data B. Is the reciprocal of The tone waveform B generated in this way is output to the right channel series adder 40f.

(ハ)モノラル音に割り当てられた場合の発音ソース40aは、次のように楽音波形を生成する。まず、波形データ読出部40bが波形データAを波形メモリ42から読み出す。次に、復調回路40cが、波形データAをそのまま出力する。つまり、この場合の復調回路40cは単に出力分配器として動作する。さらに、定位制御回路40dが、復調回路40cからの出力結果と係数kとを乗算することで楽音波形Aを生成する。なお、この係数kは、波形データAを生成する際に用いた比率(1/k:1/(1−k))の左チャンネル側の値(1/k)の逆数である。このように生成された楽音波形Aは、左チャンネル系列加算器40eに出力される。   (C) The sound source 40a when assigned to a monaural sound generates a musical sound waveform as follows. First, the waveform data reading unit 40 b reads the waveform data A from the waveform memory 42. Next, the demodulation circuit 40c outputs the waveform data A as it is. That is, the demodulation circuit 40c in this case simply operates as an output distributor. Further, the localization control circuit 40d multiplies the output result from the demodulation circuit 40c and the coefficient k to generate the musical sound waveform A. The coefficient k is the reciprocal of the value (1 / k) on the left channel side of the ratio (1 / k: 1 / (1-k)) used when generating the waveform data A. The musical sound waveform A generated in this way is output to the left channel series adder 40e.

なお、発音中にステレオ発音からモノラル発音になる場合には、音源回路40においては、そのステレオ発音中の左右チャンネルの発音ソース40aのうち右チャンネル側である発音ソース40aの出力レベルを数値「0」まで漸減させ、その後復調動作を分配動作に切り替える制御を行う。   In the case where become monaural sound from the stereo sound in the sound, in the sound source circuit 40, the value "0 the output level of the sound source 40a is a right-channel side in the pronunciation source 40a of the left and right channels in the stereo sound ”And then control to switch the demodulation operation to the distribution operation.

左チャンネル系列加算器40eは、発音中のステレオ音の左チャンネル側に割り当てられたすべての発音ソース40aが生成したすべての楽音波形Aと、発音中のモノラル音に割り当てられたすべての発音ソース40aが生成したすべての楽音波形Aとを加算してDSP50へ出力する。   Left channel sequence adder 40e includes all of the tone waveform A, all pronunciation source 40a assigned to the left channel side of the stereo sound in the sound has been generated, all assigned to monophonic sound in pronunciation Pronunciation source 40a All the musical sound waveforms A generated by are added and output to the DSP 50.

右チャンネル系列加算器40fは、発音中のステレオ音の右チャンネル側に割り当てられたすべての発音ソース40aが生成したすべての楽音波形Bを加算してDSP50へ出力する。   The right channel series adder 40f adds all the musical sound waveforms B generated by all the sound source sources 40a assigned to the right channel side of the stereo sound being sounded, and outputs the result to the DSP 50.

また、音源回路40は、アサイメントメモリ(図示省略)を内包しており、このアサイメントメモリにはキーアサイメント情報(キーコード、そのオン/オフ情報、各種スイッチのオン/オフ情報、エフェクトデータなど)が記憶される。   The tone generator circuit 40 includes an assignment memory (not shown). The assignment memory includes key assignment information (key code, on / off information thereof, on / off information of various switches, effect data). Etc.) are stored.

[DSP50の構成の説明]
DSP50は、音源回路40が生成した楽音波形や効果音波形にエフェクト付与処理を行うようにプログラミングされたディジタル信号処理装置である。さらにこのDSP50は、その内部にプログラムやエフェクトデータ、リバーブデータなどを記憶している。また、DSP50には、ディジタル信号を一時記憶可能なディレイメモリ52が接続されており、ディレイメモリ52を利用してディレイやリバーブ、エコー(ディレイ)、コーラスなどの効果を付与することができる。
[Description of Configuration of DSP 50]
The DSP 50 is a digital signal processing device programmed to perform an effect applying process on the musical tone waveform and the effect sound waveform generated by the tone generator circuit 40. Further, the DSP 50 stores therein programs, effect data, reverb data, and the like. The DSP 50 is connected to a delay memory 52 capable of temporarily storing digital signals. The delay memory 52 can be used to provide effects such as delay, reverb, echo (delay), and chorus.

このように構成されたDSP50は、音源回路40が生成した楽音波形や効果音波形が入力されると、パネルSW/LCD11の音色スイッチで選択・設定された音色に対応したエフェクトを、音源回路40が生成した楽音波形に付与する。続いて、エフェクトが付与された楽音波形と、効果音波形とを加算し(以下、合成波形と称す。)、パネルSW/LCD11のリバーブスイッチで選択・設定されたリバーブをこの合成波形に付与してDAC60に出力する。なお、効果音波形のみが入力された際には、その効果音波形にリバーブを付与して出力する。   The DSP 50 configured as described above receives an effect corresponding to the tone selected and set by the tone switch of the panel SW / LCD 11 when the musical tone waveform or the effect waveform generated by the tone generator 40 is input. Is added to the musical sound waveform generated by. Subsequently, the musical sound waveform to which the effect is applied and the effect sound waveform are added (hereinafter referred to as a composite waveform), and the reverb selected and set by the reverb switch of the panel SW / LCD 11 is applied to the composite waveform. To the DAC 60. When only the effect sound waveform is input, the effect sound waveform is output with reverb.

[その他の構成の説明]
また、DSP50にはディジタルアナログコンバータ(DAC)60L、アンプ(Amp)70L及びスピーカ(SP)80Lからなる左出力系と同様にDAC60R、Amp70R及びSP80Rからなる右出力系とが接続されており、左右出力系は、それぞれDSP50から出力される合成波形(デジタル信号)をアナログ信号に変換し、増幅し、音声出力する。
[Description of other configurations]
The DSP 50 is connected to a right output system consisting of a DAC 60R, Amp 70R and SP80R as well as a left output system consisting of a digital / analog converter (DAC) 60L, an amplifier (Amp) 70L and a speaker (SP) 80L. The output system converts the combined waveform (digital signal) output from the DSP 50 into an analog signal, amplifies it, and outputs the sound.

なお、電子鍵盤楽器1の他の構成は公知技術に従っているのでここではその詳細な説明は省略する。
[メイン処理の説明]
次に、電子鍵盤楽器1のCPU30が実行するメイン処理を、図3のフローチャートを参照して説明する。
Since the other structure of the electronic keyboard instrument 1 is in accordance with a known technique, detailed description thereof is omitted here.
[Description of main processing]
Next, main processing executed by the CPU 30 of the electronic keyboard instrument 1 will be described with reference to the flowchart of FIG.

まず、初期化を実行する(S110)。例えばCPU30の各ポートの設定を行ったり、RAM32内の音色の設定を行ったりする。
続いて、鍵操作やスイッチ操作などのイベントがあるか否かを判断する(S120)。イベントがあると判断された場合には(S120:YES)、イベント処理(S130)を実行し、さらに定常処理(S140)を実行してS120に戻る。なお、イベント処理については後述する。また、定常処理については、公知技術に従っているのでここではその詳細な説明は省略する。一方、イベントがないと判断された場合には(S120:NO)、イベント処理(S130)を実行せずに定常処理(S140)を実行し、S120に戻る。
First, initialization is executed (S110). For example, each port of the CPU 30 is set, and a tone color in the RAM 32 is set.
Subsequently, it is determined whether there is an event such as a key operation or a switch operation (S120). If it is determined that there is an event (S120: YES), the event process (S130) is executed, the steady process (S140) is executed, and the process returns to S120. The event processing will be described later. Further, since the steady process is in accordance with a known technique, detailed description thereof is omitted here. On the other hand, when it is determined that there is no event (S120: NO), the steady process (S140) is executed without executing the event process (S130), and the process returns to S120.

