JP2013029303A - Double pipe-type heat exchanging pipe - Google Patents

Double pipe-type heat exchanging pipe Download PDF

Info

Publication number
JP2013029303A
JP2013029303A JP2012160258A JP2012160258A JP2013029303A JP 2013029303 A JP2013029303 A JP 2013029303A JP 2012160258 A JP2012160258 A JP 2012160258A JP 2012160258 A JP2012160258 A JP 2012160258A JP 2013029303 A JP2013029303 A JP 2013029303A
Authority
JP
Japan
Prior art keywords
pipe
liquid refrigerant
double
gas
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012160258A
Other languages
Japanese (ja)
Inventor
Gun Shik Choi
グンシク チュ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2013029303A publication Critical patent/JP2013029303A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F1/424Means comprising outside portions integral with inside portions
    • F28F1/426Means comprising outside portions integral with inside portions the outside portions and the inside portions forming parts of complementary shape, e.g. concave and convex
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • B21D53/06Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of metal tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/08Tubular elements crimped or corrugated in longitudinal section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/085Heat exchange elements made from metals or metal alloys from copper or copper alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/24Perforating, i.e. punching holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/08Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes pressed; stamped; deep-drawn

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a double pipe-type heat exchanging pipe capable of reducing manufacturing costs and being quickly manufactured as manufacturing is simple and a separate processing on an external pipe is unnecessary.SOLUTION: A gaseous or liquid refrigerant is passed through a flow channel hole to cool an inner pipe, the gaseous or liquid refrigerant supplied through a through-hole of an outer pipe is collected in a first collection groove formed on the inner pipe, the gaseous and liquid refrigerants are continuously collided with a plurality of projections while passing through a spiral groove of the inner pipe so that the gaseous and liquid refrigerants are cooled by heat exchange action, and the cooled gaseous and liquid refrigerants are collected in a second collection groove of the inner pipe and discharged to the external through the through-hole of the outer pipe. As the gaseous or liquid refrigerant is collected in the first and second collection grooves of the inner pipe, so that it can be easily supplied and discharged continuously. By the through-hole punching work for allowing the gaseous or liquid refrigerant to pass through an outer surface of the outer pipe, merits that manufacturing can be simplified, the separate processing on the external pipe 200 becomes unnecessary, a volume/area can be minimized, the manufacturing costs can be reduced, and the double pipe-type heat exchanging pipe can be quickly manufactured, can be achieved.

Description

本発明は、二重管型熱交換パイプに関し、より詳しくは、内部管の螺旋溝に気体及び液体が経由し、複数の突起に連続衝突して、熱交換作用で冷却され、冷却した気体及び液体が第2の集結溝に集結し、貫通孔を通じて排出される二重管型熱交換パイプに関する。   The present invention relates to a double-tube heat exchange pipe, and more specifically, gas and liquid pass through a spiral groove of an inner tube, continuously collide with a plurality of protrusions, and are cooled by a heat exchange action. The present invention relates to a double-tube heat exchange pipe in which liquid collects in a second collecting groove and is discharged through a through hole.

一般に、車両に使用される空調装置は、夏期や冬期に自動車の室内を冷・暖房するか、雨天時や冬期にウインドシールドについている霜などを除去して、運転手が前・後方視野を確保することができるようになる。   In general, air conditioners used in vehicles cool and heat the interior of automobiles in summer and winter, or remove frost attached to windshields in rainy and winter seasons, ensuring the driver's front and rear view. Will be able to.

前記の空調装置は、暖房システムと冷房システムとを同時に備えており、外気や内気を選択的に導入して、その空気を加熱又は冷却してから、自動車の室内に送風することで、自動車の室内を冷・暖房するか、換気するようになる。   The air conditioner includes a heating system and a cooling system at the same time, selectively introduces outside air or inside air, heats or cools the air, and then blows the air into the car interior. The room is cooled, heated or ventilated.

前記の空調装置には、自動車の室内に供給される空気を冷却する二重管型内部熱交換機が設けられ、図5は、二重管型内部熱交換機を示す断面図である。   The air conditioner is provided with a double-pipe internal heat exchanger that cools the air supplied to the interior of the automobile, and FIG. 5 is a cross-sectional view showing the double-pipe internal heat exchanger.

内部に低圧流路11が形成され、外面に高圧が経由される螺旋部12が形成されている内部管10と、前記内部管10の外周面に、二重管構造で結合されるとともに、高圧流路21を形成し、両端部分の外周面に気体が供給・排出される入口・出口パイプ22、23が結合されている外部管20とから構成される。   A low-pressure channel 11 is formed inside, and an outer tube is formed with a spiral portion 12 through which high pressure is passed. A flow path 21 is formed, and an outer pipe 20 is connected to inlet / outlet pipes 22 and 23 through which gas is supplied and discharged to the outer peripheral surfaces of both end portions.

ここで、前記内部管10の低圧流路11に冷媒が通過して、前記内部管10が冷却され、前記内部管10の螺旋部12により形成された高圧流路21に気体が通過しながら、前記内部管10と熱交換作用して気体が冷却された状態で、自動車の内部に供給される。   Here, the refrigerant passes through the low pressure flow path 11 of the internal pipe 10, the internal pipe 10 is cooled, and the gas passes through the high pressure flow path 21 formed by the spiral portion 12 of the internal pipe 10, The gas is cooled by the heat exchange with the inner pipe 10 and supplied to the inside of the automobile.

また、前記外部管20の外周面は、前記内部管10の径と同一の径に形成され、 入口・出口パイプ22、23が結合される前記外部管20の外周面の両端部分が所定の幅で拡管された拡管部24が形成される。   In addition, the outer peripheral surface of the outer tube 20 is formed to have the same diameter as the inner tube 10, and both end portions of the outer peripheral surface of the outer tube 20 to which the inlet / outlet pipes 22 and 23 are coupled have a predetermined width. The expanded part 24 expanded by the process is formed.

