JP7347185B2 - Optical fiber manufacturing method - Google Patents

Optical fiber manufacturing method Download PDF

Info

Publication number
JP7347185B2
JP7347185B2 JP2019225163A JP2019225163A JP7347185B2 JP 7347185 B2 JP7347185 B2 JP 7347185B2 JP 2019225163 A JP2019225163 A JP 2019225163A JP 2019225163 A JP2019225163 A JP 2019225163A JP 7347185 B2 JP7347185 B2 JP 7347185B2
Authority
JP
Japan
Prior art keywords
resin
coating
optical fiber
temperature
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019225163A
Other languages
Japanese (ja)
Other versions
JP2021095297A (en
Inventor
成樹 越水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2019225163A priority Critical patent/JP7347185B2/en
Priority to CN202011460921.8A priority patent/CN112979154A/en
Publication of JP2021095297A publication Critical patent/JP2021095297A/en
Application granted granted Critical
Publication of JP7347185B2 publication Critical patent/JP7347185B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/105Organic claddings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/1065Multiple coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/12General methods of coating; Devices therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Description

本開示は、光ファイバの製造方法に関する。 The present disclosure relates to a method of manufacturing an optical fiber.

特許文献1は、光ファイバ製造開始時の停止状態から定常線速に至るまでの間、樹脂塗布装置への樹脂供給圧力を増加させることを記載している。線速に対する樹脂供給圧力の関係を、定常線速付近は低線速側より傾きを小さくすることにより、樹脂圧力変動による光ファイバの断線を防止している。
特許文献2は、二酸化ゲルマニウム(GeO)が添加されたコアを含む光ファイバ用の母材を線引きする際の口出し時に、プライマリ樹脂またはセカンダリ樹脂のいずれか一方のみを塗布することを記載している。これにより、光ファイバ内でのルミネセンスによって樹脂が硬化し、樹脂塗布装置のダイスが詰まる問題の発生を抑制している。
Patent Document 1 describes increasing the resin supply pressure to the resin coating device from a stopped state at the start of optical fiber production to a steady linear velocity. By making the relationship between the resin supply pressure and the linear velocity smaller near the steady linear velocity than on the low linear velocity side, breakage of the optical fiber due to resin pressure fluctuations is prevented.
Patent Document 2 describes applying only either a primary resin or a secondary resin at the time of drawing a base material for an optical fiber including a core doped with germanium dioxide (GeO 2 ). There is. This prevents the resin from curing due to luminescence within the optical fiber and clogging the die of the resin coating device.

特開2001-66476号公報Japanese Patent Application Publication No. 2001-66476 特開2003-226556号公報Japanese Patent Application Publication No. 2003-226556

このような光ファイバの製造方法では、線速上昇中にガラスファイバの外周においてプライマリ樹脂の被覆の厚みが増加してセカンダリ樹脂の被覆の厚みが減少する場合がある。この場合には、プライマリ樹脂の被覆が表面に露出して光ファイバの断線を招く恐れがある。 In such an optical fiber manufacturing method, the thickness of the primary resin coating may increase and the thickness of the secondary resin coating may decrease on the outer periphery of the glass fiber while the linear speed increases. In this case, the primary resin coating may be exposed on the surface, leading to breakage of the optical fiber.

そこで、本開示は、光ファイバの断線を防止可能な光ファイバの製造方法を提供することを目的とする。 Therefore, an object of the present disclosure is to provide an optical fiber manufacturing method that can prevent optical fiber breakage.

本開示の一態様に係る光ファイバの製造方法は、
加熱炉において光ファイバ母材を加熱して線引きを行いガラスファイバを形成し、樹脂塗布装置により前記ガラスファイバの周囲に第一被覆樹脂層および前記第一被覆樹脂層の周囲に第二被覆樹脂層を設ける光ファイバの製造方法であって、
前記光ファイバを引き取り装置で引き取るための口出しを行うステップと、
前記口出し後且つ定常線引き前に、前記定常線引き時の線速に至るまで前記線引きの線速を上昇させながら線引きを行うステップと、
製品取りを行う前記定常線引きを行うステップと、
を備え、
前記線速上昇の開始時は、前記第一被覆樹脂層を設ける前記樹脂塗布装置内の樹脂温度を、前記定常線引き時における前記第一被覆樹脂層を設ける前記樹脂塗布装置内の樹脂温度より低くし、
前記線速上昇の途中で、前記第一被覆樹脂層を設ける前記樹脂塗布装置内の樹脂温度を、前記定常線引き時における前記第一被覆樹脂層を設ける前記樹脂塗布装置内の樹脂温度まで上昇させる。
A method for manufacturing an optical fiber according to one aspect of the present disclosure includes:
A glass fiber is formed by heating and drawing an optical fiber base material in a heating furnace, and a first coating resin layer is applied around the glass fiber by a resin coating device, and a second coating resin layer is applied around the first coating resin layer. A method of manufacturing an optical fiber comprising:
making an offer to take over the optical fiber with a take-off device;
After the drawing and before the steady drawing, drawing the line while increasing the line speed of the line drawing until the line speed reaches the line speed during the steady drawing;
a step of performing the steady line drawing for taking the product;
Equipped with
At the start of the increase in the wire speed, the resin temperature in the resin coating device that provides the first coating resin layer is lower than the resin temperature in the resin coating device that provides the first coating resin layer during steady wire drawing. death,
In the middle of the wire speed increase, the resin temperature in the resin coating device in which the first coating resin layer is provided is increased to the resin temperature in the resin coating device in which the first coating resin layer is provided during the steady wire drawing. .

本開示によれば、光ファイバの断線を防止することができる。 According to the present disclosure, disconnection of the optical fiber can be prevented.

図1は、本開示の実施形態に係る光ファイバの製造装置の一例を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing an example of an optical fiber manufacturing apparatus according to an embodiment of the present disclosure. 図2は、樹脂塗布装置の一部を示す概略構成図である。FIG. 2 is a schematic diagram showing a part of the resin coating device. 図3は、一部のセカンダリ樹脂が塗布切れした光ファイバの断面図である。FIG. 3 is a cross-sectional view of an optical fiber in which part of the secondary resin has been applied. 図4は、線速と第一塗布部内の樹脂温度の関係を示す図である。FIG. 4 is a diagram showing the relationship between linear velocity and resin temperature in the first coating section. 図5は、光ファイバの製造装置により製造された光ファイバの断面図である。FIG. 5 is a cross-sectional view of an optical fiber manufactured by the optical fiber manufacturing apparatus.

