JP2013025948A - Battery module - Google Patents

Battery module Download PDF

Info

Publication number
JP2013025948A
JP2013025948A JP2011158202A JP2011158202A JP2013025948A JP 2013025948 A JP2013025948 A JP 2013025948A JP 2011158202 A JP2011158202 A JP 2011158202A JP 2011158202 A JP2011158202 A JP 2011158202A JP 2013025948 A JP2013025948 A JP 2013025948A
Authority
JP
Japan
Prior art keywords
duct
battery
thermoelectric conversion
conversion element
temperature adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011158202A
Other languages
Japanese (ja)
Inventor
Kazuki Maeda
和樹 前田
Shintaro Watanabe
慎太郎 渡▲辺▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2011158202A priority Critical patent/JP2013025948A/en
Priority to PCT/JP2012/067975 priority patent/WO2013011958A1/en
Publication of JP2013025948A publication Critical patent/JP2013025948A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery module in which the number of components can be decreased while saving the space, in a configuration housing a plurality of batteries in a plurality of places.SOLUTION: The battery module 10 comprises a plurality of battery housing ducts 11, secondary batteries 13 housed in the battery housing ducts 11, and a duct 12 for temperature control of thermoelectric conversion element provided contiguously to the battery housing ducts 11 while being sandwiched by two battery housing ducts 11. A thermoelectric conversion element 15 is provided on the partition 14 of the battery housing duct 11 and the duct 12 for temperature control of thermoelectric conversion element. The thermoelectric conversion element 15 has a first face 15a and a second face 15b performing actions contrary to each other, i.e., heat dissipation and heat suction, depending on the polarity of electrification. The first face 15a is provided so as to correspond with the battery housing duct 11, and the second face 15b is provided so as to correspond with the duct 12 for temperature control of thermoelectric conversion element.

Description

本発明は、電池モジュールに係り、詳しくは複数の電池の温度調整が可能な電池モジュールに関する。   The present invention relates to a battery module, and more particularly to a battery module capable of adjusting the temperature of a plurality of batteries.

近年、二次電池の大電流での充電及び放電や二次電池の大容量化が要求されるようになっている。しかし、大電流での充電及び放電は二次電池内部の大きな発熱を伴い、また限られたスペースに多数の二次電池を収容することから二次電池の温度が上昇し、二次電池の性能の劣化を促進してしまうという問題がある。また、二次電池によっては環境温度が低いと放電性能が低下する。そのため、冬季等の低温環境下においては、特に起動時に二次電池を暖める必要がある。   In recent years, charging and discharging of a secondary battery with a large current and an increase in capacity of the secondary battery have been required. However, charging and discharging with a large current is accompanied by a large amount of heat generated in the secondary battery, and the secondary battery temperature rises because a large number of secondary batteries are accommodated in a limited space. There is a problem of promoting the deterioration of. In addition, depending on the secondary battery, the discharge performance deteriorates when the environmental temperature is low. Therefore, in a low temperature environment such as winter, it is necessary to warm the secondary battery particularly at the time of startup.

従来、バッテリにペルチェ素子を密着して取り付け、ペルチェ素子の外側に放熱フィンを取り付け、バッテリの冷却必要時にペルチェ素子のバッテリに密着する側が吸熱し、バッテリの加熱必要時にペルチェ素子のバッテリに密着する側が発熱する方向に電流を流す電流方向切替手段を設けた温度調節装置が提案されている(特許文献1参照)。具体的には、図8に示すように、バッテリ収納部41にバッテリ42が収納、支持されており、各バッテリ42の底面にペルチェ素子伝熱板43が取り付けられている。バッテリ収納部41の下部には冷却風の流通のためのダクト部44が形成されており、その入口には冷却ファン45が設置されている。ペルチェ素子伝熱板43は内側がバッテリ42の底部に密着するように取り付けられ、外側に放熱フィン46が取り付けられている。そして、バッテリ42の温度を温度測定手段で測定して、バッテリ温度が適正温度帯を超える高温状態には、ペルチェ素子伝熱板43の内側が吸熱する方向に電流を流し、バッテリ温度が適正温度帯に達しない低温状態には、ペルチェ素子伝熱板43の内側が発熱する方向に電流を流すように電流方向切替手段が制御される。   Conventionally, a Peltier element is attached in close contact with the battery, and a heat radiating fin is attached to the outside of the Peltier element. When the battery needs to be cooled, the side that comes into close contact with the battery absorbs heat, and when the battery needs to be heated, it adheres closely to the battery There has been proposed a temperature control device provided with a current direction switching means for supplying a current in a direction in which the side generates heat (see Patent Document 1). Specifically, as shown in FIG. 8, batteries 42 are stored and supported in the battery storage portion 41, and Peltier element heat transfer plates 43 are attached to the bottom surfaces of the batteries 42. A duct portion 44 for circulating cooling air is formed in the lower portion of the battery storage portion 41, and a cooling fan 45 is installed at the entrance thereof. The Peltier element heat transfer plate 43 is attached so that the inner side is in close contact with the bottom of the battery 42, and the radiating fins 46 are attached to the outer side. Then, the temperature of the battery 42 is measured by the temperature measuring means, and in a high temperature state where the battery temperature exceeds the appropriate temperature range, a current is passed in the direction in which the inside of the Peltier element heat transfer plate 43 absorbs heat, and the battery temperature is set to the appropriate temperature. In a low temperature state that does not reach the belt, the current direction switching means is controlled so that the current flows in the direction in which the inside of the Peltier element heat transfer plate 43 generates heat.

特開平8−148189号公報JP-A-8-148189

レイアウトの関係で複数のバッテリを一箇所ではなく、複数箇所に分けて収容したい場合もあるが、収容箇所毎にそれぞれ冷却風の流通のためのダクト部を設けると、部品点数が増加するとともにペルチェ素子温調用ダクトが占めるスペースも大きくなる。特許文献1の温度調節装置はそのような場合に対する配慮がなされていない。   Depending on the layout, there may be cases where it is desired to accommodate a plurality of batteries separately in a plurality of locations instead of a single location. However, providing a duct portion for the distribution of cooling air in each accommodation location increases the number of parts and increases the number of parts. The space occupied by the element temperature control duct also increases. The temperature control device of Patent Document 1 does not give consideration to such a case.

本発明は、前記の問題に鑑みてなされたものであって、その目的は複数の電池を複数箇所に収容した構成において部品点数の削減及び省スペース化を図ることができる電池モジュールを提供することにある。   The present invention has been made in view of the above problems, and an object thereof is to provide a battery module that can reduce the number of parts and save space in a configuration in which a plurality of batteries are accommodated in a plurality of locations. It is in.