更に、前記外部管20の拡管部24のいずれか1つは、入口パイプ22を介して供給される気体が、前記高圧流路21に連続供給されるように、所定の量を集結させ、他の1つは、熱交換作用で冷却された気体が、排出パイプ23を介して連続排出されるように、所定の量を集結させる。   Furthermore, any one of the expanded pipe portions 24 of the outer pipe 20 collects a predetermined amount so that the gas supplied through the inlet pipe 22 is continuously supplied to the high-pressure channel 21, and the like. One of them collects a predetermined amount so that the gas cooled by the heat exchange action is continuously discharged through the discharge pipe 23.

しかし、前記のように、気体を、入口・出口パイプ22、23に連続して供給及び排出するために、外部管20に拡管部24を形成して気体を集結させる構造は、 外部管20の特定の区間に拡管部24を形成しなければならないという不都合があり、拡管部24の形成に伴い、外部管20の体積面積が増加し、外部管20を製造する製造コストが高くなり、製作期間に時間を要する問題点がある。   However, as described above, in order to continuously supply and discharge the gas to the inlet / outlet pipes 22 and 23, the structure in which the expanded portion 24 is formed in the outer tube 20 to collect the gas is There is an inconvenience that the expanded pipe portion 24 must be formed in a specific section. With the formation of the expanded pipe portion 24, the volume area of the outer pipe 20 increases, the manufacturing cost for manufacturing the outer pipe 20 increases, and the production period increases. There is a problem that takes time.

本発明は、前記のような問題点を解決するためになされたものであって、本発明の目的は、流路孔に気体又は液体冷媒が通過して内部管が冷却され、外管パイプの貫通孔を通じて供給される気体又は液体冷媒が、内部管に形成された第1の集結溝に集結され、内部管の螺旋溝に気体又は液体冷媒が経由され、複数の突起に連続衝突して、熱交換作用により、気体又は液体冷媒が冷却され、冷却した気体又は液体冷媒が内部管の第2の集結溝に集結して、外部管の貫通孔を通じて外部に排出される二重管型熱交換パイプを提供することである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to cool the inner pipe by passing a gas or liquid refrigerant through the flow path hole, and to The gas or liquid refrigerant supplied through the through hole is concentrated in the first collecting groove formed in the inner tube, the gas or liquid refrigerant is passed through the spiral groove of the inner tube, and continuously collides with the plurality of protrusions, Gas or liquid refrigerant is cooled by the heat exchange action, and the cooled gas or liquid refrigerant is concentrated in the second collecting groove of the inner tube and discharged to the outside through the through hole of the outer tube. Is to provide a pipe.

また、外部管の貫通孔の径が、内部管の第1、第2の集結溝の幅よりも小さく形成されることにより、外部管の貫通孔を通じて、気体又は液体冷媒が連続して供給又は排出される二重管型熱交換パイプを提供することである。   Further, the diameter of the through hole of the outer pipe is formed smaller than the width of the first and second collecting grooves of the inner pipe, so that gas or liquid refrigerant is continuously supplied through the through hole of the outer pipe or It is to provide a double-pipe heat exchange pipe that is discharged.

上述したような本発明の目的を達成するため、本発明による二重管型熱交換パイプは、中空状で、気体又は液体冷媒が通過する流路孔が形成され、外面に長手方向に沿って、所定の間隔で離隔した環状の螺旋溝が形成され、前記螺旋溝に沿って、複数の突起が突出形成され、前記螺旋溝の両端に、気体又は液体冷媒が集結する第1、第2の集結溝が形成されている内部管と、中空状で、前記内部管の外面に密着結合され、外周面の両端部分に、前記内部管の第1、第2の集結溝に連通する貫通孔が形成されている外部管とから構成されることを特徴とする。   In order to achieve the object of the present invention as described above, the double-tube type heat exchange pipe according to the present invention is hollow and has a passage hole through which a gas or liquid refrigerant passes, along the longitudinal direction on the outer surface. The first and second spiral grooves are formed at a predetermined interval, a plurality of protrusions are projected along the spiral groove, and gas or liquid refrigerant is concentrated at both ends of the spiral groove. The inner tube in which the collecting grooves are formed, and hollow, tightly coupled to the outer surface of the inner tube, and through holes communicating with the first and second collecting grooves of the inner tube at both ends of the outer peripheral surface It is characterized by comprising an outer pipe formed.

本発明による二重管型熱交換パイプにおいて、前記外部管の貫通孔の径が、前記内部管の第1、第2の集結溝の幅よりも小さく形成されていることを特徴とする。   The double pipe heat exchange pipe according to the present invention is characterized in that the diameter of the through hole of the outer pipe is smaller than the width of the first and second collecting grooves of the inner pipe.

本発明による二重管型熱交換パイプにおいて、前記第1、第2の集結溝の外面には、複数の突起が突出形成されていることを特徴とする。   The double-tube heat exchange pipe according to the present invention is characterized in that a plurality of protrusions are formed on the outer surfaces of the first and second collecting grooves.

本発明による二重管型熱交換パイプにおいて、前記内部管は、アルミニウム、銅、または銅合金のいずれか1つの材質で形成されていることを特徴とする。   In the double-tube heat exchange pipe according to the present invention, the inner tube is formed of any one material of aluminum, copper, or copper alloy.

本発明による二重管型熱交換パイプにおいて、前記第1、第2の集結溝は、半球状、楕円状、または、多角形状のいずれか1つで形成されていることを特徴とする。   In the double-tube heat exchange pipe according to the present invention, the first and second collecting grooves are formed in any one of a hemispherical shape, an elliptical shape, and a polygonal shape.

本発明による二重管型熱交換パイプにおいて、前記突起は、円状、半球状、楕円状、または、多角形状のいずれか1つで形成されていることを特徴とする。   In the double-tube heat exchange pipe according to the present invention, the protrusion is formed in any one of a circular shape, a hemispherical shape, an elliptical shape, and a polygonal shape.

