JP2013028508A - Method for manufacturing optical fiber - Google Patents

Method for manufacturing optical fiber Download PDF

Info

Publication number
JP2013028508A
JP2013028508A JP2011166513A JP2011166513A JP2013028508A JP 2013028508 A JP2013028508 A JP 2013028508A JP 2011166513 A JP2011166513 A JP 2011166513A JP 2011166513 A JP2011166513 A JP 2011166513A JP 2013028508 A JP2013028508 A JP 2013028508A
Authority
JP
Japan
Prior art keywords
tension
coating
optical fiber
post
target post
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011166513A
Other languages
Japanese (ja)
Other versions
JP5712848B2 (en
Inventor
Toru Yamada
徹 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011166513A priority Critical patent/JP5712848B2/en
Publication of JP2013028508A publication Critical patent/JP2013028508A/en
Application granted granted Critical
Publication of JP5712848B2 publication Critical patent/JP5712848B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/0253Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/72Controlling or measuring the draw furnace temperature

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an optical fiber capable of manufacturing a high-quality optical fiber by suppressing excellently fluctuation of a cut-off wavelength.SOLUTION: This method includes: a cut-off wavelength prediction processing of predicting longitudinal direction fluctuation of the cut-off wavelength based on a refractive index distribution in the longitudinal direction of an optical fiber preform 2 which is measured beforehand; a target post-coating tension determination processing of determining a target post-coating tension so that the cut-off wavelength of a drawn glass fiber 3 becomes constant in the longitudinal direction based on a relation between drawing tension and the cut-off wavelength and on a relation between the drawing tension and tension after coating; and a furnace temperature control processing of controlling a furnace temperature of a drawing furnace 12 so that the post-coating tension agrees with the target post-coating tension, wherein, when performing the target post-coating tension determination processing, a target post-coating tension correction processing of correcting the target post-coating tension is performed based on fluctuation of take-up resistance of the optical fiber 4.

Description

本発明は、光ファイバ母材を線引きして光ファイバを製造する光ファイバの製造方法に関する。   The present invention relates to an optical fiber manufacturing method for manufacturing an optical fiber by drawing an optical fiber preform.

光ファイバを製造する際、光ファイバの特性の一つであるカットオフ波長が光ファイバの長手方向において略均一になることが求められている。
光ファイバの製造方法として、光ファイバ母材の径方向の屈折率分布の長手方向変動を予め測定しておき、線引きの際に、ガラスファイバに生じている線引張力を測定しながら、線引張力の測定結果と光ファイバ母材の屈折率分布の長手方向変動の測定結果とに基づいて、ガラスファイバの径方向の屈折率分布の長手方向変動を抑制しつつガラスファイバのカットオフ波長が所定の値になるようにガラスファイバの線引張力を制御することが知られている(例えば、特許文献1参照)。
When manufacturing an optical fiber, it is required that the cutoff wavelength, which is one of the characteristics of the optical fiber, be substantially uniform in the longitudinal direction of the optical fiber.
As an optical fiber manufacturing method, the longitudinal variation of the refractive index distribution in the radial direction of the optical fiber preform is measured in advance, and the drawing tension is measured while measuring the drawing tension generated in the glass fiber during drawing. Based on the measurement result of the force and the measurement result of the longitudinal variation of the refractive index distribution of the optical fiber preform, the cutoff wavelength of the glass fiber is predetermined while suppressing the longitudinal variation of the refractive index distribution in the radial direction of the glass fiber. It is known to control the drawing tension of the glass fiber so that the value becomes (for example, see Patent Document 1).

また、光ファイバ母材の長手方向に複数箇所で、予め線引き後の光ファイバのカットオフ波長推定値を求めておき、線引き後の光ファイバのカットオフ波長が長手方向に所定の値になるように、線引き時にカットオフ波長推定値の変動に応じて長手方向に順次線引き張力を制御して線引きを行うことも知られている(例えば、特許文献2参照)。   In addition, an estimated cutoff wavelength value of the optical fiber after drawing is obtained in advance at a plurality of locations in the longitudinal direction of the optical fiber preform so that the cutoff wavelength of the optical fiber after drawing becomes a predetermined value in the longitudinal direction. In addition, it is also known that the drawing is performed by sequentially controlling the drawing tension in the longitudinal direction in accordance with the fluctuation of the estimated cutoff wavelength at the time of drawing (for example, see Patent Document 2).

特開2005−314118号公報JP-A-2005-314118 特開平8−217481号公報Japanese Patent Laid-Open No. 8-217481

従来では、光ファイバ母材の長手方向の屈折率分布を測定し、屈折率分布よりカットオフ波長の長手方向変動を推定し、予め測定されている線引張力とカットオフ波長との相関関係、及び線引張力と被覆後張力との相関関係から適切な線引張力と被覆後張力を決定し、ガラスファイバのカットオフ波長が所定の一定値になるように制御している。   Conventionally, the refractive index distribution in the longitudinal direction of the optical fiber preform is measured, the longitudinal variation of the cutoff wavelength is estimated from the refractive index distribution, and the correlation between the pre-measured drawing tension and the cutoff wavelength, In addition, an appropriate drawing tension and post-coating tension are determined from the correlation between the drawing tension and the post-coating tension, and the cut-off wavelength of the glass fiber is controlled to be a predetermined constant value.

線引きしたガラスファイバに樹脂を被覆して光ファイバを製造する場合、外乱等により被覆径に変動が生じることがある。すると、光ファイバの外周面の面積も変動するため、被覆後張力が同じでも、ガラスファイバの線引張力が変動してしまう。また、実際に線引きされたガラスファイバからカットオフ波長を測定し、被覆後張力にフィードバックすると、カットオフ波長のデータが得られるまでの間に、ガイドローラや張力測定ローラなどの各種ローラが劣化することによってローラ抵抗が変動することがある。すると、被覆後張力と線引張力との関係にずれが生じることがあるが、このずれに基づいて被覆後張力をすぐに修正することは困難であった。   When an optical fiber is manufactured by coating a drawn glass fiber with a resin, the coating diameter may vary due to disturbance or the like. Then, since the area of the outer peripheral surface of the optical fiber also varies, the drawing tension of the glass fiber varies even if the post-coating tension is the same. Also, if the cut-off wavelength is measured from the actually drawn glass fiber and fed back to the post-coating tension, various rollers such as the guide roller and the tension measuring roller will deteriorate before the cut-off wavelength data is obtained. As a result, the roller resistance may vary. Then, a deviation may occur in the relationship between the post-coating tension and the linear tensile force, but it was difficult to immediately correct the post-coating tension based on this deviation.