[イベント処理の説明]
次に、電子鍵盤楽器1のCPU30が実行するイベント処理を、図4のフローチャートを参照して説明する。このイベント処理は上述のメイン処理のサブルーチンであり、メイン処理のS130に移行した際に実行される。
[Explanation of event processing]
Next, event processing executed by the CPU 30 of the electronic keyboard instrument 1 will be described with reference to the flowchart of FIG. This event process is a subroutine of the main process described above, and is executed when the process proceeds to S130 of the main process.

まず、イベントが押鍵であるか否かを判断する(S310)。イベントが押鍵であると判断された場合には(S310:YES)、押鍵処理を実行し(S340)、本サブルーチンを終了する。なお、押鍵処理については後述する。   First, it is determined whether or not the event is a key depression (S310). If it is determined that the event is a key depression (S310: YES), a key depression process is executed (S340), and this subroutine is terminated. The key pressing process will be described later.

一方、イベントが押鍵ではないと判断された場合には(S310:NO)、イベントが離鍵であるか否かを判断する(S320)。イベントが離鍵であると判断された場合には(S320:YES)、離鍵処理を実行し(S350)、本サブルーチンを終了する。なお、離鍵処理については後述する。   On the other hand, if it is determined that the event is not a key press (S310: NO), it is determined whether the event is a key release (S320). If it is determined that the event is a key release (S320: YES), a key release process is executed (S350), and this subroutine is terminated. The key release process will be described later.

一方、イベントが離鍵ではないと判断された場合には(S320:NO)、イベントが「その他の処理」であるか否かを判断する(S330)。イベントが「その他の処理」であると判断された場合には(S330:YES)、その他の処理を実行し(S360)、本サブルーチンを終了する。なお、「その他の処理」については、公知技術に従っているのでここではその詳細な説明は省略する。   On the other hand, when it is determined that the event is not a key release (S320: NO), it is determined whether or not the event is “other processing” (S330). If it is determined that the event is “other processing” (S330: YES), other processing is executed (S360), and this subroutine is terminated. Since “other processing” is in accordance with a known technique, a detailed description thereof is omitted here.

一方、イベントが「その他の処理」ではないと判断された場合には(S330:NO)、エラー処理を実行し(S370)、本サブルーチンを終了する。なお、エラー処理については、公知技術に従っているのでここではその詳細な説明は省略する。   On the other hand, if it is determined that the event is not “other processing” (S330: NO), error processing is executed (S370), and this subroutine is terminated. Since error processing is in accordance with a known technique, detailed description thereof is omitted here.

[押鍵処理の説明]
次に、電子鍵盤楽器1のCPU30が実行する押鍵処理を、図5のフローチャートを参照して説明する。この押鍵処理は上述のイベント処理のサブルーチンであり、イベント処理のS340に移行した際に実行される。なお、以下の説明において、「発音ソース40aが発音する」とは、発音ソース40aが楽音波形を生成することと同義である。
[Explanation of key press processing]
Next, a key pressing process executed by the CPU 30 of the electronic keyboard instrument 1 will be described with reference to the flowchart of FIG. This key pressing process is the above-described event processing subroutine, and is executed when the process proceeds to S340 of the event processing. In the following description, “the sound source 40a generates sound” is synonymous with the sound source 40a generating a musical sound waveform.

まず、走査処理を実行する(S410)。この走査処理では、音源回路40が備える192個の発音ソース40aを対象に、発音が終了した発音ソース40aまたは最も消音が進んだ発音ソース40aを走査する。走査結果として、発音中の発音ソース40aを左右のステレオ音、モノラル音ごとに発音開始時期の古い順にRAM32の使用状況メモリ32aに記憶し、発音ソース40aの装備総数(N)、ステレオ発音中の音の数(S)およびモノラル発音中の音の数(M)をRAM32の発音数記憶レジスタ32bに記憶する。   First, a scanning process is executed (S410). In this scanning process, the 192 sound sources 40a included in the sound source circuit 40 are scanned, and the sound source 40a that has finished sounding or the sound source 40a that has been muffled most is scanned. As a scanning result, the sound source 40a being sounded is stored in the usage status memory 32a of the RAM 32 in order of the sound generation start time for each of the left and right stereo sounds and monaural sounds, and the total number (N) of the sound source 40a equipped, The number of sounds (S) and the number of sounds during monaural sound generation (M) are stored in the sound generation number storage register 32 b of the RAM 32.

続いて、変数ctrの値が数値「N−1」以上であるか否かを判断する(S420)。なお、変数ctrとは、発音中でない発音ソース40aの数量を示し、定数Nとは発音ソース40aの装備総数を示す。変数ctrの値が数値「N−1」以上であると判断された場合、つまり発音中でない発音ソース40aの数量が零または一つである場合には(S420:YES)、発音中でない発音ソース40aの数量を増加させて新たなキーオンに対応する音を割り当てるための減数処理を実行し(S430)、S440に移行する。なお、減数処理については後述する。一方、変数ctrの値が数値「N−1」未満であると判断された場合には(S420:NO)、現段階では発音中でない発音ソース40aの数量を増加させる必要がないため、上述の減数処理を実行せずにS440に移行する。   Subsequently, it is determined whether or not the value of the variable ctr is greater than or equal to the numerical value “N−1” (S420). The variable ctr indicates the number of the sound source 40a that is not sounding, and the constant N indicates the total number of equipment of the sound source 40a. If the value of the variable ctr is determined to be numeric "N-1" or more, that is, if the quantity of sound source 40a not in pronunciation is zero or one (S420: YES), sound source not being sounded A reduction process for increasing the quantity 40a and assigning a sound corresponding to a new key-on is executed (S430), and the process proceeds to S440. The reduction process will be described later. On the other hand, if the value of the variable ctr is determined to be less than the value "N-1" (S420: NO), it is not necessary to increase the number of sound sources 40a not being sounded at this stage, the above-mentioned The process proceeds to S440 without executing the reduction process.

続いて、割当処理を実行する(S440)。具体的には、減数処理を実行せずにS440に移行した場合には、発音中でない二つの発音ソース40aに対してキーオンに対応する音をステレオ音として割り当て、一方、減数処理を実行した後にS440に移行した場合には、減数処理による決定内容に従って、発音中でない発音ソース40aに対してキーオンに対応する音を割り当てる。   Subsequently, an allocation process is executed (S440). Specifically, when the process proceeds to S440 without executing the reduction processing is assigned a sound corresponding to the key-on for the two sound sources 40a not being pronounced as a stereo sound, whereas, after performing the reduction processing When the process proceeds to S440, the sound corresponding to the key-on is assigned to the sound source 40a that is not sounding according to the content determined by the reduction process.

そして、発音処理を実行する(S450)。具体的には、各発音ソース40aに、S440にて割り当てられた音を発音させる。
さらに、上述の割当処理および発音処理によって発音中でない発音ソース40aの数量が減少したため、変数ctrの値に変数ADDの値を加算し(S460)、本サブルーチンを終了する。
Then, sound generation processing is executed (S450). Specifically, each sound source 40a is caused to sound the sound assigned in S440.
Further, since the quantity of the sound source 40a that is not sounding has been reduced by the above allocation process and sound generation process, the value of the variable ADD is added to the value of the variable ctr (S460), and this subroutine is terminated.