前記の目的を達成するため、請求項1に記載の発明は、複数設けられた電池温調用ダクトと、前記電池温調用ダクトを流れる熱媒体で温度調整される電池と、前記電池温調用ダクトに隣接して、かつ二つの前記電池温調用ダクトに挟まれた状態で設けられた熱電変換素子温調用ダクトと、前記電池温調用ダクトと前記熱電変換素子温調用ダクトとの境界部に設けられ、通電の極性に応じて放熱と吸熱の相反する作用を行う第1の面及び第2の面を有し、前記第1の面が前記電池温調用ダクトに対応し、前記第2の面が前記熱電変換素子温調用ダクトに対応するように設けられた熱電変換素子とを備えている。ここで、「熱媒体」とは、熱の伝達を行う流体を意味する。また、「面にダクトが対応する」とは、面がダクトの境界部の壁に接触している状態や面がダクト内に位置している状態を意味する。   In order to achieve the above object, the invention according to claim 1 includes a plurality of battery temperature adjustment ducts, a battery whose temperature is adjusted by a heat medium flowing through the battery temperature adjustment duct, and the battery temperature adjustment duct. Adjacent and provided at the boundary between the thermoelectric conversion element temperature adjustment duct provided between the two battery temperature adjustment ducts, the battery temperature adjustment duct and the thermoelectric conversion element temperature adjustment duct, The first surface corresponds to the battery temperature adjustment duct, and the second surface is the second surface. The first surface and the second surface perform opposite actions of heat dissipation and heat absorption according to the polarity of energization. And a thermoelectric conversion element provided so as to correspond to the thermoelectric conversion element temperature control duct. Here, the “heat medium” means a fluid that transfers heat. In addition, “the duct corresponds to the surface” means a state where the surface is in contact with the boundary wall of the duct or a state where the surface is located in the duct.

この発明の電池モジュールは、熱電変換素子が直流電源に接続されて使用される。使用環境が電池モジュールの加熱を必要としない場合は、熱電変換素子は第1の面が吸熱側となるように直流電源に接続されて使用され、電池温調用ダクトを流れる熱媒体が冷却されて電池が冷却される。使用環境が電池モジュールの冷却を必要な状態と加熱を必要な状態とに変化する場合は、環境に対応して熱電変換素子に供給される直流の通電方向が切り換えられることにより、熱電変換素子の第1の面が吸熱状態あるいは放熱(発熱)状態に切り換えられる。第1の面が吸熱状態になると電池温調用ダクトを流れる熱媒体が冷却されて電池が冷却される。第1の面が放熱状態になると電池温調用ダクトを流れる熱媒体が加熱されて電池が加熱される。   The battery module of the present invention is used with a thermoelectric conversion element connected to a DC power source. When the usage environment does not require heating of the battery module, the thermoelectric conversion element is used connected to a DC power source so that the first surface is on the heat absorption side, and the heat medium flowing through the battery temperature adjustment duct is cooled. The battery is cooled. When the usage environment changes between a state that requires cooling of the battery module and a state that requires heating, the direction of direct current supplied to the thermoelectric conversion element is switched according to the environment, so that the thermoelectric conversion element The first surface is switched to an endothermic state or a heat dissipation (heat generation) state. When the first surface is in an endothermic state, the heat medium flowing through the battery temperature adjusting duct is cooled to cool the battery. When the first surface is in a heat dissipation state, the heat medium flowing through the battery temperature adjusting duct is heated to heat the battery.

熱電変換素子の第1の面が放熱状態のときは第2の面を冷却することにより第1の面での放熱が効率良く行われ、熱電変換素子の第1の面が吸熱状態のときは第2の面の放熱を促進させることにより第1の面での吸熱が効率良く行われる。熱電変換素子の第2の面の冷却及び放熱は、熱電変換素子温調用ダクトに熱媒体を流すことで行われる。電池温調用ダクトが複数設けられている場合、電池温調用ダクト毎に熱電変換素子温調用ダクトを設けると、熱電変換素子温調用ダクトの数が増え、熱電変換素子温調用ダクトの占めるスペースが大きくなって電池モジュールの設置に必要なスペースが大きくなり、電池モジュールを構成する部品点数が多くなる。しかし、この発明では、熱電変換素子温調用ダクトは電池温調用に隣接して、かつ二つの電池温調用ダクトに挟まれた状態で設けられているため、一つの熱電変換素子温調用ダクトが二つの電池温調用ダクトに共用される。したがって、複数の電池を複数箇所に収容した構成において部品点数の削減及び省スペース化を図ることができる。   When the first surface of the thermoelectric conversion element is in a heat dissipation state, the second surface is cooled to efficiently dissipate heat on the first surface, and when the first surface of the thermoelectric conversion element is in an endothermic state The heat absorption on the first surface is efficiently performed by promoting the heat radiation on the second surface. Cooling and heat dissipation of the second surface of the thermoelectric conversion element is performed by flowing a heat medium through the duct for adjusting the temperature of the thermoelectric conversion element. When multiple battery temperature control ducts are provided, providing a thermoelectric conversion element temperature adjustment duct for each battery temperature adjustment duct increases the number of thermoelectric conversion element temperature adjustment ducts, and the space occupied by the thermoelectric conversion element temperature adjustment duct increases. Thus, the space required for installing the battery module is increased, and the number of parts constituting the battery module is increased. However, according to the present invention, the thermoelectric conversion element temperature adjustment duct is provided adjacent to the battery temperature adjustment and sandwiched between the two battery temperature adjustment ducts. Common to two battery temperature control ducts. Therefore, it is possible to reduce the number of parts and save space in a configuration in which a plurality of batteries are accommodated in a plurality of locations.

請求項2に記載の発明は、請求項1に記載の発明において、前記電池は前記電池温調用ダクトに収容されている。電池を冷却あるいは加熱する場合、特許文献1のように熱電変換素子が取り付けられた面からのみで電池を冷却あるいは加熱するより、電池全体が熱媒体を介して冷却あるいは加熱される方が好ましい。この発明では、電池は、ほぼ全体が熱媒体と接する状態となり、温度調整を効率良く行うことができる。   According to a second aspect of the present invention, in the first aspect of the present invention, the battery is accommodated in the battery temperature adjusting duct. When the battery is cooled or heated, it is preferable that the entire battery is cooled or heated via a heat medium rather than the battery being cooled or heated only from the surface where the thermoelectric conversion element is attached as in Patent Document 1. In the present invention, the battery is almost entirely in contact with the heat medium, and the temperature can be adjusted efficiently.

請求項3に記載の発明は、請求項1又は請求項2に記載の発明において、前記複数の電池温調用ダクトは連通ダクトを介して熱媒体が循環可能に設けられ、前記連通ダクトには熱媒体駆動部が設けられている。   According to a third aspect of the present invention, in the first or second aspect of the present invention, the plurality of battery temperature adjusting ducts are provided such that a heat medium can be circulated through the communication duct, and the communication duct is provided with heat. A medium driving unit is provided.

電池温調用ダクトで電池の冷却あるいは加熱に使用された熱媒体は、循環使用される場合と、廃棄される場合とがある。廃棄される場合は新たな熱媒体として使用環境の外気を電池温調用ダクトに導入する必要があり、電池の温度が外気温度の影響を受け易い。また、熱媒体を廃棄しても支障のない箇所まで導く廃棄用のダクトが必要になる。この発明では、熱媒体は循環使用されるため、電池の温度が外気温度の影響を受け難く、外気導入用のダクトや熱媒体廃棄用のダクトが不要になる。   The heat medium used for cooling or heating the battery in the battery temperature adjusting duct may be circulated or discarded. When it is discarded, it is necessary to introduce the outside air of the use environment as a new heat medium into the battery temperature adjustment duct, and the temperature of the battery is easily affected by the outside air temperature. In addition, a waste duct that leads to a place where there is no problem even if the heat medium is discarded is required. In this invention, since the heat medium is circulated and used, the temperature of the battery is hardly affected by the outside air temperature, and the duct for introducing the outside air and the duct for discarding the heat medium are not necessary.

請求項4に記載の発明は、請求項1〜請求項3のいずれか一項に記載の発明において、前記熱電変換素子はペルチェ素子である。ペルチェ素子は熱電変換素子として一般に使用されており、所望の性能の熱電変換素子を入手し易い。   The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the thermoelectric conversion element is a Peltier element. Peltier elements are generally used as thermoelectric conversion elements, and it is easy to obtain thermoelectric conversion elements with desired performance.

