JP2013023503A - Resin composition, resin sheet, laminate, metal-based circuit board, inverter and power semiconductor device - Google Patents

Resin composition, resin sheet, laminate, metal-based circuit board, inverter and power semiconductor device Download PDF

Info

Publication number
JP2013023503A
JP2013023503A JP2011156191A JP2011156191A JP2013023503A JP 2013023503 A JP2013023503 A JP 2013023503A JP 2011156191 A JP2011156191 A JP 2011156191A JP 2011156191 A JP2011156191 A JP 2011156191A JP 2013023503 A JP2013023503 A JP 2013023503A
Authority
JP
Japan
Prior art keywords
resin composition
resin
circuit board
metal
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011156191A
Other languages
Japanese (ja)
Other versions
JP5821355B2 (en
Inventor
Akihiko Tobisawa
晃彦 飛澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2011156191A priority Critical patent/JP5821355B2/en
Publication of JP2013023503A publication Critical patent/JP2013023503A/en
Application granted granted Critical
Publication of JP5821355B2 publication Critical patent/JP5821355B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin composition excellent in adhesion between a metal plate and an insulating layer, and excellent in heat cycle resistance, and having enough breakdown voltage, as well as to provide a resin sheet, a laminate, a metal-based circuit board, an inverter and a power semiconductor device.SOLUTION: This resin composition includes a phenoxy resin (A) having a specific structure, an inorganic filler (B) and a silane coupling agent (C), wherein the resin composition contains ≥1 mass% and ≤10 mass% of the silane coupling agent (C) relative to the total amount of the resin composition. The resin sheet, the laminate, the metal-based circuit board, the inverter and the power semiconductor device produced using an insulating layer made from the resin composition are also disclosed.

Description

本発明は、樹脂組成物、樹脂シート、積層板、金属ベース回路基板、インバータ装置及びパワー半導体装置に関する。   The present invention relates to a resin composition, a resin sheet, a laminate, a metal base circuit board, an inverter device, and a power semiconductor device.

従来から絶縁ゲートバイポーラトランジスタ(IGBT;Insulated Gate Bipolar Transistor)及びダイオード等の半導体素子、抵抗、ならびにコンデンサ等の電子部品を金属ベース回路基板上に搭載して構成したインバータ装置又はパワー半導体装置が知られている。
これらの電力制御装置は、その耐圧や電流容量に応じて各種機器に応用されている。特に、近年の環境問題、省エネルギー化推進の観点から、各種電気機械へのこれら電力制御装置の使用が年々拡大している。
特に車載用電力制御装置について、その小型化、省スペ−ス化と共に電力制御装置をエンジンル−ム内に設置することが要望されている。エンジンル−ム内は温度が高く、温度変化が大きいなど過酷な環境であり、また、放熱面積の大きな基板が必要とされる。このような用途に対して、より一層放熱性に優れる金属ベース回路基板が注目されている。
2. Description of the Related Art Conventionally, an inverter device or a power semiconductor device in which an insulated gate bipolar transistor (IGBT) and a semiconductor element such as a diode, a resistor, and an electronic component such as a capacitor are mounted on a metal base circuit board is known. ing.
These power control devices are applied to various devices according to their withstand voltage and current capacity. In particular, from the viewpoint of environmental problems in recent years and the promotion of energy saving, the use of these power control devices for various electric machines is increasing year by year.
In particular, regarding an in-vehicle power control device, it is desired to install the power control device in an engine room together with downsizing and space saving. The engine room has a severe environment such as a high temperature and a large temperature change, and a substrate having a large heat radiation area is required. For such applications, a metal base circuit board that is further excellent in heat dissipation has attracted attention.

従来の金属ベース回路基板は、熱放散性や経済的な理由からアルミニウム板を用いることが多いが、実使用下で加熱/冷却が繰り返されると、アルミニウム板と電子部品、特にチップ部品との熱膨張率の差に起因して大きな熱応力が発生し、部品を固定している半田部分又はその近傍にクラックが発生するなど電気的信頼性が低下するという問題点がある。   Conventional metal-based circuit boards often use aluminum plates for heat dissipation and economic reasons, but if heating / cooling is repeated under actual use, the heat generated between the aluminum plates and electronic components, particularly chip components, is often used. A large thermal stress is generated due to the difference in the expansion coefficient, and there is a problem that the electrical reliability is lowered, for example, a crack is generated at or near the solder portion fixing the component.

このような点を改良するためには、絶縁層の熱伝導性を高くし、かつ絶縁層の弾性率を低くして、さらに高レベルの耐熱性、耐湿性を達成することが必要である。
これまで、アクリルゴムを用いることにより、低弾性率化を図った樹脂組成物を絶縁層に用いることが開示されている(例えば、特許文献1、2参照。)。しかし、アクリルゴムを用いた場合は、ヒートサイクル試験において十分な性能が得られない点で、課題を残していた。
In order to improve such points, it is necessary to increase the thermal conductivity of the insulating layer and lower the elastic modulus of the insulating layer to achieve higher levels of heat resistance and moisture resistance.
Hitherto, it has been disclosed that a resin composition having a reduced elastic modulus is used for an insulating layer by using acrylic rubber (see, for example, Patent Documents 1 and 2). However, when acrylic rubber was used, there was a problem in that sufficient performance could not be obtained in the heat cycle test.

また、他の低弾性率化手段として、シリコーン樹脂などを用いる技術が検討されている(例えば、特許文献3参照。)。しかし、シリコーン樹脂を用いた場合、金属板との密着性に劣るため、金属ベース板との密着力が低下し、金属板と絶縁層との間における吸湿等により、絶縁破壊電圧値が低下する点で、課題を残していた。   In addition, as another means for reducing the elastic modulus, a technique using a silicone resin or the like has been studied (for example, see Patent Document 3). However, when silicone resin is used, the adhesion to the metal plate is inferior, so the adhesion with the metal base plate is reduced, and the dielectric breakdown voltage value is reduced due to moisture absorption between the metal plate and the insulating layer. In terms, it left a challenge.

特開平9−8426号公報Japanese Patent Laid-Open No. 9-8426 特開平10−242606号公報JP-A-10-242606 特開2005−281509号公報JP 2005-281509 A

本発明の目的は、金属板と絶縁層との密着性及びヒートサイクル性に優れ、十分な絶縁破壊電圧値を有する樹脂組成物、樹脂シート、積層板、金属ベース回路基板、インバータ装置及びパワー半導体装置を提供することにある。   An object of the present invention is to provide a resin composition, a resin sheet, a laminate, a metal base circuit board, an inverter device, and a power semiconductor that have excellent adhesion and heat cycle properties between a metal plate and an insulating layer and have a sufficient dielectric breakdown voltage value. To provide an apparatus.

本発明の目的は、下記[1]〜[7]項に記載の本発明により達成される。
[1] 下記一般式(1)で表わされる構造を有するフェノキシ樹脂、(B)無機充填剤及び(C)シランカップリング剤を含み、前記(C)シランカップリング剤の含有量が樹脂組成物全体の1質量%以上、10質量%以下であることを特徴とする樹脂組成物。

(但し、上記一般式(1)において、n、mは互いに独立した1以上、20以下の整数である。R1〜19は、水素原子、炭素数1〜10の炭化水素基、又はハロゲン原子であり、互いに同一であってもよく、異なっていてもよい。Xは、単結合、あるいは炭素数1〜20の炭化水素基、−O−、−S−、−SO−又は−CO−である。)
[2] 前記(A)フェノキシ樹脂の含有量は、樹脂組成物全体の10質量%以上、40質量%以下であることを特徴とする第[1]項に記載の樹脂組成物。
[3] 第[1]項又は第[2]項に記載の樹脂組成物からなる絶縁層を金属箔に積層してなることを特徴とする樹脂シート。
[4] 第[3]項に記載の樹脂シートを、前記絶縁層側の面が接するように金属板の少なくとも1方の面上に積層してなることを特徴とする積層板。
[5] 前記金属板の少なくとも1方の面上に第[1]項又は第[2]項に記載の樹脂組成物からなる絶縁層を介して導体回路が形成されてなることを特徴とする金属ベース回路基板。
[6] 第[5]項に記載の金属ベース回路基板上に電子部品が搭載されていることを特徴とするインバータ装置。
[7] 第[5]項に記載の金属ベース回路基板上に電子部品が搭載されていることを特徴とするパワー半導体装置。
The object of the present invention is achieved by the present invention described in the following items [1] to [7].
[1] A phenoxy resin having a structure represented by the following general formula (1), (B) an inorganic filler, and (C) a silane coupling agent, wherein the content of the (C) silane coupling agent is a resin composition The resin composition characterized by being 1 mass% or more and 10 mass% or less of the whole.