そして、上記のような被覆径の変動や各種ローラにおけるローラ抵抗の変動などの引き取り抵抗の変動によって被覆後張力が変動するため、これを一定になるように制御すると、線引張力が変動することになり、その結果カットオフ波長も変動し、品質低下を招いてしまうおそれがある。   And, since the tension after coating changes due to fluctuations in take-up resistance such as fluctuations in the coating diameter as described above and fluctuations in roller resistance in various rollers, if this is controlled to be constant, the wire tension will change. As a result, the cut-off wavelength also fluctuates, and there is a possibility that the quality is deteriorated.

本発明の目的は、カットオフ波長の変動を良好に抑制して高品質な光ファイバを製造することが可能な光ファイバの製造方法を提供することにある。   The objective of this invention is providing the manufacturing method of the optical fiber which can suppress the fluctuation | variation of a cutoff wavelength favorably and can manufacture a high quality optical fiber.

上記課題を解決することのできる本発明の光ファイバの製造方法は、線引炉で加熱され溶融された光ファイバ母材からガラスファイバを線引きし、前記ガラスファイバの周囲に樹脂を被覆して光ファイバを製造する光ファイバの製造方法であって、
予め測定した前記光ファイバ母材の長手方向の屈折率分布の変動に基づいてカットオフ波長の長手方向変動を予測するカットオフ波長予測処理と、
前記ガラスファイバの張力である線引張力と前記カットオフ波長との関係及び前記線引張力と前記光ファイバの張力である被覆後張力との関係に基づいて、線引き後の前記ガラスファイバのカットオフ波長が長手方向に一定となるような目標被覆後張力を決定する目標被覆後張力決定処理と、
前記被覆後張力が前記目標被覆後張力となるように、前記線引炉の炉温を制御する炉温制御処理とを含み、
前記目標被覆後張力決定処理の際に、前記光ファイバの引き取り抵抗の変動に基づいて前記目標被覆後張力を補正する目標被覆後張力補正処理を行うことを特徴とする。
The method for producing an optical fiber of the present invention that can solve the above-mentioned problems is that a glass fiber is drawn from an optical fiber preform heated and melted in a drawing furnace, and a resin is coated around the glass fiber to produce an optical fiber. An optical fiber manufacturing method for manufacturing a fiber, comprising:
A cutoff wavelength prediction process for predicting a longitudinal variation in the cutoff wavelength based on a variation in the refractive index distribution in the longitudinal direction of the optical fiber preform measured in advance;
Based on the relationship between the drawing tension, which is the tension of the glass fiber, and the cutoff wavelength, and the relationship between the drawing tension, and the post-coating tension, which is the tension of the optical fiber, the cutoff of the glass fiber after drawing. A target post-coating tension determination process for determining a target post-coating tension such that the wavelength is constant in the longitudinal direction;
Furnace temperature control processing for controlling the furnace temperature of the drawing furnace such that the post-coating tension becomes the target post-coating tension,
In the target post-coating tension determination process, a target post-coating tension correction process for correcting the target post-coating tension based on a change in the take-up resistance of the optical fiber is performed.

本発明の光ファイバの製造方法において、
前記目標被覆後張力を補正した補正目標被覆後張力P(g)を、
P=P0+A×(D−D0)
(但し、P0:補正前目標被覆後張力(g)、A:定数(g/μm)、D:光ファイバの被覆径(μm)、D0:基準被覆径(μm))
からなる補正式から導き出すことが好ましい。
In the method for producing an optical fiber of the present invention,
A corrected target post-coating tension P (g) obtained by correcting the target post-coating tension is:
P = P0 + A × (D−D0)
(However, P0: tension after target coating before correction (g), A: constant (g / μm), D: coating diameter of optical fiber (μm), D0: reference coating diameter (μm))
It is preferable to derive from a correction formula consisting of

本発明の光ファイバの製造方法において、
前記光ファイバを最初にガイドする直下ローラの上流側の上流側張力F1及び前記直下ローラの下流側で前記被覆後張力を測定する張力測定ローラの下流側の下流側張力F2を測定し、
前記目標被覆後張力を補正した補正目標被覆後張力T(g)を、
T=T0+Δ(F2−F1)
(但し、T0:補正前目標被覆後張力(g)、Δ(F2−F1):F2とF1の差分値の前回測定時からの変動(g))
からなる補正式から導き出すことが好ましい。
In the method for producing an optical fiber of the present invention,
An upstream tension F1 on the upstream side of the immediately below roller that guides the optical fiber first, and a downstream tension F2 on the downstream side of the tension measuring roller that measures the post-coating tension on the downstream side of the immediately below roller,
A corrected target post-coating tension T (g) obtained by correcting the target post-coating tension,
T = T0 + Δ (F2-F1)
(However, T0: target post-correction tension (g), Δ (F2-F1): variation (g) of difference value between F2 and F1 from the previous measurement)
It is preferable to derive from a correction formula consisting of

本発明によれば、光ファイバの被覆径の変動や光ファイバを下流側へ導く各種のローラのローラ抵抗の変動等によって変動する光ファイバの引き取り抵抗の変動に基づいて目標被覆後張力をきめ細かく補正することができる。これにより、カットオフ波長の変動を良好に抑制して高品質な光ファイバを製造することができる。   According to the present invention, the target post-coating tension is finely corrected on the basis of fluctuations in the take-up resistance of the optical fiber that fluctuate due to fluctuations in the coating diameter of the optical fiber and fluctuations in the roller resistance of various rollers that guide the optical fiber downstream. can do. Thereby, the fluctuation | variation of a cutoff wavelength can be suppressed favorably and a high quality optical fiber can be manufactured.

本発明に係る光ファイバの製造方法を実施する装置の一実施形態を示す概略構成図である。It is a schematic block diagram which shows one Embodiment of the apparatus which implements the manufacturing method of the optical fiber which concerns on this invention. 光ファイバの被覆後張力とガラスファイバのカットオフ波長との相関関係を示すグラフである。It is a graph which shows the correlation with the post-coating tension | tensile_strength of an optical fiber, and the cutoff wavelength of a glass fiber. 光ファイバの被覆径と被覆後張力との相関関係を示すグラフである。It is a graph which shows the correlation with the coating diameter of an optical fiber, and the tension | tensile_strength after a coating.