本発明によれば、複数の電池を複数箇所に収容した構成において、部品点数の削減及び省スペース化を図ることができる電池モジュールを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the battery module which can aim at reduction of a number of parts and space saving in the structure which accommodated the several battery in multiple places can be provided.

(a)は蓋体を省略した電池モジュールの模式平面図、(b)は蓋部、連通ダクト及び熱電変換素子温調用ダクトの端部等を省略した電池モジュールの模式斜視図。(A) is a schematic top view of the battery module which abbreviate | omitted the cover body, (b) is a schematic perspective view of the battery module which abbreviate | omitted the edge part etc. of the cover part, the communication duct, and the thermoelectric conversion element temperature control duct. (a)は図1(a)のA−A線で切断した断面図(蓋部有り)、(b)は(a)のB−B線で切断した断面図、(c)は図1(a)のC−C線で切断した断面図(蓋部有り)、(d)は図1(a)のD矢視図(蓋部有り)。1A is a cross-sectional view taken along line AA in FIG. 1A (with a lid), FIG. 1B is a cross-sectional view taken along line BB in FIG. 1A, and FIG. Sectional drawing (with a cover part) cut | disconnected by CC line of a), (d) is the D arrow line view (with a cover part) of Fig.1 (a). 別の実施形態の図1(a)に対応する模式平面図。The schematic plan view corresponding to Drawing 1 (a) of another embodiment. 別の実施形態の図1(a)に対応する模式平面図。The schematic plan view corresponding to Drawing 1 (a) of another embodiment. 別の実施形態の図1(a)に対応する模式平面図。The schematic plan view corresponding to Drawing 1 (a) of another embodiment. 別の実施形態の図1(a)に対応する模式平面図。The schematic plan view corresponding to Drawing 1 (a) of another embodiment. (a),(b)はそれぞれ別の実施形態の図2(a)に対応する模式断面図。(A), (b) is a schematic cross section corresponding to Drawing 2 (a) of another embodiment, respectively. 従来技術の模式平面図。The schematic top view of a prior art.

以下、本発明を具体化した一実施形態を図1及び図2にしたがって説明する。
図1(a),(b)に示すように、電池モジュール10は、複数(この実施形態では二つ)並列に設けられた電池温調用ダクトとしての電池収容ダクト11と、電池収容ダクト11に隣接して、かつ二つの電池収容ダクト11に挟まれた状態で設けられた熱電変換素子温調用ダクト12とを備えている。各電池収容ダクト11内には電池としての二次電池13が複数収容されている。二次電池13として角型電池が使用されている。二次電池13はその厚さ方向が熱電変換素子温調用ダクト12の長手方向(図1(a)の上下方向)と平行になるように配置されている。
Hereinafter, an embodiment embodying the present invention will be described with reference to FIGS. 1 and 2.
As shown in FIGS. 1A and 1B, the battery module 10 includes a battery housing duct 11 as a battery temperature adjusting duct provided in parallel (two in this embodiment), and a battery housing duct 11. The thermoelectric conversion element temperature control duct 12 is provided adjacently and sandwiched between two battery housing ducts 11. A plurality of secondary batteries 13 as batteries are housed in each battery housing duct 11. A square battery is used as the secondary battery 13. The secondary battery 13 is arranged so that its thickness direction is parallel to the longitudinal direction of the thermoelectric conversion element temperature control duct 12 (vertical direction in FIG. 1A).

図1(b)及び図2(a)に示すように、電池収容ダクト11は、略U字状に形成された本体11aと、本体11aの開放側を覆う蓋部11b(図2に図示)とを有する。本体11aの中央部に熱電変換素子温調用ダクト12が設けられており、熱電変換素子温調用ダクト12は断面矩形の筒状に形成されている。各電池収容ダクト11と熱電変換素子温調用ダクト12の境界部としての隔壁14は、各電池収容ダクト(電池温調用ダクト)11及び熱電変換素子温調用ダクト12の一方の側壁を形成している。蓋部11bは、複数の二次電池13を所定間隔で平行に支持した状態で本体11aに固定されている。この実施形態では蓋部11bは二つの電池収容ダクト11に共通に形成され、蓋部11bは熱電変換素子温調用ダクト12の上面に当接する状態で、図示しないねじにより、本体11aに固定されている。   As shown in FIGS. 1B and 2A, the battery housing duct 11 includes a main body 11a formed in a substantially U shape, and a lid portion 11b (shown in FIG. 2) covering the open side of the main body 11a. And have. A thermoelectric conversion element temperature adjustment duct 12 is provided at the center of the main body 11a, and the thermoelectric conversion element temperature adjustment duct 12 is formed in a cylindrical shape having a rectangular cross section. A partition wall 14 as a boundary between each battery housing duct 11 and thermoelectric conversion element temperature control duct 12 forms one side wall of each battery housing duct (battery temperature control duct) 11 and thermoelectric conversion element temperature control duct 12. . The lid portion 11b is fixed to the main body 11a in a state where a plurality of secondary batteries 13 are supported in parallel at a predetermined interval. In this embodiment, the lid portion 11b is formed in common to the two battery housing ducts 11, and the lid portion 11b is in contact with the upper surface of the thermoelectric conversion element temperature adjustment duct 12, and is fixed to the main body 11a by screws (not shown). Yes.

図2(a),(b)に示すように、蓋部11bの裏面(内面)には二次電池13の一端部(図2(a),(b)では上端部)を挟持する凸部11cが複数、二次電池13の厚さの間隔で平行に形成され、二次電池13は、所定の間隔(略凸部11cの厚さ)を設けた状態で配置されている。電池収容ダクト11の本体11a、蓋部11b及び熱電変換素子温調用ダクト12は断熱性を有する材質、例えば、樹脂で一体に形成されている。   As shown in FIGS. 2 (a) and 2 (b), a convex portion sandwiching one end of the secondary battery 13 (the upper end in FIGS. 2 (a) and 2 (b)) on the back surface (inner surface) of the lid portion 11b. A plurality of 11c are formed in parallel at intervals of the thickness of the secondary battery 13, and the secondary batteries 13 are arranged with a predetermined interval (the thickness of the substantially convex portion 11c). The main body 11a, the lid 11b, and the thermoelectric conversion element temperature control duct 12 of the battery housing duct 11 are integrally formed of a heat insulating material, for example, a resin.

電池収容ダクト11と熱電変換素子温調用ダクト12との境界部である隔壁14には熱電変換素子15が複数設けられている。熱電変換素子15は、通電の極性に応じて放熱(発熱)と吸熱の相反する作用を行う第1の面15a及び第2の面15bを有し、第1の面15aが電池収容ダクト11に対応し、第2の面15bが熱電変換素子温調用ダクト12に対応するように設けられている。この実施形態では、第1の面15aが電池収容ダクト11内に位置し、第2の面15bが熱電変換素子温調用ダクト12内に位置するように、熱電変換素子15は電池収容ダクト11及び熱電変換素子温調用ダクト12の隔壁14を貫通し、かつ熱電変換素子15が隔壁14を貫通する部分の気密性が保持された状態に設けられている。第1の面15a及び第2の面15bにはフィン16が取り付けられている。フィン16は二次電池13に接触しない大きさに形成されている。   A plurality of thermoelectric conversion elements 15 are provided on the partition wall 14 which is a boundary portion between the battery housing duct 11 and the thermoelectric conversion element temperature control duct 12. The thermoelectric conversion element 15 has a first surface 15 a and a second surface 15 b that perform opposite actions of heat dissipation (heat generation) and heat absorption according to the polarity of energization, and the first surface 15 a is connected to the battery housing duct 11. Correspondingly, the second surface 15 b is provided so as to correspond to the thermoelectric conversion element temperature adjustment duct 12. In this embodiment, the thermoelectric conversion element 15 and the battery accommodation duct 11 and the second surface 15b are located in the thermoelectric conversion element temperature adjustment duct 12 so that the first surface 15a is located in the battery accommodation duct 11. The thermoelectric conversion element temperature control duct 12 is provided in a state where the airtightness of the portion penetrating the partition wall 14 and the thermoelectric conversion element 15 penetrating the partition wall 14 is maintained. Fins 16 are attached to the first surface 15a and the second surface 15b. The fins 16 are formed in a size that does not contact the secondary battery 13.