[減数処理の説明]
次に、電子鍵盤楽器1のCPU30が実行する減数処理を、図6のフローチャートを参照して説明する。この減数処理は上述の押鍵処理のサブルーチンであり、押鍵処理のS430に移行した際に実行される。
[Explanation of reduction processing]
Next, the reduction process executed by the CPU 30 of the electronic keyboard instrument 1 will be described with reference to the flowchart of FIG. This decrementing process is a subroutine for the key pressing process described above, and is executed when the process proceeds to S430 of the key pressing process.

まず、発音数記憶レジスタ32bの記憶内容を参照して、すべての発音ソース40aがモノラル音として発音中であるか否かを判断する(S505)。すべての発音ソース40aがモノラル音として発音中であると判断された場合には(S505:YES)、発音中でない発音ソース40aの数量を一つ増加させるために、モノラル音として発音中の発音ソース40aのうち発音開始時期が最も古い発音ソース40aを一つ消音し(S510)、新たにキーオンされた楽音をその発音中でない発音ソース40aに対してモノラル音として割り当てることとし(S515)、変数ADDの値を数値「1」とし(S520)、本サブルーチンを終了する。   First, with reference to the stored contents of the pronunciation number storage register 32b, it is determined whether or not all the pronunciation sources 40a are producing a monaural sound (S505). If it is determined that all the sound sources 40a are sounding as monaural sound (S505: YES), the sound source that is sounding as a monaural sound is increased in order to increase the number of sound sources 40a that are not sounding by one. One of the sound sources 40a with the earliest sound generation start time is muted (S510), and the newly keyed musical sound is assigned as a monaural sound to the sound source 40a not sounding (S515), and the variable ADD is set. Is set to a numerical value “1” (S520), and this subroutine is terminated.

一方、すべての発音ソース40aがモノラル音として発音中ではない、つまり、発音中でない発音ソース40aが一つあるか、すべての発音ソース40aが発音中であるがステレオ音で発音中の発音ソース40aが一組以上あると判断された場合には(S505:NO)、半端な発音ソース40aが存在する、つまり、発音中でない発音ソース40aが一つ存在するか否かを判断する(S525)。発音中でない発音ソース40aが一つ存在すると判断された場合には(S525:YES)、発音中でない発音ソース40aの数量を2つに増加させて一組の発音ソース40aを確保するために、ステレオ音として発音中の発音ソース40aのうち発音開始時期が最も古い発音ソース40aをモノラル化し(S530)、新たにキーオンされた楽音を、その確保された発音中でない二つの発音ソース40aにステレオ音として割り当てることとし(S535)、変数ADDの値を数値「2」とし(S540)、本サブルーチンを終了する。   On the other hand, all the sound source 40a is not in pronounced as monaural sound, that is, whether sound source 40a is not in pronunciation is one, the sound source 40a in pronunciation but all sound sources 40a is being sounded stereophonic there is the case where it is determined that more than one set (S505: nO), a odd sound source 40a is present, that is, sound source 40a is not in sound to determine whether there one (S525). If it is determined that there is one sound source 40a that is not sounding (S525: YES), in order to increase the number of sound sources 40a that are not sounding to two and secure a set of sound sources 40a, The sound source 40a with the earliest pronunciation start time among the sound sources 40a that are being sounded as a stereo sound is converted to monaural (S530), and the newly keyed musical sound is sent to the two sound sources 40a that are not sounded as stereo sound. (S535), the value of the variable ADD is set to a numerical value “2” (S540), and this subroutine is terminated.

一方、発音中でない発音ソース40aが一つも存在しない、つまり、すべての発音ソース40aが発音中であるがステレオ音として発音中の発音ソース40aが一組以上あると判断された場合には(S525:NO)、ステレオ音として発音中の発音ソース40aが二組以上存在するか否かを判断する(S545)。ステレオ音として発音中の発音ソース40aが二組以上存在すると判断された場合には(S545:YES)、発音中でない発音ソース40aの数量を2つ増加させるために、ステレオ音として発音中の発音ソース40aのうち発音開始時期が最も古い二組の発音ソース40aをそれぞれモノラル化し(S550)、新たにキーオンされた楽音を、その確保された発音中でない二つの発音ソース40aにステレオ音として割り当てることとし(S555)、変数ADDの値を数値「2」とし(S560)、本サブルーチンを終了する。   On the other hand, sound source 40a not being sounded even absent one, that is, if all of the sound source 40a is is a sounding sound source 40a of a sounding stereo sound is determined to be more than one set (S525 : NO), it is determined whether or not there are two or more sets of sound generation sources 40a that are sounding as stereo sound (S545). If it is determined that there are two or more pairs of sound sources 40a that are sounding as stereo sounds (S545: YES), the sound sources that are sounding as stereo sounds are increased in order to increase the number of sound sources 40a that are not sounding by two. Of the sources 40a, the two sets of pronunciation sources 40a with the earliest pronunciation start time are monauralized (S550), and the newly keyed musical sound is assigned as stereo sound to the two pronunciation sources 40a that are not in the reserved pronunciation. (S555), the value of the variable ADD is set to a numerical value “2” (S560), and this subroutine is terminated.

一方、ステレオ音として発音中の発音ソース40aが一組だけ存在すると判断された場合には(S545:NO)、発音中でない発音ソース40aの数量を一つ増加させるために、そのステレオ音として発音中の発音ソース40aをモノラル化し(S565)、新たにキーオンされた楽音をその発音中でない一つの発音ソース40aにモノラル音として割り当てることとし(S515)、変数ADDの値を数値「1」とし(S575)、本サブルーチンを終了する。   On the other hand, when it is determined that there is only one set of sound source 40a that is sounding as a stereo sound (S545: NO), sound is generated as the stereo sound in order to increase the number of sound sources 40a that are not sounding by one. The sound source 40a in the middle is converted to monaural (S565), and the newly keyed musical sound is assigned as a monaural sound to one sounding source 40a that is not sounding (S515), and the value of the variable ADD is set to the numerical value “1” (S515). (S575) This subroutine is terminated.

[離鍵処理の説明]
次に、電子鍵盤楽器1のCPU30が実行する離鍵処理を、図7のフローチャートを参照して説明する。この離鍵処理は上述のイベント処理のサブルーチンであり、イベント処理のS350に移行した際に実行される。
[Explanation of key release processing]
Next, a key release process executed by the CPU 30 of the electronic keyboard instrument 1 will be described with reference to a flowchart of FIG. This key release processing is the event processing subroutine described above, and is executed when the process proceeds to S350 of the event processing.

まず、検索処理を実行する(S610)。具体的には、離鍵イベントによって発音する必要がなくなった発音ソース40aを検索する。
続いて、S610にて検索された発音ソース40aについて消音処理を実行する(S620)。この際、変数SUBを設定する。なお、変数SUBとは、発音の種別を示す変数であり、離鍵処理される楽音がモノラル音である場合には数値「1」に設定し、一方、離鍵処理される楽音がステレオ音である場合には数値「2」に設定する。
First, search processing is executed (S610). Specifically, the pronunciation source 40a that no longer needs to be pronounced by the key release event is searched.
Subsequently, a mute process is executed for the sound source 40a searched in S610 (S620). At this time, a variable SUB is set. Note that the variable SUB is a variable indicating the type of sound generation, and is set to a numerical value “1” when the tone to be released is a monaural tone, while the tone to be released is a stereo tone. In some cases, the value is set to “2”.