(本開示の実施形態の説明)
最初に本開示の実施態様を列記して説明する。
本開示の一態様に係る光ファイバの製造方法は、
(1)加熱炉において光ファイバ母材を加熱して線引きを行いガラスファイバを形成し、樹脂塗布装置により前記ガラスファイバの周囲に第一被覆樹脂層および前記第一被覆樹脂層の周囲に第二被覆樹脂層を設ける光ファイバの製造方法であって、
前記光ファイバを引き取り装置で引き取るための口出しを行うステップと、
前記口出し後且つ定常線引き前に、前記定常線引き時の線速に至るまで前記線引きの線速を上昇させながら線引きを行うステップと、
製品取りを行う前記定常線引きを行うステップと、
を備え、
前記線速上昇の開始時は、前記第一被覆樹脂層を設ける前記樹脂塗布装置内の樹脂温度を、前記定常線引き時における前記第一被覆樹脂層を設ける前記樹脂塗布装置内の樹脂温度より低くし、
前記線速上昇の途中で、前記第一被覆樹脂層を設ける前記樹脂塗布装置内の樹脂温度を、前記定常線引き時における前記第一被覆樹脂層を設ける前記樹脂塗布装置内の樹脂温度まで上昇させる。
上記方法によれば、線速が小さい間は、樹脂塗布装置内の樹脂温度を下げて第一被覆樹脂層を構成する第一樹脂の粘度を増加させることで第一被覆樹脂層の外径増加を抑制できる。その結果、第二被覆樹脂層の厚みを確保することができ、光ファイバの断線を防止することができる。
(Description of embodiments of the present disclosure)
First, embodiments of the present disclosure will be listed and described.
A method for manufacturing an optical fiber according to one aspect of the present disclosure includes:
(1) A glass fiber is formed by heating and drawing an optical fiber preform in a heating furnace, and a first coating resin layer is applied around the glass fiber using a resin coating device, and a second coating resin layer is applied around the first coating resin layer using a resin coating device. A method for manufacturing an optical fiber provided with a coating resin layer, the method comprising:
making an offer to take over the optical fiber with a take-off device;
After the drawing and before the steady drawing, drawing the line while increasing the line speed of the line drawing until the line speed reaches the line speed during the steady drawing;
a step of performing the steady line drawing for taking the product;
Equipped with
At the start of the increase in the wire speed, the resin temperature in the resin coating device that provides the first coating resin layer is lower than the resin temperature in the resin coating device that provides the first coating resin layer during steady wire drawing. death,
In the middle of the wire speed increase, the resin temperature in the resin coating device in which the first coating resin layer is provided is increased to the resin temperature in the resin coating device in which the first coating resin layer is provided during the steady wire drawing. .
According to the above method, while the line speed is low, the outer diameter of the first coating resin layer is increased by lowering the resin temperature in the resin coating device and increasing the viscosity of the first resin constituting the first coating resin layer. can be suppressed. As a result, the thickness of the second coating resin layer can be ensured, and breakage of the optical fiber can be prevented.

(2)前記定常線引き時の線速が2000m/分以上であっても良い。
高線速で製品取りを行う場合(すなわち、定常線引き時の線速が高い場合)は、特に口出し終了後、線速を大きく上昇させることになる。このため、第一被覆樹脂層を設ける樹脂塗布装置内の樹脂温度を低線速時と高線速時で同じ樹脂温度とすると第二被覆樹脂層を構成する第二樹脂が塗布されないことがあり、光ファイバの断線が発生することがあった。本開示の態様を適用することにより、定常線引きの線速が高い場合でも線速上昇中に発生する光ファイバの断線を抑制することができる。
(2) The drawing speed during steady drawing may be 2000 m/min or more.
When the product is taken at a high line speed (that is, when the line speed during steady drawing is high), the line speed is significantly increased, especially after finishing drawing. For this reason, if the resin temperature in the resin coating device for forming the first coating resin layer is the same at low and high linear speeds, the second resin constituting the second coating resin layer may not be coated. , optical fiber breakage could occur. By applying the aspect of the present disclosure, even when the drawing speed in steady drawing is high, it is possible to suppress the breakage of the optical fiber that occurs while the drawing speed is increasing.

(3)前記線速上昇の開始時における前記第一被覆樹脂層を設ける前記樹脂塗布装置内の樹脂温度と、前記定常線引き時における前記第一被覆樹脂層を設ける前記樹脂塗布装置内の樹脂温度の差が、5℃以上30℃以下であり、
前記第一被覆樹脂層を設ける前記樹脂塗布装置内の樹脂温度を、前記定常線引き時における前記第一被覆樹脂層を設ける前記樹脂塗布装置内の樹脂温度まで上昇させる際の線速が200m/分以上1500m/分以下であっても良い。
上記方法によれば、この温度範囲とタイミング(線速)で、第一被覆樹脂層を設ける樹脂塗布装置内の樹脂温度を上昇する場合には、より光ファイバの断線を抑制することができる。
(3) Resin temperature in the resin coating device that provides the first coating resin layer at the start of the increase in the linear speed, and resin temperature in the resin coating device that provides the first coating resin layer during steady wire drawing. The difference is 5°C or more and 30°C or less,
A line speed of 200 m/min when the resin temperature in the resin coating device for forming the first coating resin layer is raised to the resin temperature in the resin coating device for forming the first coating resin layer during steady wire drawing. It may be more than 1500 m/min or less.
According to the above method, when the resin temperature in the resin coating device for forming the first coating resin layer is increased within this temperature range and timing (linear speed), it is possible to further suppress the breakage of the optical fiber.