熱電変換素子15としてはペルチェ素子が使用されている。ペルチェ素子は、例えば、複数のP型半導体と複数のN型半導体とが電気的に直列に接続され、かつ熱的に並列に配置された状態でセラミックスよりなる電気的絶縁性の伝熱板の間に配設され、樹脂封止材などで封止して一体化されている。   A Peltier element is used as the thermoelectric conversion element 15. The Peltier element is, for example, between an electrically insulating heat transfer plate made of ceramics in a state in which a plurality of P-type semiconductors and a plurality of N-type semiconductors are electrically connected in series and arranged in parallel. It is disposed and integrated by sealing with a resin sealing material or the like.

図1(a)に示すように、複数の電池収容ダクト11は連通ダクト17を介して熱媒体が循環可能に設けられている。熱媒体としては気体(例えば、空気)が使用されている。連通ダクト17は2本設けられ、一方の連通ダクト17には熱媒体駆動部18として図示しないモータで駆動されるファンが設けられている。連通ダクト17も樹脂で電池収容ダクト11の本体11aと一体に形成されている。   As shown in FIG. 1A, the plurality of battery housing ducts 11 are provided through a communication duct 17 so that the heat medium can be circulated. A gas (for example, air) is used as the heat medium. Two communication ducts 17 are provided, and one communication duct 17 is provided with a fan driven by a motor (not shown) as the heat medium driving unit 18. The communication duct 17 is also formed integrally with the main body 11a of the battery housing duct 11 with resin.

図2(c),(d)に示すように、熱電変換素子温調用ダクト12は連通ダクト17との干渉を避けるため、その両端部が屈曲された状態に形成されている。熱電変換素子温調用ダクト12は、その両端部の断面積が電池収容ダクト11と隣接する部分の断面積より小さく形成されている。   As shown in FIGS. 2C and 2D, the thermoelectric conversion element temperature adjustment duct 12 is formed in a state where both ends thereof are bent in order to avoid interference with the communication duct 17. The thermoelectric conversion element temperature control duct 12 is formed so that the cross-sectional area of both ends thereof is smaller than the cross-sectional area of the portion adjacent to the battery housing duct 11.

前記のように構成された電池モジュール10を組立、製造する場合は、蓋部11bが取り付けられる前の状態で、先ず熱電変換素子15を電池収容ダクト11と熱電変換素子温調用ダクト12の隔壁14に形成されている孔を貫通する状態で、第1の面15aが電池収容ダクト11側に、第2の面15bが熱電変換素子温調用ダクト12側になるように接着剤を用いて固着する。次に、二次電池13が所定間隔で固定された蓋部11bを、本体11aの開口部を覆うように本体11aに固定する。   When assembling and manufacturing the battery module 10 configured as described above, the thermoelectric conversion element 15 is first separated from the battery housing duct 11 and the partition wall 14 of the thermoelectric conversion element temperature control duct 12 before the lid portion 11b is attached. The first surface 15a is fixed to the battery housing duct 11 side and the second surface 15b is fixed to the thermoelectric conversion element temperature control duct 12 side with an adhesive in a state of passing through the hole formed in . Next, the lid portion 11b to which the secondary battery 13 is fixed at a predetermined interval is fixed to the main body 11a so as to cover the opening of the main body 11a.

次に前記のように構成された電池モジュール10の作用を説明する。
電池モジュール10は、熱電変換素子15が図示しない配線及び切換えスイッチを介して直流電源に接続される。また、図1(a)に2点鎖線で示すように、熱電変換素子温調用ダクト12の一端側に熱媒体としての外気を導入する外気導入ダクト19aが連結され、他端側に熱電変換素子温調用ダクト12を通過した熱媒体を廃棄する廃棄ダクト19bが連結された状態で使用される。切換えスイッチ及び熱媒体駆動部18は制御装置により制御される。なお、制御装置は電池収容ダクト11内の温度を検出する図示しないセンサの検出信号に基づいて、電池収容ダクト11内を加熱すべきか冷却すべきかを判断して切換えスイッチを制御する。また、電池モジュール10は、図示しないが電力を供給すべき電機機器に配線を介して電力を供給する。
Next, the operation of the battery module 10 configured as described above will be described.
In the battery module 10, the thermoelectric conversion element 15 is connected to a DC power source via a wiring and a changeover switch (not shown). Further, as shown by a two-dot chain line in FIG. 1A, an outside air introduction duct 19a for introducing outside air as a heat medium is connected to one end side of the thermoelectric conversion element temperature adjusting duct 12, and the other end side is connected to the thermoelectric conversion element. A waste duct 19b for discarding the heat medium that has passed through the temperature control duct 12 is used in a connected state. The changeover switch and the heat medium driving unit 18 are controlled by a control device. The control device determines whether the inside of the battery housing duct 11 should be heated or cooled based on the detection signal of a sensor (not shown) that detects the temperature inside the battery housing duct 11 and controls the changeover switch. Moreover, the battery module 10 supplies electric power to the electrical equipment to which electric power is to be supplied, though not shown.

電池モジュール10が使用される場合、急速充電時や急速放電時に二次電池13の発熱が大きくなる。そのため、寒冷地や冬季の低温時等のように環境温度が二次電池13の駆動に支障を来すほど低い場合を除き、切換えスイッチは熱電変換素子15の第1の面15aが吸熱側となるように直流電源に接続される状態に切り換えられる。また、電池収容ダクト11内の熱媒体の温度が二次電池13の駆動に支障を来すほど低く、二次電池13の加熱を必要とする場合は、切換えスイッチは熱電変換素子15の第1の面15aが放熱側(発熱側)となるように直流電源に接続される状態に切り換えられる。   When the battery module 10 is used, the secondary battery 13 generates a large amount of heat during rapid charging or rapid discharging. Therefore, the changeover switch has the first surface 15a of the thermoelectric conversion element 15 on the heat absorption side, except when the environmental temperature is low enough to hinder the driving of the secondary battery 13 such as in cold regions or at low temperatures in winter. The state is switched to a state connected to a DC power source. When the temperature of the heat medium in the battery accommodating duct 11 is so low as to hinder the driving of the secondary battery 13 and the secondary battery 13 needs to be heated, the changeover switch is provided with the first switch of the thermoelectric conversion element 15. Is switched to a state of being connected to a DC power source so that the surface 15a of the surface 15a is on the heat radiation side (heat generation side).

第1の面15aが吸熱状態になると電池収容ダクト11を流れる熱媒体が冷却されて電池収容ダクト11内の二次電池13が冷却される。第1の面15aが放熱状態になると電池収容ダクト11を流れる熱媒体が加熱されて電池収容ダクト11内の二次電池13が加熱される。   When the first surface 15a is in an endothermic state, the heat medium flowing through the battery housing duct 11 is cooled, and the secondary battery 13 in the battery housing duct 11 is cooled. When the first surface 15a is in a heat dissipation state, the heat medium flowing through the battery housing duct 11 is heated, and the secondary battery 13 in the battery housing duct 11 is heated.