本発明による二重管型熱交換パイプによると、内部管の第1、第2の集結溝に気体又は液体冷媒が集結され、連続供給及び排出が容易であり、外部管の外面に気体又は液体冷媒が通過する貫通孔パンチング(punching)作業で製作が簡便であり、外部管に別の加工が不要であって、体積面積が最小化し、製作コストが節減され、迅速な製作が可能であるというメリットがある。   According to the double pipe type heat exchange pipe of the present invention, gas or liquid refrigerant is concentrated in the first and second collecting grooves of the inner pipe, and continuous supply and discharge are easy. It is easy to manufacture by punching the through-hole through which the refrigerant passes, and there is no need for another processing on the outer tube, minimizing the volume area, reducing manufacturing costs, and enabling rapid manufacturing. There are benefits.

本発明による二重管型熱交換パイプが車両用冷却装置に設置された状態を示す概路図である。It is a general | schematic route figure which shows the state in which the double pipe type heat exchange pipe by this invention was installed in the cooling device for vehicles. 本発明による二重管型熱交換パイプを示す斜視図である。It is a perspective view which shows the double pipe type heat exchange pipe by this invention. 本発明による二重管型熱交換パイプの分解斜視図である。It is a disassembled perspective view of the double pipe type heat exchange pipe by this invention. 本発明による二重管型熱交換パイプが使用される状態を示す側断面図である。It is a sectional side view which shows the state in which the double tube type heat exchange pipe by this invention is used. 従来技術による二重管型内部熱交換機を示す断面図である。It is sectional drawing which shows the double pipe type internal heat exchanger by a prior art.

以下、本発明の実施形態を、添付の図面を参照して、より詳しく説明する。   Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings.

図1は、本発明による二重管型熱交換パイプが車両用冷却装置に設置された状態を示す概略図であり、図2は、本発明による二重管型熱交換パイプを示す斜視図であり、図3は、本発明による二重管型熱交換パイプの分解斜視図であり、図4は、本発明による二重管型熱交換パイプが使用される状態を示す側断面図である。   FIG. 1 is a schematic view showing a state in which a double-pipe heat exchange pipe according to the present invention is installed in a vehicle cooling device, and FIG. 2 is a perspective view showing the double-pipe heat exchange pipe according to the present invention. FIG. 3 is an exploded perspective view of the double tube heat exchange pipe according to the present invention, and FIG. 4 is a side sectional view showing a state in which the double tube heat exchange pipe according to the present invention is used.

内部管100は、中空状で、気体又は液体冷媒が通過する流路孔101が形成され、外面に長手方向に沿って、所定の間隔で離隔した環状の螺旋溝102が形成され、前記螺旋溝102に沿って、複数の突起103が突出形成され、前記螺旋溝102の両端に、気体又は液体冷媒が集結する第1、第2の集結溝104а、104bが形成される。   The inner tube 100 is hollow and has a flow passage hole 101 through which a gas or liquid refrigerant passes. An annular spiral groove 102 is formed on the outer surface at a predetermined interval along the longitudinal direction. A plurality of protrusions 103 are formed so as to project along 102, and first and second collecting grooves 104 a and 104 b for collecting gas or liquid refrigerant are formed at both ends of the spiral groove 102.

前記内部管100は、流路孔101に気体又は液体冷媒を通して冷却される。   The inner tube 100 is cooled by passing a gas or liquid refrigerant through the channel hole 101.

前記内部管100は、前記第1の集結溝104аに、外部から供給される気体又は液体冷媒を集結させて、前記螺旋溝102に気体又は液体冷媒が連続供給され、 前記第2の集結溝104bに冷却した気体又は液体冷媒が集結されて、外部に気体又は液体冷媒が連続排出される。   The inner pipe 100 collects gas or liquid refrigerant supplied from the outside in the first collecting groove 104a, and the gas or liquid refrigerant is continuously supplied to the spiral groove 102, and the second collecting groove 104b. The cooled gas or liquid refrigerant is collected and the gas or liquid refrigerant is continuously discharged to the outside.

前記第1、第2の集結溝104а、104bの幅は、前記外部管200の貫通孔201の径よりも広く形成されることが望ましい。   It is preferable that the first and second collecting grooves 104a and 104b are formed wider than the diameter of the through hole 201 of the outer pipe 200.

前記第1、第2の集結溝104а、104bは、半球状、楕円状、または、多角形状のいずれか1つで形成される。   The first and second collecting grooves 104a and 104b are formed in any one of a hemispherical shape, an elliptical shape, and a polygonal shape.

前記第1、第2の集結溝104а、104bの外面には、複数の突起103’が突出形成されており、前記第1の集結溝104аに集結する気体又は液体冷媒が前記突起103’に連続衝突し、熱交換の作用後に前記螺旋溝102に供給されて、冷却効率が上昇し、前記第2の集結溝104bに集結する冷却した気体又は液体冷媒が、前記第2の集結溝104bで前記突起103’に衝突することで連続冷却され、外部に排出される。   A plurality of protrusions 103 ′ are formed to protrude from the outer surfaces of the first and second collecting grooves 104 a and 104 b, and a gas or liquid refrigerant concentrating on the first collecting grooves 104 a continues to the protrusion 103 ′. The cooled gas or liquid refrigerant that collides and is supplied to the spiral groove 102 after the heat exchange action to increase the cooling efficiency and collects in the second collecting groove 104b is transferred to the second collecting groove 104b. By colliding with the protrusion 103 ′, it is continuously cooled and discharged to the outside.

前記内部管100は、前記螺旋溝102に気体又は液体冷媒を経由させることで、前記螺旋溝102に沿って形成された複数の突起103に、気体又は液体冷媒が衝突して、迅速な冷却が行われる。   The internal tube 100 allows gas or liquid refrigerant to collide with a plurality of protrusions 103 formed along the spiral groove 102 by passing gas or liquid refrigerant through the spiral groove 102, thereby enabling rapid cooling. Done.

前記内部管100は、前記螺旋溝102間の間隔が狭くなることにより、前記螺旋溝102を経由して冷却される気体又は液体冷媒の温度変化の速度が上昇し、前記螺旋溝102の間隔が広くなることにより、冷却される気体又は液体冷媒の変化速度が低下する。   In the inner tube 100, the space between the spiral grooves 102 is narrowed, so that the speed of the temperature change of the gas or liquid refrigerant cooled via the spiral grooves 102 is increased. By widening, the changing speed of the gas or liquid refrigerant to be cooled decreases.