以下、本発明に係る光ファイバの製造方法の実施の形態の例を、図面を参照して説明する。
まず、本発明の光ファイバの製造方法によって光ファイバを製造する製造装置の例について説明する。
図1に示すように、製造装置1は、光ファイバ母材2を線引きしてガラスファイバ3を形成するとともに、そのガラスファイバ3の外周に樹脂を被覆して光ファイバ4を製造する装置である。
Hereinafter, an example of an embodiment of an optical fiber manufacturing method according to the present invention will be described with reference to the drawings.
First, the example of the manufacturing apparatus which manufactures an optical fiber with the manufacturing method of the optical fiber of this invention is demonstrated.
As shown in FIG. 1, the manufacturing apparatus 1 is an apparatus for manufacturing an optical fiber 4 by drawing an optical fiber preform 2 to form a glass fiber 3 and coating the outer periphery of the glass fiber 3 with a resin. .

製造装置1は、母材送り装置11、線引炉12、樹脂塗布装置13、紫外線照射装置15,16、直下ローラ17、キャプスタン18、ガイドローラ26,27、ダンサローラ19及び巻取りドラム20を有する。
母材送り装置11は、光ファイバ母材2を保持し、光ファイバ母材2を線引炉12内に配置する。線引炉12は、光ファイバ母材2の一端部を加熱して溶融させるための装置である。光ファイバ母材2の溶融した一端側を下方に線引きすることで、ガラスファイバ3が形成される。
The manufacturing apparatus 1 includes a base material feeding device 11, a drawing furnace 12, a resin coating device 13, ultraviolet irradiation devices 15 and 16, a direct roller 17, a capstan 18, guide rollers 26 and 27, a dancer roller 19 and a winding drum 20. Have.
The preform feeding device 11 holds the optical fiber preform 2 and places the optical fiber preform 2 in the drawing furnace 12. The drawing furnace 12 is an apparatus for heating and melting one end of the optical fiber preform 2. The glass fiber 3 is formed by drawing the melted one end side of the optical fiber preform 2 downward.

樹脂塗布装置13及び紫外線照射装置15,16は、ガラスファイバ3の線引方向において線引炉12の下流に配置されている。樹脂塗布装置13は、ガラスファイバ3の外周に紫外線硬化型の樹脂を塗布する。紫外線照射装置15,16は、樹脂塗布装置13によって塗布された樹脂に紫外線を照射して硬化させて第1,第2の被覆層を形成し、光ファイバ4を形成する。なお、ここでは、2層の被覆層となる樹脂を一つの樹脂塗布装置で塗布するデュアル方式を例に説明したが、一層ずつ各々の樹脂塗布装置で塗布して硬化させるタンデム方式であってもよい。   The resin coating device 13 and the ultraviolet irradiation devices 15 and 16 are disposed downstream of the drawing furnace 12 in the drawing direction of the glass fiber 3. The resin coating device 13 applies an ultraviolet curable resin to the outer periphery of the glass fiber 3. The ultraviolet irradiation devices 15, 16 form the first and second coating layers by irradiating the resin applied by the resin coating device 13 with ultraviolet rays, and form the optical fiber 4. In addition, although the dual system which apply | coats the resin used as a 2 layer coating layer with one resin application apparatus was demonstrated to the example here, even if it is a tandem system applied and cured one by one with each resin application apparatus Good.

キャプスタン18は、ベルト18aとローラ18bとを含んで構成されており、ベルト18aをローラ18bに押し付け、ローラ18bを回転させ、ベルト18aとローラ18bとの間に光ファイバ4を挟みこむことにより光ファイバ4を引き取ってダンサローラ19及び巻取りドラム20に送り出す。キャプスタン18に引き取られる光ファイバ4は、光ファイバ4を最初にガイドする直下ローラ17により走行方向が変えられる。キャプスタン18から送り出される光ファイバ4は、ダンサローラ19で弛みが取り除かれ、巻取りドラム20に巻き取られる。   The capstan 18 includes a belt 18a and a roller 18b. The capstan 18 presses the belt 18a against the roller 18b, rotates the roller 18b, and sandwiches the optical fiber 4 between the belt 18a and the roller 18b. The optical fiber 4 is taken out and sent to the dancer roller 19 and the winding drum 20. The traveling direction of the optical fiber 4 taken by the capstan 18 is changed by a roller 17 that guides the optical fiber 4 first. The slack of the optical fiber 4 sent out from the capstan 18 is removed by the dancer roller 19, and is taken up by the take-up drum 20.

製造装置1は、ガラスファイバ外径測定装置21、線引張力測定装置22、被覆後外径測定装置23及び被覆後張力測定装置24を更に有する。ガラスファイバ外径測定装置21は、線引炉12と樹脂塗布装置13との間に配置されており、ガラスファイバ3の外径を測定する。被覆後外径測定装置23は、紫外線照射装置16と直下ローラ17との間に配置されており、被覆後の光ファイバ4の外径を測定する。ガラスファイバ外径測定装置21及び被覆後外径測定装置23は、例えば、レーザ光を用いた非接触式の測定装置である。   The manufacturing apparatus 1 further includes a glass fiber outer diameter measuring device 21, a wire tension measuring device 22, a post-coating outer diameter measuring device 23, and a post-coating tension measuring device 24. The glass fiber outer diameter measuring device 21 is disposed between the drawing furnace 12 and the resin coating device 13 and measures the outer diameter of the glass fiber 3. The coated outer diameter measuring device 23 is disposed between the ultraviolet irradiation device 16 and the roller 17 directly below, and measures the outer diameter of the coated optical fiber 4. The glass fiber outer diameter measuring device 21 and the coated outer diameter measuring device 23 are, for example, non-contact type measuring devices using laser light.

線引張力測定装置22は、ガラスファイバ外径測定装置21と樹脂塗布装置13との間に配置されている。線引張力測定装置22は、線引きの際にガラスファイバ3に生じている線引張力を測定する。   The drawing tension measuring device 22 is disposed between the glass fiber outer diameter measuring device 21 and the resin coating device 13. The drawing tension measuring device 22 measures the drawing tension generated in the glass fiber 3 during drawing.