(However, in the said General formula (1), n and m are 1 or more and an integer of 20 or less mutually independent. R1-19 is a hydrogen atom, a C1-C10 hydrocarbon group, or a halogen atom. X may be a single bond or a hydrocarbon group having 1 to 20 carbon atoms, —O—, —S—, —SO 2 — or —CO—. is there.)
[2] The resin composition according to item [1], wherein the content of the (A) phenoxy resin is 10% by mass or more and 40% by mass or less of the entire resin composition.
[3] A resin sheet obtained by laminating an insulating layer made of the resin composition according to the item [1] or [2] on a metal foil.
[4] A laminate comprising the resin sheet according to item [3] laminated on at least one surface of a metal plate so that the surface on the insulating layer side is in contact therewith.
[5] A conductor circuit is formed on at least one surface of the metal plate through an insulating layer made of the resin composition according to the item [1] or [2]. Metal base circuit board.
[6] An inverter device comprising an electronic component mounted on the metal base circuit board according to the item [5].
[7] A power semiconductor device, wherein an electronic component is mounted on the metal base circuit board according to the item [5].

本発明によれば、金属板と絶縁層との密着性及びヒートサイクル性に優れ、かつ十分な絶縁破壊電圧値を有する樹脂組成物、樹脂シート、積層板、金属ベース回路基板、インバータ装置及びパワー半導体装置を得ることができる。   According to the present invention, a resin composition, a resin sheet, a laminate, a metal base circuit board, an inverter device, and a power that have excellent adhesion and heat cycle properties between a metal plate and an insulating layer and have a sufficient dielectric breakdown voltage value. A semiconductor device can be obtained.

先ず、本発明の樹脂組成物について説明する。本発明の樹脂組成物は、(A)下記一般式(1)で表わされる構造を有するフェノキシ樹脂、(B)無機充填剤及び(C)シランカップリング剤を含み、(C)シランカップリング剤の含有量が樹脂組成物全体の1質量%以上、10質量%以下である。これにより、本発明の樹脂組成物は、金属板と絶縁層との密着性及びヒートサイクル性に優れ、十分な絶縁破壊電圧値を有することができる。また、本発明の樹脂組成物は、良好な絶縁破壊電圧値を示すことができる。

(但し、上記一般式(1)において、n、mは互いに独立した1以上、20以下の整数である。R1〜19は、水素原子、炭素数1〜10の炭化水素基、又はハロゲン原子であり
、互いに同一であってもよく、異なっていてもよい。Xは、単結合、あるいは炭素数1〜20の炭化水素基、−O−、−S−、−SO−又は−CO−である。)
First, the resin composition of the present invention will be described. The resin composition of the present invention includes (A) a phenoxy resin having a structure represented by the following general formula (1), (B) an inorganic filler, and (C) a silane coupling agent, and (C) a silane coupling agent. Is 1 mass% or more and 10 mass% or less of the whole resin composition. Thereby, the resin composition of this invention is excellent in the adhesiveness of a metal plate and an insulating layer, and heat cycle property, and can have sufficient dielectric breakdown voltage value. Moreover, the resin composition of this invention can show a favorable dielectric breakdown voltage value.

(However, in the said General formula (1), n and m are 1 or more and an integer of 20 or less mutually independent. R1-19 is a hydrogen atom, a C1-C10 hydrocarbon group, or a halogen atom. X may be a single bond or a hydrocarbon group having 1 to 20 carbon atoms, —O—, —S—, —SO 2 — or —CO—. is there.)

また、本発明の樹脂組成物は、無機充填剤を含有させていることで、従来からの熱放散性が優れる点、耐電圧等の電気絶縁性に優れる点等が維持され、かつ、本発明の樹脂組成物の硬化物の弾性率を下げることができる。   In addition, the resin composition of the present invention contains an inorganic filler, so that conventional heat dissipating properties, excellent electrical insulation properties such as withstand voltage, etc. are maintained, and the present invention. The elastic modulus of the cured product of the resin composition can be lowered.

本発明の樹脂組成物に用いる(A)一般式(1)で表わされる構造を有するフェノキシ樹脂は、例えば、下記一般式(2)、(3)で表わされる構造を有するフェノキシ樹脂が挙げられる。

(但し、上記一般式(2)において、n、mは互いに独立した1以上、20以下の整数である。)

(但し、上記一般式(3)において、n、mは互いに独立した1以上、20以下の整数である。)
Examples of the phenoxy resin having a structure represented by the general formula (1) (A) used in the resin composition of the present invention include phenoxy resins having a structure represented by the following general formulas (2) and (3).

(However, in the general formula (2), n and m are integers of 1 or more and 20 or less independent of each other.)

(However, in the general formula (3), n and m are integers of 1 or more and 20 or less independent of each other.)

(A)フェノキシ樹脂を絶縁層に含むことにより、絶縁層と金属板との密着性が向上する。また接続信頼性が向上し、例えば、本発明の金属ベース回路基板に、電子部品等を実装したインバータ装置及びパワー半導体装置等は、急激な加熱/冷却の環境下においても、電子部品と金属ベース回路基板を接合する半田接合部、又はその近傍で、クラック等の不良が発生することはない。 (A) By including a phenoxy resin in an insulating layer, the adhesiveness of an insulating layer and a metal plate improves. In addition, the connection reliability is improved. For example, an inverter device and a power semiconductor device in which an electronic component is mounted on the metal base circuit board of the present invention, the electronic component and the metal base even in a rapid heating / cooling environment. No defects such as cracks occur at or near the solder joint where the circuit boards are joined.

本発明の樹脂組成物に用いる(A)フェノキシ樹脂は、骨格中にイミド結合を有するため、高い耐熱性を有し、特に半田耐熱性に優れる。また分子内に窒素原子を有するため、特に金属板と絶縁層との間の密着性が優れ、金属板と絶縁層との間における吸湿等が生じず、絶縁破壊電圧値が低下しない。   Since the (A) phenoxy resin used in the resin composition of the present invention has an imide bond in the skeleton, it has high heat resistance, and particularly excellent solder heat resistance. Moreover, since it has a nitrogen atom in the molecule, the adhesion between the metal plate and the insulating layer is particularly excellent, moisture absorption between the metal plate and the insulating layer does not occur, and the dielectric breakdown voltage value does not decrease.

(A)フェノキシ樹脂の含有量は、特に限定されないが、樹脂組成物全体の10質量%以上、40質量%以下であることが好ましい。上記下限値未満であると、弾性率を十分下げることができない場合があり、金属ベース回路基板に用いると低弾性率化が十分でなく、急激な加熱/冷却を受けても半田接続部、又は、その近傍でのクラックが発生する恐れがある。上記上限値より多いと、プレス時の流動性が悪化し、ボイド等が発生するため、金属ベース回路基板の絶縁破壊電圧値が低下する場合がある。
なお樹脂組成物全体とは、例えば、溶剤等を用いたワニスの場合は、溶剤を除く固形分を意味し、液状エポキシ、カップリング剤等の液状成分は、樹脂組成物に含まれる。
(A) Although content of phenoxy resin is not specifically limited, It is preferable that it is 10 to 40 mass% of the whole resin composition. If it is less than the above lower limit value, the elastic modulus may not be sufficiently lowered, and if used for a metal base circuit board, the elastic modulus is not sufficiently lowered, and even when subjected to rapid heating / cooling, There is a risk of cracks in the vicinity. If it exceeds the above upper limit value, fluidity during pressing deteriorates and voids or the like are generated, so that the dielectric breakdown voltage value of the metal base circuit board may be lowered.
In addition, in the case of the varnish using a solvent etc., the whole resin composition means solid content except a solvent, and liquid components, such as a liquid epoxy and a coupling agent, are contained in a resin composition.