前記螺旋溝102の間隔と角度は、ユーザの選択により、調節・製作することができる。   The interval and angle of the spiral groove 102 can be adjusted and manufactured according to the user's selection.

前記内部管100は、気体と熱交換作用される前記突起103、103’の数により、気体又は液体冷媒の温度低下の速度が変化し、前記突起103、103’の数は、ユーザの選択により、調節・製作することができる。   In the inner pipe 100, the rate of temperature drop of the gas or liquid refrigerant changes depending on the number of the protrusions 103 and 103 ′ that exchange heat with gas, and the number of the protrusions 103 and 103 ′ depends on the user's selection. Can be adjusted and manufactured.

前記内部管100の突起103、103’は、円状、半球状、楕円状、または、多角形状のいずれか1つで形成される。   The protrusions 103 and 103 ′ of the inner tube 100 are formed in any one of a circular shape, a hemispherical shape, an elliptical shape, and a polygonal shape.

前記内部管100は、アルミニウム、銅、または銅合金のいずれか1つの材質で形成される。   The inner tube 100 is made of any one material of aluminum, copper, or copper alloy.

前記内部管100は、熱伝導率に優れた銅材質で製作することが望ましく、ユーザの選択により、非鉄金属材質で製作することもできる。   The inner tube 100 is preferably made of a copper material having excellent thermal conductivity, and can be made of a non-ferrous metal material at the user's option.

外部管200は、中空状で、前記内部管100の外面に密着結合され、外周面の両端部分に、前記内部管100の第1、第2の集結溝104а、104bに連通する貫通孔201が形成される。   The outer tube 200 is hollow and is tightly coupled to the outer surface of the inner tube 100, and through holes 201 communicating with the first and second collecting grooves 104a, 104b of the inner tube 100 are formed at both ends of the outer peripheral surface. It is formed.

前記外部管200は、前記内部管100の外面に密着結合され、前記螺旋溝102に、気体又は液体冷媒が経由するようにガイドする。   The outer pipe 200 is tightly coupled to the outer surface of the inner pipe 100 and guides the gas or liquid refrigerant through the spiral groove 102.

前記外部管200は、いずれか1つの前記貫通孔201を通じて、気体又は液体冷媒を供給され、他の1つの前記貫通孔201を通じて、気体又は液体冷媒を排出するようになる。   The outer pipe 200 is supplied with gas or liquid refrigerant through any one of the through holes 201 and discharges gas or liquid refrigerant through the other through hole 201.

前記外部管200は、前記貫通孔201に、入口パイプ301と、出口パイプ302とが、それぞれ設けられる。   In the outer pipe 200, an inlet pipe 301 and an outlet pipe 302 are provided in the through hole 201, respectively.

前記外部管200は、外面が平坦な円筒状で形成することが望ましい。   The outer tube 200 is preferably formed in a cylindrical shape with a flat outer surface.

前記外部管200は、貫通孔201の径が、前記内部管100の第1、第2の集結溝104а、104bの幅よりも小さく形成される。   The outer pipe 200 is formed such that the diameter of the through hole 201 is smaller than the width of the first and second collecting grooves 104a, 104b of the inner pipe 100.

前記のように構成される本発明による二重管型熱交換パイプは、下記のように使用され、本発明では、二重管型熱交換パイプが車両用冷却装置に設置された状態を例として、説明する。   The double-tube heat exchange pipe according to the present invention configured as described above is used as follows. In the present invention, the double-tube heat exchange pipe is installed in the vehicle cooling device as an example. ,explain.

まず、気体を圧縮する圧縮機400が設けられており、前記圧縮機400と連結され、前記圧縮機400から吐出された気体を凝縮するコンデンサ500が設けられており、前記コンデンサ500と連結され、前記コンデンサ500から吐出された高温高圧の液体冷媒を供給される外部管200が形成され、前記外部管200の内に設けられ、前記外部管200に供給される液体冷媒を、外面に形成された螺旋溝102に経由させる内部管100が設けられており、前記外部管200と連結され、前記内部管100の螺旋溝102を通じて排出された液体冷媒を減圧・膨脹させて、低温低圧の気体冷媒に変化させる膨脹バルブ600が設けられており、前記膨脹バルブ600と連結され、低温低圧の気体冷媒を低温低圧の液体冷媒に変化させる蒸発機700が設けられており、前記蒸発機700が流路孔101に連通するように前記内部管100の一端と連結され、他端が前記圧縮機400と連結される構造である。この際、冷却装置を作動させると、前記圧縮機400から吐出された高温高圧の気体が前記コンデンサ500に供給され、前記コンデンサ500で凝縮された高温高圧の液体冷媒が前記外部管200に供給され、前記外部管200に供給された高温高圧の液体冷媒が前記内部管100の螺旋溝102を経由するようになるが、複数の突起103に連続衝突して迅速に冷却され、冷却した液体冷媒が、前記膨脹バルブ600で低温低圧の気体冷媒に変化して前記蒸発機700に供給され、前記蒸発機700から吐出される低温低圧の液体冷媒が、前記内部管100の流路孔101を通じて、圧縮機400に再移送されるともに、前記内部管100が冷却され、冷却した前記内部管100の螺旋溝102を経由する液体冷媒が、熱交換作用で冷却される。   First, a compressor 400 for compressing a gas is provided, connected to the compressor 400, a capacitor 500 for condensing the gas discharged from the compressor 400 is provided, connected to the capacitor 500, An external pipe 200 to which high-temperature and high-pressure liquid refrigerant discharged from the capacitor 500 is supplied is formed. The external pipe 200 is provided in the external pipe 200, and the liquid refrigerant supplied to the external pipe 200 is formed on the outer surface. An internal pipe 100 is provided to pass through the spiral groove 102, and is connected to the external pipe 200. The liquid refrigerant discharged through the spiral groove 102 of the internal pipe 100 is decompressed and expanded to form a low-temperature and low-pressure gas refrigerant. An expansion valve 600 to be changed is provided, and is connected to the expansion valve 600 to change the low-temperature and low-pressure gas refrigerant into the low-temperature and low-pressure liquid refrigerant. Evaporator 700 is provided, the evaporator 700 is connected to one end of the inner tube 100 so as to communicate with the passage hole 101, a structure in which the other end is connected to the compressor 400. At this time, when the cooling device is operated, the high-temperature and high-pressure gas discharged from the compressor 400 is supplied to the condenser 500, and the high-temperature and high-pressure liquid refrigerant condensed by the condenser 500 is supplied to the external pipe 200. The high-temperature and high-pressure liquid refrigerant supplied to the outer pipe 200 passes through the spiral groove 102 of the inner pipe 100, but is continuously cooled against a plurality of protrusions 103, and the cooled liquid refrigerant is The expansion valve 600 changes to a low-temperature and low-pressure gas refrigerant and is supplied to the evaporator 700, and the low-temperature and low-pressure liquid refrigerant discharged from the evaporator 700 is compressed through the channel hole 101 of the inner pipe 100. The internal pipe 100 is cooled and the liquid refrigerant passing through the spiral groove 102 of the cooled internal pipe 100 is cooled by heat exchange. It is.