(4)前記ガラスファイバの直径が124μm以上126μm以下であり、前記第二被覆樹脂層の直径が190μm以上210μm以下であっても良い。
被覆樹脂層(第一被覆樹脂層および第二被覆樹脂層)の厚みが小さい光ファイバを製造する際に、第二被覆樹脂層を構成する第二樹脂の塗布切れが起きやすい。このため、本開示の態様を適用することにより、被覆樹脂層の厚みが小さい場合でも線速上昇中に発生する光ファイバの断線を抑制することができる。
(4) The glass fiber may have a diameter of 124 μm or more and 126 μm or less, and the second coating resin layer may have a diameter of 190 μm or more and 210 μm or less.
When manufacturing an optical fiber in which the thickness of the coating resin layer (the first coating resin layer and the second coating resin layer) is small, the second resin constituting the second coating resin layer is likely to break off. Therefore, by applying the aspect of the present disclosure, even when the thickness of the coating resin layer is small, it is possible to suppress the breakage of the optical fiber that occurs during the increase in linear speed.

(本開示の実施形態の詳細)
本開示の実施形態に係る光ファイバの製造方法の具体例を、以下に図面を参照しつつ説明する。
なお、本開示はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
(Details of embodiments of the present disclosure)
A specific example of a method for manufacturing an optical fiber according to an embodiment of the present disclosure will be described below with reference to the drawings.
Note that the present disclosure is not limited to these examples, but is indicated by the scope of the claims, and is intended to include all changes within the meaning and range equivalent to the scope of the claims.

図1は、本開示の実施形態に係る光ファイバの製造装置1の一例を示す概略構成図である。
図1に示すように、光ファイバの製造装置1は、線引炉2と、樹脂塗布装置3と、樹脂硬化装置4と、ガイドローラ5と、引取り部6と、巻取りドラム7と、線引制御装置8と、温度制御装置9とを備えている。なお、本実施形態の光ファイバの製造装置1は、プライマリ樹脂およびセカンダリ樹脂を連続して塗布し、一挙に硬化させるデュアルコーティング方式の製造装置である。
FIG. 1 is a schematic configuration diagram showing an example of an optical fiber manufacturing apparatus 1 according to an embodiment of the present disclosure.
As shown in FIG. 1, the optical fiber manufacturing apparatus 1 includes a drawing furnace 2, a resin coating device 3, a resin curing device 4, a guide roller 5, a take-up section 6, a winding drum 7, It includes a wire drawing control device 8 and a temperature control device 9. Note that the optical fiber manufacturing apparatus 1 of this embodiment is a dual coating type manufacturing apparatus that continuously applies a primary resin and a secondary resin and cures them all at once.

線引炉2は、ヒータにより光ファイバ母材Gの下端部を加熱して軟化させるように構成されている。線引炉2は、加熱炉の一例である。光ファイバ母材Gの下端部は下方に細く引き伸ばされ、引取り部6の張力により線引きが行われてガラスファイバG1が形成される。 The drawing furnace 2 is configured to heat and soften the lower end of the optical fiber preform G using a heater. The drawing furnace 2 is an example of a heating furnace. The lower end of the optical fiber preform G is stretched downward and drawn by the tension of the pulling section 6 to form the glass fiber G1.

樹脂塗布装置3は、ガラスファイバG1の走行方向(図1中の矢印Aの方向)において線引炉2の下流に設けられている。樹脂塗布装置3は、線引きにより形成されたガラスファイバG1の周囲に樹脂を塗布するように構成されている。 The resin coating device 3 is provided downstream of the drawing furnace 2 in the running direction of the glass fiber G1 (direction of arrow A in FIG. 1). The resin coating device 3 is configured to apply resin around the glass fiber G1 formed by drawing.

樹脂塗布装置3は、ガラスファイバG1の走行方向において、上流側に配置された第一塗布部3Aと、下流側に配置された第二塗布部3Bとを備えている。第一塗布部3Aは、プライマリ樹脂(第一樹脂)をガラスファイバG1の周囲に塗布する。第二塗布部3Bは、ガラスファイバG1の周囲に塗布されたプライマリ樹脂の周囲にセカンダリ樹脂(第二樹脂)を塗布する。 The resin coating device 3 includes a first coating section 3A disposed on the upstream side and a second coating section 3B disposed on the downstream side in the running direction of the glass fiber G1. The first application section 3A applies primary resin (first resin) around the glass fiber G1. The second application section 3B applies a secondary resin (second resin) around the primary resin applied around the glass fiber G1.

樹脂硬化装置4は、ガラスファイバG1の走行方向において樹脂塗布装置3の下流に設けられている。樹脂硬化装置4は、樹脂塗布装置3によりガラスファイバG1に塗布された樹脂を硬化させるように構成されている。樹脂硬化装置4は、例えば、紫外線照射装置であり、紫外線を照射することにより樹脂を硬化させる。樹脂が硬化することにより形成された光ファイバG2は、ガイドローラ5および引取り部6を経由して巻取りドラム7に巻き取られる。 The resin curing device 4 is provided downstream of the resin coating device 3 in the running direction of the glass fiber G1. The resin curing device 4 is configured to harden the resin applied to the glass fiber G1 by the resin coating device 3. The resin curing device 4 is, for example, an ultraviolet irradiation device, and cures the resin by irradiating the resin with ultraviolet rays. The optical fiber G2 formed by hardening the resin is wound onto a winding drum 7 via a guide roller 5 and a winding section 6.

線引制御装置8は、所望の線引きの速度(以下、線速と称する)になるように線引条件(ヒータの加熱温度、光ファイバ母材Gの送り速度、引取り部6の引取り速度、等)を制御するように構成されている。具体的には、線引制御装置8は、線速が口出し後に上昇し定常線引きの線速に達したら一定の線速になるように線引条件を制御する。また、線引制御装置8は、線速情報を温度制御装置9へ出力する。 The drawing control device 8 controls the drawing conditions (heating temperature of the heater, feeding speed of the optical fiber preform G, drawing speed of the drawing section 6) so as to achieve a desired drawing speed (hereinafter referred to as drawing speed). , etc.). Specifically, the drawing control device 8 controls the drawing conditions so that the drawing speed increases after the drawing starts and reaches a constant drawing speed when the drawing speed reaches a constant drawing speed. Further, the drawing control device 8 outputs the drawing speed information to the temperature control device 9.

