JP2013024826A - Control member for light water reactor - Google Patents

Control member for light water reactor Download PDF

Info

Publication number
JP2013024826A
JP2013024826A JP2011162849A JP2011162849A JP2013024826A JP 2013024826 A JP2013024826 A JP 2013024826A JP 2011162849 A JP2011162849 A JP 2011162849A JP 2011162849 A JP2011162849 A JP 2011162849A JP 2013024826 A JP2013024826 A JP 2013024826A
Authority
JP
Japan
Prior art keywords
boron
control member
light water
water reactor
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011162849A
Other languages
Japanese (ja)
Other versions
JP5783495B2 (en
Inventor
Mitsuru Kanbe
満 神戸
Zenzo Ishijima
善三 石島
Hiroshi Ishii
啓 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2011162849A priority Critical patent/JP5783495B2/en
Publication of JP2013024826A publication Critical patent/JP2013024826A/en
Application granted granted Critical
Publication of JP5783495B2 publication Critical patent/JP5783495B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control member for a light water reactor in which recriticality caused by melted fuel rods can be effectively prevented by putting the control member as a neutron-absorbing control material into a reactor pressure vessel when a refrigeration system in the light water reactor has troubles causing meltdown.SOLUTION: Boron atoms 5 are used as a granular material which spreads in a hollow outer shell part 4 and floats in water.

Description

本発明は、非常時に中性子を吸収する部材として軽水炉に投入され、燃料棒が溶融した際の再臨界の防止に有効な軽水炉用制御部材に関する。   The present invention relates to a light water reactor control member that is put into a light water reactor as a member that absorbs neutrons in an emergency and is effective in preventing recriticality when a fuel rod is melted.

従来の軽水炉では、地震時などには揺れを感知して制御棒が原子炉圧力容器内に配列
された燃料棒の間に自動的に挿入され、燃料棒内の原子燃料の核分裂反応が停止し、その後、原子燃料の崩壊熱の冷却が行われる。地震に伴って外部電源が喪失された場合には、非常用ディーゼル発電機が起動し、この発電電力によって冷却系設備の運転が維持される。しかしながら、地震後の津波などにより非常用ディーゼル発電機および冷却系設備が損傷すると、原子炉圧力容器内の冷却ができなくなり、原子炉圧力容器内の1次冷却水の温度が上がって蒸気が発生し、数時間後には燃料棒の上部が水面上に露出する。燃料棒が水面上に露出して 1200℃以上になると、燃料被覆管を構成するジルコニウム合金と水蒸気が化学反応して水素が発生する水・ジルコニウム反応が活発になる。これは発熱反応のため燃料被覆管の温度は加速的に上昇し、短時間でジルコニウム合金の融点(約1800℃)を越える。そして、約2800℃になると原子燃料が溶け出す。
In conventional light water reactors, control rods are automatically inserted between the fuel rods arranged in the reactor pressure vessel in response to an earthquake, and the nuclear fission reaction of the nuclear fuel in the fuel rods stops. Thereafter, the decay heat of the nuclear fuel is cooled. When the external power supply is lost due to the earthquake, the emergency diesel generator is started, and the operation of the cooling system facility is maintained by the generated power. However, if the emergency diesel generator and cooling system facilities are damaged by a tsunami after the earthquake, the reactor pressure vessel cannot be cooled, and the temperature of the primary cooling water in the reactor pressure vessel rises, generating steam. After a few hours, the upper part of the fuel rod is exposed on the water surface. When the fuel rod is exposed on the water surface and becomes 1200 ° C. or higher, the water / zirconium reaction in which hydrogen is generated by a chemical reaction between the zirconium alloy constituting the fuel cladding tube and water vapor becomes active. This is an exothermic reaction, and the temperature of the fuel cladding tube increases at an accelerated rate and exceeds the melting point (about 1800 ° C.) of the zirconium alloy in a short time. At about 2800 ° C., the nuclear fuel begins to melt.

燃料被覆管や原子燃料が溶けて崩れ落ちる炉心溶融になると、がれき状のデブリになる可能性がある。また、その外側は燃料集合体の構造物等が一旦溶けて固まった酸化物(クラスト)に覆われる可能性がある。このように原子燃料の形が崩れてデブリや酸化物(クラスト)になると、中性子を吸収するボロン製の制御棒もその融点(約2300℃)で溶融してデブリや酸化物(クラスト)に混合すると考えられるが、炉心溶融の進展によっては、ボロンが一時的に原子燃料内で偏在して中性子の吸収が不十分となる恐れもあり、溶融途中の段階で再び連鎖的に核分裂反応を起こす再臨界が起こる可能性がある。一方、崩れ落ちた原子燃料の一部は塊ではなく砂粒状になって原子炉圧力容器の下部に堆積する可能性もある。この場合にも空隙に水が存在する大きなデブリ領域が形成されると、水と原子燃料の存在比率が臨界に適した条件となり再臨界が起こる可能性がある。   Debris-like debris may occur when the core melts as the fuel cladding tube or nuclear fuel melts and collapses. Further, there is a possibility that the outside of the fuel assembly structure or the like is covered with oxide (crust) that has been melted and solidified. When the shape of the nuclear fuel collapses into debris or oxide (crust), the boron control rod that absorbs neutrons melts at its melting point (about 2300 ° C) and mixes with debris and oxide (crust). However, depending on the progress of core melting, boron may be temporarily unevenly distributed in the nuclear fuel, resulting in insufficient neutron absorption. Criticality can occur. On the other hand, there is a possibility that part of the nuclear fuel that has fallen down is not a lump but is in the form of sand and accumulates in the lower part of the reactor pressure vessel. Also in this case, if a large debris region where water exists in the voids is formed, the abundance ratio of water and nuclear fuel becomes a condition suitable for criticality, and recriticality may occur.