前記の過程は、循環繰り返して、車両の室内側に送風される空気が冷却される。   The above process is repeated to cool the air blown into the vehicle interior.

また、前記蒸発機700に流入した低温低圧の気体冷媒は、車両の室内側に送風される空気と熱交換されて蒸発すると共に、冷媒の蒸発潜熱による吸熱作用で、車両室内に送風される空気を冷却させ、低温低圧の冷媒に変化する。   Further, the low-temperature and low-pressure gaseous refrigerant that has flowed into the evaporator 700 evaporates by exchanging heat with the air blown into the vehicle interior, and the air blown into the vehicle cabin due to the endothermic action of the latent heat of vaporization of the refrigerant. Is cooled to change to a low-temperature and low-pressure refrigerant.

また、前記外部管200を介して供給される液体冷媒は、前記内部管100の第1の集結溝104аに集結され、前記第1の集結溝104аに集結した液体冷媒は、前記螺旋溝102に供給されて、熱交換作用で冷却され、前記螺旋溝102を経由して冷却された液体冷媒は、前記第2の集結溝104bに集結され、前記第2の集結溝104bに集結した液体冷媒は、前記外部管200の貫通孔201を通じて、前記膨脹バルブ600に供給される。   Further, the liquid refrigerant supplied through the outer pipe 200 is collected in the first collecting groove 104a of the inner pipe 100, and the liquid refrigerant collected in the first collecting groove 104a is transferred to the spiral groove 102. The liquid refrigerant supplied and cooled by the heat exchange action and cooled through the spiral groove 102 is concentrated in the second concentration groove 104b, and the liquid refrigerant concentrated in the second concentration groove 104b is The expansion valve 600 is supplied through the through hole 201 of the outer pipe 200.

前記第1、第2の集結溝104а、104bに集結する液体冷媒により、前記螺旋溝102及び前記膨脹バルブ600に供給される液体冷媒の流れが連続される。   The flow of the liquid refrigerant supplied to the spiral groove 102 and the expansion valve 600 is continued by the liquid refrigerant collected in the first and second collecting grooves 104a and 104b.

また、前記第1、第2の集結溝104а、104bの形状は、ユーザの選択により、半球状、楕円状、又は、多角形状のいずれか1つで形成することができる。   The first and second collecting grooves 104a, 104b can be formed in any one of a hemispherical shape, an elliptical shape, or a polygonal shape according to the user's selection.

一方、前記内部管100は、前記第1、第2の集結溝104а、104bの幅が、前記外部管200の貫通孔201の径よりも広く形成されることにより、液体冷媒が集結する量が増加して、前記螺旋溝102と前記膨脹バルブ600に供給される液体冷媒の供給量が低下することを防止する。   On the other hand, the inner pipe 100 is formed such that the width of the first and second collecting grooves 104a, 104b is wider than the diameter of the through hole 201 of the outer pipe 200, so that the amount of liquid refrigerant to collect is reduced. The increase in the amount of liquid refrigerant supplied to the spiral groove 102 and the expansion valve 600 is prevented from decreasing.

前記第1、第2の集結溝104а、104bの外面には、複数の突起103’が突出形成されており、前記第1の集結溝104аに集結する気体又は液体冷媒が、前記突起103’に連続衝突して、熱交換の作用後、前記螺旋溝102に供給されて冷却効率が上昇し、前記第2の集結溝104bに集結する冷却した気体又は液体冷媒が、前記第2の集結溝104bで前記突起103’に衝突されることで、連続冷却して、外部に排出される。   A plurality of protrusions 103 ′ are formed on the outer surfaces of the first and second collecting grooves 104 a, 104 b, and gas or liquid refrigerant that collects in the first collecting grooves 104 a is formed on the protrusions 103 ′. After the continuous collision and heat exchange, the cooling efficiency is increased by being supplied to the spiral groove 102, and the cooled gas or liquid refrigerant concentrated in the second concentration groove 104b is transferred to the second concentration groove 104b. By being collided with the protrusion 103 ′, it is continuously cooled and discharged to the outside.

また、前記内部管100の螺旋溝102の間隔が狭くなることにより、前記螺旋溝102を経由して冷却される気体又は液体冷媒の温度変化の速度が上昇し、前記螺旋溝102の間隔が広くなるにより、冷却される気体又は液体冷媒の変化速度が低下する。   In addition, since the interval between the spiral grooves 102 of the inner tube 100 is narrowed, the speed of the temperature change of the gas or liquid refrigerant cooled via the spiral groove 102 is increased, and the interval between the spiral grooves 102 is widened. As a result, the changing speed of the cooled gas or liquid refrigerant is reduced.

前記螺旋溝102の間隔と角度は、ユーザの選択により、調節・製作することができる。   The interval and angle of the spiral groove 102 can be adjusted and manufactured according to the user's selection.