温度制御装置9は、第一塗布部3A内の樹脂温度および第二塗布部3B内の樹脂温度をそれぞれ所定の温度に制御するように構成されている。本実施形態の温度制御装置9は、配管9A,9Bを介して第一塗布部3Aおよび第二塗布部3Bの内部に流体を流して第一塗布部3Aおよび第二塗布部3Bの温度を制御している。第一塗布部3Aおよび第二塗布部3Bの温度を制御することにより、第一塗布部3A内の樹脂温度および第二塗布部3B内の樹脂温度が制御される。さらに、温度制御装置9は、線引制御装置8から線速情報を取得し、線速に応じて第一塗布部3A内の樹脂温度を所定の温度に制御している。具体的には、温度制御装置9は、線速が小さい間は、第一塗布部3A内の樹脂温度を定常線引き時における第一塗布部3A内の樹脂温度より低くし、線速が上昇している途中で、第一塗布部3A内の樹脂温度を定常線引き時における第一塗布部3A内の樹脂温度まで上昇させている。 The temperature control device 9 is configured to control the resin temperature in the first coating section 3A and the resin temperature in the second coating section 3B to predetermined temperatures, respectively. The temperature control device 9 of this embodiment controls the temperature of the first application section 3A and the second application section 3B by flowing fluid inside the first application section 3A and the second application section 3B via the pipes 9A and 9B. are doing. By controlling the temperatures of the first application section 3A and the second application section 3B, the resin temperature within the first application section 3A and the resin temperature within the second application section 3B are controlled. Furthermore, the temperature control device 9 acquires line speed information from the drawing control device 8, and controls the resin temperature in the first coating section 3A to a predetermined temperature according to the line speed. Specifically, while the line speed is low, the temperature control device 9 makes the resin temperature in the first application section 3A lower than the resin temperature in the first application section 3A during steady drawing, so that the line speed increases. During the drawing, the resin temperature in the first application section 3A is raised to the resin temperature in the first application section 3A during steady drawing.

図2は樹脂塗布装置3の一部を示す概略構成図である。樹脂塗布装置3内を通過するガラスファイバG1の外周には、第一塗布部3Aの流路30Aから開口32Aを通って下流へ流れるプライマリ樹脂Pが塗布される。そして、ガラスファイバG1に塗布されたプライマリ樹脂Pの外周には、第二塗布部3Bの流路30Bから開口32Bを通って下流へ流れるセカンダリ樹脂Sが塗布される。ところで、ガラスファイバG1に塗布される樹脂は、温度が高くなるとその粘度が下がる特性を有する。線速がある程度大きい場合は、ガラスファイバG1に塗布されたプライマリ樹脂Pは、図2中に破線で示すように開口32Aから下流に行くほどその塗布量が少なくなる。これにより、第二塗布部3Bの開口32Bとプライマリ樹脂Pの外周との間には所定の隙間を確保することができ、セカンダリ樹脂Sを良好に塗布することができる。一方、線速が小さい場合は、ガラスファイバG1に塗布されたプライマリ樹脂Pは、図2中に一点鎖線で示すように開口32Aから下流に進んでもその塗布量がほぼ変わらない状態になる。このため、第二塗布部3Bの開口32Bとプライマリ樹脂Pの外周との間の隙間は、線速が大きい場合に比べて小さくなる。特に、第一塗布部3Aの開口32Aの半径と第二塗布部3Bの開口32Bの半径の差が小さい場合(例えば50μm以下)には、セカンダリ樹脂Sを十分に塗布することができずセカンダリ樹脂Sの塗布が途中で切れる場合がある。 FIG. 2 is a schematic diagram showing a part of the resin coating device 3. As shown in FIG. The outer periphery of the glass fiber G1 passing through the resin coating device 3 is coated with the primary resin P flowing downstream from the flow path 30A of the first coating section 3A through the opening 32A. Then, the secondary resin S flowing downstream from the flow path 30B of the second application section 3B through the opening 32B is applied to the outer periphery of the primary resin P applied to the glass fiber G1. By the way, the resin applied to the glass fiber G1 has a characteristic that its viscosity decreases as the temperature increases. When the linear velocity is high to a certain extent, the amount of primary resin P applied to the glass fiber G1 decreases as it goes downstream from the opening 32A, as shown by the broken line in FIG. Thereby, a predetermined gap can be ensured between the opening 32B of the second application part 3B and the outer periphery of the primary resin P, and the secondary resin S can be applied satisfactorily. On the other hand, when the linear velocity is low, the amount of primary resin P applied to the glass fiber G1 remains almost unchanged even if it advances downstream from the opening 32A, as shown by the dashed line in FIG. Therefore, the gap between the opening 32B of the second applicator 3B and the outer periphery of the primary resin P becomes smaller than when the linear velocity is high. In particular, if the difference between the radius of the opening 32A of the first application section 3A and the radius of the opening 32B of the second application section 3B is small (for example, 50 μm or less), the secondary resin S cannot be sufficiently applied and the secondary resin The S coating may break midway.

図3は、一部のセカンダリ樹脂Sが塗布切れした光ファイバG2の断面図である。図3に示すように、光ファイバG2の表面においてセカンダリ樹脂Sの塗布が途中で切れた箇所にはプライマリ樹脂Pが露出した状態になる。このため、光ファイバG2において、特にプライマリ樹脂Pが露出した箇所は十分な厚さの樹脂被覆を得ることができずに断線が発生する場合がある。 FIG. 3 is a cross-sectional view of the optical fiber G2 in which a part of the secondary resin S has been applied. As shown in FIG. 3, the primary resin P is exposed on the surface of the optical fiber G2 where the application of the secondary resin S is cut off. For this reason, in the optical fiber G2, a sufficiently thick resin coating cannot be obtained particularly at the exposed portion of the primary resin P, and disconnection may occur.