熱電変換素子の第1の面15aが吸熱状態のときは第2の面15bの放熱を促進させることにより第1の面15aでの吸熱が効率良く行われ、熱電変換素子15の第1の面15aが放熱状態のときは第2の面15bを冷却することにより第1の面15aでの放熱が効率良く行われる。熱電変換素子15の第2の面15bの放熱及び冷却は、熱電変換素子温調用ダクト12に熱媒体を流すことで行われる。熱電変換素子温調用ダクト12には新たな外気が導入されるため、第2の面15bの放熱及び冷却が効率良く行われ、電池収容ダクト11内の熱媒体の温度が、二次電池13の放電や充電に適した温度に調整される。   When the first surface 15a of the thermoelectric conversion element is in an endothermic state, heat absorption at the first surface 15a is efficiently performed by promoting heat dissipation of the second surface 15b, and the first surface of the thermoelectric conversion element 15 is performed. When 15a is in a heat radiating state, the second surface 15b is cooled to efficiently dissipate heat on the first surface 15a. Heat dissipation and cooling of the second surface 15b of the thermoelectric conversion element 15 are performed by flowing a heat medium through the duct 12 for temperature adjustment of the thermoelectric conversion element. Since new outside air is introduced into the thermoelectric conversion element temperature control duct 12, the heat radiation and cooling of the second surface 15 b are efficiently performed, and the temperature of the heat medium in the battery housing duct 11 is changed to that of the secondary battery 13. It is adjusted to a temperature suitable for discharging and charging.

電池収容ダクト11が複数設けられている場合、電池収容ダクト11毎に熱電変換素子温調用ダクト12を設けると、熱電変換素子温調用ダクト12の数が増え、熱電変換素子温調用ダクト12の占めるスペースが大きくなって電池モジュール10の設置に必要なスペースが大きくなり、電池モジュール10を構成する部品点数が多くなる。しかし、熱電変換素子温調用ダクト12は電池収容ダクト11に隣接して、かつ二つの電池収容ダクト11に挟まれた状態で設けられて、一つの熱電変換素子温調用ダクト12が二つの電池収容ダクト11に共用されているため、省スペース化を図ることができる。   When a plurality of battery housing ducts 11 are provided, if the thermoelectric conversion element temperature adjustment duct 12 is provided for each battery accommodation duct 11, the number of thermoelectric conversion element temperature adjustment ducts 12 is increased, and the thermoelectric conversion element temperature adjustment duct 12 occupies. The space is increased, the space required for installing the battery module 10 is increased, and the number of parts constituting the battery module 10 is increased. However, the thermoelectric conversion element temperature adjustment duct 12 is provided adjacent to the battery accommodating duct 11 and sandwiched between the two battery accommodating ducts 11, and one thermoelectric conversion element temperature adjusting duct 12 accommodates two batteries. Since it is shared by the duct 11, space saving can be achieved.

二次電池13の冷却あるいは加熱に使用された熱媒体を廃棄する構成では、新たな熱媒体として使用環境の外気を電池収容ダクト11に導入する必要がある。外気が電池収容ダクト11に導入されると、二次電池13の温度が外気温度の影響を受け易くなる。また、外気導入用のダクトや熱媒体を廃棄しても支障のない箇所まで導く廃棄用のダクトが必要になる。この実施形態の電池モジュール10は、二次電池13の冷却あるいは加熱に使用された熱媒体は循環使用されるため、二次電池13の温度が外気温度の影響を受け難く、外気導入用のダクトや廃棄用のダクトが不要になる。   In the configuration in which the heat medium used for cooling or heating the secondary battery 13 is discarded, it is necessary to introduce outside air in the use environment into the battery housing duct 11 as a new heat medium. When the outside air is introduced into the battery housing duct 11, the temperature of the secondary battery 13 is easily affected by the outside air temperature. In addition, a duct for introducing outside air and a duct for disposal leading to a place where there is no problem even if the heat medium is discarded are necessary. In the battery module 10 of this embodiment, since the heat medium used for cooling or heating the secondary battery 13 is circulated, the temperature of the secondary battery 13 is not easily affected by the outside air temperature, and the outside air introduction duct. And no waste duct.

この実施形態によれば、以下に示す効果を得ることができる。
(1)電池モジュール10は、複数設けられた電池温調用ダクトとしての電池収容ダクト11と、電池収容ダクト11に収容された二次電池13と、電池収容ダクト11に隣接して、かつ二つの電池収容ダクト11に挟まれた状態で設けられた熱電変換素子温調用ダクト12とを備えている。電池収容ダクト11と熱電変換素子温調用ダクト12との隔壁14に、通電の極性に応じて放熱と吸熱の相反する作用をする第1の面15a及び第2の面15bを有する熱電変換素子15が、第1の面15aが電池収容ダクト11に対応し、第2の面15bが熱電変換素子温調用ダクト12に対応するように設けられている。したがって、複数の二次電池13を複数箇所に収容した構成において部品点数の削減及び省スペース化を図ることができる。
According to this embodiment, the following effects can be obtained.
(1) The battery module 10 includes a plurality of battery housing ducts 11 as battery temperature control ducts, a secondary battery 13 housed in the battery housing duct 11, adjacent to the battery housing duct 11, and two And a thermoelectric conversion element temperature adjustment duct 12 provided in a state of being sandwiched between battery accommodating ducts 11. A thermoelectric conversion element 15 having a first surface 15a and a second surface 15b that act on the partition wall 14 of the battery housing duct 11 and the thermoelectric conversion element temperature control duct 12 in a manner opposite to heat dissipation and heat absorption according to the polarity of energization. However, the first surface 15 a corresponds to the battery housing duct 11, and the second surface 15 b corresponds to the thermoelectric conversion element temperature adjustment duct 12. Therefore, it is possible to reduce the number of parts and save space in a configuration in which a plurality of secondary batteries 13 are accommodated in a plurality of locations.

(2)二次電池13は、電池温調用ダクトとしての電池収容ダクト11に収容されている。各二次電池13は、一部が電池温調用ダクトに面していれば、電池温調用ダクトを流れる熱媒体により温度調整されるが、この実施形態では二次電池13は、ほぼ全体が熱媒体と接する状態となり、一部が電池温調用ダクトに面している構成に比べて、温度調整を効率良く行うことができる。   (2) The secondary battery 13 is accommodated in a battery accommodating duct 11 as a battery temperature adjusting duct. If a part of each secondary battery 13 faces the battery temperature adjustment duct, the temperature is adjusted by the heat medium flowing through the battery temperature adjustment duct. In this embodiment, the secondary battery 13 is almost entirely heated. Temperature adjustment can be performed more efficiently than a configuration in which the medium comes into contact with the medium and a part of the medium faces the battery temperature adjustment duct.

(3)複数の電池収容ダクト11は連通ダクト17を介して熱媒体が循環可能に設けられ、連通ダクト17には熱媒体駆動部18が設けられている。したがって、二次電池13の温度が外気温度の影響を受け難く、外気導入用のダクトや廃棄用のダクトが不要になる。   (3) The plurality of battery housing ducts 11 are provided so that the heat medium can circulate through the communication duct 17, and the heat medium driving unit 18 is provided in the communication duct 17. Therefore, the temperature of the secondary battery 13 is hardly affected by the outside air temperature, and the outside air introduction duct and the disposal duct are not necessary.