また、 前記内部管100は、気体と熱交換作用される前記突起103、103’の数により、気体又は液体冷媒の温度低下の速度が変化し、前記突起103、103’の数は、ユーザの選択により、調節・製作することができ、前記突起103、103’は、円状、半球状、楕円状、または、多角形状のいずれか1つで形成することができる。   In addition, the inner pipe 100 changes the speed of temperature drop of the gas or liquid refrigerant according to the number of the protrusions 103 and 103 ′ that exchange heat with gas, and the number of the protrusions 103 and 103 ′ The protrusions 103 and 103 ′ can be formed in any one of a circular shape, a hemispherical shape, an elliptical shape, and a polygonal shape.

前記突起103、103’の形状により、気体又は液体冷媒の温度低下の速度が変化することがある。   Depending on the shape of the protrusions 103 and 103 ′, the rate of temperature drop of the gas or liquid refrigerant may change.

また、前記内部管100は、アルミニウム、銅、または銅合金のいずれか1つの材質で形成することができ、熱伝導率に優れた銅材質で製作することが望ましく、 ユーザの選択により、非鉄金属材質で製作することもできる。   The inner tube 100 may be made of any one material of aluminum, copper, or copper alloy, and is preferably made of a copper material having excellent heat conductivity. It can also be made of material.

ついで、前記外部管200は、前記内部管100の外面に密着結合されて、前記螺旋溝102に気体又は液体冷媒が経由するようにガイドし、いずれか一つの前記貫通孔201を通じて、気体又は液体冷媒を供給され、他の一つの前記貫通孔201を通じて、気体又は液体冷媒を排出するようになる。   Next, the outer tube 200 is tightly coupled to the outer surface of the inner tube 100 and guides the gas or liquid refrigerant to pass through the spiral groove 102, and the gas or liquid passes through any one of the through holes 201. The refrigerant is supplied, and the gas or liquid refrigerant is discharged through the other one of the through holes 201.

この際、それぞれの前記貫通孔201には、入口パイプ301と、出口パイプ302とがそれぞれ設けられ、液体冷媒の供給及び排出をガイドするのが望ましい。   At this time, it is preferable that an inlet pipe 301 and an outlet pipe 302 are provided in each of the through holes 201 to guide the supply and discharge of the liquid refrigerant.

また、前記外部管200は、外面が平坦な円筒状に形成することが望ましい。   The outer pipe 200 is preferably formed in a cylindrical shape with a flat outer surface.

更に、前記外部管200は、貫通孔201の径が、前記内部管100の第1、第2の集結溝104а、104bの幅よりも小さく形成される。   Further, the outer pipe 200 is formed such that the diameter of the through hole 201 is smaller than the width of the first and second collecting grooves 104a, 104b of the inner pipe 100.

本発明では、二重管型熱交換パイプが車両用冷却装置に設置されて使用される状態を例にして説明しており、これにより、内部管100の流路孔101に低温低圧の液体冷媒が通過され、内部管100の螺旋溝102に高温高圧の液体冷媒が通過されて、液体冷媒が冷却されることとして記述したが、冷却装置により、液体冷媒の代わりに、気体冷媒が供給されて使用することができる。   In the present invention, a state in which a double-pipe heat exchange pipe is installed and used in a vehicular cooling device is described as an example, whereby a low-temperature and low-pressure liquid refrigerant is provided in the flow passage hole 101 of the inner pipe 100. Is passed, and the high-temperature and high-pressure liquid refrigerant is passed through the spiral groove 102 of the inner tube 100 to cool the liquid refrigerant. However, instead of the liquid refrigerant, the gas refrigerant is supplied by the cooling device. Can be used.

前記のように、外部管200の貫通孔201を通じて供給される気体又は液体冷媒が、内部管100の第1の集結溝104аに集結して螺旋溝102に供給され、螺旋溝102を経由して冷却された気体又は液体冷媒が、第2の集結溝104bに集結して外部管200の貫通孔201を通じて排出される構造は、内部管100の第1、第2の集結溝104а、104bに気体又は液体冷媒が集結して、連続供給及び排出が容易であり、外部管200の外面に気体又は液体冷媒が通過する貫通孔201パンチング(punching)作業で製作が簡便であり、外部管200に別の加工が不要であって、体積面積が最小化する。   As described above, the gas or liquid refrigerant supplied through the through-hole 201 of the outer pipe 200 is collected in the first collecting groove 104a of the inner pipe 100 and supplied to the spiral groove 102, and passes through the spiral groove 102. The structure in which the cooled gas or liquid refrigerant is collected in the second collecting groove 104b and discharged through the through hole 201 of the outer pipe 200 is the gas in the first and second collecting grooves 104a, 104b of the inner pipe 100. Alternatively, liquid refrigerant is concentrated and easy to supply and discharge continuously, and through-hole 201 punching work in which gas or liquid refrigerant passes through the outer surface of the outer pipe 200 is easy to manufacture. This process is unnecessary and the volume area is minimized.

以上で説明した本発明による冷却管は、前記した実施形態に限定されるものでなく、以下の特許請求の範囲で請求する本発明の要旨を逸脱することなく、本発明が属する分野で通常の知識を有する者であれば、誰でも多様に変更して実施可能な範囲まで本発明の技術的精神があると言える。   The cooling pipe according to the present invention described above is not limited to the above-described embodiment, and is ordinary in the field to which the present invention belongs without departing from the gist of the present invention claimed in the following claims. It can be said that anyone who has knowledge has the technical spirit of the present invention to the extent that various modifications can be made.