温度制御装置9は、上述のように線速に応じてプライマリ樹脂Pを塗布する第一塗布部3A内の樹脂温度が所定の温度になるように制御している。例えば、温度制御装置9は、線速に応じて流体の温度を変更し、変更した温度に設定された流体を第一塗布部3Aの内部に循環させている。これにより、線速が小さい間は、樹脂塗布装置3内の樹脂温度を下げてプライマリ樹脂Pの粘度を増加させることでプライマリ樹脂Pによる被覆層(第一被覆樹脂層)の外径増加を抑制できる。その結果、セカンダリ樹脂Sによる被膜層(第二被覆樹脂層)の厚みを確保することができ、光ファイバG2の断線を防止することができる。 The temperature control device 9 controls the resin temperature in the first application section 3A, which applies the primary resin P, to a predetermined temperature according to the linear velocity as described above. For example, the temperature control device 9 changes the temperature of the fluid according to the linear velocity, and circulates the fluid set at the changed temperature inside the first application section 3A. As a result, while the line speed is low, the resin temperature in the resin coating device 3 is lowered and the viscosity of the primary resin P is increased, thereby suppressing an increase in the outer diameter of the coating layer (first coating resin layer) caused by the primary resin P. can. As a result, the thickness of the coating layer (second coating resin layer) made of the secondary resin S can be ensured, and breakage of the optical fiber G2 can be prevented.

次に、光ファイバの製造装置1を用いて製造される光ファイバの製造方法について説明する。
まず、線引炉2で光ファイバ母材Gの下端部を加熱してその一部(ガラスの塊)を自重により落下させ、線引炉2から垂れてきたガラスの塊を、樹脂塗布装置3および樹脂硬化装置4内に通して、ガイドローラ5および引取り部6に掛けて、巻取りドラム7まで導く(口出し工程)。そして、ガラスの端を巻取りドラム7に巻き付けた後、線速を徐々に上昇させながら、線引きを行いガラスファイバG1を形成する(線速上昇工程)。線速が定常線引きの線速に達したら線速の上昇を終了し、その線速を保った状態(定常線速)で線引きを行う(定常線引き工程)。定常線引きにより形成された光ファイバは製品として使用される(製品取り)。例えば、定常線引き時の線速は、2000m/分以上である。線引きにより形成されたガラスファイバG1は、樹脂塗布装置3内を通過し、その外周に二層の樹脂(プライマリ樹脂Pとセカンダリ樹脂S)が一括して塗布される。
Next, a method for manufacturing an optical fiber manufactured using the optical fiber manufacturing apparatus 1 will be described.
First, the lower end of the optical fiber preform G is heated in the drawing furnace 2, and a part of it (a lump of glass) is allowed to fall under its own weight. Then, it passes through the resin curing device 4, is hooked onto the guide roller 5 and the take-up section 6, and is guided to the winding drum 7 (leaving step). After winding the end of the glass around the winding drum 7, drawing is performed while gradually increasing the linear speed to form the glass fiber G1 (linear speed increasing step). When the line speed reaches the line speed for steady line drawing, the increase in line speed is finished, and line drawing is performed while maintaining that line speed (steady line speed) (steady line drawing step). The optical fiber formed by constant drawing is used as a product (product production). For example, the drawing speed during steady drawing is 2000 m/min or more. The glass fiber G1 formed by drawing passes through the resin coating device 3, and two layers of resin (primary resin P and secondary resin S) are collectively coated on the outer periphery of the glass fiber G1.

図4は、線速と第一塗布部3A内の樹脂温度の関係を示す図である。図4において、縦軸は第一塗布部3A内の樹脂温度(℃)または線速(m/分)、横軸は製造開始からの経過時間を示す。図4に示すように、定常線引き工程においては、線速および第一塗布部3A内の樹脂温度は温度Tおよび線速Sになるように制御されている。温度制御装置9は、口出しから定常線引きまでの間の線速上昇工程において、線速上昇の開始時は第一塗布部3A内の樹脂温度(図4中の温度T)が樹脂温度Tよりも低くなるように、第一塗布部3A内の樹脂温度の制御を行う。また、温度制御装置9は、線速上昇の途中で第一塗布部3A内の樹脂温度が樹脂温度Tまで上昇するように、第一塗布部3A内の樹脂温度の制御を行う。すなわち、温度制御装置9は、線速が所定の線速(図4中の線速S)に達したら、第一塗布部3A内の樹脂温度の上昇を開始し、第一塗布部3A内の樹脂温度が樹脂温度Tになるまで上昇させる。例えば、温度Tと温度Tの差は5℃以上30℃以下であり、好ましくは5℃以上20℃以下である。線速Sは200m/分以上1500m/分以下である。
なお、樹脂温度Tから樹脂温度Tまでの樹脂温度の上昇は、一回で上昇しても良いし、複数回に分けて上昇しても良い。また、線速の増加に応じて徐々に上昇させても良い。特に、温度Tと温度Tの差が大きい場合は、複数回に分けて上昇するか、線速の増加に応じて徐々に上昇することが好ましい。
FIG. 4 is a diagram showing the relationship between the linear speed and the resin temperature in the first coating section 3A. In FIG. 4, the vertical axis shows the resin temperature (° C.) or linear velocity (m/min) in the first coating section 3A, and the horizontal axis shows the elapsed time from the start of production. As shown in FIG. 4, in the steady wire drawing step, the wire speed and the resin temperature in the first coating section 3A are controlled to be a temperature T2 and a wire speed S2 . The temperature control device 9 controls the resin temperature in the first coating section 3A (temperature T 1 in FIG. 4) to be the resin temperature T 2 at the start of increasing the linear speed in the linear speed increasing process from drawing to steady drawing. The resin temperature in the first coating section 3A is controlled so that the temperature is lower than that of the first coating section 3A. Furthermore, the temperature control device 9 controls the resin temperature within the first application section 3A so that the resin temperature within the first application section 3A rises to resin temperature T2 during the increase in linear speed. That is, when the linear velocity reaches a predetermined linear velocity (linear velocity S 1 in FIG. 4), the temperature control device 9 starts increasing the resin temperature in the first coating section 3A, and increases the temperature of the resin in the first coating section 3A. The resin temperature is increased until the resin temperature reaches resin temperature T2 . For example, the difference between temperature T1 and temperature T2 is 5°C or more and 30°C or less, preferably 5°C or more and 20°C or less. The linear speed S1 is 200 m/min or more and 1500 m/min or less.
Note that the resin temperature may be increased at once from the resin temperature T 1 to the resin temperature T 2 or may be increased in multiple steps. Alternatively, it may be gradually increased as the linear velocity increases. In particular, when the difference between temperature T 1 and temperature T 2 is large, it is preferable to increase the temperature in multiple steps or to increase gradually as the linear velocity increases.