線引張力測定装置22には、一般的に接触式張力計が用いられることが多い。接触式張力計は、安価であり、測定精度が高いという利点がある一方、ガラスファイバ3に傷をつけることになるので、一般的に良好部を製造している間は、張力を測定することができない。接触式張力計以外にも、ガラスファイバ3の側方から円偏光の光を照射し、偏光状態の変化から、ガラスファイバ3に生じている線引張力の大きさを測定する方法もあるが、接触式張力計に比べ高価であり、測定精度も落ちる。このため、線引張力を直接測定する代わりに、以下で述べる被覆後張力を測定し、この被覆後張力から線引張力を求めることが多い。本実施形態では、線引張力測定装置22として、接触式張力計、光学式張力計のどちらを使用してもよい。   In general, a contact tension meter is often used for the wire tension measuring device 22. While the contact-type tensiometer has the advantages of being inexpensive and having high measurement accuracy, it will damage the glass fiber 3, so that the tension should generally be measured while a good part is being manufactured. I can't. In addition to the contact tension meter, there is a method of irradiating circularly polarized light from the side of the glass fiber 3 and measuring the magnitude of the drawing tension generated in the glass fiber 3 from the change in the polarization state. It is more expensive than a contact tension meter, and the measurement accuracy is also reduced. For this reason, instead of directly measuring the drawing tension, the post-coating tension described below is often measured, and the drawing tension is often obtained from the post-coating tension. In the present embodiment, either a contact tension meter or an optical tension meter may be used as the line tension force measuring device 22.

被覆後張力測定装置24は、直下ローラ17とキャプスタン18との間に配置されている。被覆後張力測定装置24は、被覆後の光ファイバ4に生じている被覆後張力を測定する。
被覆後張力測定装置24は、光ファイバ4に接触された張力測定ローラ24aを備えている。被覆後張力測定装置24は、張力測定ローラ24aの中心軸に取り付けられており、光ファイバ4に生じている張力によって張力測定ローラ24aに加えられる力を測定する。そして、この力から光ファイバ4に生じている被覆後張力を求める。この被覆後張力は、線引張力に応じて変化し、線引張力と被覆後張力との間には比例関係が成立する。
The post-coating tension measuring device 24 is disposed between the direct roller 17 and the capstan 18. The post-coating tension measuring device 24 measures post-coating tension generated in the optical fiber 4 after coating.
The post-coating tension measuring device 24 includes a tension measuring roller 24 a that is in contact with the optical fiber 4. The post-coating tension measuring device 24 is attached to the central axis of the tension measuring roller 24 a and measures the force applied to the tension measuring roller 24 a by the tension generated in the optical fiber 4. Then, the post-coating tension generated in the optical fiber 4 is obtained from this force. This post-coating tension changes according to the drawing tension, and a proportional relationship is established between the drawing tension and the post-coating tension.

製造装置1は、制御装置25を更に有する。制御装置25は、線引炉12、ガラスファイバ外径測定装置21、線引張力測定装置22、被覆後外径測定装置23、被覆後張力測定装置24及びキャプスタン18等に電気的に接続されている。制御装置25には、ガラスファイバ外径測定装置21、線引張力測定装置22、被覆後外径測定装置23、被覆後張力測定装置24等の測定結果が入力される。   The manufacturing apparatus 1 further includes a control device 25. The control device 25 is electrically connected to the drawing furnace 12, the glass fiber outer diameter measuring device 21, the drawing tension measuring device 22, the coated outer diameter measuring device 23, the coated tension measuring device 24, the capstan 18, and the like. ing. Measurement results of the glass fiber outer diameter measuring device 21, the wire tension measuring device 22, the coated outer diameter measuring device 23, the coated tension measuring device 24, and the like are input to the control device 25.

次に、光ファイバ4を製造する場合について説明する。
まず、線引き開始前に、光ファイバ母材2の長手方向の複数箇所において径方向の屈折率分布をプリフォームアナライザで予め測定しておく。例えば、光ファイバ母材2の屈折率分布は測定箇所によってわずかに異なり、これにより光ファイバ母材2の屈折率分布の長手方向の変動がわかる。この測定の結果を制御装置25に入力する。
Next, the case where the optical fiber 4 is manufactured will be described.
First, before starting drawing, the refractive index distribution in the radial direction is measured in advance with a preform analyzer at a plurality of locations in the longitudinal direction of the optical fiber preform 2. For example, the refractive index distribution of the optical fiber preform 2 is slightly different depending on the measurement location, so that the longitudinal variation of the refractive index distribution of the optical fiber preform 2 can be seen. The result of this measurement is input to the control device 25.

次に、光ファイバ母材2を母材送り装置11に設置し、線引炉12内に配置する。線引炉12によって光ファイバ母材2の一端が加熱されて溶融され、引っ張られてガラスファイバ3が線引きされて形成される。   Next, the optical fiber preform 2 is installed in the preform feeder 11 and placed in the drawing furnace 12. One end of the optical fiber preform 2 is heated and melted by the drawing furnace 12 to be drawn and the glass fiber 3 is drawn.

線引きが開始されると、ガラスファイバ3の外径がガラスファイバ外径測定装置21で測定される。線引張力測定装置22が接触式張力計である場合は上記のように良好部の製造時には通常使用しないが、その後、必要に応じ、線引張力測定装置22によって線引張力を測定し、必要に応じて制御装置25に入力される。   When the drawing is started, the outer diameter of the glass fiber 3 is measured by the glass fiber outer diameter measuring device 21. When the wire tension measuring device 22 is a contact-type tension meter, as described above, it is not normally used during the production of a good part. Thereafter, the wire tension measuring device 22 measures the wire tension force as necessary, and is necessary. Is input to the control device 25 accordingly.

線引張力測定装置22を通過したガラスファイバ3は、樹脂塗布装置13及び紫外線照射装置15,16を順に通過する。これにより、ガラスファイバ3上に被覆層が形成され、ガラスファイバ3上に2層の被覆層を有する光ファイバ4が得られる。この光ファイバ4の外径が被覆後外径測定装置23で測定される。被覆後外径測定装置23を通過した光ファイバ4は、直下ローラ17、被覆後張力測定装置24、キャプスタン18、ガイドローラ26,27及びダンサローラ19を経て巻取りドラム20に巻き取られる。   The glass fiber 3 that has passed through the drawing tension measuring device 22 passes through the resin coating device 13 and the ultraviolet irradiation devices 15 and 16 in this order. Thereby, a coating layer is formed on the glass fiber 3, and the optical fiber 4 having two coating layers on the glass fiber 3 is obtained. The outer diameter of the optical fiber 4 is measured by the outer diameter measuring device 23 after coating. The optical fiber 4 that has passed through the outer diameter measuring device 23 after coating is wound around the winding drum 20 via the roller 17 directly below, the tension measuring device 24 after coating, the capstan 18, the guide rollers 26 and 27, and the dancer roller 19.