100 : 内部管
101 : 流路孔
102 : 螺旋溝
103、103' : 突起
104а : 第1の集結溝
104b : 第2の集結溝
200 : 外部管
201 : 貫通孔
301 : 入口パイプ
302 : 出口パイプ
400 : 圧縮機
500 : コンデンサ
600 : 膨脹バルブ
700 : 蒸発機
100: Inner pipe 101: Channel hole 102: Spiral groove 103, 103 ': Projection 104a: First collecting groove 104b: Second collecting groove 200: Outer pipe 201: Through hole 301: Inlet pipe 302: Outlet pipe 400 : Compressor 500: Condenser 600: Expansion valve 700: Evaporator

Claims (6)

中空状で、気体又は液体冷媒が通過する流路孔101が形成され、外面に長手方向に沿って、所定の間隔で離隔した環状の螺旋溝102が形成され、前記螺旋溝102に沿って、複数の突起103が突出形成され、前記螺旋溝102の両端に、気体又は液体冷媒が集結する第1、第2の集結溝104а、104bが形成されている内部管100と、
中空状で、前記内部管100の外面に密着結合され、外周面の両端部分に、前記内部管100の第1、第2の集結溝104а、104bに連通する貫通孔201が形成されている外部管200とから構成されることを特徴とする二重管型熱交換パイプ。
A hollow channel hole 101 through which gas or liquid refrigerant passes is formed, an annular spiral groove 102 is formed on the outer surface along the longitudinal direction and spaced apart at a predetermined interval, and along the spiral groove 102, An inner pipe 100 in which a plurality of protrusions 103 are formed to protrude, and first and second collecting grooves 104a and 104b in which gas or liquid refrigerant is collected are formed at both ends of the spiral groove 102;
It is hollow, is tightly coupled to the outer surface of the inner tube 100, and has through holes 201 communicating with the first and second collecting grooves 104a, 104b of the inner tube 100 at both end portions of the outer peripheral surface. A double-tube heat exchange pipe comprising the tube 200.
前記外部管200の貫通孔201の径が、前記内部管100の第1、第2の集結溝104а、104bの幅よりも小さく形成されていることを特徴とする請求項1に記載の二重管型熱交換パイプ。   2. The double according to claim 1, wherein the diameter of the through hole 201 of the outer pipe 200 is smaller than the width of the first and second collecting grooves 104 a and 104 b of the inner pipe 100. Tubular heat exchange pipe. 前記第1、第2の集結溝104а、104bの外面には、複数の突起103’が突出形成されていることを特徴とする請求項1に記載の二重管型熱交換パイプ。   2. The double-tube heat exchange pipe according to claim 1, wherein a plurality of protrusions 103 ′ are formed on the outer surfaces of the first and second collecting grooves 104 a and 104 b. 前記内部管100は、アルミニウム、銅、または銅合金のいずれか1つの材質で形成されていることを特徴とする請求項1に記載の二重管型熱交換パイプ。   The double pipe heat exchange pipe according to claim 1, wherein the inner pipe (100) is made of any one material of aluminum, copper, or copper alloy. 前記第1、第2の集結溝104а、104bは、半球状、楕円状、または、多角形状のいずれか1つで形成されていることを特徴とする請求項1に記載の二重管型熱交換パイプ。   2. The double tube heat according to claim 1, wherein the first and second collecting grooves 104 a and 104 b are formed in any one of a hemispherical shape, an elliptical shape, and a polygonal shape. Replacement pipe. 前記突起103、103’は、円状、半球状、楕円状、または、多角形状のいずれか1つで形成されていることを特徴とする請求項1又は3に記載の二重管型熱交換パイプ。   The double-tube heat exchange according to claim 1 or 3, wherein the protrusions 103 and 103 'are formed in any one of a circular shape, a hemispherical shape, an elliptical shape, and a polygonal shape. pipe.
JP2012160258A 2011-07-26 2012-07-19 Double pipe-type heat exchanging pipe Pending JP2013029303A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR2020110006795U KR200459178Y1 (en) 2011-07-26 2011-07-26 Double tube type heat exchange pipe
KR20-2011-0006795 2011-07-26

Publications (1)

Publication Number Publication Date
JP2013029303A true JP2013029303A (en) 2013-02-07

Family

ID=46578928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012160258A Pending JP2013029303A (en) 2011-07-26 2012-07-19 Double pipe-type heat exchanging pipe

Country Status (6)

Country Link
US (1) US20130025834A1 (en)
EP (1) EP2551622A3 (en)
JP (1) JP2013029303A (en)
KR (1) KR200459178Y1 (en)
CN (1) CN102901382A (en)
RU (1) RU2012129344A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016174826A1 (en) * 2015-04-28 2016-11-03 パナソニックIpマネジメント株式会社 Heat exchanger and refrigeration cycle device using same
JP2022008718A (en) * 2016-03-25 2022-01-14 コンチテック フルイド コリア リミテッド Double pipe for heat exchange

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101600296B1 (en) * 2010-08-18 2016-03-07 한온시스템 주식회사 Double pipe heat exchanger and manufacturing method the same
EP2941600B1 (en) * 2013-01-02 2018-04-25 NyCast AB Pressure vessel and method of heating a flowing pressurised gas
GB2523107A (en) * 2014-02-12 2015-08-19 Eaton Ind Ip Gmbh & Co Kg Heat exchanger
WO2016011090A1 (en) * 2014-07-14 2016-01-21 Toma Hani Evaporator with heat exchange
EP3305394B1 (en) * 2015-05-29 2022-09-07 Sumitomo Chemical Company, Ltd. Spiral-type acidic-gas-separation-membrane element, acidic-gas-separation-membrane module, and acidic gas separation device
CN106556266B (en) * 2015-09-25 2019-04-23 格朗吉斯铝业(上海)有限公司 Aluminium heater, its manufacturing method and the refrigeration system including this aluminium heater
KR101797177B1 (en) * 2016-03-21 2017-12-01 주식회사 평산 Double pipe heat exchanger method of maufacturing and the double pipe
KR101797176B1 (en) * 2016-03-21 2017-11-13 주식회사 평산 Dual pipe structure for internal heat exchanger
CN209910459U (en) * 2016-05-20 2020-01-07 康蒂泰克管件韩国有限公司 Heat exchange double-layer sleeve
KR101759110B1 (en) * 2016-08-10 2017-07-19 주식회사 화승알앤에이 Double pipe heat exchanger and method for manufacturing the same
KR20190001142A (en) * 2017-06-26 2019-01-04 엘지전자 주식회사 Heat Exchanger
KR102403434B1 (en) * 2017-08-18 2022-05-27 조한용 Double wall pipe
EP3679312A4 (en) * 2017-09-06 2021-03-31 Contitech Fluid Korea Ltd. Double tube for heat exchange
CN113758060B (en) * 2021-08-23 2022-12-23 深圳英创能源环境技术有限公司 Evaporative condenser for refrigerating system
KR20230090547A (en) 2021-12-15 2023-06-22 주식회사 신영씨티씨 Heat exchange pipe