本発明の樹脂組成物に用いる(B)無機充填剤は、特に限定されないが、例えば、水酸
化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、酸化カルシウム、酸化マグネシウム、アルミナ、窒化アルミニウム、ほう酸アルミウイスカ、窒化ホウ素、結晶性シリカ、非晶性シリカ、炭化ケイ素などが挙げられる。
The inorganic filler (B) used in the resin composition of the present invention is not particularly limited. For example, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, calcium oxide, magnesium oxide, alumina, nitriding Examples thereof include aluminum, aluminum borate whisker, boron nitride, crystalline silica, amorphous silica, silicon carbide and the like.

これらの中でも、アルミナ、窒化アルミニウム、窒化ホウ素、結晶性シリカ、非晶性シリカが、高熱伝導性の観点から好ましい。さらに好ましくは、アルミナである。アルミナを用いた場合、高熱伝導性に加え、耐熱性、絶縁性の点で好ましい。 Among these, alumina, aluminum nitride, boron nitride, crystalline silica, and amorphous silica are preferable from the viewpoint of high thermal conductivity. More preferred is alumina. When alumina is used, it is preferable in terms of heat resistance and insulation in addition to high thermal conductivity.

また、信頼性の観点からは、結晶性シリカ又は非晶性シリカが好ましい。また、結晶性シリカ又は非晶性シリカは、イオン性不純物が少ない点でも好ましい。樹脂組成物より形成される絶縁層に、結晶性シリカ又は非晶性シリカが含まれる場合、絶縁信頼性に優れる金属ベース回路基板を得ることができる。特に、結晶性シリカ又は非晶性シリカを用いた金属ベース回路基板は、プレッシャークッカテスト等の水蒸気雰囲気下で絶縁性が高く、金属、アルミ線、アルミ板等の腐食が少ない点で好適である。   From the viewpoint of reliability, crystalline silica or amorphous silica is preferable. Further, crystalline silica or amorphous silica is preferable in that it has few ionic impurities. When crystalline silica or amorphous silica is contained in the insulating layer formed from the resin composition, a metal base circuit board having excellent insulation reliability can be obtained. In particular, a metal base circuit board using crystalline silica or amorphous silica is suitable in that it has high insulation under a water vapor atmosphere such as a pressure cooker test, and has little corrosion on metals, aluminum wires, aluminum plates, etc. .

一方、難燃性の観点からは、水酸化アルミニウム、水酸化マグネシウムが好ましい。さらに、溶融粘度調整やチクトロピック性の付与の目的においては、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグシウム、アルミナ、結晶性シリカ、非晶性シリカが好ましい。 On the other hand, from the viewpoint of flame retardancy, aluminum hydroxide and magnesium hydroxide are preferred. Furthermore, for the purpose of adjusting melt viscosity and imparting cyclotropic properties, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, alumina, crystalline silica, Amorphous silica is preferred.

(B)無機充填剤の含有量は、特に限定されないが、樹脂組成物全体の40質量%以上、70質量%以下であることが好ましい。上記下限値より少ないと、熱抵抗が増大し、十分な放熱性を得ることができない場合があり、上記上限値より多いと、プレス時の流動性が悪化し、ボイド等が発生する場合がある。   (B) Although content of an inorganic filler is not specifically limited, It is preferable that they are 40 mass% or more and 70 mass% or less of the whole resin composition. If it is less than the above lower limit value, the thermal resistance may increase and sufficient heat dissipation may not be obtained, and if it exceeds the above upper limit value, fluidity during pressing may be deteriorated and voids may be generated. .

(C)シランカップリング剤は、本発明の樹脂組成物に含むことにより、金属板と絶縁層との密着性が向上し、従来よりも金属ベース回路基板の絶縁破壊電圧値が向上する。これは、(A)フェノキシ樹脂及び(B)無機充填剤との組み合わせによる相乗効果によるものと推察される。   By including the (C) silane coupling agent in the resin composition of the present invention, the adhesion between the metal plate and the insulating layer is improved, and the dielectric breakdown voltage value of the metal base circuit board is improved as compared with the conventional case. This is presumably due to a synergistic effect of the combination of (A) a phenoxy resin and (B) an inorganic filler.

(C)シランカップリング剤の含有量は、樹脂組成物全体の1質量%以上、10質量%以下であることが好ましい。より好ましく、3質量%以上、7質量%以下である。含有量が上記下限値未満であると、金属板と絶縁層との密着力が低下し、金属ベース回路基板の半田耐熱性が低下する場合がある。また上記上限値を超えると、シランカップリング剤が多量に存在することにより、架橋密度が低下し、半田耐熱性が低下する場合がある。   (C) It is preferable that content of a silane coupling agent is 1 to 10 mass% of the whole resin composition. More preferably, they are 3 mass% or more and 7 mass% or less. If the content is less than the above lower limit, the adhesion between the metal plate and the insulating layer may be reduced, and the solder heat resistance of the metal base circuit board may be reduced. On the other hand, when the above upper limit is exceeded, a large amount of the silane coupling agent is present, so that the crosslink density is lowered and the solder heat resistance may be lowered.

本発明の樹脂組成物には、改質剤として、エポキシ樹脂を用いることができる。エポキシ樹脂を添加することにより、樹脂組成物の耐湿性、耐熱性、特に吸湿後の耐熱性が改善される。エポキシ樹脂は、1分子中に2個以上のエポキシ基を有するエポキシ樹脂であれば、特に限定されず、例えば、ビスフェノールA系、ビスフェノールF系、ビフェニル系、ノボラック系、多官能フェノール系、ナフタレン系、脂環式系及びアルコール系等のグリシジルエーテル、グリシジルアミン及びグリシジルエステル等が挙げられる。これらのエポキシ樹脂は、1種を単独で用いても、2種以上を併用してもよい。   An epoxy resin can be used as a modifier in the resin composition of the present invention. By adding an epoxy resin, the moisture resistance and heat resistance of the resin composition, particularly the heat resistance after moisture absorption is improved. The epoxy resin is not particularly limited as long as it is an epoxy resin having two or more epoxy groups in one molecule. For example, bisphenol A, bisphenol F, biphenyl, novolac, polyfunctional phenol, naphthalene And glycidyl ethers such as alicyclic and alcohols, glycidyl amines and glycidyl esters. These epoxy resins may be used alone or in combination of two or more.

これらの中でも、耐熱性、耐湿性、金属接着性及びプレス成形時の流動性の観点から、ビスフェノールAエポキシ樹脂が好ましく、特に常温で液状のビスフェノールAエポキシ樹脂が好ましい。常温で液状のビスフェノールAエポキシ樹脂は、プレス成形時の流動性が特に優れる上、フェノキシ樹脂との相溶性に優れ、樹脂組成物が相分離等を起こさないため、耐熱性に優れる。   Among these, from the viewpoint of heat resistance, moisture resistance, metal adhesion, and fluidity during press molding, bisphenol A epoxy resin is preferable, and bisphenol A epoxy resin that is liquid at room temperature is particularly preferable. The bisphenol A epoxy resin that is liquid at room temperature is particularly excellent in fluidity at the time of press molding, has excellent compatibility with the phenoxy resin, and does not cause phase separation or the like, and thus has excellent heat resistance.

本発明の樹脂組成物には、エポキシ樹脂の硬化剤及び/又は硬化触媒を含んでも良い。硬化剤としては、特に限定されないが、例えば、酸無水物、アミン化合物及びフェノール化合物等が挙げられる。また、硬化剤又は硬化触媒としては、特に限定されないが、例えば、イミダゾール類及びその誘導体、第三級アミン類、ならびに第四級アンモニウム塩等が挙げられる。   The resin composition of the present invention may contain an epoxy resin curing agent and / or a curing catalyst. Although it does not specifically limit as a hardening | curing agent, For example, an acid anhydride, an amine compound, a phenol compound, etc. are mentioned. Moreover, it does not specifically limit as a hardening | curing agent or a curing catalyst, For example, imidazoles and its derivative (s), tertiary amines, a quaternary ammonium salt etc. are mentioned.

本発明の樹脂組成物には、その他必要に応じ、任意に公知の熱可塑性樹脂、エラストマー、難燃剤及び充填剤、色素、紫外線吸収剤等を、適宜添加することができる。   Other known thermoplastic resins, elastomers, flame retardants and fillers, dyes, ultraviolet absorbers and the like can be appropriately added to the resin composition of the present invention as necessary.