さらに、変数ctrの値を変数SUBの値だけ減算する(S630)。
そして、本サブルーチンを終了する。
[第一実施形態の効果]
(1)このように第一実施形態の電子鍵盤楽器1によれば、例えば、新たなキーオンに対応するためにステレオ発音中の二つの発音ソース40aのうち右チャンネル側に割り当てられた発音ソース40aを減衰させると、左チャンネル側の発音ソース40aについては変更後も楽音波形Aを出力し、この変更後の楽音波形Aには、左チャンネル成分Lと右チャンネル成分Rとが混合されており、楽音発生に割り当てられる発音ソース40aの数量が二つから一つに減少したにもかかわらず左チャンネル成分Lと右チャンネル成分Rとを含む音が発生することとなる。
Further, the value of the variable ctr is subtracted by the value of the variable SUB (S630).
Then, this subroutine ends.
[Effect of the first embodiment]
(1) As described above, according to the electronic keyboard instrument 1 of the first embodiment, for example, the sound source 40a assigned to the right channel side among the two sound sources 40a during stereo sounding to cope with a new key-on. When the sound source 40a on the left channel side is attenuated, the tone waveform A is output after the change, and the tone waveform A after the change is mixed with the left channel component L and the right channel component R, The sound including the left channel component L and the right channel component R is generated even though the number of the sound generation sources 40a allocated to the generation of the musical sound is decreased from two to one.

したがって、キーオンに対応する楽音に割り当てる発音ソース40aを確保するために、ステレオ発音中の二つの発音ソース40aの一方を減衰させる場合でも、音の移り変わりが自然なものとすることができる。また、ステレオ発音中の二つの発音ソース40aの一方を減衰させることで、新たなキーオンに対応するために発音ソース40aを確保でき、十分な同時発音数を確保することができる。また、従来構成で行っていたような定位制御および音量制御が不要となり、その分キーオンから楽音発生までに要する反応時間が短縮されて反応速度が向上し、キーオンされた楽音をより忠実に再現することができる。   Therefore, even when one of the two sound sources 40a during stereo sounding is attenuated in order to secure the sound source 40a assigned to the musical sound corresponding to the key-on, the sound transition can be made natural. Further, by attenuating one of the two sound sources 40a during stereo sound generation, the sound source 40a can be secured to cope with a new key-on, and a sufficient number of simultaneous sounds can be secured. In addition, the localization control and volume control that was performed in the conventional configuration is no longer necessary, and the reaction time required from the key-on to the generation of the music is shortened, the response speed is improved, and the key-on music is reproduced more faithfully. be able to.

(2)また、第一実施形態の電子鍵盤楽器1によれば、キーオンされた際に、発音中でない発音ソースが二つ以上存在するときには(S420:NO)、キーオンに対応する楽音をステレオ音として発生させるために、発音中でない二つ以上の発音ソースのうちの二つをキーオンに対応してステレオ音として発生する楽音に割り当てる(S440)。このことにより、発音中でない二つの発音ソース40aを確保して、ステレオ音への発音ソース40aの割り当てを確実に行うことができる。   (2) Also, according to the electronic keyboard instrument 1 of the first embodiment, when there are two or more sound sources that are not sounding when the key is turned on (S420: NO), the musical sound corresponding to the key-on is stereo sound. Therefore, two of the two or more sound sources that are not sounding are assigned to the musical sound generated as a stereo sound corresponding to the key-on (S440). As a result, two sound sources 40a that are not sounding can be secured and the sound sources 40a can be reliably assigned to stereo sounds.

(3)また、第一実施形態の電子鍵盤楽器1によれば、キーオンされた際に、発音中でない発音ソースが一つ存在し、且つステレオ発音中の発音ソースの組が一つ以上存在するときには(S525:YES)、キーオンに対応する楽音をステレオ音として発生させるために、ステレオ発音中の発音ソース40aの組のうちの一つに含まれる右チャンネル側に割り当てられた発音ソース40aを減衰させてモノラル音化することで発音中でない二つの発音ソース40aを確保し(S530)、その確保した発音中でない二つの発音ソース40aをキーオンに対応してステレオ音として発生する楽音に割り当てる(S535、S440)。   (3) Also, according to the electronic keyboard instrument 1 of the first embodiment, when the key is turned on, there is one sound source that is not sounding, and there is one or more sound source sets that are sounding in stereo. Sometimes (S525: YES), the sound source 40a assigned to the right channel side included in one of the groups of sound sources 40a during stereo sounding is attenuated in order to generate a musical sound corresponding to key-on as a stereo sound. The two sound sources 40a that are not sounding are secured by making them into monaural sounds (S530), and the two sound sources 40a that are not sounded are allocated to musical sounds generated as stereo sounds corresponding to key-on (S535). , S440).

このことにより、発音中でない二つの発音ソース40aを確保して、ステレオ音への発音ソース40aの割り当てを確実に行うことができる。また、ステレオ音をモノラル音としても、音の移り変わりを自然なものとすることができる。また、同時発音数を増加させることができる。   As a result, two sound sources 40a that are not sounding can be secured and the sound sources 40a can be reliably assigned to stereo sounds. Even if the stereo sound is a monaural sound, the transition of the sound can be made natural. In addition, the number of simultaneous pronunciations can be increased.

(4)また、第一実施形態の電子鍵盤楽器1によれば、キーオンされた際に、発音中でない発音ソース40aが存在せず、且つステレオ発音中の発音ソース40aの組が二つ以上存在するときには(S545:YES)、キーオンに対応する楽音をステレオ音として発生させるために、ステレオ発音中の発音ソース40aの組のうちの二つに含まれる右チャンネル側に割り当てられた発音ソース40aをそれぞれ減衰させてモノラル音化することで発音中でない二つの発音ソース40aを確保し、その確保した発音中でない二つの発音ソース40aをキーオンに対応してステレオ音として発生する楽音に割り当てる(S555、S440)。   (4) Further, according to the electronic keyboard instrument 1 of the first embodiment, when it is the key-on, there is no sound source 40a not being sounded, and the presence set of pronunciation source 40a in the stereo sound is two or more When generating (S545: YES), in order to generate a musical sound corresponding to key-on as a stereo sound, the sound source 40a assigned to the right channel side included in two of the sound source sources 40a in the stereo sound generation is selected. The two sound sources 40a that are not sounding are secured by attenuating each to make a monaural sound, and the two sound sources 40a that are not sounded are assigned to musical sounds generated as stereo sounds corresponding to key-on (S555, S440).

このことにより、発音中でない二つの発音ソース40aを確保して、ステレオ音への発音ソース40aの割り当てを確実に行うことができる。また、ステレオ音をモノラル音としても、音の移り変わりを自然なものとすることができる。また、同時発音数を増加させることができる。   As a result, two sound sources 40a that are not sounding can be secured and the sound sources 40a can be reliably assigned to stereo sounds. Even if the stereo sound is a monaural sound, the transition of the sound can be made natural. In addition, the number of simultaneous pronunciations can be increased.

(5)また、第一実施形態の電子鍵盤楽器1によれば、キーオンされた際に、発音中でない発音ソース40aが存在せず、且つステレオ発音中の発音ソース40aの組が一つ存在するときには(S545:NO)、キーオンに対応する楽音をモノラル音として発生させるために、そのステレオ発音中の発音ソース40aの組に含まれる右チャンネル側に割り当てられた発音ソース40aを減衰させてモノラル音化することで発音中でない一つの発音ソース40aを確保し、その確保した発音中でない一つの発音ソース40aをキーオンに対応してモノラル音として発生する楽音に割り当てる(S570、S440)。   (5) Further, according to the electronic keyboard instrument 1 of the first embodiment, when it is the key-on, there is no sound source 40a not being sounded, and the set pronunciation source 40a in the stereo sound is present one Sometimes (S545: NO), in order to generate a musical sound corresponding to the key-on as a monaural sound, the sound source 40a assigned to the right channel side included in the set of sound sources 40a during the stereo sounding is attenuated to produce a monaural sound. securing one pronunciation source 40a is not in pronunciation by reduction, assigned to the tone that generates a single sound source 40a not in pronunciation that its secured as monophonic sound corresponding to the key-on (S570, S440).