再臨界が起こるとその発熱は崩壊熱に比べて格段に大きいため、冷却は一層困難になり、原子炉の制御が不能となる。なお過去の例によると、炉心の冷却機能に問題が生じてから約5時間で燃料棒が水面上にすべて露出し、その約10時間後には炉心全体の溶融に至っている。なお、炉心溶融後に冷温停止した原子炉から溶融燃料を取り出す際にも、再臨界が生じないよう注意が必要である。   When recriticality occurs, the heat generation is much larger than the decay heat, so cooling becomes even more difficult and the control of the reactor becomes impossible. According to the past example, all the fuel rods are exposed on the water surface about 5 hours after the problem of the cooling function of the core occurs, and about 10 hours later, the entire core is melted. It should be noted that care must be taken not to cause recriticality when the molten fuel is taken out of the reactor whose temperature has been stopped after melting the core.

上述したような再臨界を防止するために、中性子を吸収するホウ酸水を原子炉圧力容
器内に注入する方策がある(例えば特許文献1参照)。ホウ酸水はボロンの化合物の水溶液である。ボロンの同位体のうち10Bは非常に大きな中性子吸収断面積を持つため、原子炉内において中性子吸収のための制御棒に使用されている。しかしながら、ホウ酸水は上述のデブリの外側にしか存在できないため、ホウ酸水が中性子を吸収することによる再臨界防止効果は小さい。しかも、デブリの外側に酸化物(クラスト)が存在する場合には、酸化物(クラスト)の存在により中性子のデブリから外部への漏洩は一層困難となり再臨界が生じる恐れが大きい。また、ホウ酸水濃度はその後の注水により薄まるため、補い続ける必要がある。
In order to prevent the recriticality as described above, there is a method of injecting boric acid water that absorbs neutrons into a reactor pressure vessel (see, for example, Patent Document 1). Boric acid water is an aqueous solution of boron compound. Among boron isotopes, 10B has a very large neutron absorption cross section, and is therefore used as a control rod for neutron absorption in a nuclear reactor. However, since boric acid water can only exist outside the above-mentioned debris, the effect of preventing recriticality due to boric acid water absorbing neutrons is small. In addition, when an oxide (crust) exists outside the debris, leakage of neutrons from the debris to the outside becomes more difficult due to the presence of the oxide (crust), and recriticality is likely to occur. Moreover, since the boric acid water density | concentration becomes thin with subsequent water injection, it is necessary to continue supplementing.

特開2007−101332号公報JP 2007-101332 A

したがって、本発明は、軽水炉の冷却系設備に故障が生じ炉心溶融の恐れがある場合に、中性子を吸収する制御材として原子炉圧力容器内に投入し、燃料棒が溶融した際の再臨界を有効に防止することができる軽水炉用制御部材を提供することを目的としている。   Therefore, the present invention provides a recriticality when a fuel rod is melted by introducing it into a reactor pressure vessel as a control material that absorbs neutrons when there is a risk of melting of the cooling system of a light water reactor and core melting. An object of the present invention is to provide a light water reactor control member that can be effectively prevented.

ホウ酸水の代わりに中性子を吸収するボロンの粉末を原子炉圧力容器内に注入し、溶融した燃料やクラスト内に混入させる方策が考えられが、ボロンは比重が約2.3で水より重い。原子炉圧力容器に残っている冷却水は燃料棒の発熱により対流しているため、その撹拌作用が期待できるものの、粒径数ミクロン程度の微粉末でも冷却水中で時間とともに原子炉圧力容器の底に沈降する可能性がある。炉心溶融よりも前にボロンの粉末が原子炉圧力容器の底に沈殿した場合、再臨界防止効果は減殺される。   In place of boric acid water, boron powder that absorbs neutrons can be injected into the reactor pressure vessel and mixed into molten fuel or crust. Boron has a specific gravity of about 2.3 and is heavier than water. . Although the cooling water remaining in the reactor pressure vessel is convected by the heat generated by the fuel rods, its stirring action can be expected, but even with fine powder with a particle size of several microns, the bottom of the reactor pressure vessel will gradually increase in the cooling water over time. There is a possibility of sedimentation. If boron powder settles at the bottom of the reactor pressure vessel prior to core melting, the recriticality prevention effect is diminished.

さらに、炉心溶融の前の段階で燃料棒どうしの隙間をボロンの粉末が閉塞させる恐れがある。燃料棒は、通常は燃料集合体に2〜4mmの隙間を空けて規則正しく配列され、この隙間に冷却水が存在するが、ボロンの粉末を多量に注入してこの隙間を閉塞させると、冷却水が存在する状態でも燃料の除熱を妨げる恐れがある。したがって、ボロンの粉末を注入する方法は現実的でない。   Further, boron powder may block the gap between the fuel rods before the core melts. The fuel rods are usually arranged regularly with a gap of 2 to 4 mm in the fuel assembly, and cooling water exists in the gap. However, if a large amount of boron powder is injected to close the gap, Even in the presence of fuel, there is a risk of hindering the heat removal of the fuel. Therefore, a method of injecting boron powder is not practical.

本発明は、以上の検討結果に基づきなされたものであり、ボロンおよび/またはボロンの化合物を保持体に分散させて水に浮く粒状体としたことを特徴とする。   The present invention has been made based on the above examination results, and is characterized in that a boron and / or boron compound is dispersed in a holding body to form a granular body floating in water.

本発明の軽水炉用制御部材(以下、「制御部材」と略称する)によれば、外部電源喪失に加えて非常用ディーゼル発電機および冷却系設備が損傷し、炉心の冷却機能に問題が生じた場合に、制御部材を適宜な手段により原子炉圧力容器内に投入する。すると、制御部材は、原子炉圧力容器内の冷却水の自由液面上に浮遊し、水位が低下して燃料棒の上部が水面上に露出すると、水位とともに下方へ移動して制御部材が溶けた被覆管や燃料中に混ざり合うことで、中性子を効率良く吸収し、再臨界の防止に効果を発揮する。この場合において、制御部材は原子炉圧力容器内の冷却水の自由液面上に浮遊するから、燃料棒の隙間を閉塞させる恐れはない。   According to the light water reactor control member of the present invention (hereinafter abbreviated as “control member”), the emergency diesel generator and the cooling system equipment are damaged in addition to the loss of the external power source, resulting in a problem in the cooling function of the core. In this case, the control member is put into the reactor pressure vessel by an appropriate means. Then, the control member floats on the free liquid level of the cooling water in the reactor pressure vessel, and when the water level drops and the upper part of the fuel rod is exposed on the water surface, the control member moves downward together with the water level and the control member melts. By mixing with the cladding tube and fuel, neutrons are efficiently absorbed and effective in preventing recriticality. In this case, since the control member floats on the free liquid level of the cooling water in the reactor pressure vessel, there is no risk of closing the gap between the fuel rods.