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2445115A (en) * 1944-04-07 1948-07-13 Us Agriculture Heat exchanger
US2706620A (en) * 1951-04-28 1955-04-19 Graves Stambaugh Corp Heat exchanger
FR1252033A (en) * 1959-04-28 1961-01-27 Rough Surface Heat Exchanger Tubes
US3326283A (en) * 1965-03-29 1967-06-20 Trane Co Heat transfer surface
US3847185A (en) * 1972-04-10 1974-11-12 G Raevsky Pipeline for use under conditions of considerable variations in temperature
US4086959A (en) * 1976-07-19 1978-05-02 Uop Inc. Automotive oil cooler
US4154294A (en) * 1976-09-09 1979-05-15 Union Carbide Corporation Enhanced condensation heat transfer device and method
US4258782A (en) * 1979-06-28 1981-03-31 Modine Manufacturing Company Heat exchanger having liquid turbulator
US4381819A (en) * 1979-09-14 1983-05-03 Paolino Ralph J Flue heat reclaimer
JPS56159513A (en) 1980-05-14 1981-12-08 Nippon Radiator Co Ltd Manufacture of oil cooler incorporated in radiator
JPS6189497A (en) * 1984-10-05 1986-05-07 Hitachi Ltd Heat transfer pipe
JPH0161566U (en) * 1987-10-05 1989-04-19
US5333682A (en) * 1993-09-13 1994-08-02 Carrier Corporation Heat exchanger tube
JP3303599B2 (en) * 1995-05-17 2002-07-22 松下電器産業株式会社 Heat transfer tube
US6468669B1 (en) * 1999-05-03 2002-10-22 General Electric Company Article having turbulation and method of providing turbulation on an article
US7293603B2 (en) * 2004-11-06 2007-11-13 Cox Richard D Plastic oil cooler
DE102005052974B4 (en) * 2004-11-09 2013-03-21 Denso Corporation Double walled pipe
DE102005063359B4 (en) * 2004-11-09 2010-10-07 DENSO CORPORATION, Kariya-shi Double wall pipe for refrigeration unit of air conditioning system in vehicles, has helical grooves extending along longitudinal direction of inner pipe which is inserted into outer pipe
JP4628858B2 (en) * 2005-05-09 2011-02-09 株式会社デンソー Double tube manufacturing method and apparatus
US7413004B2 (en) * 2006-02-27 2008-08-19 Okonski Sr John E High-efficiency enhanced boiler
US8356658B2 (en) * 2006-07-27 2013-01-22 General Electric Company Heat transfer enhancing system and method for fabricating heat transfer device
JP2009216285A (en) * 2008-03-10 2009-09-24 Showa Denko Kk Double-tube heat exchanger
US8156754B2 (en) * 2009-03-13 2012-04-17 Denso International America, Inc. Carbon dioxide refrigerant-coolant heat exchanger
KR101544882B1 (en) * 2009-05-28 2015-08-17 한온시스템 주식회사 Cooling system of air conditioner for vehicle
JP2011012909A (en) * 2009-07-03 2011-01-20 Hitachi Cable Ltd Heat transfer tube and heat exchanger
KR101303050B1 (en) * 2009-07-15 2013-09-04 주식회사 포스코 Apparatus for inspecting surfaces and method for inspecting surfaces using it
KR20110064874A (en) * 2009-12-09 2011-06-15 정현호 Dual spiral pipe heat exchange system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016174826A1 (en) * 2015-04-28 2016-11-03 パナソニックIpマネジメント株式会社 Heat exchanger and refrigeration cycle device using same
JP2022008718A (en) * 2016-03-25 2022-01-14 コンチテック フルイド コリア リミテッド Double pipe for heat exchange

Also Published As

Publication number Publication date
RU2012129344A (en) 2014-01-20
CN102901382A (en) 2013-01-30
EP2551622A2 (en) 2013-01-30
EP2551622A3 (en) 2014-06-11
US20130025834A1 (en) 2013-01-31
KR200459178Y1 (en) 2012-03-22

Similar Documents

Publication Publication Date Title
JP2013029303A (en) Double pipe-type heat exchanging pipe
JP6639729B2 (en) Internal heat exchanger double tube structure of air conditioning system using alternative refrigerant
CN103822411B (en) Heat exchange dual pipe
JP2005308384A (en) Ejector cycle
US20110308270A1 (en) Dual air conditioner for vehicle
CN201368619Y (en) Heat-pump type parallel flow heat exchanger
US20140352352A1 (en) Outdoor heat exchanger and air conditioner
US20140020865A1 (en) Heat exchanger unit
KR101894440B1 (en) External heat exchanger of heat pump system for vehicle
KR20090029891A (en) Dual pipe type internal heat exchanger
CN103277942B (en) Parallel flow heat exchanger and air conditioner
KR101877355B1 (en) Evaporator
KR20100020795A (en) Dual pipe type internal heat exchanger
CN207842599U (en) A kind of automotive air-conditioning system and its coaxial heat exchanger
JP2014035169A (en) Intermediate heat exchanger
US20220003465A1 (en) Internal heat exchanger of heat exchange system
US10890386B2 (en) Evaporator unit including distributor tube and method thereof
KR102111312B1 (en) Cooling system of air conditioner for vehicle
KR101982587B1 (en) Evaporator
CN218884117U (en) Indoor machine of air conditioner
CN102878718B (en) Cooling and heating type variable frequency air conditioner of pure electric bus
KR20230090547A (en) Heat exchange pipe
KR20120132707A (en) Double pipe type heat exchanger
CN102305501A (en) Nozzle throttling device of air conditioner
KR101734273B1 (en) Condenser for vehicle