このことにより、発音中でない発音ソース40aが少ない状況であっても、キーオンに対応する楽音をモノラル音として発生させることができる。また、ステレオ音をモノラル音としても、音の移り変わりを自然なものとすることができる。また、同時発音数を増加させることができる。   As a result, even in a situation where there are few sound sources 40a that are not sounding, it is possible to generate a musical sound corresponding to key-on as a monaural sound. Even if the stereo sound is a monaural sound, the transition of the sound can be made natural. In addition, the number of simultaneous pronunciations can be increased.

(6)また、第一実施形態の電子鍵盤楽器1によれば、キーオンされた際に、発音中でない発音ソース40aが存在せず、ステレオ発音中の発音ソース40aの組が存在せず、且つモノラル発音中の発音ソース40aが存在するとき、つまり、すべての発音ソースがモノラル音に割り当てられているときには(S505:NO)、キーオンに対応する楽音をモノラル音として発生させるために、モノラル発音中の発音ソース40aのうちの一つを減衰させることで発音中でない一つの発音ソース40aを確保し、その確保した発音中でない一つの発音ソース40aをキーオンに対応してモノラル音として発生する楽音に割り当てる(S515、S440)。   (6) Further, according to the electronic keyboard instrument 1 of the first embodiment, when it is the key-on, there is no sound source 40a not being sounded, the set pronunciation source 40a in the stereo sound is not present, and When there is a sound source 40a during monaural sound generation, that is, when all sound source sources are assigned to monaural sounds (S505: NO), in order to generate a musical sound corresponding to key-on as a monaural sound, One sound source 40a that is not sounding is secured by attenuating one of the sound source 40a, and the sound source 40a that is not sounding is secured as a musical sound that is generated as a monaural sound corresponding to the key-on. Assign (S515, S440).

このようにすれば、発音中でない発音ソース40aが少ない状況であっても、キーオンに対応する楽音をモノラル音として発生させることができる。また、同時発音数を増加させることができる。   In this way, even in a situation where there are few sound sources 40a that are not being sounded, it is possible to generate a musical sound corresponding to key-on as a monaural sound. In addition, the number of simultaneous pronunciations can be increased.

[他の実施形態]
以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、以下のような様々な態様にて実施することが可能である。
[Other Embodiments]
As mentioned above, although one Embodiment of this invention was described, this invention is not limited to the said embodiment, It is possible to implement in the following various aspects.

(1)上実施形態では、係数kについては式(3)を満たすものとしているが、これには限られず、上述の(A)および(G)ように、(A)係数k=0.125の場合には定位がかなり右寄りとなり、(G)係数k=0.875の場合には定位がかなり左寄りとなることを考慮して、係数kが次の関係式(4)を満たすものとしてもよい。   (1) In the above embodiment, the coefficient k is assumed to satisfy the expression (3), but is not limited to this, and (A) coefficient k = 0.125 as described in (A) and (G) above. localization considerably becomes right side in the case of, as to satisfy the in the case of (G) coefficient k = 0.875 is in consideration of the fact that localization is considerably the left side, the coefficient k is the following relationship (4) Good.

0.25≦k≦0.75・・・式(4)
このように左右の音量バランスを3倍以内に納めることで、より不自然さを解消することができる。
0.25 ≦ k ≦ 0.75 Formula (4)
Thus, the unnaturalness can be further eliminated by keeping the left and right volume balance within three times.

(2)また、係数kが次の式(5)を満たすものとしてもよい。
k=0.5・・・式(5)
このようにすれば、ステレオ発音をモノラル化するために一組の発音ソース40aのうちの一方の発音ソース40aを減衰させたのちも、左右の出力が均等で左右のバランスが良いという効果がある。
(2) The coefficient k may satisfy the following expression (5).
k = 0.5 (5)
In this way, even when one sound source 40a of the set of sound sources 40a is attenuated in order to make the stereo sound into monaural, there is an effect that the left and right outputs are equal and the right and left balance is good. .

(3)また、係数kの値については、新たにキーオンされた楽音の音域に応じて発音ソース40aごとに設定されるようにしてもよい。一例を挙げると、新たにキーオンされた楽音の音域が低音側になるほど係数kの値を大きく設定し、一方、新たにキーオンされた楽音の音域が高音側になるほど係数kの値を小さく設定するといった具合である。このようにすれば、キーオンされた楽音の音域を忠実に再現することができる。   (3) The value of the coefficient k may be set for each sound generation source 40a in accordance with the range of the newly keyed musical sound. As an example, the value of the coefficient k is set to be larger as the range of the newly keyed musical sound becomes lower, while the value of the coefficient k is set to be smaller as the range of the newly keyed musical sound becomes higher. And so on. In this way, it is possible to faithfully reproduce the range of the key-on musical tone.

(4)上記実施形態では、波形データ生成部30cが、上記式(1)を用いてステレオサンプリングした楽音の左チャンネル成分Lの正相成分と右チャンネル成分Rの正相成分とを、1/k:1/(1−k)の比率で混合した波形データAを生成するとともに、上記式(2)を用いてステレオサンプリングした楽音の左チャンネル成分Lの正相成分と右チャンネル成分Rの逆相成分とを、同じく1/k:1/(1−k)の比率で混合した波形データBを生成するが、これには限られず、波形データBについては、波形データ生成部30cが、下記の式(6)を用いてステレオサンプリングした楽音の左チャンネル成分Lの逆相成分と右チャンネル成分Rの正相成分とを、同じく1/k:1/(1−k)の比率で混合して生成するようにしてもよい。

WB=―L/2k+R/2(1−k)・・・式(6)

このように構成しても上記実施形態と同様の作用効果を奏する。
(4) In the above embodiment, the waveform data generation unit 30c converts the positive phase component of the left channel component L and the positive phase component of the right channel component R of the musical sound stereo-sampled using the above equation (1) to 1 / Waveform data A mixed at a ratio of k: 1 / (1-k) is generated, and the normal phase component of the left channel component L and the inverse of the right channel component R of the tone sampled using the above formula (2) Similarly, the waveform data B is generated by mixing the phase components at a ratio of 1 / k: 1 / (1-k). However, the waveform data B is not limited to this, and the waveform data generation unit 30c performs the following processing. The opposite phase component of the left channel component L and the right phase component of the right channel component R of the tone sampled in stereo using the equation (6) are similarly mixed at a ratio of 1 / k: 1 / (1-k). To generate There.

WB = −L / 2k + R / 2 (1-k) (6)

Even if comprised in this way, there exists an effect similar to the said embodiment.

(5)また、上述のような波形データをUSBメモリ装置などの波形データ記憶装置に記憶しておき、波形データ記憶装置を必要に応じて当該電子鍵盤楽器1に接続して利用するようにしてもよい。このようにすれば、波形データ記憶装置に波形データAおよび波形データBを記憶しておくことで波形データの装置間での移動が可能となる。また、波形データAには、左チャンネル成分Lと右チャンネル成分Rとが前記比率にて混合されており、一つの発音ソース40aでも左チャンネル成分Lと右チャンネル成分Rとを含む音が発生することとなるので、ステレオ発音できない機種との間でも、上述の波形データを記憶させた波形データ記憶装置を共有することができる。   (5) Further, the waveform data as described above is stored in a waveform data storage device such as a USB memory device, and the waveform data storage device is connected to the electronic keyboard instrument 1 and used as necessary. Also good. In this way, by storing the waveform data A and the waveform data B in the waveform data storage device, the waveform data can be moved between the devices. In the waveform data A, the left channel component L and the right channel component R are mixed in the above ratio, and a sound including the left channel component L and the right channel component R is generated even in one sound source 40a. Therefore, the waveform data storage device storing the waveform data described above can be shared with models that cannot produce stereo sound.