ここで、従来においては、炉心を冷却するために軽水炉の外部から海水を注水するのは、廃炉の決断をした上での処置であった。この点、本発明においては、制御部材を原子炉圧力容器内に注入した後に、外部電源の復旧や冷却系設備の修理などにより炉心への注水を再開できて炉心溶融を回避できた場合には、軽水炉を冷温停止後に原子炉圧力容器内の冷却水の自由液面上に浮遊している制御部材をすくい上げるなどして容易に除去できる。したがって、廃炉の決断をすることなく予防的観点から早期の段階で制御部材を原子炉圧力容器内に供給できる。   Here, in the past, injecting seawater from the outside of the light water reactor to cool the reactor core was a measure after making a decision on decommissioning. In this regard, in the present invention, after injecting the control member into the reactor pressure vessel, water injection into the core can be resumed by restoring the external power supply or repairing the cooling system equipment, so that melting of the core can be avoided. The control member floating on the free liquid surface of the cooling water in the reactor pressure vessel can be easily removed after the light water reactor is cooled down. Therefore, the control member can be supplied into the reactor pressure vessel at an early stage from a preventive viewpoint without making the decision of decommissioning.

本発明においては、溶融する燃料被覆管や原子燃料の発熱によりボロンおよび/またはボロンの化合物(以下、「ボロン等」と称する)を分散させている保持体が溶融しても、ボロン等は直ちに冷却水中に沈降することはないため、ボロンが溶融した燃料被覆管や原子燃料中に混ざり合うことで、中性子を効率良く吸収し、再臨界の防止に効果を発揮する。   In the present invention, even when a carrier in which boron and / or a compound of boron (hereinafter referred to as “boron etc.”) is dispersed by melting of the fuel cladding tube or the heat generated from the nuclear fuel is melted, Since it does not settle in the cooling water, neutrons are absorbed efficiently by mixing with the fuel cladding tube and nuclear fuel in which boron is melted, and it is effective in preventing recriticality.

また、破損した原子燃料の一部が砂粒状になって原子炉圧力容器の下部に沈降する場合でも、ボロン等が砂粒状の粒子中に混ざり合うことで、中性子を効率良く吸収し、再臨界の防止に効果を発揮する。さらに、溶融した原子燃料が原子炉圧力容器を貫通して原子炉格納容器内またはその外側に落下した場合でも、ボロン等が溶けた燃料中に混ざり合うことで再臨界の防止に効果を発揮する。   In addition, even when some of the damaged nuclear fuel becomes sand particles and settles in the lower part of the reactor pressure vessel, boron and other substances are mixed in the sand particles to efficiently absorb neutrons and recriticality. It is effective for prevention. Furthermore, even when molten nuclear fuel passes through the reactor pressure vessel and falls into or out of the reactor containment vessel, it is effective in preventing recriticality by mixing boron etc. into the molten fuel. .

ここで、保持体は、内側が中空の外殻部を備えた塊状をなしていることが望ましい。また、塊状とは、球状や矩形状に限らず鱗片状や箔状等の任意の形態を含む概念である。   Here, it is desirable that the holding body has a lump shape with a hollow outer shell portion inside. The lump shape is a concept including not only a spherical shape and a rectangular shape but also an arbitrary shape such as a scale shape or a foil shape.

より具体的には、外殻部の内部にボロン等が分散している態様が含まれる。あるいは、外殻部の内壁部にボロン等が付着している態様や、外殻部の内側の中空部に、ボロン等が収容されている態様も含まれる。   More specifically, a mode in which boron or the like is dispersed inside the outer shell portion is included. Or the aspect in which boron etc. have adhered to the inner wall part of an outer shell part, and the aspect in which boron etc. were accommodated in the hollow part inside an outer shell part are also contained.

保持体としては、上記のような中空状のものに限定されるものではなく、膨張黒鉛などの多孔質体を用いることもできる。本発明においては、膨張黒鉛に形成された空隙にボロンを充填することで制御部材を構成することができる。あるいは、多孔質の金属(例えばステンレス鋼)の気孔にボロンを充填し、表面に露出している気孔を塑性加工等によって封孔処理して制御部材を構成することもできる。   The holding body is not limited to the hollow shape as described above, and a porous body such as expanded graphite can also be used. In the present invention, the control member can be configured by filling the void formed in the expanded graphite with boron. Alternatively, the control member can be configured by filling the pores of a porous metal (for example, stainless steel) with boron and sealing the pores exposed on the surface by plastic working or the like.

また、粒状体は、1つが単体で存在する態様であっても複数が結合した態様であってもよい。たとえば、粒状体は1つの外殻部の内部にボロン等が分散した態様であってもよい。また、そのような粒状体が複数結合した態様であってもよい。   In addition, the granular material may be a mode in which one is present alone or a mode in which a plurality is combined. For example, the granular material may have a form in which boron or the like is dispersed inside one outer shell. Moreover, the aspect with which such a granular material couple | bonded may be sufficient.

ボロンの化合物としては、例えば炭化ボロン(B4C)、酸化ボロン(B2O3)、および窒化ボロン(BN)の1種または2種以上を用いることができる。   As the boron compound, for example, one or more of boron carbide (B4C), boron oxide (B2O3), and boron nitride (BN) can be used.

本発明の制御部材は、ボロン等を保持体に分散させて水に浮く粒状体としたものである。したがって、制御部材の全体としての比重は1未満とする。燃料棒どうしの隙間は、燃料集合体において通常は2〜4mmの隙間を空けて規則正しく配列されているため、この隙間を閉塞させないために、制御部材の粒径(差し渡し最外径)は1mm以下が望ましい。なお粒状体の形状については前述のように必ずしも球状である必要はない。   The control member of the present invention is a granular material in which boron or the like is dispersed in a holding body and floats on water. Therefore, the specific gravity of the entire control member is less than 1. Since the gaps between the fuel rods are regularly arranged in the fuel assembly, usually with a gap of 2 to 4 mm, the particle diameter of the control member (passing outermost diameter) is 1 mm or less in order not to close the gap. Is desirable. As described above, the shape of the granular material is not necessarily spherical.