上記のように、光ファイバ母材2からガラスファイバ3を線引きして光ファイバ4を製造する際に、制御装置25は、予め測定しておいた光ファイバ母材2の長手方向の屈折率分布の変動に基づいて、カットオフ波長の長手方向変動を予測するカットオフ波長予測処理を行う。   As described above, when the optical fiber 4 is manufactured by drawing the glass fiber 3 from the optical fiber preform 2, the control device 25 calculates the refractive index distribution in the longitudinal direction of the optical fiber preform 2 that has been measured in advance. A cutoff wavelength prediction process for predicting the longitudinal variation of the cutoff wavelength is performed based on the fluctuations of.

また、制御装置25は、線引きされるガラスファイバ3の線引張力とカットオフ波長との関係、及び線引張力と光ファイバ4に押し付けられる張力測定ローラ24aの荷重から求められる光ファイバ4の張力である被覆後張力との関係に基づいて、線引き後のカットオフ波長が長手方向に一定となるような目標被覆後張力を決定する目標被覆後張力決定処理を行う。   The control device 25 also determines the tension of the optical fiber 4 determined from the relationship between the drawing tension of the glass fiber 3 to be drawn and the cutoff wavelength, and the drawing tension and the load of the tension measuring roller 24 a pressed against the optical fiber 4. Based on the relationship with the post-coating tension, the target post-coating tension determining process is performed to determine the target post-coating tension so that the cut-off wavelength after drawing is constant in the longitudinal direction.

そして、制御装置25は、被覆後張力が目標被覆後張力となるように、線引炉12の炉温を制御する炉温制御処理を行う。   And the control apparatus 25 performs the furnace temperature control process which controls the furnace temperature of the drawing furnace 12 so that the post-coating tension becomes the target post-coating tension.

また、制御装置25は、目標被覆後張力決定処理の際に、張力測定ローラ24a及び直下ローラ17のそれぞれのローラ抵抗の変動及び光ファイバ4の被覆径の変動による光ファイバ4の引き取り抵抗の変動に基づいて目標被覆後張力を補正する目標被覆後張力補正処理を行う。   Further, the control device 25 changes the take-up resistance of the optical fiber 4 due to the fluctuations of the respective roller resistances of the tension measuring roller 24a and the direct roller 17 and the coating diameter of the optical fiber 4 during the target post-coating tension determination process. Based on the above, a target post-covering tension correction process for correcting the target post-covering tension is performed.

この目標被覆後張力補正処理において、まず被覆径の変動による光ファイバ4の引き取り抵抗の変動を補正するため、制御装置25は、次式(1)に基づいて目標被覆後張力を補正した補正目標被覆後張力Pを算出する。   In this target post-coating tension correction process, first, in order to correct the change in the take-up resistance of the optical fiber 4 due to the change in the coating diameter, the control device 25 corrects the target post-coating tension based on the following equation (1). The post-coating tension P is calculated.

P=P0+A×(D−D0)…(1)
但し、
P0:補正前目標被覆後張力(g)
A:被覆径変動と被覆後張力との相関から導き出される定数(g/μm)
D:光ファイバの被覆径(μm)
D0:基準被覆径(μm)
P = P0 + A × (D−D0) (1)
However,
P0: Tension after target covering before correction (g)
A: Constant (g / μm) derived from the correlation between coating diameter variation and post-coating tension
D: coating diameter of optical fiber (μm)
D0: Reference coating diameter (μm)

制御装置25は、被覆後張力が、算出した補正目標被覆後張力Pとなるように、線引炉12の炉温を制御する。そして、例えば光ファイバ4の被覆径が単に増加しただけの場合は、目標被覆後張力が高くなるため、結果的に線引炉12の炉温を変化させず(被覆径による補正をしない場合には、被覆後張力が高くなるので、炉温を下げる制御を行うことになる)、光ファイバ4の被覆径が単に減少しただけの場合は、目標被覆後張力が低くなるため、同様に炉温を変化させないことになる。これにより、光ファイバ4の被覆径の変動による線引張力の変動を抑え、カットオフ波長への影響を極力抑えることができる。   The control device 25 controls the furnace temperature of the drawing furnace 12 so that the post-coating tension becomes the calculated corrected target post-coating tension P. For example, when the coating diameter of the optical fiber 4 simply increases, the target post-coating tension increases, and as a result, the furnace temperature of the drawing furnace 12 is not changed (when correction by the coating diameter is not performed). Since the post-coating tension increases, the furnace temperature is controlled to be lowered.) When the coating diameter of the optical fiber 4 is simply reduced, the target post-coating tension is lowered, and the furnace temperature is similarly set. Will not be changed. Thereby, the fluctuation | variation of the drawing tension by the fluctuation | variation of the coating diameter of the optical fiber 4 can be suppressed, and the influence on a cutoff wavelength can be suppressed as much as possible.

次に、制御装置25は、ハンディタイプの張力計などで測定した直下ローラ17の上流側の上流側張力F1及び張力測定ローラ24aの下流側の下流張力F2により、次式(2)に基づいて、これらの上流側張力F1及び下流側張力F2から目標被覆後張力を補正した補正目標被覆後張力Tを算出する。   Next, the control device 25 uses the upstream tension F1 on the upstream side of the direct roller 17 and the downstream tension F2 on the downstream side of the tension measuring roller 24a measured by a handy type tension meter or the like based on the following equation (2). Then, a corrected target post-covering tension T obtained by correcting the target post-covering tension is calculated from the upstream tension F1 and the downstream tension F2.