次に、本発明の樹脂シートについて説明する。本発明の樹脂シートは、前述した本発明の樹脂組成物からなる絶縁層を金属箔上に積層することにより得られる。   Next, the resin sheet of the present invention will be described. The resin sheet of this invention is obtained by laminating | stacking the insulating layer which consists of a resin composition of this invention mentioned above on metal foil.

より具体的には、まず、絶縁層を形成するため本発明の樹脂組成物を、アセトン、メチルエチルケトン、メチルイソブチルケトン、トルエン、酢酸エチル、シクロヘキサン、ヘプタン、シクロヘキサンシクロヘキサノン、テトラヒドロフラン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、エチレングリコール、セルソルブ系、カルビトール系、アニソール等の有機溶剤中で、超音波分散方式、高圧衝突式分散方式、高速回転分散方式、ビーズミル方式、高速せん断分散方式及び自転公転式分散方式などの各種混合機を用いて溶解、混合、撹拌して樹脂ワニスを作製する。ここで、樹脂ワニス中の樹脂組成物の含有量は、特に限定されないが、45質量%以上、85質量%以下が好ましく、特に55質量%以上、75質量%以下が好ましい。   More specifically, first, in order to form an insulating layer, the resin composition of the present invention is mixed with acetone, methyl ethyl ketone, methyl isobutyl ketone, toluene, ethyl acetate, cyclohexane, heptane, cyclohexane cyclohexanone, tetrahydrofuran, dimethylformamide, dimethylacetamide, In organic solvents such as dimethyl sulfoxide, ethylene glycol, cellosolve, carbitol, anisole, etc., ultrasonic dispersion method, high-pressure collision dispersion method, high-speed rotation dispersion method, bead mill method, high-speed shear dispersion method, and rotation and revolution dispersion method A resin varnish is prepared by dissolving, mixing, and stirring using various mixers. Here, although content of the resin composition in a resin varnish is not specifically limited, 45 mass% or more and 85 mass% or less are preferable, and 55 mass% or more and 75 mass% or less are especially preferable.

次に樹脂ワニスを、各種塗工装置を用いて、金属箔上に塗工した後、これを乾燥する。又は、樹脂ワニスをスプレー装置により金属箔に噴霧塗工した後、これを乾燥する。これらの方法により樹脂シートを作製することができる。塗工装置としては、特に限定されないが、例えば、ロールコーター、バーコーター、ナイフコーター、グラビアコーター、ダイコーター、コンマコーター及びカーテンコーターなどを用いることができる。これらの中でも、ダイコーター、ナイフコーター及びコンマコーターを用いる方法が好ましい。これにより、ボイドがなく、均一な絶縁層の厚みを有する樹脂シートを効率よく製造することができる。   Next, the resin varnish is coated on the metal foil using various coating apparatuses, and then dried. Or after spray-coating a resin varnish on metal foil with a spray apparatus, this is dried. A resin sheet can be produced by these methods. Although it does not specifically limit as a coating apparatus, For example, a roll coater, a bar coater, a knife coater, a gravure coater, a die coater, a comma coater, a curtain coater, etc. can be used. Among these, a method using a die coater, a knife coater and a comma coater is preferable. Thereby, the resin sheet which does not have a void and has the thickness of a uniform insulating layer can be manufactured efficiently.

本発明の樹脂シートにおける絶縁層の厚さは、50μm以上、250μmの範囲が好ましい。上記下限値未満の場合、後述する本発明の金属ベース回路基板に用いると、例えば、アルミニウム板等の金属板との熱膨張率差による熱応力の発生を絶縁層で緩和することが十分にできない。その結果、金属ベース回路基板に半導体素子、抵抗部品等を表面実装した場合、歪が大きくなり、十分な熱衝撃信頼性を得ることができなくなる場合がある。上記上限値を超えると、表面実装した部分の歪量が少なく、良好な熱衝撃信頼性を得ることができるが、熱抵抗が増大するため、十分な放熱性を得ることができない。   The thickness of the insulating layer in the resin sheet of the present invention is preferably in the range of 50 μm or more and 250 μm. When the value is less than the lower limit, when used for the metal base circuit board of the present invention described later, for example, the generation of thermal stress due to the difference in thermal expansion coefficient from a metal plate such as an aluminum plate cannot be sufficiently mitigated by the insulating layer. . As a result, when a semiconductor element, a resistor component, or the like is surface-mounted on a metal base circuit board, distortion may increase and sufficient thermal shock reliability may not be obtained. When the above upper limit is exceeded, the amount of distortion of the surface-mounted portion is small and good thermal shock reliability can be obtained, but since the thermal resistance increases, sufficient heat dissipation cannot be obtained.

本発明の樹脂シートにおける金属箔は、特に限定されないが、例えば銅及び銅系合金、アルミ及びアルミ系合金、銀及び銀系合金、金及び金系合金、亜鉛及び亜鉛系合金、ニッケル及びニッケル系合金、錫及び錫系合金、鉄及び鉄系合金等の金属箔が挙げられる。これらの中でも、金属箔をエッチングにより導体回路として用いることができる点で銅が好ましい。また、低熱膨張の観点からは、鉄−ニッケル合金が好ましい。   Although the metal foil in the resin sheet of the present invention is not particularly limited, for example, copper and copper alloys, aluminum and aluminum alloys, silver and silver alloys, gold and gold alloys, zinc and zinc alloys, nickel and nickel alloys Metal foils, such as an alloy, tin, a tin-type alloy, iron, and an iron-type alloy, are mentioned. Among these, copper is preferable because the metal foil can be used as a conductor circuit by etching. From the viewpoint of low thermal expansion, an iron-nickel alloy is preferable.

尚、金属箔の製造方法は、電解法でも圧延法でもよく、金属箔上にはNiメッキ、Ni−Auメッキ、半田メッキなどの金属メッキがほどこされていてもかまわないが、絶縁層との接着性の点から導体回路の絶縁層に接する側の表面はエッチングやメッキ等により予め粗化処理されていることが一層好ましい。   The method for producing the metal foil may be an electrolytic method or a rolling method, and metal plating such as Ni plating, Ni-Au plating, or solder plating may be applied on the metal foil. From the viewpoint of adhesion, it is more preferable that the surface of the conductor circuit on the side in contact with the insulating layer is roughened in advance by etching, plating, or the like.

金属箔の厚さは、特に限定されないが、0.5μm以上、105μm以下であることが好ましく、1μm以上、70μm以下がより好ましく、9μm以上、35μm以下がさらに好ましい。金属箔の厚さが上記下限値未満であると、ピンホールが発生しやすく、金属箔をエッチングし導体回路として用いた場合、回路パターン成形時のメッキバラツキ、回路断線、エッチング液やデスミア液等の薬液の染み込みなどが発生する怖れがある。また、上記上限値を超えると、金属箔の厚みバラツキが大きくなったり、金属箔粗化面の表面粗さバラツキが大きくなったりする場合がある。   The thickness of the metal foil is not particularly limited, but is preferably 0.5 μm or more and 105 μm or less, more preferably 1 μm or more and 70 μm or less, and further preferably 9 μm or more and 35 μm or less. If the thickness of the metal foil is less than the above lower limit, pinholes are likely to occur, and when the metal foil is etched and used as a conductor circuit, plating variations during circuit pattern formation, circuit disconnection, etching solution, desmear solution, etc. There is a fear of infiltration of chemicals. Moreover, when the said upper limit is exceeded, the thickness variation of metal foil may become large, or the surface roughness variation of a metal foil roughening surface may become large.