(4)熱電変換素子としてペルチェ素子が使用されている。ペルチェ素子は熱電変換素子として一般に使用されており、所望の性能の熱電変換素子を入手し易い。
(5)電池収容ダクト11、熱電変換素子温調用ダクト12及び連通ダクト17は断熱性を有する材質、例えば、樹脂で形成されている。したがって、それらが断熱性の低い金属製の場合に比べて、熱電変換素子15により冷却された熱媒体が外部の熱により加熱されたり、熱電変換素子15により加熱された熱媒体の熱がダクトの壁を介して外部に逃げたりすることが抑制され、二次電池13の冷却あるいは加熱が効率良く行われる。
(4) A Peltier element is used as the thermoelectric conversion element. Peltier elements are generally used as thermoelectric conversion elements, and it is easy to obtain thermoelectric conversion elements with desired performance.
(5) The battery housing duct 11, the thermoelectric conversion element temperature control duct 12, and the communication duct 17 are formed of a heat insulating material, for example, a resin. Therefore, compared to the case where they are made of metal having low heat insulation properties, the heat medium cooled by the thermoelectric conversion element 15 is heated by external heat, or the heat of the heat medium heated by the thermoelectric conversion element 15 is Escape to the outside through the wall is suppressed, and the secondary battery 13 is cooled or heated efficiently.

(6)電池収容ダクト11は、本体11aと蓋部11bとを備え、二次電池13は蓋部11bに形成された凸部11cにより支持され状態で電池収容ダクト11内に収容されている。したがって、二次電池13を所定間隔で電池収容ダクト11内に収容する組立作業が容易になる。   (6) The battery accommodating duct 11 includes a main body 11a and a lid portion 11b, and the secondary battery 13 is accommodated in the battery accommodating duct 11 while being supported by a convex portion 11c formed on the lid portion 11b. Therefore, the assembling work for accommodating the secondary battery 13 in the battery accommodating duct 11 at a predetermined interval is facilitated.

実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
○ 電池収容ダクト11は二つに限らず三つ以上であってもよい。例えば、電池収容ダクト11が三つの場合、熱電変換素子温調用ダクト12は図3に示すように二つになる。また、電池収容ダクト11が四つの場合も、熱電変換素子温調用ダクト12は二つになる。
The embodiment is not limited to the above, and may be embodied as follows, for example.
(Circle) not only two but the battery accommodating duct 11 may be three or more. For example, when there are three battery accommodating ducts 11, there are two thermoelectric conversion element temperature adjustment ducts 12 as shown in FIG. In addition, when there are four battery housing ducts 11, there are two thermoelectric conversion element temperature control ducts 12.

○ 電池収容ダクト11を流れる熱媒体を循環使用せずに、廃棄する構成にしてもよい。この場合、連通ダクト17は不要になる。また、熱電変換素子温調用ダクト12と連通ダクト17との干渉を避けるために熱電変換素子温調用ダクト12の両端部を屈曲形成する必要がなくなる。そして、電池モジュール10を使用する際には、例えば、図4に示すように、熱媒体としての外気を導入する外気導入ダクト20aが各電池収容ダクト11の一端側に連結され、各電池収容ダクト11を通過した熱媒体を廃棄する廃棄ダクト20bが各電池収容ダクト11の一端側に連結される。   A configuration may be adopted in which the heat medium flowing through the battery housing duct 11 is discarded without being circulated. In this case, the communication duct 17 becomes unnecessary. In addition, in order to avoid interference between the thermoelectric conversion element temperature adjustment duct 12 and the communication duct 17, it is not necessary to bend both ends of the thermoelectric conversion element temperature adjustment duct 12. When using the battery module 10, for example, as shown in FIG. 4, an outside air introduction duct 20 a for introducing outside air as a heat medium is connected to one end side of each battery housing duct 11, and each battery housing duct is connected. A waste duct 20 b that discards the heat medium that has passed through 11 is connected to one end side of each battery housing duct 11.

○ 熱電変換素子温調用ダクト12を流れる熱媒体を循環使用する構成にしてもよい。例えば、図5に示すように、熱電変換素子温調用ダクト12を閉ループを成すように形成し、熱電変換素子温調用ダクト12の電池収容ダクト11と隣接しない箇所に熱媒体駆動部21及びラジエータ22を設ける。   O You may make it the structure which circulates and uses the thermal medium which flows through the duct 12 for thermoelectric conversion element temperature control. For example, as shown in FIG. 5, the thermoelectric conversion element temperature adjustment duct 12 is formed to form a closed loop, and the heat medium driving unit 21 and the radiator 22 are disposed at a location not adjacent to the battery housing duct 11 of the thermoelectric conversion element temperature adjustment duct 12. Is provided.

○ 熱電変換素子15は、電池収容ダクト11と熱電変換素子温調用ダクト12との境界部(隔壁14)に設けられていればよく、各電池収容ダクト11の二次電池13と対向する箇所のみに設けられる構成に限らない。例えば、図6に示すように、複数の二次電池13の一部は熱電変換素子15と対向せず、かつ二次電池13と対向しない箇所に一部の熱電変換素子15を設けた構成にしてもよい。また、電池収容ダクト11の二次電池13と対向する箇所に加えて二次電池13と対向しない箇所に熱電変換素子15を設けた構成にしてもよい。   The thermoelectric conversion element 15 should just be provided in the boundary part (partition 14) of the battery accommodation duct 11 and the thermoelectric conversion element temperature control duct 12, and only the location facing the secondary battery 13 of each battery accommodation duct 11. It is not restricted to the structure provided in. For example, as shown in FIG. 6, a part of the plurality of secondary batteries 13 does not face the thermoelectric conversion elements 15, and a part of the thermoelectric conversion elements 15 is provided in a place not facing the secondary batteries 13. May be. Moreover, in addition to the location facing the secondary battery 13 in the battery housing duct 11, the thermoelectric conversion element 15 may be provided at a location not facing the secondary battery 13.

○ 熱電変換素子15は、電池収容ダクト11の二次電池13と対向しない箇所のみに設けられた構成にしてもよい。
○ 熱電変換素子15は各電池収容ダクト11に複数ではなく、一つ設けられた構成であってもよい。
(Circle) the thermoelectric conversion element 15 may be set as the structure provided only in the location which does not oppose the secondary battery 13 of the battery accommodating duct 11. FIG.
O The thermoelectric conversion element 15 may be configured to be provided in each battery housing duct 11 instead of a plurality.

○ 熱媒体は空気に限らず、他の気体や液体であってもよい。電池収容ダクト11を流れる熱媒体とてして液体を使用する場合は、二次電池13の端子同士や配線同士が短絡するのを防止するため非導電性の液体を使用する必要がある。   ○ The heat medium is not limited to air but may be other gas or liquid. When a liquid is used as the heat medium flowing through the battery housing duct 11, it is necessary to use a non-conductive liquid in order to prevent the terminals and wirings of the secondary battery 13 from being short-circuited.

○ 熱電変換素子15が電池収容ダクト11の熱媒体を冷却する場合、第2の面15bを冷却する方法として、熱電変換素子温調用ダクト12を流れる熱媒体として沸点の低い液体を使用し、熱媒体の相変化、即ち第2の面15bに接触した液体が気化する際の潜熱により第2の面15bを冷却するようにしてもよい。   When the thermoelectric conversion element 15 cools the heat medium in the battery housing duct 11, as a method for cooling the second surface 15 b, a liquid having a low boiling point is used as the heat medium flowing through the thermoelectric conversion element temperature adjustment duct 12, You may make it cool the 2nd surface 15b by the phase change of a medium, ie, the latent heat when the liquid which contacted the 2nd surface 15b vaporizes.