T=T0+Δ(F2−F1)…(2)
但し、
T0:補正前目標被覆後張力(g)
Δ(F2−F1):F2とF1の差分値の前回測定時からの変動(g)
T = T0 + Δ (F2-F1) (2)
However,
T0: Tension after target covering before correction (g)
Δ (F2−F1): Fluctuation of difference value between F2 and F1 from the previous measurement (g)

制御装置25は、被覆後張力が、算出した補正目標被覆後張力Tとなるように、線引炉12の炉温を制御する。そして、例えばローラ抵抗が増加した場合は、目標被覆後張力を予め高く設定し、ローラ抵抗が減少した場合は、目標被覆後張力を予め低く設定しておく。これにより、直下ローラ17や張力測定ローラ24aなどの各種のローラのローラ抵抗の変動による線引張力の変動を抑え、カットオフ波長への影響を極力抑えることができる。   The control device 25 controls the furnace temperature of the drawing furnace 12 so that the post-coating tension becomes the calculated corrected target post-coating tension T. For example, when the roller resistance increases, the target post-covering tension is set high in advance, and when the roller resistance decreases, the target post-covering tension is set low in advance. Thereby, the fluctuation | variation of the line tension force by the fluctuation | variation of roller resistance of various rollers, such as the direct roller 17 and the tension | tensile_strength measurement roller 24a, can be suppressed, and the influence on a cutoff wavelength can be suppressed as much as possible.

このように、上記実施形態に係る光ファイバの製造方法によれば、光ファイバ4の被覆径の変動または直下ローラ17や張力測定ローラ24aなどの各種のローラのローラ抵抗の変動等によって変動する光ファイバ4の引き取り抵抗に基づいて目標被覆後張力をきめ細かく補正することができる。これにより、カットオフ波長の変動を良好に抑制して高品質な光ファイバ4を製造することができる。   As described above, according to the method of manufacturing an optical fiber according to the above-described embodiment, the light that fluctuates due to a change in the coating diameter of the optical fiber 4 or a change in roller resistance of various rollers such as the direct roller 17 and the tension measurement roller 24a. The target post-coating tension can be finely corrected based on the take-up resistance of the fiber 4. Thereby, the fluctuation | variation of a cutoff wavelength can be suppressed favorably and the high quality optical fiber 4 can be manufactured.

次に、補正処理を行って光ファイバ4を製造する場合の具体例について説明する。
(光ファイバの製造)
母材径100mmの光ファイバ母材2を用い、ガラスファイバ3の目標径を125μm、光ファイバ4の基準被覆径(目標径)を245μmとし、線速1000m/分でガラスファイバ3を線引きして光ファイバ4を製造する。
Next, a specific example when the correction process is performed to manufacture the optical fiber 4 will be described.
(Manufacture of optical fiber)
Using the optical fiber preform 2 with a base material diameter of 100 mm, the target diameter of the glass fiber 3 is 125 μm, the reference coating diameter (target diameter) of the optical fiber 4 is 245 μm, and the glass fiber 3 is drawn at a linear speed of 1000 m / min. The optical fiber 4 is manufactured.

上記のように光ファイバ4を製造すると、被覆後張力と線引張力との関係は、一般的に略比例関係となる。
また、カットオフ波長λcと被覆後張力との関係も、図2に示すように、一般的に略比例関係となる。
When the optical fiber 4 is manufactured as described above, the relationship between the post-coating tension and the drawing tension is generally approximately proportional.
Further, the relationship between the cutoff wavelength λc and the post-coating tension is generally approximately proportional as shown in FIG.

図3は、光ファイバ4の被覆径と被覆後張力との関係を示している。図3に示すように、線引張力が同じであっても、目標径245μmに対して、被覆径が細くなれば、被覆後張力も小さくなり、被覆径が太くなれば、被覆後張力も大きくなる。   FIG. 3 shows the relationship between the coating diameter of the optical fiber 4 and the post-coating tension. As shown in FIG. 3, even if the drawing tension is the same, if the coating diameter becomes smaller with respect to the target diameter of 245 μm, the post-coating tension becomes small, and if the coating diameter becomes large, the post-coating tension becomes large. Become.

(補正の仕方)
被覆径と被覆後張力との相関については、図3に示すように一般的に略比例関係となる。図3の場合、被覆径が1μm変動すると被覆後張力も1g変動しており、被覆径変動と被覆後張力との相関から導き出される定数Aは、略A=1(g/μm)となる。
(How to correct)
The correlation between the coating diameter and the post-coating tension is generally approximately proportional as shown in FIG. In the case of FIG. 3, when the coating diameter varies by 1 μm, the post-coating tension also varies by 1 g, and the constant A derived from the correlation between the coating diameter variation and the post-coating tension is approximately A = 1 (g / μm).

これにより、例えば補正前目標被覆後張力P0を200gとして基準被覆径D0が245μmの光ファイバ4を製造する際に、実際の被覆後張力が210gで被覆径Dが244μmであった場合、補正目標被覆後張力Pは、上式(1)に基づいて、
P=P0+A(D−D0)
=200+1×(244−245)
=199g
となる。
Thus, for example, when the optical fiber 4 having a reference coating diameter D0 of 245 μm is manufactured with a target post-correction tension P0 of 200 g, if the actual post-coating tension is 210 g and the coating diameter D is 244 μm, the correction target The post-coating tension P is based on the above equation (1).
P = P0 + A (D-D0)
= 200 + 1 × (244-245)
= 199g
It becomes.

そして、制御装置25は、目標被覆後張力を200gから199gの補正目標被覆後張力Pに補正し、実際の被覆後張力210gに対して11g減少させた被覆後張力199gになるように、線引炉12の炉温を変更する。   Then, the control device 25 corrects the target post-coating tension from 200 g to a corrected target post-coating tension P of 199 g, and draws the tension so that the post-coating tension is reduced by 11 g to the actual post-coating tension 210 g. The furnace temperature of the furnace 12 is changed.

また、制御装置25は、直下ローラ17及び張力測定ローラ24aの変動分を、そのまま目標被覆後張力に反映させる補正を行う。   Further, the control device 25 corrects the fluctuations of the roller 17 and the tension measuring roller 24a as they are in the target post-covering tension.

ここで、直下ローラ17の上流側の上流側張力F1及び張力測定ローラ24aの下流側の下流側張力F2の測定値を、前回の測定値と比較し、その差分値Δ(F2−F1)を求める。   Here, the measured values of the upstream tension F1 on the upstream side of the roller 17 directly below and the downstream tension F2 on the downstream side of the tension measuring roller 24a are compared with the previous measured values, and the difference value Δ (F2−F1) is obtained. Ask.