また、金属箔は、キャリア箔付き極薄金属箔を用いることもできる。キャリア箔付き極薄金属箔とは、剥離可能なキャリア箔と極薄金属箔とを張り合わせた金属箔である。キャリア箔付き極薄金属箔を用いることで絶縁層の両面に極薄金属箔層を形成できることから、例えば、セミアディティブ法などで回路を形成する場合、無電解メッキを行うことなく、極薄金属箔を直接給電層として電解メッキすることで、回路を形成後、極薄銅箔をフラッシュエッチングすることができる。キャリア箔付き極薄金属箔を用いることによって、厚さ10μm以下の極薄金属箔でも、例えばプレス工程での極薄金属箔のハンドリング性の低下や、極薄銅箔の割れや切れを防ぐことができる。   The metal foil can also be an ultrathin metal foil with a carrier foil. The ultrathin metal foil with a carrier foil is a metal foil obtained by laminating a peelable carrier foil and an ultrathin metal foil. Since an ultrathin metal foil layer can be formed on both sides of an insulating layer by using an ultrathin metal foil with a carrier foil, for example, when forming a circuit by a semi-additive method, an ultrathin metal without performing electroless plating By electroplating the foil as a direct power supply layer, the ultrathin copper foil can be flash etched after the circuit is formed. By using an ultra-thin metal foil with a carrier foil, even with an ultra-thin metal foil having a thickness of 10 μm or less, for example, a reduction in handling properties of the ultra-thin metal foil in a pressing process, and cracking or cutting of the ultra-thin copper foil are prevented. Can do.

次に、本発明の積層板及び金属ベース回路基板について説明する。本発明の積層板は、特に限定されないが、例えば、金属板の片面又は両面に、前述した本発明の樹脂シートの絶縁層側の面が接するように積層し、プレス等を用い加圧・加熱硬化させて絶縁樹脂硬化層を形成することにより得ることができる。また、本発明の金属ベース回路基板は、得られた積層板の金属箔をエッチングして回路形成することにより得ることができる。尚、金属ベース回路基板を多層にする場合は、回路形成後の金属ベース回路基板上に、樹脂シートの絶縁層側の面が接するようにさらに樹脂シートを積層し、加圧・加熱硬化させた後、最外層の金属箔をエッチングして回路形成することにより多層の金属ベース回路基板を得ることができる。なお、最外層にソルダーレジストを形成し、露光・現像により半導体素子、や電子部品が実装できるよう接続用電極部を露出させても良い。   Next, the laminated board and metal base circuit board of this invention are demonstrated. The laminated plate of the present invention is not particularly limited. For example, the laminated plate is laminated so that the surface on the insulating layer side of the resin sheet of the present invention described above is in contact with one side or both sides of the metal plate, and is pressed and heated using a press or the like. It can be obtained by curing to form an insulating resin cured layer. The metal base circuit board of the present invention can be obtained by forming a circuit by etching the metal foil of the obtained laminate. In addition, when making a metal base circuit board into a multilayer, the resin sheet was further laminated | stacked so that the surface by the side of the insulating layer of a resin sheet might contact | connect on the metal base circuit board after circuit formation, and it was made to pressurize and heat-cure. Thereafter, a multilayer metal base circuit board can be obtained by forming a circuit by etching the outermost metal foil. Note that a solder resist may be formed on the outermost layer, and the connection electrode portion may be exposed so that a semiconductor element or an electronic component can be mounted by exposure and development.

金属板の厚みは、特に限定されないが、厚み0.5mm以上、5.0mmであることが好ましい。熱放散性に優れ、しかも経済的であるからである。   The thickness of the metal plate is not particularly limited, but is preferably 0.5 mm or more and 5.0 mm. This is because it is excellent in heat dissipation and economical.

本発明の積層板を作製する別の方法としては、金属板に樹脂ワニスを塗工し、その後、金属箔を積層し加熱・加圧する方法が挙げられる。この場合においても、得られた積層板の金属箔をエッチングし、回路形成することにより、金属ベース回路基板を得ることができる。尚、金属板に樹脂ワニスを塗工し、樹脂を硬化させた後、無電解めっき及び電解めっきにより回路形成を行っても良い。   As another method for producing the laminate of the present invention, there is a method in which a resin varnish is applied to a metal plate, and then a metal foil is laminated and heated and pressurized. Also in this case, a metal base circuit board can be obtained by etching the metal foil of the obtained laminate and forming a circuit. In addition, after applying a resin varnish to a metal plate and curing the resin, circuit formation may be performed by electroless plating and electrolytic plating.

本発明の金属ベース回路基板は、導体回路の上に電子部品が搭載されたインバータ装置及びパワー半導体装置等の電力制御装置に応用される。ここでインバータ装置とは、直流電力から交流電力を電気的に生成する(逆変換する機能を持つ)ものである。またパワー半導体装置とは、通常の半導体素子に比べて高耐圧化、大電流化、高速・高周波化されている特徴を有し、一般的にはパワーデバイスと呼ばれ、整流ダイオード、パワートランジスタ、パワーMOSFET、絶縁ゲートバイポーラトランジスタ(IGBT)、サイリスタ、ゲートターンオフサイリスタ(GTO)、トライアックなどが挙げられる。   The metal base circuit board of the present invention is applied to power control devices such as inverter devices and power semiconductor devices in which electronic components are mounted on conductor circuits. Here, the inverter device is an apparatus that electrically generates AC power from DC power (has a function of reverse conversion). In addition, the power semiconductor device is characterized by higher withstand voltage, higher current, higher speed and higher frequency than ordinary semiconductor elements, generally called power devices, rectifier diodes, power transistors, Examples include a power MOSFET, an insulated gate bipolar transistor (IGBT), a thyristor, a gate turn-off thyristor (GTO), and a triac.

以下、本発明を実施例及び比較例に基づいて詳細に説明するが、本発明はこれに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example and a comparative example, this invention is not limited to this.

合成例(1)
下記一般式(2)で表わされる構造を有するフェノキシ樹脂1の合成
2官能エポキシ樹脂としてDIC製850Sを190質量部、フェノール化合物として特開2006−83128(1−2式)で表わされるイミド変性フェノールを220質量部、触媒としてテトラメチルアンモニウムクロライド0.5質量部及びシクロヘキサノン100部を耐圧反応容器に入れ、窒素ガス雰囲気下150℃で5時間、重合反応を行った。反応生成物から溶剤を除去し、フェノキシ樹脂1を得た。フェノキシ樹脂1の重量平均分子量は37000であった。

(但し、上記一般式(2)において、n、mは互いに独立した1以上、20以下の整数である。)
Synthesis example (1)
Synthesis of phenoxy resin 1 having a structure represented by the following general formula (2) 190 parts by mass of DIC 850S as a bifunctional epoxy resin and imide-modified phenol represented by JP-A-2006-83128 (formula 1-2) as a phenol compound 220 parts by mass, 0.5 part by mass of tetramethylammonium chloride as a catalyst and 100 parts of cyclohexanone were put in a pressure-resistant reaction vessel, and a polymerization reaction was carried out at 150 ° C. for 5 hours in a nitrogen gas atmosphere. The solvent was removed from the reaction product to obtain phenoxy resin 1. The weight average molecular weight of the phenoxy resin 1 was 37000.

(However, in the general formula (2), n and m are integers of 1 or more and 20 or less independent of each other.)

合成例(2)
下記一般式(3)で表わされる構造を有するフェノキシ樹脂2の合成
2官能エポキシ樹脂として三菱化学製YX−4000を190質量部、フェノール化合物として特開2006−83128(1−2式)で表わされるイミド変性フェノールを220質量部、触媒としてテトラメチルアンモニウムクロライド0.5質量部及びシクロヘキサノン100部を耐圧反応容器に入れ、窒素ガス雰囲気下150℃で5時間、重合反応を行った。反応生成物から溶剤を除去し、フェノキシ樹脂2を得た。フェノキシ樹脂2の重量平均分子量は23000であった。

(但し、上記一般式(3)において、n、mは互いに独立した1以上、20以下の整数である。)
Synthesis example (2)
Synthesis of phenoxy resin 2 having a structure represented by the following general formula (3) 190 parts by mass of Mitsubishi Chemical YX-4000 as a bifunctional epoxy resin, and JP-A-2006-83128 (formula 1-2) as a phenol compound 220 parts by mass of imide-modified phenol, 0.5 part by mass of tetramethylammonium chloride and 100 parts of cyclohexanone as a catalyst were put in a pressure-resistant reaction vessel, and a polymerization reaction was performed at 150 ° C. for 5 hours in a nitrogen gas atmosphere. The solvent was removed from the reaction product to obtain phenoxy resin 2. The weight average molecular weight of the phenoxy resin 2 was 23000.