樹脂が塗布されたガラスファイバG1は、樹脂硬化装置4を通過し、樹脂が硬化され光ファイバG2となる。光ファイバG2は、ガイドローラ5および引取り部6を経由して巻取りドラム7に巻き取られる。図5は光ファイバの製造装置1により製造された光ファイバ10の断面図である。光ファイバ10は、コア層とクラッド層とからなるガラスファイバ11の外周にプライマリ樹脂P及びセカンダリ樹脂Sからなる第一被覆樹脂層12および第二被覆樹脂層13が同心円状に形成されている。光ファイバ10は、例えば、ガラスファイバ11の直径D1が124μm以上126μm以下であり、第二被覆樹脂層13の直径D2が190μm以上210μm以下となるように形成されている。 The glass fiber G1 coated with resin passes through a resin curing device 4, where the resin is cured and becomes an optical fiber G2. The optical fiber G2 is wound onto a winding drum 7 via a guide roller 5 and a take-up section 6. FIG. 5 is a cross-sectional view of the optical fiber 10 manufactured by the optical fiber manufacturing apparatus 1. In the optical fiber 10, a first coating resin layer 12 and a second coating resin layer 13 made of a primary resin P and a secondary resin S are formed concentrically around the outer periphery of a glass fiber 11 made of a core layer and a cladding layer. The optical fiber 10 is formed, for example, so that the diameter D1 of the glass fiber 11 is 124 μm or more and 126 μm or less, and the diameter D2 of the second coating resin layer 13 is 190 μm or more and 210 μm or less.

このように、本実施形態の光ファイバの製造方法によれば、線速上昇の開始時は、プライマリ樹脂層を設ける第一塗布部3A内の樹脂温度を、定常線引き時における第一塗布部3A内の樹脂温度より低くし、線速上昇の途中で、第一塗布部3A内の樹脂温度を、定常線引き時における第一塗布部3A内の樹脂温度まで上昇させる。これにより、線速が小さい間は、第一塗布部3A内の樹脂温度を下げてプライマリ樹脂Pの粘度を増加させることで第一被覆樹脂層12の外径増加を抑制できる。その結果、第二被覆樹脂層13の厚みを確保することができ、光ファイバ10の断線を防止することができる。 As described above, according to the optical fiber manufacturing method of the present embodiment, when the linear speed starts to increase, the resin temperature in the first coating section 3A in which the primary resin layer is provided is adjusted to the same level as that in the first coating section 3A during steady drawing. The temperature of the resin in the first coating section 3A is raised to the temperature of the resin in the first coating section 3A at the time of steady drawing while the drawing speed is increasing. Thereby, while the linear velocity is low, an increase in the outer diameter of the first coating resin layer 12 can be suppressed by lowering the resin temperature in the first coating section 3A and increasing the viscosity of the primary resin P. As a result, the thickness of the second coating resin layer 13 can be ensured, and breakage of the optical fiber 10 can be prevented.

また、定常線引き時の線速は2000m/分以上でもよい。高線速で製品取りを行う場合は、特に口出し終了後、線速を大きく上昇させることになる。第一塗布部3A内の樹脂温度を低線速時と高線速時で同じ樹脂温度に設定する場合は、セカンダリ樹脂層が塗布されないことがあり、光ファイバの断線が発生することがあった。本実施形態によれば、定常線引きの線速が高い場合でも線速上昇中に発生する光ファイバの断線を抑制することができる。 Further, the drawing speed during steady drawing may be 2000 m/min or more. When picking up products at a high line speed, the line speed must be increased significantly, especially after finishing the feed. When setting the resin temperature in the first coating section 3A to the same resin temperature at low linear speed and high linear speed, the secondary resin layer may not be coated, and optical fiber breakage may occur. . According to this embodiment, even when the drawing speed in steady drawing is high, it is possible to suppress the breakage of the optical fiber that occurs while the drawing speed is increasing.

また、線速上昇の開始時における第一塗布部3A内の樹脂温度Tと、定常線引き時における第一塗布部3A内の樹脂温度Tの差が、5℃以上30℃以下であり、第一塗布部3A内の樹脂温度を、定常線引き時における第一塗布部3A内の樹脂温度まで上昇させる際の線速が200m/分以上1500m/分以下でもよい。この温度範囲とタイミングで第一塗布部3A内の樹脂温度を上昇させる場合には、より光ファイバの断線を抑制することができる。 Further, the difference between the resin temperature T1 in the first coating section 3A at the start of increasing the line speed and the resin temperature T2 in the first coating section 3A during steady drawing is 5°C or more and 30°C or less, The line speed when raising the resin temperature in the first coating section 3A to the resin temperature in the first coating section 3A during steady drawing may be 200 m/min or more and 1500 m/min or less. When the resin temperature in the first coating section 3A is increased within this temperature range and timing, it is possible to further suppress the breakage of the optical fiber.

また、ガラスファイバ11の直径が124μm以上126μm以下であり、セカンダリ被覆層13の直径が190μm以上210μm以下でもよい。被覆樹脂層の厚みが小さい光ファイバG2を製造する際に、セカンダリ被覆層93の塗布切れが起きやすい。本実施形態によれば、被覆層の厚みが小さい光ファイバG2を製造する際に、セカンダリ被覆層13の塗布切れを抑制することができる。 Further, the diameter of the glass fiber 11 may be 124 μm or more and 126 μm or less, and the diameter of the secondary coating layer 13 may be 190 μm or more and 210 μm or less. When manufacturing the optical fiber G2 in which the thickness of the coating resin layer is small, the coating of the secondary coating layer 93 is likely to break. According to the present embodiment, when manufacturing the optical fiber G2 with a small thickness of the coating layer, it is possible to suppress the coating failure of the secondary coating layer 13.