例えば、上流側張力F1が215gから214gに変動し、下流側張力F2が230gから232gに変動した場合、差分値は、Δ(F2−F1)=(232−230)−(214−215)=2−(−1)=3gとなる。   For example, when the upstream tension F1 varies from 215 g to 214 g and the downstream tension F2 varies from 230 g to 232 g, the difference value is Δ (F2−F1) = (232−230) − (214−215) = 2-(-1) = 3 g.

したがって、この場合、補正前目標被覆後張力T0を200gとすると、補正目標被覆後張力Tは、上式(2)に基づいて、
T=T0+Δ(F2−F1)
=200+3
=203g
となる。
Therefore, in this case, when the pre-correction target post-covering tension T0 is 200 g, the corrected target post-covering tension T is based on the above equation (2).
T = T0 + Δ (F2-F1)
= 200 + 3
= 203g
It becomes.

そして、制御装置25は、目標被覆後張力を、200gから203gの補正目標被覆後張力Tに補正し、線引炉12の炉温を変更する。   Then, the control device 25 corrects the target post-coating tension to a corrected target post-coating tension T of 200 g to 203 g, and changes the furnace temperature of the drawing furnace 12.

(補正後のばらつき)
上記の補正処理を行って光ファイバ4を製造した結果、ガラスファイバ3のカットオフ波長は、非補正時で標準偏差σ=0.0151μmであったものが、本実施形態による補正を行ったことにより、標準偏差σ=0.0078μmとなり、カットオフ波長のばらつきを半減させることができた。
(Variation after correction)
As a result of manufacturing the optical fiber 4 by performing the above correction processing, the cut-off wavelength of the glass fiber 3 was the standard deviation σ = 0.151 μm at the time of non-correction, but was corrected according to this embodiment. As a result, the standard deviation σ was 0.0078 μm, and the variation in the cutoff wavelength could be halved.

2:光ファイバ母材、3:ガラスファイバ、4:光ファイバ、12:線引炉、17:直下ローラ、24a:張力測定ローラ、A:定数、D:被覆径、D0:基準被覆径、F1:上流側張力、F2:下流側張力、P,T:目標被覆後張力、P0:補正前目標被覆後張力、T0:補正前目標被覆後張力、Δ(F2−F1):F2とF1の差分値の前回測定時からの変動 2: optical fiber preform, 3: glass fiber, 4: optical fiber, 12: drawing furnace, 17: roller directly under, 24a: tension measuring roller, A: constant, D: coating diameter, D0: reference coating diameter, F1 : Upstream tension, F2: downstream tension, P, T: target post-cover tension, P0: target post-correction tension before correction, T0: target post-correction tension before correction, Δ (F2-F1): difference between F2 and F1 Change in value since last measurement

Claims (3)

線引炉で加熱され溶融された光ファイバ母材からガラスファイバを線引きし、前記ガラスファイバの周囲に樹脂を被覆して光ファイバを製造する光ファイバの製造方法であって、
予め測定した前記光ファイバ母材の長手方向の屈折率分布の変動に基づいてカットオフ波長の長手方向変動を予測するカットオフ波長予測処理と、
前記ガラスファイバの張力である線引張力と前記カットオフ波長との関係及び前記線引張力と前記光ファイバの張力である被覆後張力との関係に基づいて、線引き後の前記ガラスファイバのカットオフ波長が長手方向に一定となるような目標被覆後張力を決定する目標被覆後張力決定処理と、
前記被覆後張力が前記目標被覆後張力となるように、前記線引炉の炉温を制御する炉温制御処理とを含み、
前記目標被覆後張力決定処理の際に、前記光ファイバの引き取り抵抗の変動に基づいて前記目標被覆後張力を補正する目標被覆後張力補正処理を行うことを特徴とする光ファイバの製造方法。
An optical fiber manufacturing method for manufacturing an optical fiber by drawing a glass fiber from an optical fiber preform heated and melted in a drawing furnace, and coating the resin around the glass fiber,
A cutoff wavelength prediction process for predicting a longitudinal variation in the cutoff wavelength based on a variation in the refractive index distribution in the longitudinal direction of the optical fiber preform measured in advance;
Based on the relationship between the drawing tension, which is the tension of the glass fiber, and the cutoff wavelength, and the relationship between the drawing tension, and the post-coating tension, which is the tension of the optical fiber, the cutoff of the glass fiber after drawing. A target post-coating tension determination process for determining a target post-coating tension such that the wavelength is constant in the longitudinal direction;
Furnace temperature control processing for controlling the furnace temperature of the drawing furnace such that the post-coating tension becomes the target post-coating tension,
A method of manufacturing an optical fiber, comprising performing a target post-coating tension correction process for correcting the target post-coating tension based on a change in take-up resistance of the optical fiber during the target post-coating tension determination process.
請求項1に記載の光ファイバの製造方法であって、
前記目標被覆後張力を補正した補正目標被覆後張力P(g)を、
P=P0+A×(D−D0)
(但し、P0:補正前目標被覆後張力(g)、A:定数(g/μm)、D:光ファイバの被覆径(μm)、D0:基準被覆径(μm))
からなる補正式から導き出すことを特徴とする光ファイバの製造方法。
An optical fiber manufacturing method according to claim 1,
A corrected target post-coating tension P (g) obtained by correcting the target post-coating tension is:
P = P0 + A × (D−D0)
(However, P0: tension after target coating before correction (g), A: constant (g / μm), D: coating diameter of optical fiber (μm), D0: reference coating diameter (μm))
An optical fiber manufacturing method, wherein the optical fiber is derived from a correction formula consisting of:
請求項1または2に記載の光ファイバの製造方法であって、
前記光ファイバを最初にガイドする直下ローラの上流側の上流側張力F1及び前記直下ローラの下流側で前記被覆後張力を測定する張力測定ローラの下流側の下流側張力F2を測定し、
前記目標被覆後張力を補正した補正目標被覆後張力T(g)を、
T=T0+Δ(F2−F1)
(但し、T0:補正前目標被覆後張力(g)、Δ(F2−F1):F2とF1の差分値の前回測定時からの変動(g))
からなる補正式から導き出すことを特徴とする光ファイバの製造方法。
An optical fiber manufacturing method according to claim 1 or 2,
An upstream tension F1 on the upstream side of the immediately below roller that guides the optical fiber first, and a downstream tension F2 on the downstream side of the tension measuring roller that measures the post-coating tension on the downstream side of the immediately below roller,
A corrected target post-coating tension T (g) obtained by correcting the target post-coating tension,
T = T0 + Δ (F2-F1)
(However, T0: target post-correction tension (g), Δ (F2-F1): variation (g) of difference value between F2 and F1 from the previous measurement)
An optical fiber manufacturing method, wherein the optical fiber is derived from a correction formula consisting of:
JP2011166513A 2011-07-29 2011-07-29 Optical fiber manufacturing method Active JP5712848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011166513A JP5712848B2 (en) 2011-07-29 2011-07-29 Optical fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011166513A JP5712848B2 (en) 2011-07-29 2011-07-29 Optical fiber manufacturing method