(However, in the general formula (3), n and m are integers of 1 or more and 20 or less independent of each other.)

実施例及び比較例において用いた原材料は以下の通りである。
(1)合成例1で合成したフェノキシ樹脂1
(2)合成例2で合成したフェノキシ樹脂2
(3)ビスフェノールA型エポキシ樹脂(DIC製、850S、エポキシ当量190)
(4)ジシアンジアミド(デグサ製)
(5)フェノールノボラック樹脂(DIC製、TD−2010、水酸基当量105)
(6)2−フェニルイミダゾール(四国化成製、2PZ)
(7)γ−グリシドキシプロピルトリトメキシシラン(信越シリコーン製、KBM−403)
(8)アルミナ(電気化学工業製、AS−50)
(9)窒化ホウ素(電気化学工業製、SPG−3)
(10)ビスフェノールA型フェノキシ樹脂3(三菱化学製、1256、重量平均分子量5.1×10
(11)シリコーン樹脂1(モメンティブパフォーマンズ製XE14−A0425(A
)、ポリアルケニルシロキサン)
(12)シリコーン樹脂2(モメンティブパフォーマンズ製XE14−A0425(B)、ポリアルキル水素シロキサン)
The raw materials used in Examples and Comparative Examples are as follows.
(1) Phenoxy resin 1 synthesized in Synthesis Example 1
(2) Phenoxy resin 2 synthesized in Synthesis Example 2
(3) Bisphenol A type epoxy resin (made by DIC, 850S, epoxy equivalent 190)
(4) Dicyandiamide (Degussa)
(5) Phenol novolac resin (DIC, TD-2010, hydroxyl equivalent 105)
(6) 2-phenylimidazole (manufactured by Shikoku Chemicals, 2PZ)
(7) γ-Glycidoxypropyltritomexisilane (manufactured by Shin-Etsu Silicone, KBM-403)
(8) Alumina (manufactured by Denki Kagaku Kogyo, AS-50)
(9) Boron nitride (manufactured by Denki Kagaku Kogyo, SPG-3)
(10) Bisphenol A type phenoxy resin 3 (Mitsubishi Chemical, 1256, weight average molecular weight 5.1 × 10 4 )
(11) Silicone resin 1 (Momentive Performers XE14-A0425 (A
), Polyalkenylsiloxane)
(12) Silicone resin 2 (XE14-A0425 (B) manufactured by Momentive Performers, polyalkyl hydrogen siloxane)

(実施例1)
(1)樹脂ワニスの調製
フェノキシ樹脂1(合成例1で合成したもの) 16.8質量部
ビスフェノールA型エポキシ樹脂(DIC製、850S、エポキシ当量190)
19.7質量部
2−フェニルイミダゾール(四国化成製2PZ) 0.5質量部
γ―グリシドキシプロピルトリメトキシシラン(信越シリコーン製KBM−403)
3.0質量部
アルミナ(電気化学工業製、AS−50) 60.0質量部
をシクロヘキサノンに溶解・混合させ、高速撹拌装置を用い撹拌して、樹脂組成物が固形分基準で70質量%の樹脂ワニスを得た。
Example 1
(1) Preparation of resin varnish Phenoxy resin 1 (synthesized in Synthesis Example 1) 16.8 parts by mass Bisphenol A type epoxy resin (DIC, 850S, epoxy equivalent 190)
19.7 parts by mass 2-phenylimidazole (2PZ manufactured by Shikoku Kasei) 0.5 parts by mass γ-glycidoxypropyltrimethoxysilane (KBM-403 manufactured by Shin-Etsu Silicone)
3.0 parts by mass Alumina (manufactured by Denki Kagaku Kogyo Co., Ltd., AS-50) 60.0 parts by mass was dissolved and mixed in cyclohexanone and stirred using a high-speed agitator, so that the resin composition was 70% by mass based on the solid content. A resin varnish was obtained.

(2)樹脂シートの作製
金属箔として、厚さ70μmの銅箔(古河サーキットホイル製、GTSMP)を用い、銅箔の粗化面に樹脂ワニスをコンマコーターにて塗布し、100℃で3分、150℃で3分加熱乾燥し、樹脂厚100μmの樹脂付き銅箔(樹脂シート)を得た。
(2) Production of Resin Sheet Using a 70 μm thick copper foil (manufactured by Furukawa Circuit Foil, GTSMP) as a metal foil, a resin varnish was applied to the roughened surface of the copper foil with a comma coater, and 3 minutes at 100 ° C. The resin-coated copper foil (resin sheet) having a resin thickness of 100 μm was obtained by heating and drying at 150 ° C. for 3 minutes.

(3)積層板の作製
で得られた樹脂シートの絶縁層側の面が接するように、樹脂シートと2mm厚のアルミニウム板とを張り合わせ、真空プレスで、プレス圧2.9MPaで80℃30分、200℃90分の条件下で、プレスし積層板を得た。
(4)インバータ装置の作製
得られた積層板に回路形成するため、回路以外の不要な部分をエッチングにより除去し、回路を形成後、所定の部分に試験用の電子部品を搭載し、半田接合を行うことにより、インバータ装置を得た。
(3) Production of laminated plate The resin sheet and the 2 mm-thick aluminum plate were laminated so that the surface on the insulating layer side of the resin sheet obtained in the above was in contact, and was vacuum-pressed at 80 ° C for 30 minutes at a press pressure of 2.9 MPa. The laminate was obtained by pressing at 200 ° C. for 90 minutes.
(4) Production of inverter device In order to form a circuit on the obtained laminate, unnecessary parts other than the circuit are removed by etching. After the circuit is formed, a test electronic component is mounted on the predetermined part and soldered. By doing, the inverter device was obtained.

(実施例2〜6及び比較例1〜5)
表1及び表2に記載の配合表に従い樹脂ワニスを調製した以外は、実施例1と同様に樹脂ワニスを調製し、樹脂シート、積層板及びインバータ装置を作製した。
また、各実施例及び比較例により得られた金属ベース回路基板について、次の各評価を行った。評価結果を表1及び表2に示す。
(Examples 2-6 and Comparative Examples 1-5)
A resin varnish was prepared in the same manner as in Example 1 except that a resin varnish was prepared according to the recipe shown in Tables 1 and 2, and a resin sheet, a laminate and an inverter device were produced.
Moreover, each evaluation of the following was performed about the metal base circuit board obtained by each Example and the comparative example. The evaluation results are shown in Tables 1 and 2.

(評価方法)
各評価について、評価方法を以下に示す。
(Evaluation method)
The evaluation method is shown below for each evaluation.

(1)ピール強度
実施例及び比較例で得られた積層板をグラインダーソーでカットして100mm×20mmの試験片を作製し、23℃におけるアルミニウム板と樹脂硬化層とのピール強度を測定した。尚、ピール強度測定は、JIS C 6481に準拠して行った。
(1) Peel strength The laminates obtained in the examples and comparative examples were cut with a grinder saw to prepare 100 mm × 20 mm test pieces, and the peel strength between the aluminum plate and the cured resin layer at 23 ° C. was measured. The peel strength measurement was performed according to JIS C 6481.

(2)半田耐熱性
得られた積層板を50mm×50mmにグラインダーソーでカットした後、エッチングにより銅箔を1/4だけ残した試料を作製し、JIS C 6481に準拠して評価した。評価は、前処理をしない場合と、121℃、100%、(PCT処理)を4時間行った後の場合において、288℃の半田槽に30秒間浸漬した後で外観の異常の有無を調べた。
評価基準:異常なし
:膨れあり(全体的に膨れの箇所がある)
(2) Solder heat resistance After the obtained laminated plate was cut into a 50 mm × 50 mm with a grinder saw, a sample in which only 1/4 of the copper foil was left by etching was prepared and evaluated in accordance with JIS C 6481. In the case of no pretreatment and after 121 ° C., 100%, (PCT treatment) for 4 hours, the presence or absence of abnormal appearance was examined after being immersed in a solder bath at 288 ° C. for 30 seconds. .
Evaluation criteria: No abnormality: Swelling (there is a swelling part as a whole)

(3)絶縁破壊電圧
得られた積層板を100mm×100mmにグラインダーソーでカットした後、端縁部から約30mmの位置から外側部分の銅箔をエッチングにより除去し、試料を作成した。耐電圧試験器(MODEL7473、EXTECH Electronics社製)を用いて、銅箔とアルミニウム板に電極を接触せしめて、両電極に1kV/秒の速度で電圧が上昇するように、交流電圧を印加した。積層板の樹脂硬化層が破壊した電圧を、絶縁破壊電圧とした。
(3) Dielectric breakdown voltage After the obtained laminated plate was cut into a size of 100 mm × 100 mm with a grinder saw, the copper foil in the outer portion was removed by etching from a position of about 30 mm from the edge portion to prepare a sample. Using a withstand voltage tester (MODEL7473, manufactured by EXTECH Electronics), an electrode was brought into contact with the copper foil and the aluminum plate, and an alternating voltage was applied to both electrodes so that the voltage increased at a rate of 1 kV / sec. The voltage at which the cured resin layer of the laminate was broken was defined as the dielectric breakdown voltage.