1…電子鍵盤楽器、10…鍵盤、11…パネルSW/LED、12…ペダル、15…MIDI、30…CPU、30a…割当部、30b…制御部、30c…波形データ生成部、31…プログラム・データメモリ、32…ワークRAM、32a…使用状況メモリ、32b…発音数記憶レジスタ、33…I/F、40…音源回路、40a…発音ソース、40b…波形データ読出部、40c…復調回路、40d…定位制御回路、40e…左チャンネル系列加算器、40f…右チャンネル系列加算器、42…波形メモリ、50…DSP、52…ディレイメモリ、60…DAC、70…アンプ、80…スピーカ、90…バスライン DESCRIPTION OF SYMBOLS 1 ... Electronic keyboard instrument, 10 ... Keyboard, 11 ... Panel SW / LED, 12 ... Pedal, 15 ... MIDI, 30 ... CPU, 30a ... Assignment part, 30b ... Control part, 30c ... Waveform data generation part, 31 ... Program Data memory, 32 ... Work RAM, 32a ... Usage status memory, 32b ... Sound generation number storage register, 33 ... I / F, 40 ... Sound source circuit, 40a ... Sound source, 40b ... Waveform data reading unit, 40c ... Demodulation circuit, 40d ... localization control circuit, 40e ... left channel series adder, 40f ... right channel series adder, 42 ... waveform memory, 50 ... DSP, 52 ... delay memory, 60 ... DAC, 70 ... amplifier, 80 ... speaker, 90 ... bus line

Claims (16)