ボロン等を分散させる保持体がその融点に到達すると、制御部材は壊れてボロン等が分離する。したがって、炉心溶融に至るまでの過程で、できるだけ長時間にわたって制御部材を水に浮かせるために、保持体の材料の融点はできるだけ高いことが望ましい。しかしながら、ボロン等が水中に分離しても、原子炉圧力容器に残っている冷却水は燃料棒の発熱により対流しているため、その撹拌作用により直ちに原子炉圧力容器の底に沈降することはない。したがって、ボロン等を分散させる保持体の材料の融点に関しては特に制約はない。またボロン等を分散させる保持体の材料の融点が燃料被覆管を構成するジルコニウム合金の融点(約1800℃)より高い場合、制御部材はもとの形状を維持したまま溶融した燃料被覆管内に溶け込む。しかしながら、ボロン等が中性子を吸収する効果は、制御部材がもとの形状を維持するか否かに無関係である。   When the holding body for dispersing boron or the like reaches its melting point, the control member is broken and boron or the like is separated. Therefore, it is desirable that the melting point of the material of the holding body be as high as possible in order to float the control member in water for as long a time as possible until the core is melted. However, even if boron or the like is separated into the water, the cooling water remaining in the reactor pressure vessel is convected due to the heat generated by the fuel rods, so that the stirring action immediately sinks to the bottom of the reactor pressure vessel. Absent. Therefore, there are no particular restrictions on the melting point of the material of the holder for dispersing boron or the like. Further, when the melting point of the material of the holder for dispersing boron or the like is higher than the melting point (about 1800 ° C.) of the zirconium alloy constituting the fuel cladding tube, the control member melts into the molten fuel cladding tube while maintaining the original shape. . However, the effect of boron and the like absorbing neutrons is independent of whether or not the control member maintains its original shape.

本発明によれば、軽水炉の冷却系設備に故障が生じ炉心溶融の恐れがある場合に、中性子を吸収する制御材として原子炉圧力容器内に注入し、燃料棒が溶融した際の再臨界を有効に防止することができる。また、炉心溶融を回避できた場合には、軽水炉を冷温停止後に原子炉圧力容器内の冷却水の自由液面上に浮遊している制御部材をすくい上げるなどして容易に除去できるので、廃炉の決断をすることなく予防的観点から早期の段階で制御部材を原子炉圧力容器内に供給できる。   According to the present invention, when a cooling system facility of a light water reactor fails and there is a risk of melting the core, it is injected into a reactor pressure vessel as a control material that absorbs neutrons, and recriticality when the fuel rod is melted is reduced. It can be effectively prevented. In addition, if the core melt can be avoided, the light water reactor can be removed easily by scooping up the control member floating on the free liquid level of the cooling water in the reactor pressure vessel after the cold shutdown. The control member can be supplied into the reactor pressure vessel at an early stage from a preventive viewpoint without making a decision.

本発明の第1実施形態の制御部材の作製途中の状態を示す断面図である。It is sectional drawing which shows the state in the middle of preparation of the control member of 1st Embodiment of this invention. 本発明の第1実施形態の制御部材を示す断面図である。It is sectional drawing which shows the control member of 1st Embodiment of this invention. 本発明の第2実施形態の制御部材の作製途中の状態を示す断面図である。It is sectional drawing which shows the state in the middle of preparation of the control member of 2nd Embodiment of this invention. 本発明の第2実施形態の制御部材を示す断面図である。It is sectional drawing which shows the control member of 2nd Embodiment of this invention. 本発明の第2実施形態の変形例における制御部材の作製途中の状態を示す断面図である。It is sectional drawing which shows the state in the middle of preparation of the control member in the modification of 2nd Embodiment of this invention. 本発明の第2実施形態の変形例における制御部材を示す断面図である。It is sectional drawing which shows the control member in the modification of 2nd Embodiment of this invention. 本発明の第3実施形態の変形例における制御部材の作製途中の状態を示す断面図である。It is sectional drawing which shows the state in the middle of preparation of the control member in the modification of 3rd Embodiment of this invention. 本発明の第3実施形態の変形例における制御部材を示す断面図である。It is sectional drawing which shows the control member in the modification of 3rd Embodiment of this invention.

1.第1実施形態
以下、図面を参照して本発明の一実施形態を説明する。図1は、アルミナの微粉末をバインダーと共に練り合わせたペースト1でパラフィンワックス粒子2の周囲を包み、さらにその外側にミクロンオーダーのボロン粉末3を付着させたものである。このような複合粒子は、公知の混合装置でパラフィンワックスとバインダー樹脂およびアルミナ微粉末を混合してパラフィンワックス粒子2をペースト1で被覆した粒径が1mm程度の粒子を作製し、この粒子とボロン粉末3とを混合することで作製することができる。これを1500℃程度で焼結すると、パラフィンワックスは溶融、揮発し、一方、ボロン粉末3中のボロン原子はアルミナ中に拡散する。これにより、図2に示すように、アルミナの外殻部(保持体)4にボロン原子5が分散した中空のボール(制御部材)6を作製した。できあがったボール6の外径を1.0mm、内径を0.9mm、アルミナとボロンの体積比を1:2とすると、以下の計算によりこれが水に浮くか否かが判定できる。なおアルミナの比重は4.0、ボロンの比重は2.3とする。
1. First Embodiment Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In FIG. 1, the periphery of paraffin wax particles 2 is wrapped with a paste 1 in which fine powder of alumina is kneaded together with a binder, and further, micron-order boron powder 3 is adhered to the outside thereof. Such composite particles are prepared by mixing paraffin wax, binder resin, and fine alumina powder with a known mixing device to produce particles having a particle size of about 1 mm by coating the paraffin wax particles 2 with the paste 1. It can be produced by mixing powder 3. When this is sintered at about 1500 ° C., the paraffin wax melts and volatilizes, while the boron atoms in the boron powder 3 diffuse into the alumina. As a result, as shown in FIG. 2, a hollow ball (control member) 6 in which boron atoms 5 were dispersed in an outer shell portion (holding body) 4 of alumina was produced. If the outer diameter of the completed ball 6 is 1.0 mm, the inner diameter is 0.9 mm, and the volume ratio of alumina and boron is 1: 2, it can be determined whether or not this floats in water by the following calculation. The specific gravity of alumina is 4.0, and the specific gravity of boron is 2.3.