(4)熱伝導率
得られた積層板の密度を水中置換法により測定し、また、比熱をDSC(示差走査熱量測定)により測定し、さらに、レーザーフラッシュ法により熱拡散率を測定した。そして、熱伝導率を以下の式から算出した。
熱伝導率(W/m・K)=密度(kg/m)×比熱(kJ/kg・K)×熱拡散率(m/S)×1000
(4) Thermal conductivity The density of the obtained laminate was measured by an underwater substitution method, the specific heat was measured by DSC (differential scanning calorimetry), and the thermal diffusivity was further measured by a laser flash method. And thermal conductivity was computed from the following formula | equation.
Thermal conductivity (W / m · K) = density (kg / m 3 ) × specific heat (kJ / kg · K) × thermal diffusivity (m 2 / S) × 1000

(5)ヒ−トサイクル試験
で得られたインバータ装置を用い、−40℃7分、+125℃7分を1サイクルとして10000回のヒートサイクル試験を行った後、顕微鏡で半田部分のクラックの有無を観察した。半田部分のクラックの発生が10%以上あるものは不良とし、半田クラックの発生が10%未満のものを良好と判定した。
評価基準:良好
:不良(クラック発生率10%以上)
(5) Heat cycle test Using the inverter device obtained in the above, after performing a heat cycle test 10,000 times with -40 ° C 7 minutes and + 125 ° C 7 minutes as one cycle, the presence or absence of cracks in the solder portion with a microscope Was observed. Those having a crack occurrence of 10% or more in the solder portion were judged as defective, and those having a solder crack occurrence of less than 10% were judged good.
Evaluation criteria: Good: Poor (crack generation rate of 10% or more)

表1及び2に記載されている評価結果より、以下のことが分かった。
本発明の(A)一般式(1)で表される構造を有するフェノキシ樹脂とは異なる構造のフェノキシ樹脂3を用いた比較例1では、積層板におけるPCT処理後の半田耐熱性、ならびに、インバータ装置におけるヒートサイクル性が劣る結果となった。また、シランカップリング剤の含有量が少ない比較例2では、積層板におけるピール強度が低下し、PCT処理後の半田耐熱性も劣る結果となった。一方、シランカップリング剤の含有量が過剰な比較例3では、積層板におけるピール強度自体は低下していないものの、PCT処理後の半田耐熱性は劣る結果となった。また、無機充填剤を用いなかった比較例4では、積層板における熱伝導性が低い値となった。さらに、本発明の(A)一般式(1)で表される構造を有するフェノキシ樹脂及びエポキシ樹脂を用いる代わりにシリコーン樹脂を用いた比較例5では、積層板におけるピール強度が低下し、PCT処理後の半田耐熱性も劣る結果となった。また、絶縁破壊電圧が低い値となった。
これに対し、実施例1〜6は、(A)一般式(1)で表わされる構造を有するフェノキシ樹脂、(B)無機充填剤及び(C)シランカップリング剤を含み、(C)シランカップリング剤の含有量が樹脂組成物全体の1質量%以上、10質量%以下である樹脂組成物を用いたものであり、(A)フェノキシ樹脂の種類を変更したもの、(B)無機充填剤の種類を変更したもの、(C)シランカップリング剤の含有量を変更したもの、及び硬化剤・硬化促進剤の種類をを変更したもの等を含むものであるが、いずれにおいても、積層板におけるピール強度が高く、半田耐熱性に優れる結果となった。また、十分な絶縁破壊電圧値及び高い熱伝導率も有していた。また、インバータ装置におけるヒートサイクル性についても良好な結果が得られた。
従って、本発明による樹脂組成物を用いることにより、性能の優れた金属ベース回路基板、インバータ装置及びパワー半導体装置が得られることが分かった。
From the evaluation results described in Tables 1 and 2, the following was found.
In Comparative Example 1 using the phenoxy resin 3 having a structure different from the phenoxy resin having the structure represented by the general formula (1) of the present invention (A), the solder heat resistance after the PCT treatment in the laminate, and the inverter The result was inferior heat cycle performance in the apparatus. Moreover, in the comparative example 2 with little content of a silane coupling agent, the peel strength in a laminated board fell, and it resulted in the solder heat resistance after a PCT process being inferior. On the other hand, in Comparative Example 3 in which the content of the silane coupling agent was excessive, the peel strength itself in the laminate was not lowered, but the solder heat resistance after the PCT treatment was inferior. Moreover, in the comparative example 4 which did not use an inorganic filler, the heat conductivity in a laminated board became a low value. Furthermore, in Comparative Example 5 using a silicone resin instead of using the phenoxy resin and the epoxy resin having the structure represented by (A) general formula (1) of the present invention, the peel strength in the laminate is lowered, and the PCT treatment Later solder heat resistance was also inferior. Moreover, the dielectric breakdown voltage became a low value.
In contrast, Examples 1 to 6 include (A) a phenoxy resin having a structure represented by the general formula (1), (B) an inorganic filler, and (C) a silane coupling agent. A resin composition in which the content of the ring agent is 1% by mass or more and 10% by mass or less of the whole resin composition, (A) a modified type of phenoxy resin, (B) an inorganic filler Including the modified type of (C) the content of the silane coupling agent and the modified type of the curing agent / curing accelerator. The strength was high and the solder heat resistance was excellent. Moreover, it had sufficient dielectric breakdown voltage value and high thermal conductivity. Moreover, the favorable result was obtained also about the heat cycle property in an inverter apparatus.
Therefore, it was found that by using the resin composition according to the present invention, a metal base circuit board, an inverter device, and a power semiconductor device having excellent performance can be obtained.

本発明によれば、金属板と絶縁層との密着性及びヒートサイクル性に優れ、かつ十分な絶縁破壊電圧値、高い熱伝導率を得ることができるため、本発明の樹脂組成物、樹脂シー
ト、積層板、金属ベース回路基板、インバータ装置及びパワー半導体装置は、自動車のエンジンル−ム等過酷な環境化で用いられる材料として好適に使用することができる。
According to the present invention, since the adhesion between the metal plate and the insulating layer and the heat cycle property are excellent, and a sufficient dielectric breakdown voltage value and high thermal conductivity can be obtained, the resin composition and resin sheet of the present invention can be obtained. The laminated board, the metal base circuit board, the inverter device, and the power semiconductor device can be suitably used as materials used in harsh environments such as automobile engine rooms.

Claims (7)

(A)下記一般式(1)で表わされる構造を有するフェノキシ樹脂、(B)無機充填剤及び(C)シランカップリング剤を含み、前記(C)シランカップリング剤の含有量が樹脂組成物全体の1質量%以上、10質量%以下であることを特徴とする樹脂組成物。

(但し、上記一般式(1)において、n、mは互いに独立した1以上、20以下の整数である。R1〜19は、水素原子、炭素数1〜10の炭化水素基、又はハロゲン原子であり、互いに同一であってもよく、異なっていてもよい。Xは、単結合、あるいは炭素数1〜20の炭化水素基、−O−、−S−、−SO−又は−CO−である。)
(A) a phenoxy resin having a structure represented by the following general formula (1), (B) an inorganic filler, and (C) a silane coupling agent, wherein the content of the (C) silane coupling agent is a resin composition The resin composition characterized by being 1 mass% or more and 10 mass% or less of the whole.