ステレオサンプリングした音の波形データをキーオンに応じて取得し、その取得された波形データを復調するとともに定位制御することによって楽音波形を生成する複数の発音ソースを備え、キーオンに対応する楽音を前記発音ソースが生成した楽音波形に基づき発生する電子楽器の楽音発生装置であって、
前記波形データには、左右チャンネルのうちの一方であるチャンネルA側の波形データAと左右チャンネルのうちの他方であるチャンネルB側の波形データBとがあり、前記波形データAは、ステレオサンプリングした音の左チャンネル成分Lの正相成分と右チャンネル成分Rの正相成分とを所定の比率で混合することで生成され、一方、前記波形データBは、前記左チャンネル成分Lの正相成分と前記右チャンネル成分Rの逆相成分とを前記比率で混合するか前記左チャンネル成分Lの逆相成分と前記右チャンネル成分Rの正相成分とを前記比率で混合することで生成され、
前記楽音波形には、チャンネルA側の楽音波形AとチャンネルB側の楽音波形Bとがあり、楽音をステレオ音として発生する場合には、二つの前記発音ソースがステレオ音のチャンネルA側およびチャンネルB側にそれぞれ割り当てられ、ステレオ音のチャンネルA側に割り当てられた発音ソースが前記楽音波形Aを出力するとともにステレオ音のチャンネルB側に割り当てられた発音ソースが前記楽音波形Bを出力し、一方、楽音をモノラル音として発生する場合には、一つの前記発音ソースがモノラル音に割り当てられ、その割り当てられた発音ソースが前記楽音波形Aを出力し、
さらに、前記発音ソースは、
ステレオ音のチャンネルA側に割り当てられた場合には、前記波形データAおよび前記波形データBを取得し、その取得した波形データAと波形データBとを加算することで復調するとともに定位制御することによって前記楽音波形Aを生成し、
また、ステレオ音のチャンネルB側に割り当てられた場合には、前記波形データAおよび前記波形データBを取得し、その取得した波形データAから波形データBを減算することで復調するとともに定位制御することによって前記楽音波形Bを生成し、
また、モノラル音に割り当てられた場合には、前記波形データAを取得し、その取得した波形データAを復調するとともに定位制御することによって前記楽音波形Aを生成すること
を特徴とする電子楽器の楽音発生装置。
Acquires waveform data of stereo sampled sound according to key-on, demodulates the acquired waveform data and controls the localization, generates multiple sound sources to generate musical sound waveform, and generates sound corresponding to key-on A musical sound generator for an electronic musical instrument that is generated based on a musical sound waveform generated by a source,
The waveform data includes waveform data A on the channel A side which is one of the left and right channels and waveform data B on the channel B side which is the other of the left and right channels. The waveform data A is stereo-sampled. The positive phase component of the left channel component L of sound and the positive phase component of the right channel component R are generated by mixing at a predetermined ratio, while the waveform data B includes the positive phase component of the left channel component L and the positive phase component of the left channel component L. It is generated by mixing the reverse phase component of the right channel component R in the ratio or by mixing the reverse phase component of the left channel component L and the positive phase component of the right channel component R in the ratio.
The musical sound waveform includes a musical sound waveform A on the channel A side and a musical sound waveform B on the channel B side. When a musical sound is generated as a stereo sound, the two sound generation sources are the stereo sound channel A side and the channel. The sound source assigned to the B side and assigned to the stereo sound channel A side outputs the musical sound waveform A, and the sound source assigned to the stereo sound channel B side outputs the music sound waveform B, When a musical sound is generated as a monaural sound, one sound source is assigned to a monaural sound, and the assigned sound source outputs the musical sound waveform A,
Furthermore, the pronunciation source is
When assigned to the channel A side of the stereo sound, the waveform data A and the waveform data B are acquired, and the acquired waveform data A and the waveform data B are added together to demodulate and control the localization. To generate the musical sound waveform A,
When the stereo sound is assigned to the channel B side, the waveform data A and the waveform data B are acquired, and the waveform data B is subtracted from the acquired waveform data A for demodulation and localization control. To generate the musical sound waveform B,
When the electronic musical instrument is assigned to a monaural sound, the musical sound waveform A is generated by acquiring the waveform data A, demodulating the acquired waveform data A, and performing localization control. Music generator.
請求項1に記載の電子楽器の楽音発生装置において、
前記波形データAは、前記左チャンネル成分Lの正相成分と前記右チャンネル成分Rの正相成分とを所定の比率で混合することで生成される場合に次の関係式(1)を満たし、
一方、前記波形データBは、前記左チャンネル成分Lの正相成分と前記右チャンネル成分Rの逆相成分とを前記比率で混合することで生成される場合に次の関係式(2)を満たし、前記左チャンネル成分Lの逆相成分と前記右チャンネル成分Rの正相成分とを前記比率で混合することで生成される場合に次の関係式(3)を満たすこと
を特徴とする電子楽器の楽音発生装置。
関係式(1):WA=L/2k+R/2(1−k)
関係式(2):WB=L/2k−R/2(1−k)
関係式(3):WB=−L/2k+R/2(1−k)
但し、WAは波形データAを示し、WBは波形データBを示す。また、係数kは次の関係式(4)を満たすこととする。
関係式(4):0<k<1
The musical sound generator for an electronic musical instrument according to claim 1,
When the waveform data A is generated by mixing the positive phase component of the left channel component L and the positive phase component of the right channel component R at a predetermined ratio, the following relational expression (1) is satisfied:
On the other hand, when the waveform data B is generated by mixing the positive phase component of the left channel component L and the negative phase component of the right channel component R at the above ratio, the following relational expression (2) is satisfied. An electronic musical instrument that satisfies the following relational expression (3) when it is generated by mixing the reverse phase component of the left channel component L and the positive phase component of the right channel component R at the above ratio: Musical sound generator.
Relational expression (1): W A = L / 2k + R / 2 (1-k)
Relational expression (2): W B = L / 2k−R / 2 (1-k)
Relational expression (3): W B = −L / 2k + R / 2 (1-k)
However, W A indicates waveform data A, and W B indicates waveform data B. The coefficient k satisfies the following relational expression (4).
Relational expression (4): 0 <k <1
請求項2に記載の電子楽器の楽音発生装置において、
前記係数kは、前記関係式(4)の代わりに次の関係式(5)を満たすことを特徴とする電子楽器の楽音発生装置。
関係式(5):0.25≦k≦0.75
The musical sound generator for an electronic musical instrument according to claim 2,
The coefficient k satisfies the following relational expression (5) instead of the relational expression (4).
Relational expression (5): 0.25 ≦ k ≦ 0.75
請求項2または請求項3に記載の電子楽器の楽音発生装置において、
前記係数kの値については、キーオンされた楽音の音域に応じて発音ソースごとに設定されることを特徴とする電子楽器の楽音発生装置。
In the musical sound generator for an electronic musical instrument according to claim 2 or 3,
The musical sound generator for an electronic musical instrument is characterized in that the value of the coefficient k is set for each sound generation source in accordance with the range of the musical sound keyed on.
請求項4に記載の電子楽器の楽音発生装置において、
前記係数kの値については、キーオンされた楽音の音域が低音側になるほどその値が大きく設定され、一方、キーオンされた楽音の音域が高音側になるほどその値が小さく設定されることを特徴とする電子楽器の楽音発生装置。
The musical sound generator for an electronic musical instrument according to claim 4,
The value of the coefficient k is set to be larger as the range of the key-on musical tone becomes lower, and the value is set to be smaller as the range of the key-on musical tone becomes higher. A musical sound generator for electronic musical instruments.
請求項2に記載の電子楽器の楽音発生装置において、
前記係数kは、前記関係式(4)の代わりに次の関係式(6)を満たすことを特徴とする電子楽器の楽音発生装置。
関係式(6):k=0.5
The musical sound generator for an electronic musical instrument according to claim 2,
The coefficient k satisfies the following relational expression (6) instead of the relational expression (4).
Relational expression (6): k = 0.5
請求項1〜請求項6の何れかに記載の電子楽器の楽音発生装置において、
前記波形データを記憶する波形データ記憶部を備え、
前記発音ソースは、キーオンに応じて前記波形データ記憶部から前記波形データを取得すること
を特徴とする電子楽器の楽音発生装置。
In the musical sound generator for an electronic musical instrument according to any one of claims 1 to 6,
A waveform data storage unit for storing the waveform data;
The sound generation source of an electronic musical instrument, wherein the sound generation source acquires the waveform data from the waveform data storage unit in response to key-on.
請求項7に記載の電子楽器の楽音発生装置において、
さらに、前記波形データを生成する波形データ生成部を備え、
前記波形データ生成部は、設定内容に応じて前記波形データを生成し、
前記波形データ記憶部は、前記波形データ生成部が生成した前記波形データを記憶すること
を特徴とする電子楽器の楽音発生装置。
The musical sound generator for an electronic musical instrument according to claim 7,
Furthermore, a waveform data generation unit for generating the waveform data is provided,
The waveform data generation unit generates the waveform data according to setting contents,
The waveform data storage unit stores the waveform data generated by the waveform data generation unit.
請求項1〜請求項6の何れかに記載の電子楽器の楽音発生装置において、
前記波形データを生成する波形データ生成部を備え、
前記波形データ生成部は、キーオンに応じて前記波形データを生成し、
前記発音ソースは、キーオンに応じて前記波形データ生成部が生成した前記波形データを取得すること
を特徴とする電子楽器の楽音発生装置。
In the musical sound generator for an electronic musical instrument according to any one of claims 1 to 6,
A waveform data generation unit for generating the waveform data;
The waveform data generation unit generates the waveform data in response to key-on,
The musical tone generation apparatus according to claim 1, wherein the sound source acquires the waveform data generated by the waveform data generation unit in response to key-on.
請求項9に記載の電子楽器の楽音発生装置において、
さらに、前記波形データを記憶する波形データ記憶部を備え、
前記波形データ記憶部は、キーオンに応じて前記波形データ生成部が生成した前記波形データを記憶し、
前記発音ソースは、キーオンに応じて前記波形データ生成部が生成した前記波形データを前記波形データ記憶部から取得すること
を特徴とする電子楽器の楽音発生装置。
The musical sound generator for an electronic musical instrument according to claim 9,
Furthermore, a waveform data storage unit for storing the waveform data is provided,
The waveform data storage unit stores the waveform data generated by the waveform data generation unit in response to key-on,
The musical tone generation apparatus according to claim 1, wherein the sound source acquires the waveform data generated by the waveform data generation unit in response to a key-on from the waveform data storage unit.
請求項1〜請求項10の何れかに記載の電子楽器の楽音発生装置において、
前記発音ソースは四つ以上存在し、
さらに、
キーオンされた際に、発音中でない発音ソースが二つ以上存在するときには、キーオンに対応する楽音をステレオ音として発生させるために、発音中でない二つ以上の発音ソースのうちの二つをキーオンに対応してステレオ音として発生する楽音に割り当てる割当部
を備えることを特徴とする電子楽器の楽音発生装置。
In the musical sound generator for an electronic musical instrument according to any one of claims 1 to 10,
There are four or more pronunciation sources,
further,
If there are two or more sound sources that are not sounding when the key is turned on, two of the two or more sound sources that are not sounding are turned on to generate a sound corresponding to the key-on as a stereo sound. A musical sound generating apparatus for an electronic musical instrument, comprising: an assigning unit that assigns a corresponding musical sound generated as a stereo sound.
請求項11に記載の電子楽器の楽音発生装置において、
前記割当部は、キーオンされた際に、発音中でない発音ソースが一つ存在し、且つステレオ発音中の発音ソースの組が一つ以上存在するときには、キーオンに対応する楽音をステレオ音として発生させるために、ステレオ発音中の発音ソースの組のうちの一つに含まれるチャンネルB側に割り当てられた発音ソースを減衰させてモノラル音化することで発音中でない二つの発音ソースを確保し、その確保した発音中でない二つの発音ソースをキーオンに対応してステレオ音として発生する楽音に割り当てることを特徴とする電子楽器の楽音発生装置。
The musical sound generator for an electronic musical instrument according to claim 11,
The assigning unit generates a musical sound corresponding to the key-on as a stereo sound when there is one sound source that is not sounding and at least one pair of sound sources that are sounded in stereo when the key-on is performed. Therefore, two sound sources that are not sounding are secured by attenuating the sound source assigned to the channel B side included in one of the sound source pairs during stereo sounding to produce a monaural sound. 2. A musical sound generating apparatus for an electronic musical instrument, wherein two sound sources that are not sounded are assigned to a musical sound generated as a stereo sound corresponding to a key-on.
請求項11または請求項12に記載の電子楽器の楽音発生装置において、
前記割当部は、キーオンされた際に、発音中でない発音ソースが存在せず、且つステレオ発音中の発音ソースの組が二つ以上存在するときには、キーオンに対応する楽音をステレオ音として発生させるために、ステレオ発音中の発音ソースの組のうちの二つに含まれるチャンネルB側に割り当てられた発音ソースをそれぞれ減衰させてモノラル音化することで発音中でない二つの発音ソースを確保し、その確保した発音中でない二つの発音ソースをキーオンに対応してステレオ音として発生する楽音に割り当てることを特徴とする電子楽器の楽音発生装置。
In the musical sound generator of the electronic musical instrument according to claim 11 or claim 12,
The allocating unit generates a musical sound corresponding to the key-on as a stereo sound when there is no sound source that is not sounding and there are two or more sound source pairs that are sounded in stereo when the key-on is performed. In addition, two sound sources that are not sounding are secured by attenuating the sound sources assigned to the channel B side included in two of the sound sound source pairs during stereo sounding, respectively, and making them monophonic. 2. A musical sound generating apparatus for an electronic musical instrument, wherein two sound sources that are not sounded are assigned to a musical sound generated as a stereo sound corresponding to a key-on.
請求項11〜請求項13の何れかに記載の電子楽器の楽音発生装置において、
前記割当部は、キーオンされた際に、発音中でない発音ソースが存在せず、且つステレオ発音中の発音ソースの組が一つ存在するときには、キーオンに対応する楽音をモノラル音として発生させるために、そのステレオ発音中の発音ソースの組に含まれるチャンネルB側に割り当てられた発音ソースを減衰させてモノラル音化することで発音中でない一つの発音ソースを確保し、その確保した発音中でない一つの発音ソースをキーオンに対応してモノラル音として発生する楽音に割り当てることを特徴とする電子楽器の楽音発生装置。
In the musical sound generator for an electronic musical instrument according to any one of claims 11 to 13,
The assigning unit generates a musical sound corresponding to the key-on as a monaural sound when there is no sound source that is not sounding and there is one pair of sound-generating sound sources when the key is turned on. The sound source assigned to the channel B side included in the set of sound sources that are currently sounding is attenuated to produce a monaural sound, thereby securing one sound source that is not being sounded. A musical sound generating device for an electronic musical instrument, wherein one sound source is assigned to a musical sound generated as a monaural sound corresponding to a key-on.
請求項11〜請求項14の何れか記載の電子楽器の楽音発生装置において、
前記割当部は、キーオンされた際に、発音中でない発音ソースが存在せず、ステレオ発音中の発音ソースの組が存在せず、且つモノラル発音中の発音ソースが存在するときには、キーオンに対応する楽音をモノラル音として発生させるために、モノラル発音中の発音ソースのうちの一つを減衰させることで発音中でない一つの発音ソースを確保し、その確保した発音中でない一つの発音ソースをキーオンに対応してモノラル音として発生する楽音に割り当てることを特徴とする電子楽器の楽音発生装置。
In the musical sound generator for an electronic musical instrument according to any one of claims 11 to 14,
When the key is turned on, the assigning unit corresponds to key-on when there is no sound source that is not sounding, there is no sound source set that is sounding in stereo, and there is a sound source that is monaurally sounded. In order to generate a musical sound as a monaural sound, one sound source that is not sounding is secured by attenuating one of the sound sources that are sounding monaural, and one sound source that is not sounding is keyed on A musical sound generating device for an electronic musical instrument characterized by being assigned to a musical sound generated as a monaural sound.
請求項1〜請求項6の何れかに記載の波形データAおよび波形データBを記憶する波形データ記憶装置。   A waveform data storage device for storing the waveform data A and the waveform data B according to claim 1.
JP2012209695A 2012-09-24 2012-09-24 Electronic musical instrument Pending JP2013029852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012209695A JP2013029852A (en) 2012-09-24 2012-09-24 Electronic musical instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012209695A JP2013029852A (en) 2012-09-24 2012-09-24 Electronic musical instrument