(数1)
ボールの体積:V=4πR=4×π×(0.5)=1.57mm
ボール内部の空隙体積:V=4πR=4×π×(0.45)= 1.14mm
ボールの重量:W=γ(V1−)=2.87×10−3(g)
×(1.57−1.14)=1.23×10−3(g)
ボールが排除する水の重量:W=γ×V=1.0×10−3(g)×1.57
=1.57×10−3(g)
π:円周率=3.14
R:半径
γ:ボールを構成するアルミナとボロンの焼結体の比重 = 2.87×10−3(g)
γ:水の比重 = 1.0×10−3(g)
(Equation 1)
Ball volume: V 1 = 4πR 3 = 4 × π × (0.5) 3 = 1.57 mm 3
Void volume inside the ball: V 2 = 4πR 3 = 4 × π × (0.45) 3 = 1.14 mm 3
Ball weight: W = γ (V 1 −V 2 ) = 2.87 × 10 −3 (g)
X (1.57-1.14) = 1.23 * 10 < -3 > (g)
Weight of water excluded by ball: W 0 = γ 0 × V 1 = 1.0 × 10 −3 (g) × 1.57
= 1.57 × 10 −3 (g)
π: Circumference ratio = 3.14
R: radius γ: specific gravity of the sintered body of alumina and boron constituting the ball = 2.87 × 10 −3 (g)
γ 0 : Specific gravity of water = 1.0 × 10 −3 (g)

上記の計算によりW<Wであるからこのボール6は水に浮く。アルミナの融点は2054℃のため、この温度にて上記ボールは溶融するが、すでに溶けている燃料被覆管(融点:約1800℃)に速やかに混合される。さらに、その後に溶融する原子燃料(融点:約2800℃)中にボロンが混ざり合うことで、中性子を効率良く吸収し、再臨界の防止に効果を発揮する。なお、本実施形態において、アルミナの代わりに別のセラミックス、例えば酸化マグネシウム、酸化イットリウム、酸化ジルコニウムなどを用いることも可能である。 Since W <W 0 according to the above calculation, the ball 6 floats on water. Since the melting point of alumina is 2054 ° C., the ball melts at this temperature, but is rapidly mixed into the already melted fuel cladding tube (melting point: about 1800 ° C.). Furthermore, boron is mixed in the nuclear fuel (melting point: about 2800 ° C.) that is melted thereafter, so that neutrons are efficiently absorbed and the effect of preventing recriticality is exhibited. In the present embodiment, other ceramics such as magnesium oxide, yttrium oxide, and zirconium oxide can be used instead of alumina.

2.第2実施形態
平均粒径が10μmのボロン粉末10とパラフィンワックス11とを体積比1:1となるように加熱混練した後、公知の造粒法により粒径が約1mmの球状の混練物を作製した。次に、この球状の混練物と平均粒径が0.5μmのアルミナ微粉末12を回転式の混合機で混合することで、表面にアルミナ微粉末12が付着した複合粒子を作製した(図3参照)。次に、この複合粒子を大気中1500℃にて120分間焼結することにより、アルミナの外殻部(保持体)13の中空内周面にボロン粉末10が固着した中空のボール(制御部材)14を作製した(図4参照)。なお、焼結温度と焼結時間を調整することにより、ボロン粉末10の一部または全部を外殻部13内に拡散させることができる。
2. Second Embodiment Boron powder 10 having an average particle size of 10 μm and paraffin wax 11 are heat-kneaded so as to have a volume ratio of 1: 1, and then a spherical kneaded product having a particle size of about 1 mm is obtained by a known granulation method. Produced. Next, the spherical kneaded product and alumina fine powder 12 having an average particle diameter of 0.5 μm were mixed with a rotary mixer to produce composite particles having the alumina fine powder 12 adhered to the surface (FIG. 3). reference). Next, the composite particles are sintered in the atmosphere at 1500 ° C. for 120 minutes, whereby a hollow ball (control member) in which the boron powder 10 is fixed to the hollow inner peripheral surface of the outer shell portion (holding body) 13 of alumina. 14 was produced (see FIG. 4). In addition, part or all of the boron powder 10 can be diffused into the outer shell portion 13 by adjusting the sintering temperature and the sintering time.

図5および図6は上記第2実施形態の変形例を示すものである。この変形例では、平均粒径が10μmのボロン粉末10とパラフィンワックス11とを体積比1:1となるように加熱混練した後、球状の混練物を作製し、混練物の表面にアルミナ微粉末12が付着した粒径が約0.5mmの球状の複合粒子を作製した。この複合粒子を複数結合した結合粒子(図5参照)を焼結し、アルミナの外殻部(保持体)13の内部にボロンが拡散した粒径が1mm以下の中空のボール(制御部材)14を作製した(図6参照)。   5 and 6 show a modification of the second embodiment. In this modified example, boron powder 10 having an average particle size of 10 μm and paraffin wax 11 are heat-kneaded so as to have a volume ratio of 1: 1, and then a spherical kneaded material is produced, and alumina fine powder is formed on the surface of the kneaded material. Spherical composite particles having a particle size of about 0.5 mm with 12 attached thereto were produced. A bonded particle (see FIG. 5) in which a plurality of these composite particles are bonded is sintered, and a hollow ball (control member) 14 having a particle diameter of 1 mm or less in which boron is diffused inside the outer shell portion (holding body) 13 of alumina. Was prepared (see FIG. 6).