以上、本開示を詳細にまた特定の実施態様を参照して説明したが、本開示の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。また、上記説明した構成部材の数、位置、形状等は上記実施の形態に限定されず、本開示を実施する上で好適な数、位置、形状等に変更することができる。 Although the present disclosure has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the present disclosure. Further, the number, position, shape, etc. of the constituent members described above are not limited to those in the above embodiment, and can be changed to a suitable number, position, shape, etc. for implementing the present disclosure.

上記実施形態では、光ファイバの製造装置1は、デュアルコーティング方式の製造装置であるが、これに限られない。光ファイバの製造装置1は、一層ごとに樹脂の塗布および硬化を行うタンデムコーティング方式の製造装置でもよい。タンデムコーティング方式の製造装置では、第一塗布部3Aと第二塗布部3Bは離れて配置される。樹脂硬化装置4は、第一塗布部3Aの下流且つ第二塗布部3Bの上流に配置された第一硬化部と、第二塗布部3Bの下流に配置された第二硬化部とから構成される。第一硬化部は、第一塗布部3Aにより塗布されたプライマリ樹脂を硬化させる。第二硬化部は、第二塗布部3Bにより塗布されたセカンダリ樹脂を硬化させる。この場合でも、線速が小さい間は、第一塗布部3A内の樹脂温度を下げてプライマリ樹脂Pの粘度を増加させることにより、上記実施形態と同様の効果を得ることができる。 In the above embodiment, the optical fiber manufacturing apparatus 1 is a dual coating type manufacturing apparatus, but is not limited thereto. The optical fiber manufacturing apparatus 1 may be a tandem coating type manufacturing apparatus that applies and hardens resin layer by layer. In a tandem coating type manufacturing apparatus, the first coating section 3A and the second coating section 3B are arranged apart from each other. The resin curing device 4 includes a first curing section located downstream of the first application section 3A and upstream of the second application section 3B, and a second curing section located downstream of the second application section 3B. Ru. The first curing section cures the primary resin applied by the first application section 3A. The second curing section cures the secondary resin applied by the second application section 3B. Even in this case, while the linear velocity is low, the same effects as in the above embodiment can be obtained by lowering the resin temperature in the first coating section 3A and increasing the viscosity of the primary resin P.

上記実施形態では、温度制御装置9は、第一塗布部3Aおよび第二塗布部3Bの内部に流体を流して第一塗布部3Aおよび第二塗布部3B内の樹脂温度を制御しているが、これに限定されない。例えば、温度制御装置9は、第一塗布部3Aに樹脂を供給する配管や第一塗布部3A内等に加熱装置や冷却装置が設けられて加熱装置や冷却装置の動作を制御することにより、樹脂温度を制御してもよい。 In the embodiment described above, the temperature control device 9 controls the resin temperature in the first application section 3A and the second application section 3B by flowing the fluid inside the first application section 3A and the second application section 3B. , but not limited to. For example, the temperature control device 9 is provided with a heating device or a cooling device in a pipe that supplies resin to the first coating section 3A or inside the first coating section 3A, and controls the operation of the heating device or the cooling device. The resin temperature may also be controlled.

上記実施形態では、温度制御装置9は、線引制御装置8より線速情報を得ていたが、これに限られない。例えば、光ファイバG2の線速を計測する測定器を配置し、測定器から線速情報を得てもよい。 In the embodiment described above, the temperature control device 9 obtains the line speed information from the drawing control device 8, but the present invention is not limited to this. For example, a measuring device for measuring the linear velocity of the optical fiber G2 may be arranged and linear velocity information may be obtained from the measuring instrument.

1:光ファイバの製造装置
2:線引炉
3:樹脂塗布装置
3A:第一塗布部
3B:第二塗布部
4:樹脂硬化装置
5:ガイドローラ
6:引取り部
7:巻取りドラム
8:線引制御装置
9:温度制御装置
9A、9B:配管
10:光ファイバ
11:ガラスファイバ
12:第一被覆樹脂層
13:第二被覆樹脂層
30A:流路
30B:流路
32A:開口
32B:開口
G:光ファイバ母材
G1:ガラスファイバ
G2:光ファイバ
P:プライマリ樹脂
S:セカンダリ樹脂
1: Optical fiber manufacturing device 2: Drawing furnace 3: Resin coating device 3A: First coating section 3B: Second coating section 4: Resin curing device 5: Guide roller 6: Take-up section 7: Winding drum 8: Wire drawing control device 9: Temperature control device 9A, 9B: Piping 10: Optical fiber 11: Glass fiber 12: First coating resin layer 13: Second coating resin layer 30A: Channel 30B: Channel 32A: Opening 32B: Opening G: Optical fiber base material G1: Glass fiber G2: Optical fiber P: Primary resin S: Secondary resin

Claims (3)