(However, in the said General formula (1), n and m are 1 or more and an integer of 20 or less mutually independent. R1-19 is a hydrogen atom, a C1-C10 hydrocarbon group, or a halogen atom. X may be a single bond or a hydrocarbon group having 1 to 20 carbon atoms, —O—, —S—, —SO 2 — or —CO—. is there.)
前記(A)フェノキシ樹脂の含有量は、樹脂組成物全体の10質量%以上、40質量%以下であることを特徴とする請求項1に記載の樹脂組成物。   2. The resin composition according to claim 1, wherein the content of the (A) phenoxy resin is 10% by mass or more and 40% by mass or less of the entire resin composition. 請求項1又は2に記載の樹脂組成物からなる絶縁層を金属箔に積層してなることを特徴とする樹脂シート。   A resin sheet obtained by laminating an insulating layer made of the resin composition according to claim 1 or 2 on a metal foil. 請求項3に記載の樹脂シートを、前記絶縁層側の面が接するように金属板の少なくとも1方の面上に積層してなることを特徴とする積層板。   A laminated sheet comprising the resin sheet according to claim 3 laminated on at least one surface of a metal plate so that the surface on the insulating layer side is in contact therewith. 前記金属板の少なくとも1方の面上に請求項1又は2に記載の樹脂組成物からなる絶縁層を介して導体回路が形成されてなることを特徴とする金属ベース回路基板。   A metal base circuit board, wherein a conductor circuit is formed on at least one surface of the metal plate via an insulating layer made of the resin composition according to claim 1 or 2. 請求項5に記載の金属ベース回路基板上に電子部品が搭載されていることを特徴とするインバータ装置。   An inverter device comprising an electronic component mounted on the metal base circuit board according to claim 5. 請求項5に記載の金属ベース回路基板上に電子部品が搭載されていることを特徴とするパワー半導体装置。
An electronic component is mounted on the metal base circuit board according to claim 5.
JP2011156191A 2011-07-15 2011-07-15 Metal base circuit board, laminated board, inverter device and power semiconductor device Active JP5821355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011156191A JP5821355B2 (en) 2011-07-15 2011-07-15 Metal base circuit board, laminated board, inverter device and power semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011156191A JP5821355B2 (en) 2011-07-15 2011-07-15 Metal base circuit board, laminated board, inverter device and power semiconductor device

Publications (2)

Publication Number Publication Date
JP2013023503A true JP2013023503A (en) 2013-02-04
JP5821355B2 JP5821355B2 (en) 2015-11-24

Family

ID=47782228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011156191A Active JP5821355B2 (en) 2011-07-15 2011-07-15 Metal base circuit board, laminated board, inverter device and power semiconductor device

Country Status (1)

Country Link
JP (1) JP5821355B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150103300A (en) 2013-09-05 2015-09-09 세키스이가가쿠 고교가부시키가이샤 Curable composition and connection structure
KR20170005787A (en) 2014-05-08 2017-01-16 세키스이가가쿠 고교가부시키가이샤 Curable composition, electroconductive material, and connection structure
JP2017063161A (en) * 2015-09-25 2017-03-30 ナミックス株式会社 Printed wiring board and semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01319528A (en) * 1988-06-20 1989-12-25 Mitsubishi Electric Corp Epoxy resin composition for semiconductor sealing use
JPH05304346A (en) * 1991-03-28 1993-11-16 Sky Alum Co Ltd Aluminum base circuit board
JP2002138270A (en) * 2000-10-31 2002-05-14 Hitachi Chem Co Ltd Adhesive film, adhesive film with base material and manufacturing method of them, adhesive film for semiconductor, semiconductor element, supporting member, method for adhering semiconductor to supporting member, and semiconductor device
JP2009024126A (en) * 2007-07-23 2009-02-05 Nitto Denko Corp Polymer composition, thermally-conductive sheet, highly thermally-conductive adhesive sheet with metal foil, highly thermally-conductive adhesive sheet with metal plate, metal-based circuit board and power module
JP2010018759A (en) * 2008-07-14 2010-01-28 Japan Epoxy Resin Kk Imide skeleton resin, curable resin composition, and its cured product
JP2010157380A (en) * 2008-12-26 2010-07-15 Sekisui Chem Co Ltd Insulating sheet, and laminated structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01319528A (en) * 1988-06-20 1989-12-25 Mitsubishi Electric Corp Epoxy resin composition for semiconductor sealing use
JPH05304346A (en) * 1991-03-28 1993-11-16 Sky Alum Co Ltd Aluminum base circuit board
JP2002138270A (en) * 2000-10-31 2002-05-14 Hitachi Chem Co Ltd Adhesive film, adhesive film with base material and manufacturing method of them, adhesive film for semiconductor, semiconductor element, supporting member, method for adhering semiconductor to supporting member, and semiconductor device
JP2009024126A (en) * 2007-07-23 2009-02-05 Nitto Denko Corp Polymer composition, thermally-conductive sheet, highly thermally-conductive adhesive sheet with metal foil, highly thermally-conductive adhesive sheet with metal plate, metal-based circuit board and power module
JP2010018759A (en) * 2008-07-14 2010-01-28 Japan Epoxy Resin Kk Imide skeleton resin, curable resin composition, and its cured product
JP2010157380A (en) * 2008-12-26 2010-07-15 Sekisui Chem Co Ltd Insulating sheet, and laminated structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150103300A (en) 2013-09-05 2015-09-09 세키스이가가쿠 고교가부시키가이샤 Curable composition and connection structure
KR20160053841A (en) 2013-09-05 2016-05-13 세키스이가가쿠 고교가부시키가이샤 Curable composition and connection structure
KR20170005787A (en) 2014-05-08 2017-01-16 세키스이가가쿠 고교가부시키가이샤 Curable composition, electroconductive material, and connection structure
JP2017063161A (en) * 2015-09-25 2017-03-30 ナミックス株式会社 Printed wiring board and semiconductor device

Also Published As

Publication number Publication date
JP5821355B2 (en) 2015-11-24

Similar Documents

Publication Publication Date Title
JP5738274B2 (en) Heat-resistant adhesive
JP2018531317A (en) Anionic curable composition
JP2018531317A6 (en) Anionic curable composition
JP6477483B2 (en) Epoxy resin composition, carrier material with resin layer, metal base circuit board, and electronic device
JP5870934B2 (en) Method for manufacturing metal-based circuit board
JP6931542B2 (en) Cured resin composition, resin composition and multilayer substrate
JP2009049062A (en) Method of manufacturing substrate for metal base circuit, and substrate for metal base circuit
WO2015163054A1 (en) Metal-based substrate, method for manufacturing metal-based substrate, metal-based circuit board, and electronic device
JPWO2018173945A1 (en) Resin composition for circuit board and metal-based circuit board using the same
WO2012165265A1 (en) Substrate, method for producing same, heat-releasing substrate, and heat-releasing module
JPWO2015056555A1 (en) Metal substrate, metal base circuit board, electronic device, and metal base circuit board manufacturing method
JP2011238729A (en) Substrate manufacturing method and circuit board manufacturing method
TW201444962A (en) Device, composition for adhesive agent, and adhesive sheet
JP5821355B2 (en) Metal base circuit board, laminated board, inverter device and power semiconductor device
JP5752071B2 (en) B-stage film and multilayer substrate
JP5516190B2 (en) Resin composition, metal foil with resin, and metal base substrate
JP2017022265A (en) Metal circuit board and method for manufacturing the same
JP2012131899A (en) Resin composition, resin sheet, metal-based circuit board, inverter, and power semiconductor device
CN113272355A (en) Resin composition and metal-based copper-clad laminate
JP5821845B2 (en) Resin composition used for formation of resin layer constituting metal base substrate, metal base substrate, and method of manufacturing metal base substrate
JP2007194405A (en) Epoxy resin composition for heat conduction
JP2012153770A (en) Resin composition, resin sheet, metal-based circuit board, inverter device, and power semiconductor device
JP4706468B2 (en) Resin composition, prepreg, and laminate and printed wiring board using the same
JP5429054B2 (en) Resin composition, metal foil with resin, and metal base substrate
JP2004197010A (en) Heat resistant adhesive, method for producing the same, and semiconductor device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150623

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150921

R150 Certificate of patent or registration of utility model

Ref document number: 5821355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150