3.第3実施形態
第1実施形態においてアルミナ微粉末の代わりにステンレス鋼の微粉末を用いた。平均粒径が2〜5μmのSUS430粉末を用い、図1に示すものと同等の複合粒子を作製した。これを非酸化性雰囲気で750℃と1000℃にて焼結し、ステンレス鋼の外殻部にボロンが合金化するとともに外殻部の外周面にボロンが固着した中空のボール(制御部材)を作製した。
3. Third Embodiment In the first embodiment, a fine powder of stainless steel was used instead of the fine alumina powder. Composite particles equivalent to those shown in FIG. 1 were prepared using SUS430 powder having an average particle diameter of 2 to 5 μm. This is sintered at 750 ° C. and 1000 ° C. in a non-oxidizing atmosphere, and a hollow ball (control member) in which boron is alloyed to the outer shell of stainless steel and boron is fixed to the outer peripheral surface of the outer shell. Produced.

図7および図8は上記第3実施形態の変形例を示すものである。この変形例では、ステンレス鋼の微粉末をバインダーと共に練り合わせたペースト1でパラフィンワックス粒子2の周囲を包み、さらにその外側にミクロンオーダーのボロン粉末3を付着させた粒径が約0.5mmの球状の複合粒子を作製した。この複合粒子を複数結合した結合粒子(図7参照)を焼結し、ステンレス鋼の外殻部4にボロンが合金化した粒径が1mm以下の中空のボール(制御部材)6を作製した。   7 and 8 show a modification of the third embodiment. In this modified example, a paste 1 in which fine powder of stainless steel is kneaded together with a binder wraps around the paraffin wax particles 2, and further a micron-order boron powder 3 is adhered to the outer side of the spherical particle having a particle size of about 0.5 mm. The composite particles were prepared. A bonded particle (see FIG. 7) in which a plurality of the composite particles are bonded together was sintered, and a hollow ball (control member) 6 having a particle diameter of 1 mm or less formed by alloying boron into the outer shell portion 4 of stainless steel was produced.

4.第4実施形態
実施形態2においてアルミナ微粉末の代わりにステンレス鋼の微粉末を用いた。平均粒径が2〜5μmのSUS430粉末を用い、図3に示すものと同等の複合粒子を作製した。これを非酸化性雰囲気で750℃と1000℃にて焼結し、ステンレス鋼の外殻部にボロンが合金化するとともに外殻部の内周面にボロンが固着した中空のボール(制御部材)を作製した。
4). Fourth Embodiment In Embodiment 2, stainless steel fine powder was used instead of alumina fine powder. Composite particles equivalent to those shown in FIG. 3 were prepared using SUS430 powder having an average particle diameter of 2 to 5 μm. This is a hollow ball (control member) which is sintered at 750 ° C. and 1000 ° C. in a non-oxidizing atmosphere, and boron is alloyed to the outer shell of stainless steel and boron is fixed to the inner peripheral surface of the outer shell. Was made.

第3、第4実施形態において、燃料棒が水面上に露出して1200℃以上になると、燃料被覆管のジルコニウム合金と水蒸気が化学反応して水素が発生する水・ジルコニウム反応が活発になるが、これは発熱反応で温度は加速的に上昇し短時間でジルコニウム合金の融点(約1800℃)を越える。一方、ステンレス鋼の融点は約1400℃であるが、ボロンは鉄と1149℃で共晶液相を発生させるので1100℃付近で溶融する。したがって、1100℃以上でステンレス鋼からなる外殻部は溶融し、ボロンは溶融する燃料被覆管に速やかに混ざり合う。そしてさらに温度は急激に上昇し約2800℃で原子燃料が溶け出す。以上により、ボロンは溶融した燃料被覆管内、原子燃料内および燃料被覆管と燃料の混合体の中などに混ざり合う。そして、ボロンが中性子を吸収することにより、再臨界の防止に効果が発揮される。   In the third and fourth embodiments, when the fuel rod is exposed on the water surface and becomes 1200 ° C. or higher, the water-zirconium reaction in which hydrogen is generated by the chemical reaction between the zirconium alloy in the fuel cladding tube and water vapor becomes active. This is an exothermic reaction, and the temperature rises at an accelerated rate and exceeds the melting point (about 1800 ° C.) of the zirconium alloy in a short time. On the other hand, although the melting point of stainless steel is about 1400 ° C., boron generates a eutectic liquid phase at 1149 ° C. with iron, so it melts around 1100 ° C. Therefore, the outer shell made of stainless steel melts at 1100 ° C. or higher, and boron quickly mixes with the molten fuel cladding. Further, the temperature rapidly rises and the nuclear fuel melts at about 2800 ° C. As described above, boron is mixed in the molten fuel cladding tube, the nuclear fuel, the fuel cladding tube and the fuel mixture, or the like. Boron absorbs neutrons, and is effective in preventing recriticality.

5.第5実施形態
実施形態1においてアルミナ微粉末の代わりに鉄−ボロン合金粉末を用いた。平均粒径が1μmの鉄−ボロン合金粉末を用い、図1に示すものと同等の複合粒子を作製した。これを非酸化性雰囲気で750℃と1000℃にて焼結し、鉄−ボロン合金の外殻部にボロンが合金化するとともに外殻部の外周面にボロンが固着した中空のボール(制御部材)を作製した。
5. Fifth Embodiment In the first embodiment, iron-boron alloy powder is used instead of fine alumina powder. Using an iron-boron alloy powder having an average particle diameter of 1 μm, composite particles equivalent to those shown in FIG. 1 were produced. This is sintered at 750 ° C. and 1000 ° C. in a non-oxidizing atmosphere, and boron is alloyed in the outer shell of the iron-boron alloy and at the same time a hollow ball (control member) with boron fixed to the outer peripheral surface of the outer shell. ) Was produced.