加熱炉において光ファイバ母材を加熱して線引きを行いガラスファイバを形成し、樹脂塗布装置により前記ガラスファイバの周囲に第一被覆樹脂層および前記第一被覆樹脂層の周囲に第二被覆樹脂層を設ける光ファイバの製造方法であって、
前記光ファイバを引き取り装置で引き取るための口出しを行うステップと、
前記口出し後且つ定常線引き前に、前記定常線引き時の線速に至るまで前記線引きの線速を上昇させながら線引きを行うステップと、
製品取りを行う前記定常線引きを行うステップと、
を備え、
前記線速上昇の開始時は、前記第一被覆樹脂層を設ける前記樹脂塗布装置内の樹脂温度を、前記定常線引き時における前記第一被覆樹脂層を設ける前記樹脂塗布装置内の樹脂温度より低くし、
前記線速上昇の途中で、前記第一被覆樹脂層を設ける前記樹脂塗布装置内の樹脂温度を、前記定常線引き時における前記第一被覆樹脂層を設ける前記樹脂塗布装置内の樹脂温度まで上昇させ
前記ガラスファイバの直径が124μm以上126μm以下であり、前記第二被覆樹脂層の直径が190μm以上210μm以下であり、
前記線速上昇の間、前記第二被覆樹脂層を構成する第二被覆樹脂の塗布が途中で切れない、
光ファイバの製造方法。
A glass fiber is formed by heating and drawing an optical fiber base material in a heating furnace, and a first coating resin layer is applied around the glass fiber by a resin coating device, and a second coating resin layer is applied around the first coating resin layer. A method of manufacturing an optical fiber comprising:
making an offer to take over the optical fiber with a take-off device;
After the drawing and before the steady drawing, drawing the line while increasing the line speed of the line drawing until the line speed reaches the line speed during the steady drawing;
a step of performing the steady line drawing for taking the product;
Equipped with
At the start of the increase in the wire speed, the resin temperature in the resin coating device that provides the first coating resin layer is lower than the resin temperature in the resin coating device that provides the first coating resin layer during steady wire drawing. death,
In the middle of the wire speed increase, the resin temperature in the resin coating device in which the first coating resin layer is provided is increased to the resin temperature in the resin coating device in which the first coating resin layer is provided during the steady wire drawing. ,
The diameter of the glass fiber is 124 μm or more and 126 μm or less, and the diameter of the second coating resin layer is 190 μm or more and 210 μm or less,
During the linear speed increase, the application of the second coating resin constituting the second coating resin layer is not cut off midway;
Method of manufacturing optical fiber.
前記定常線引き時の線速が2000m/分以上である、請求項1に記載の光ファイバの製造方法。 The method for manufacturing an optical fiber according to claim 1, wherein the drawing speed during the steady drawing is 2000 m/min or more. 前記線速上昇の開始時における前記第一被覆樹脂層を設ける前記樹脂塗布装置内の樹脂温度と、前記定常線引き時における前記第一被覆樹脂層を設ける前記樹脂塗布装置内の樹脂温度の差が、5℃以上30℃以下であり、
前記第一被覆樹脂層を設ける前記樹脂塗布装置内の樹脂温度を、前記定常線引き時における前記第一被覆樹脂層を設ける前記樹脂塗布装置内の樹脂温度まで上昇させる際の線速が200m/分以上1500m/分以下である、請求項1または請求項2に記載の光ファイバの製造方法。
The difference between the resin temperature in the resin coating device that provides the first coating resin layer at the start of the increase in the wire speed and the resin temperature in the resin coating device that provides the first coating resin layer during steady wire drawing is , 5°C or more and 30°C or less,
A line speed of 200 m/min when the resin temperature in the resin coating device for forming the first coating resin layer is raised to the resin temperature in the resin coating device for forming the first coating resin layer during steady wire drawing. The method for manufacturing an optical fiber according to claim 1 or 2, wherein the speed is 1500 m/min or more.
JP2019225163A 2019-12-13 2019-12-13 Optical fiber manufacturing method Active JP7347185B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019225163A JP7347185B2 (en) 2019-12-13 2019-12-13 Optical fiber manufacturing method
CN202011460921.8A CN112979154A (en) 2019-12-13 2020-12-11 Method for manufacturing optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019225163A JP7347185B2 (en) 2019-12-13 2019-12-13 Optical fiber manufacturing method

Publications (2)

Publication Number Publication Date
JP2021095297A JP2021095297A (en) 2021-06-24
JP7347185B2 true JP7347185B2 (en) 2023-09-20

Family

ID=76344947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019225163A Active JP7347185B2 (en) 2019-12-13 2019-12-13 Optical fiber manufacturing method

Country Status (2)

Country Link
JP (1) JP7347185B2 (en)
CN (1) CN112979154A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183056A (en) 2001-12-13 2003-07-03 Fujikura Ltd Die for spinning optical fiber, device and method for spinning optical fiber
JP2003212606A (en) 2002-01-24 2003-07-30 Fujikura Ltd Process for manufacturing optical fiber
JP2009227522A (en) 2008-03-24 2009-10-08 Furukawa Electric Co Ltd:The Method for manufacturing optical fiber

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997012841A1 (en) * 1995-10-06 1997-04-10 Sumitomo Electric Industries, Ltd. Method and apparatus for coating optical fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183056A (en) 2001-12-13 2003-07-03 Fujikura Ltd Die for spinning optical fiber, device and method for spinning optical fiber
JP2003212606A (en) 2002-01-24 2003-07-30 Fujikura Ltd Process for manufacturing optical fiber
JP2009227522A (en) 2008-03-24 2009-10-08 Furukawa Electric Co Ltd:The Method for manufacturing optical fiber

Also Published As

Publication number Publication date
CN112979154A (en) 2021-06-18
JP2021095297A (en) 2021-06-24

Similar Documents

Publication Publication Date Title
US9676659B2 (en) Method of manufacturing an optical fiber
JP5251306B2 (en) Optical fiber manufacturing method and manufacturing apparatus
JP7347185B2 (en) Optical fiber manufacturing method
WO2017077895A1 (en) Method for producing optical fiber, apparatus for producing optical fiber, and optical fiber
JP2018048050A (en) Manufacturing method and manufacturing device of optical fiber
JP2005162598A (en) Device and method of producing a plurality of glass fibers
JP2023083734A (en) Method for manufacturing optical fiber
WO2019182060A1 (en) Optical fiber manufacturing method and manufacturing device
JPH08119681A (en) Production of optical fiber
WO2023022171A1 (en) Optical fiber manufacturing method
WO2022224798A1 (en) Method for manufacturing optical fiber
JP3430987B2 (en) Manufacturing method of optical fiber
JP2010269971A (en) Method for manufacturing optical fiber
JP4000447B2 (en) Optical fiber manufacturing method
JP4139953B2 (en) Optical fiber manufacturing method and optical fiber manufacturing apparatus used therefor
JP2015202969A (en) Production method of optical fiber element wire and production apparatus for optical fiber element
JP2013220972A (en) Method for manufacturing optical fiber
JP2501570B2 (en) Coating method and coating device for linear object
JP2005289729A (en) Method of manufacturing optical fiber
JP2005289764A (en) Method of manufacturing optical fiber
JP3383565B2 (en) Optical fiber ribbon manufacturing method
JP6127074B2 (en) Optical fiber manufacturing method
JPS6250419B2 (en)
JP2024110655A (en) Optical fiber manufacturing method and optical fiber manufacturing apparatus
JPS6117444A (en) Manufacture of optical fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230821

R150 Certificate of patent or registration of utility model

Ref document number: 7347185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150