○ 熱媒体として液体を用いた場合、液体は気体に比べて熱伝達率が高いのでフィン16を省略しても熱電変換素子15による熱媒体の冷却及び加熱を効率良く行うことができる。したがって、フィン16を省略して部品点数を減らすことができる。   When the liquid is used as the heat medium, the liquid has a higher heat transfer coefficient than the gas, so that the heat medium can be efficiently cooled and heated by the thermoelectric conversion element 15 even if the fins 16 are omitted. Therefore, the number of parts can be reduced by omitting the fins 16.

○ フィン16を省略する場合、第1の面15a及び第2の面15bのいずれか一方を隔壁14に密着した状態で熱電変換素子15を隔壁14に固定し、隔壁14は熱電変換素子15が取り付けられる部分に金属板がインサート成型された構成としてもよい。   When the fin 16 is omitted, the thermoelectric conversion element 15 is fixed to the partition wall 14 with either the first surface 15a or the second surface 15b in close contact with the partition wall 14, and the partition wall 14 It is good also as a structure by which the metal plate was insert-molded in the part to which it is attached.

○ 電池収容ダクト11内の二次電池13の配置は、その厚さ方向が熱電変換素子温調用ダクト12の長手方向と平行に延びる状態に限らない。例えば、二次電池13の厚さ方向の一方の面が電池収容ダクト11の蓋部11bと対向するように配置したり、二次電池13の厚さ方向の一方の面が熱電変換素子温調用ダクト12と対向するように配置したりしてもよい。   The arrangement of the secondary battery 13 in the battery housing duct 11 is not limited to a state in which the thickness direction extends in parallel with the longitudinal direction of the thermoelectric conversion element temperature adjustment duct 12. For example, it arrange | positions so that one surface of the thickness direction of the secondary battery 13 may oppose the cover part 11b of the battery accommodating duct 11, or one surface of the thickness direction of the secondary battery 13 is for thermoelectric conversion element temperature control. You may arrange | position so that the duct 12 may be opposed.

○ 電池モジュール10は、二次電池13が、電池温調用ダクトに収容された構成に限らず、二次電池13の一部が電池温調用ダクト(電池収容ダクト11)に面している状態、例えば、図7(a)に示すように、電池温調用ダクトを隔壁14と、隔壁14から二次電池13側に向かって二次電池13の近くまで延びる底壁と、蓋部11bの一部とで構成してもよい。もちろん、連通ダクト17の位置も変更される。   The battery module 10 is not limited to the configuration in which the secondary battery 13 is accommodated in the battery temperature adjustment duct, but a state in which a part of the secondary battery 13 faces the battery temperature adjustment duct (battery accommodation duct 11), For example, as shown in FIG. 7 (a), the battery temperature adjustment duct includes a partition wall 14, a bottom wall extending from the partition wall 14 toward the secondary battery 13 and close to the secondary battery 13, and a part of the lid portion 11b. You may comprise. Of course, the position of the communication duct 17 is also changed.

○ 電池モジュール10は、二次電池13全体が電池温調用ダクトの外に設けられた構成、例えば、熱電変換素子温調用ダクト12を挟んで設けられた電池温調用ダクトの熱電変換素子温調用ダクト12と反対側の壁の外面に二次電池13の一部が接触する状態で設けてもよい。この場合、電池温調用ダクトは二次電池13が接触する部分を熱伝導率の高い材料、例えば金属製とする。   The battery module 10 has a configuration in which the entire secondary battery 13 is provided outside the battery temperature adjustment duct, for example, a thermoelectric conversion element temperature adjustment duct of a battery temperature adjustment duct provided with the thermoelectric conversion element temperature adjustment duct 12 interposed therebetween. You may provide in the state in which a part of secondary battery 13 contacts the outer surface of the wall on the opposite side to 12. In this case, in the battery temperature adjusting duct, a portion where the secondary battery 13 contacts is made of a material having high thermal conductivity, for example, metal.

○ 電池モジュール10の電池収容ダクト11を、図7(b)に示すように、隔壁14と、蓋部11bの一部と、隔壁14から二次電池13側に向かって蓋部11bと平行に延びる底壁とで断面コ字状に形成してもよい。この場合も、連通ダクト17の位置は変更される。   As shown in FIG. 7B, the battery housing duct 11 of the battery module 10 is parallel to the partition wall 14, a part of the lid portion 11 b, and the lid portion 11 b from the partition wall 14 toward the secondary battery 13. The extending bottom wall may be formed in a U-shaped cross section. Also in this case, the position of the communication duct 17 is changed.

○ 電池モジュール10は、二次電池13の一部が電池温調用ダクトに収容された構成や、電池温調用ダクトの側壁や底壁に開口部が形成された構成としてもよい。
○ 電池モジュール10は、電池収容ダクト11内に収容された全ての二次電池13が並列に接続されて共通のプラス端子及びマイナス端子に接続された構成、全ての二次電池13が直列に接続された構成、あるいは直列に接続された複数の二次電池13の組が並列に接続された構成のいずれであってもよい。
The battery module 10 may have a configuration in which a part of the secondary battery 13 is accommodated in a battery temperature adjustment duct, or a configuration in which openings are formed in the side wall or bottom wall of the battery temperature adjustment duct.
The battery module 10 has a configuration in which all the secondary batteries 13 accommodated in the battery accommodating duct 11 are connected in parallel and connected to a common plus terminal and a minus terminal, and all the secondary batteries 13 are connected in series. The configuration may be either a configuration in which a set of a plurality of secondary batteries 13 connected in series is connected in parallel.

○ 電池収容ダクト11、熱電変換素子温調用ダクト12及び連通ダクト17の形状は断面矩形状に限らない。
○ 二次電池13は角型電池に限らず、円筒型電池やラミネート型電池であってもよい。
The shapes of the battery housing duct 11, the thermoelectric conversion element temperature control duct 12, and the communication duct 17 are not limited to a rectangular cross section.
The secondary battery 13 is not limited to a square battery, and may be a cylindrical battery or a laminate battery.

○ 電池は二次電池13に限らず、燃料電池に適用してもよい。
○ 電池収容ダクト11又は電池温調用ダクトと、熱電変換素子温調用ダクト12とは一体形成された構成に限らず、各電池収容ダクト11又は電池温調用ダクトと、熱電変換素子温調用ダクト12とを別々に形成した後、電池収容ダクト11又は電池温調用ダクトで熱電変換素子温調用ダクト12を挟むように接着あるいは固定してもよい。
The battery is not limited to the secondary battery 13 and may be applied to a fuel cell.
The battery accommodating duct 11 or the battery temperature adjusting duct and the thermoelectric conversion element temperature adjusting duct 12 are not limited to being integrally formed, but each battery accommodating duct 11 or the battery temperature adjusting duct, the thermoelectric conversion element temperature adjusting duct 12 and Then, the thermoelectric conversion element temperature adjustment duct 12 may be bonded or fixed so as to sandwich the battery accommodation duct 11 or the battery temperature adjustment duct.

○ 蓋部11bを本体11aにねじで固定する代わりに、接着剤で固着してもよい。しかし、蓋部11bがねじで固定された構成では、蓋部11bを取り外して二次電池13の保守点検を行うことが容易になる。   O Instead of fixing the lid 11b to the main body 11a with screws, it may be fixed with an adhesive. However, in the configuration in which the lid portion 11b is fixed with a screw, it becomes easy to remove the lid portion 11b and perform maintenance and inspection of the secondary battery 13.