6.第6実施形態
実施形態2においてアルミナ微粉末の代わりに鉄−ボロン合金粉末を用いた。平均粒径が1μmの鉄−ボロン合金粉末を用い、図3に示すものと同等の複合粒子を作製した。これを非酸化性雰囲気で750℃と1000℃にて焼結し、鉄−ボロン合金の外殻部にボロンが合金化するとともに外殻部の内周面にボロンが固着した中空のボール(制御部材)を作製した。
6). Sixth Embodiment In Embodiment 2, iron-boron alloy powder was used instead of fine alumina powder. Composite particles equivalent to those shown in FIG. 3 were prepared using an iron-boron alloy powder having an average particle diameter of 1 μm. This is sintered at 750 ° C. and 1000 ° C. in a non-oxidizing atmosphere, and boron is alloyed in the outer shell of the iron-boron alloy and a hollow ball with boron fixed to the inner peripheral surface of the outer shell (control) Member).

第5、第6実施形態においても、1100℃以上で鉄−ボロン合金からなる外殻部は溶融し、溶融した燃料被覆管内、原子燃料内および燃料被覆管と燃料の混合体の中などに混ざり合う。したがって、第3、第4実施形態と同等の作用、効果を得ることができる。   Also in the fifth and sixth embodiments, the outer shell portion made of an iron-boron alloy is melted at 1100 ° C. or higher and mixed in the melted fuel cladding tube, the nuclear fuel, the fuel cladding tube and the fuel mixture, or the like. Fit. Therefore, the same operation and effect as the third and fourth embodiments can be obtained.

7.第7実施形態
膨張黒鉛の粉末(粒径1mm以下)にボロンを充填することで制御部材を作製する。膨張黒鉛は、化学反応を用いて黒鉛のシート間に所定の物質を挿入し、これを急加熱することにより層間に挿入された物質を燃焼・ガス化させて製造される。その時に生じたガスの放出が爆発的に層と層の間を押し広げるので、黒鉛が層の積み重なり方向に膨張する。制御部材は、黒鉛の膨張により形成された多量の空隙にホウ酸水を真空含浸させ、これを加熱して水分を蒸発させることで製造される。この制御部材は多量の空隙を含むため水に浮かせることが可能である。なお、黒鉛と水は濡れ性が悪いため、上記空隙に原子炉圧力容器内の冷却水が侵入することは無い。
7). Seventh Embodiment A control member is produced by filling expanded graphite powder (particle size of 1 mm or less) with boron. Expanded graphite is manufactured by inserting a predetermined substance between sheets of graphite using a chemical reaction, and burning and gasifying the substance inserted between the layers by rapid heating. The release of gas generated at that time explosively spreads between the layers, so that the graphite expands in the stacking direction of the layers. The control member is manufactured by vacuum impregnating boric acid water into a large amount of voids formed by the expansion of graphite and evaporating the water by heating it. Since this control member includes a large amount of voids, it can be floated on water. Since graphite and water have poor wettability, the cooling water in the reactor pressure vessel does not enter the gap.

上記のような制御部材を原子炉圧力容器内に注入する方策としては、特に限定されないが、例えば緊急炉心冷却装置を使う方法がある。すなわち、加圧水型軽水炉では、高圧で蓄えてある水を入れる蓄圧注入系、ポンプを使い高圧で送り込む高圧注入系、圧力が下がってから働かせる低圧注入系の3系統を用いることができる。また沸騰水型軽水炉では、原子炉圧力容器の上部から高圧で水をまく高圧炉心スプレー、低圧炉心スプレー、低圧注入系を用いることができる。また、沸騰水型炉では原子炉格納容器の容積を補うサプレッション・プール(チェンバー)がある。以上のうちで採用可能な系統を通じて淡水または海水と共に制御部材を注入することができる。   A method for injecting the control member as described above into the reactor pressure vessel is not particularly limited. For example, there is a method of using an emergency core cooling device. That is, in a pressurized water type light water reactor, three systems can be used: an accumulator injection system in which water stored at a high pressure is charged, a high pressure injection system in which a pump is used to send water at a high pressure, and a low pressure injection system that is operated after the pressure is lowered. In the boiling water type light water reactor, a high pressure core spray, a low pressure core spray, and a low pressure injection system in which water is supplied at a high pressure from the upper part of the reactor pressure vessel can be used. In addition, the boiling water reactor has a suppression pool (chamber) that supplements the capacity of the reactor containment vessel. The control member can be injected together with fresh water or seawater through a system that can be employed.

本発明は、軽水炉の冷却系設備に故障が生じたときに、中性子を吸収する制御材として利用することができる。   The present invention can be used as a control material that absorbs neutrons when a failure occurs in a cooling system facility of a light water reactor.

1 ペースト
2 パラフィンワックス粒子
3 ボロン粉末
4 外殻部
5 ボロン原子
6 ボール(制御部材)
10 ボロン粉末
11 パラフィンワックス
12 アルミナ微粉末
13 外殻部
14 ボール(制御部材)
1 Paste 2 Paraffin wax particles 3 Boron powder 4 Outer shell 5 Boron atom 6 Ball (control member)
10 Boron powder 11 Paraffin wax 12 Alumina fine powder 13 Outer shell 14 Ball (control member)

Claims (9)