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008030674A Division JP2009192621A (en) 2008-02-12 2008-02-12 Musical sound generating apparatus and waveform data storage device of electronic musical instrument

Publications (1)

Publication Number Publication Date
JP2013029852A true JP2013029852A (en) 2013-02-07

Family

ID=47786880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012209695A Pending JP2013029852A (en) 2012-09-24 2012-09-24 Electronic musical instrument

Country Status (1)

Country Link
JP (1) JP2013029852A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107909982A (en) * 2017-12-28 2018-04-13 郝家栋 The three-dimensional sampling piano mass-synchrometer of multichannel multiple sensors

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124597A (en) * 1988-11-02 1990-05-11 Yamaha Corp Signal compressing method for channel
JPH02127899A (en) * 1988-11-08 1990-05-16 Yamaha Corp Signal compression method for plural channels
JPH09305169A (en) * 1996-03-11 1997-11-28 Yamaha Corp Musical sound generating device
JPH1049159A (en) * 1996-07-29 1998-02-20 Kawai Musical Instr Mfg Co Ltd Musical tone generator of electronic musical instrument
JP2000242270A (en) * 1999-02-17 2000-09-08 Kawai Musical Instr Mfg Co Ltd Musical sound signal generating device
JP2005260589A (en) * 2004-03-11 2005-09-22 Sanyo Electric Co Ltd Stereo demodulator circuit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124597A (en) * 1988-11-02 1990-05-11 Yamaha Corp Signal compressing method for channel
JPH02127899A (en) * 1988-11-08 1990-05-16 Yamaha Corp Signal compression method for plural channels
JPH09305169A (en) * 1996-03-11 1997-11-28 Yamaha Corp Musical sound generating device
JPH1049159A (en) * 1996-07-29 1998-02-20 Kawai Musical Instr Mfg Co Ltd Musical tone generator of electronic musical instrument
JP2000242270A (en) * 1999-02-17 2000-09-08 Kawai Musical Instr Mfg Co Ltd Musical sound signal generating device
JP2005260589A (en) * 2004-03-11 2005-09-22 Sanyo Electric Co Ltd Stereo demodulator circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107909982A (en) * 2017-12-28 2018-04-13 郝家栋 The three-dimensional sampling piano mass-synchrometer of multichannel multiple sensors
CN107909982B (en) * 2017-12-28 2020-09-15 郝家栋 Multi-channel multi-sensor stereo sampling piano quality analyzer

Similar Documents

Publication Publication Date Title
JP2009156914A (en) Automatic accompaniment device and program
WO2014025041A1 (en) Device and method for pronunciation allocation
JP5130348B2 (en) Karaoke collaboration using portable electronic devices
JPWO2007015321A1 (en) Music output switching device, musical output switching method, computer program for switching musical output
JP4259533B2 (en) Performance system, controller used in this system, and program
JP2565069B2 (en) Electronic musical instrument
JP2013029852A (en) Electronic musical instrument
JP2009192621A (en) Musical sound generating apparatus and waveform data storage device of electronic musical instrument
JP5397637B2 (en) Karaoke equipment
JP5293085B2 (en) Tone setting device and method
JP3637196B2 (en) Music player
JP2983122B2 (en) Electronic musical instrument
KR20030090526A (en) Musical tone signal generating apparatus
JP2019040167A (en) Karaoke device and control method thereof
JP4463231B2 (en) Vocoder device
JP2888712B2 (en) Music generator
JP5983624B6 (en) Apparatus and method for pronunciation assignment
JP3753087B2 (en) Electronic musical instrument, differential sound output device, program, and recording medium
JP6264660B2 (en) Sound source control device, karaoke device, sound source control program
JP2021001989A (en) Music sound output device, electric musical instrument, music sound output method, and program
JP5505012B2 (en) Electronic music apparatus and program
KR101268994B1 (en) Midi replaying apparatus and method coordinating external apparatus
JPH09244653A (en) Waveform memory type musical sound generating device that can input external waveform
JPWO2010119541A1 (en) SOUND GENERATOR, SOUND GENERATION METHOD, SOUND GENERATION PROGRAM, AND RECORDING MEDIUM
JPS62266596A (en) Electronic musical instrument

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141209