以下の技術的思想(発明)は前記実施形態から把握できる。
(1)請求項1〜請求項3のいずれか1項に記載の発明において、前記電池温調用ダクトは、本体と蓋部とを備え、前記電池は前記蓋部に形成された凸部により支持された状態で設けられている。
The following technical idea (invention) can be understood from the embodiment.
(1) In the invention according to any one of claims 1 to 3, the battery temperature adjustment duct includes a main body and a lid portion, and the battery is supported by a convex portion formed in the lid portion. It is provided in the state that was done.

(2)請求項1〜請求項3及び前記技術的思想(1)のいずれか1項に記載の発明において、前記電池温調用ダクト及び前記熱電変換素子温調用ダクトは、断熱性を有する材質で形成されている。   (2) In the invention according to any one of claims 1 to 3 and the technical idea (1), the battery temperature adjustment duct and the thermoelectric conversion element temperature adjustment duct are made of a material having heat insulation properties. Is formed.

11…電池温調用ダクトとしての電池収容ダクト、12…熱電変換素子温調用ダクト、13…電池としての二次電池、14…境界部としての隔壁、15…熱電変換素子、15a…第1の面、15b…第2の面、17…連通ダクト、18,21…熱媒体駆動部。   DESCRIPTION OF SYMBOLS 11 ... Battery accommodation duct as battery temperature control duct, 12 ... Thermoelectric conversion element temperature control duct, 13 ... Secondary battery as battery, 14 ... Partition as boundary part, 15 ... Thermoelectric conversion element, 15a ... 1st surface 15b ... 2nd surface, 17 ... Communication duct, 18, 21 ... Heat-medium drive part.

Claims (4)

複数設けられた電池温調用ダクトと、
前記電池温調用ダクトを流れる熱媒体で温度調整される電池と、
前記電池温調用ダクトに隣接して、かつ二つの前記電池温調用ダクトに挟まれた状態で設けられた熱電変換素子温調用ダクトと、
前記電池温調用ダクトと前記熱電変換素子温調用ダクトとの境界部に設けられ、通電の極性に応じて放熱と吸熱の相反する作用を行う第1の面及び第2の面を有し、前記第1の面が前記電池温調用ダクトに対応し、前記第2の面が前記熱電変換素子温調用ダクトに対応するように設けられた熱電変換素子と
を備えていることを特徴とする電池モジュール。
A plurality of battery temperature control ducts,
A battery whose temperature is adjusted by a heat medium flowing through the battery temperature adjusting duct;
A thermoelectric conversion element temperature adjustment duct provided adjacent to the battery temperature adjustment duct and sandwiched between the two battery temperature adjustment ducts;
Provided at a boundary portion between the battery temperature adjustment duct and the thermoelectric conversion element temperature adjustment duct, and has a first surface and a second surface that perform opposite actions of heat dissipation and heat absorption according to the polarity of energization, A battery module comprising: a thermoelectric conversion element provided so that a first surface corresponds to the battery temperature adjustment duct and the second surface corresponds to the thermoelectric conversion element temperature adjustment duct. .
前記電池は前記電池温調用ダクトに収容されている請求項1に記載の電池モジュール。   The battery module according to claim 1, wherein the battery is accommodated in the battery temperature adjusting duct. 前記複数の電池温調用ダクトは連通ダクトを介して熱媒体が循環可能に設けられ、前記連通ダクトには熱媒体駆動部が設けられている請求項1又は請求項2に記載の電池モジュール。   The battery module according to claim 1, wherein the plurality of battery temperature control ducts are provided so that a heat medium can be circulated through the communication ducts, and a heat medium driving unit is provided in the communication ducts. 前記熱電変換素子はペルチェ素子である請求項1〜請求項3のいずれか一項に記載の電池モジュール。   The battery module according to claim 1, wherein the thermoelectric conversion element is a Peltier element.
JP2011158202A 2011-07-19 2011-07-19 Battery module Withdrawn JP2013025948A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011158202A JP2013025948A (en) 2011-07-19 2011-07-19 Battery module
PCT/JP2012/067975 WO2013011958A1 (en) 2011-07-19 2012-07-13 Battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011158202A JP2013025948A (en) 2011-07-19 2011-07-19 Battery module

Publications (1)

Publication Number Publication Date
JP2013025948A true JP2013025948A (en) 2013-02-04

Family

ID=47558136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011158202A Withdrawn JP2013025948A (en) 2011-07-19 2011-07-19 Battery module

Country Status (2)

Country Link
JP (1) JP2013025948A (en)
WO (1) WO2013011958A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160093933A1 (en) * 2014-09-29 2016-03-31 Fuji Jukogyo Kabushiki Kaisha Onboard battery for vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7399650B2 (en) * 2019-08-21 2023-12-18 マツダ株式会社 vehicle battery pack

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007356A (en) * 2001-06-25 2003-01-10 Matsushita Refrig Co Ltd Temperature regulator for storage battery and running vehicle mounting the same
US8377581B2 (en) * 2009-03-27 2013-02-19 GM Global Technology Operations LLC Battery pack for a vehicle
MX2011012238A (en) * 2009-05-18 2012-02-28 Bsst Llc Battery thermal management system.

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160093933A1 (en) * 2014-09-29 2016-03-31 Fuji Jukogyo Kabushiki Kaisha Onboard battery for vehicle
CN105470604A (en) * 2014-09-29 2016-04-06 富士重工业株式会社 Onboard battery for vehicle
JP2016072006A (en) * 2014-09-29 2016-05-09 富士重工業株式会社 On-vehicle battery
US9748619B2 (en) 2014-09-29 2017-08-29 Subaru Corporation Onboard battery for vehicle
DE102015218226B4 (en) 2014-09-29 2022-03-17 Subaru Corporation On-board battery for a vehicle

Also Published As

Publication number Publication date
WO2013011958A1 (en) 2013-01-24

Similar Documents

Publication Publication Date Title
JP6169571B2 (en) Rechargeable electric battery
US20120129020A1 (en) Temperature-controlled battery system ii
EP2400579B1 (en) Battery assembly with cooling
KR101968852B1 (en) Mechanically integrated rotating electric machine device
WO2011093327A1 (en) Battery pack
US20110300420A1 (en) Temperature controlled battery pack assembly and methods for using the same
US11038222B2 (en) Power storage device
US20120183830A1 (en) Battery having a housing partially filled with cooling fluid
WO2012124446A1 (en) Battery module
KR20200106956A (en) Mechanical and thermal systems for modular batteries with power electronics components
CN106025130B (en) Temperature control assembly, battery module and battery box
US11171373B2 (en) Battery module including Peltier element and compensation element between temperature regulating element and battery cell
KR20050036905A (en) Drive device
CN108886189A (en) Battery pack temperature control, power supply system
CN108351127B (en) Heat exchanger, in particular thermoelectric heat pump, for temperature control of a battery
WO2009090773A1 (en) Temperature control mechanism
US20090191453A1 (en) Car power source apparatus
US9631836B2 (en) Device for electrically heating fluid for a motor vehicle, and related heating and/or air-conditioning apparatus
KR20070014658A (en) Secondary battery module
JP2012160338A (en) Battery module
KR20190084849A (en) Switchable battery module
US20190081293A1 (en) Heat-radiation module and electric vehicle battery pack using same
JP2006127920A (en) Power supply device
JP2013038001A (en) Battery module
WO2013111529A1 (en) Battery temperature adjustment device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007