ボロンおよび/またはボロンの化合物を保持体に分散させて水に浮く粒状体としたことを特徴とする軽水炉用制御部材。   A control member for a light water reactor, characterized in that boron and / or a compound of boron is dispersed in a holding body to form a granular body that floats on water. 前記保持体は、内側が中空の外殻部を備えた塊状をなしていることを特徴とする請求項1に記載の軽水炉用制御部材。   2. The light water reactor control member according to claim 1, wherein the holding body has a lump shape having a hollow outer shell portion inside. 3. 前記粒状体は、1つが単体で存在するか複数が結合したものであることを特徴とする請求項1または2に記載の軽水炉用制御部材。   3. The light water reactor control member according to claim 1, wherein one of the granular bodies is a single body or a plurality of the granular bodies are combined. 前記外殻部の内部にボロンおよび/またはボロンの化合物が分散していることを特徴とする請求項2または3に記載の軽水炉用制御部材。   4. The light water reactor control member according to claim 2, wherein boron and / or a boron compound is dispersed in the outer shell portion. 5. 前記外殻部の内壁部にボロンおよび/またはボロンの化合物が付着していることを特徴とする請求項2または3に記載の軽水炉用制御部材。   4. The light water reactor control member according to claim 2, wherein boron and / or a compound of boron adheres to an inner wall portion of the outer shell portion. 前記保持体は膨張黒鉛からなり、ボロンおよび/またはボロンの化合物が膨張黒鉛に付着していることを特徴とする請求項1〜5のいずれかに記載の軽水炉用制御部材。   The light water reactor control member according to any one of claims 1 to 5, wherein the holding body is made of expanded graphite, and boron and / or a compound of boron adheres to the expanded graphite. 前記ボロンの化合物は、炭化ボロン、酸化ボロン、および窒化ボロンから選ばれた1種または2種以上であることを特徴とする請求項1〜6のいずれかに記載の軽水炉用制御部材。   The light water reactor control member according to claim 1, wherein the boron compound is one or more selected from boron carbide, boron oxide, and boron nitride. 前記保持体は、酸化アルミニウム、酸化マグネシウム、酸化イットリウム、酸化ジルコニウムから選ばれた1種または2種以上であることを特徴とする請求項1〜7のいずれかに記載の軽水炉用制御部材。   The control member for a light water reactor according to any one of claims 1 to 7, wherein the holding body is one or more selected from aluminum oxide, magnesium oxide, yttrium oxide, and zirconium oxide. 前記保持体は、ステンレス鋼または鉄−ボロン合金であることを特徴とする請求項1〜8のいずれかに記載の軽水炉用制御部材。
The light water reactor control member according to claim 1, wherein the holding body is made of stainless steel or iron-boron alloy.
JP2011162849A 2011-07-26 2011-07-26 Control member for light water reactor Expired - Fee Related JP5783495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011162849A JP5783495B2 (en) 2011-07-26 2011-07-26 Control member for light water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011162849A JP5783495B2 (en) 2011-07-26 2011-07-26 Control member for light water reactor

Publications (2)

Publication Number Publication Date
JP2013024826A true JP2013024826A (en) 2013-02-04
JP5783495B2 JP5783495B2 (en) 2015-09-24

Family

ID=47783322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011162849A Expired - Fee Related JP5783495B2 (en) 2011-07-26 2011-07-26 Control member for light water reactor

Country Status (1)

Country Link
JP (1) JP5783495B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004555A (en) * 2013-06-20 2015-01-08 日立Geニュークリア・エナジー株式会社 Method of retrieving fuel debris from boiling water nuclear plant and work house system
JP2017062268A (en) * 2017-01-16 2017-03-30 富士化学株式会社 Criticality prevention coating layer and method for forming the same
JP2020095022A (en) * 2018-12-14 2020-06-18 ザ・ボーイング・カンパニーThe Boeing Company Optical detection system and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05246761A (en) * 1991-12-20 1993-09-24 Toyo Tanso Kk Carbon-boron carbide sintered body, its production and material using the sintered body
JPH1026686A (en) * 1996-07-11 1998-01-27 Power Reactor & Nuclear Fuel Dev Corp Reactor and its safety device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05246761A (en) * 1991-12-20 1993-09-24 Toyo Tanso Kk Carbon-boron carbide sintered body, its production and material using the sintered body
JPH1026686A (en) * 1996-07-11 1998-01-27 Power Reactor & Nuclear Fuel Dev Corp Reactor and its safety device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004555A (en) * 2013-06-20 2015-01-08 日立Geニュークリア・エナジー株式会社 Method of retrieving fuel debris from boiling water nuclear plant and work house system
JP2017062268A (en) * 2017-01-16 2017-03-30 富士化学株式会社 Criticality prevention coating layer and method for forming the same
JP2020095022A (en) * 2018-12-14 2020-06-18 ザ・ボーイング・カンパニーThe Boeing Company Optical detection system and method
JP7365864B2 (en) 2018-12-14 2023-10-20 ザ・ボーイング・カンパニー Optical detection system and method

Also Published As

Publication number Publication date
JP5783495B2 (en) 2015-09-24

Similar Documents

Publication Publication Date Title
JP7287742B2 (en) Composite Moderator for Reactor Systems
RU2723561C2 (en) Method of producing completely ceramic microencapsulated nuclear fuel
KR101793896B1 (en) Fully ceramic nuclear fuel and related methods
JP7030965B2 (en) Molten salt reactor
JP5783495B2 (en) Control member for light water reactor
JP6197264B2 (en) Neutron absorber, method for producing the same, and method for treating molten fuel
US4121970A (en) Nuclear reactor installation including a core catching apparatus
JP2012194120A (en) Core melt holding device
JP2012093282A (en) Core melt holding device
JP7142134B2 (en) Core meltdown retention structure and reactor containment vessel
JP2000504119A (en) Clearance structure for reactor vessel
WO2018231512A9 (en) Mitigating nuclear fuel damage: nuclear reactor and/or incident or accident
JP4115299B2 (en) Cask, composition for neutron shield, and method for producing neutron shield
JP2014062768A (en) Diffusion-control member for light water reactor
JP6435095B2 (en) Core melt holding device and nuclear reactor equipped with the same
JP6699882B2 (en) Nuclear fuel compact, method of manufacturing nuclear fuel compact, and nuclear fuel rod
WO2019190367A1 (en) A safety system of a nuclear reactor for stabilization of ex-vessel core melt during a severe accident
JP2012032276A (en) Corium cooling device and storage vessel
JP6305696B2 (en) Reactor decommissioning method and decommissioning system
RU2767298C1 (en) Method for ensuring nuclear safety of a high-temperature fast neutron reactor
KR20140142569A (en) Pressurized water reactor for preventing stratification of corium in the event of core melting
US11783954B2 (en) Injectable sacrificial material systems and methods to contain molten corium in nuclear accidents
CN115565707B (en) Reactor core melt containment retention system and method for designing parameters of collector
JP4625239B2 (en) High temperature fuel assembly for increasing the temperature of the cooling water outlet in boiling water reactors
JP2014193794A (en) Neutron absorption glass, neutron absorption material and management method of molten fuel using the same, removing method of molten fuel and stopping method of atomic reactor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141209

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150629

R151 Written notification of patent or utility model registration

Ref document number: 5783495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150712

LAPS Cancellation because of no payment of annual fees