Publications (2)

Publication Number Publication Date
JP2013028508A true JP2013028508A (en) 2013-02-07
JP5712848B2 JP5712848B2 (en) 2015-05-07

Family

ID=47785933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011166513A Active JP5712848B2 (en) 2011-07-29 2011-07-29 Optical fiber manufacturing method

Country Status (1)

Country Link
JP (1) JP5712848B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113443828A (en) * 2020-03-26 2021-09-28 住友电气工业株式会社 Method for manufacturing optical fiber
US11530157B2 (en) * 2019-05-17 2022-12-20 Corning Incorporated Method of manufacturing an optical fiber using axial tension control to reduce axial variations in optical properties

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02289441A (en) * 1989-04-28 1990-11-29 Fujikura Ltd Production of optical fiber
JPH06107438A (en) * 1992-09-28 1994-04-19 Fujikura Ltd Production of optical fiber for optical-fiber coil
JPH06263471A (en) * 1993-03-11 1994-09-20 Sumitomo Electric Ind Ltd Production of wire-like material body, method and device for measuring coating resistance
JPH08217481A (en) * 1995-02-17 1996-08-27 Fujikura Ltd Production of optical fiber and drawing apparatus
JPH10182181A (en) * 1996-12-18 1998-07-07 Shin Etsu Chem Co Ltd Production of optical fiber
JP2001220167A (en) * 2000-02-01 2001-08-14 Sumitomo Electric Ind Ltd Method for manufacturing optical fiber
JP2005170770A (en) * 2003-12-15 2005-06-30 Sumitomo Electric Ind Ltd Manufacturing method of optical fiber
JP2005314118A (en) * 2004-04-26 2005-11-10 Sumitomo Electric Ind Ltd Drawing method and drawing apparatus
JP2010269971A (en) * 2009-05-21 2010-12-02 Sumitomo Electric Ind Ltd Method for manufacturing optical fiber

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02289441A (en) * 1989-04-28 1990-11-29 Fujikura Ltd Production of optical fiber
JPH06107438A (en) * 1992-09-28 1994-04-19 Fujikura Ltd Production of optical fiber for optical-fiber coil
JPH06263471A (en) * 1993-03-11 1994-09-20 Sumitomo Electric Ind Ltd Production of wire-like material body, method and device for measuring coating resistance
JPH08217481A (en) * 1995-02-17 1996-08-27 Fujikura Ltd Production of optical fiber and drawing apparatus
JPH10182181A (en) * 1996-12-18 1998-07-07 Shin Etsu Chem Co Ltd Production of optical fiber
JP2001220167A (en) * 2000-02-01 2001-08-14 Sumitomo Electric Ind Ltd Method for manufacturing optical fiber
JP2005170770A (en) * 2003-12-15 2005-06-30 Sumitomo Electric Ind Ltd Manufacturing method of optical fiber
JP2005314118A (en) * 2004-04-26 2005-11-10 Sumitomo Electric Ind Ltd Drawing method and drawing apparatus
JP2010269971A (en) * 2009-05-21 2010-12-02 Sumitomo Electric Ind Ltd Method for manufacturing optical fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11530157B2 (en) * 2019-05-17 2022-12-20 Corning Incorporated Method of manufacturing an optical fiber using axial tension control to reduce axial variations in optical properties
CN113443828A (en) * 2020-03-26 2021-09-28 住友电气工业株式会社 Method for manufacturing optical fiber
JP7396158B2 (en) 2020-03-26 2023-12-12 住友電気工業株式会社 Optical fiber manufacturing method
CN113443828B (en) * 2020-03-26 2024-02-13 住友电气工业株式会社 Method for manufacturing optical fiber

Also Published As

Publication number Publication date
JP5712848B2 (en) 2015-05-07

Similar Documents

Publication Publication Date Title
JP5712848B2 (en) Optical fiber manufacturing method
JP5950265B1 (en) Magnetic wire heat treatment apparatus and magnetic wire heat treatment method
JP6031838B2 (en) Optical fiber manufacturing method
JP2018048050A (en) Manufacturing method and manufacturing device of optical fiber
US11577994B2 (en) Optical fiber manufacturing method and manufacturing device
JP2010269971A (en) Method for manufacturing optical fiber
JP5949117B2 (en) Optical fiber manufacturing method
JP2017043527A (en) Drawing tension measuring method and drawing tension measuring device of optical fiber
JP2001215344A (en) Method for manufacturing optical fiber
JP6790694B2 (en) Optical fiber manufacturing method
JP2010145288A (en) Method and device for measuring diameter of void in optical fiber having void, and method and apparatus for manufacturing optical fiber having void
JP5212331B2 (en) Optical fiber manufacturing method and manufacturing apparatus
JP2005314118A (en) Drawing method and drawing apparatus
JP6323199B2 (en) Apparatus and method for manufacturing optical fiber ribbon
CN111480063B (en) Method and device for screening optical fiber core wire, and method for manufacturing optical fiber core wire
JP2013220972A (en) Method for manufacturing optical fiber
JP6664653B2 (en) Apparatus and method for producing rubber sheet material
JP7347185B2 (en) Optical fiber manufacturing method
JP6939659B2 (en) Optical fiber manufacturing method
CN103641335B (en) The method of fibre diameter after twice coating of a kind of control
JP2012171814A (en) Method and apparatus for producing optical fiber
JP2024024846A (en) Optical fiber manufacturing method and optical fiber
WO2023190831A1 (en) Method for producing optical fiber
US20230174408A1 (en) Optical fiber eccentric measurement method and optical fiber manufacturing method
KR101501712B1 (en) Thickness gauge measuring device of calending sheet

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150223

R150 Certificate of patent or registration of utility model

Ref document number: 5712848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250