JP2013023162A - Collision energy absorber structure of vehicle body - Google Patents

Collision energy absorber structure of vehicle body Download PDF

Info

Publication number
JP2013023162A
JP2013023162A JP2011162612A JP2011162612A JP2013023162A JP 2013023162 A JP2013023162 A JP 2013023162A JP 2011162612 A JP2011162612 A JP 2011162612A JP 2011162612 A JP2011162612 A JP 2011162612A JP 2013023162 A JP2013023162 A JP 2013023162A
Authority
JP
Japan
Prior art keywords
vehicle
energy absorber
collision energy
wall portion
vertical wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011162612A
Other languages
Japanese (ja)
Other versions
JP5803379B2 (en
Inventor
Masashi Asano
將嗣 浅野
Hidenori Matsuda
英典 松田
Sho Maeda
翔 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011162612A priority Critical patent/JP5803379B2/en
Publication of JP2013023162A publication Critical patent/JP2013023162A/en
Application granted granted Critical
Publication of JP5803379B2 publication Critical patent/JP5803379B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a collision energy absorber structure of a vehicle body capable of reducing bending moment generated at a vehicle body floor upon the collision.SOLUTION: The collision energy absorber 20A includes: a bottom wall 22A extended to a vehicle front and rear direction and to a vehicle width direction with the vehicle width direction as a longitudinal direction; a right side vertical wall 24A extended from an end at the right side in the vehicle width direction of the bottom wall 22A to a vehicle upper direction and to the vehicle front and rear direction; and a left side vertical wall 26A extended from an end at a left side in the vehicle width direction to the vehicle upper direction and to the vehicle front and rear direction.

Description

本発明は、衝突時に車体に加わる衝突エネルギーを吸収する車体の衝突エネルギー吸収体構造に関する。   The present invention relates to a collision energy absorber structure for a vehicle body that absorbs collision energy applied to the vehicle body during a collision.

従来、キャビンの車体前方に衝突エネルギー吸収体を設けて、前面衝突時に車体に加わる衝突エネルギーを吸収する構造が知られている。例えば、下記特許文献1には、サイドフレームの前方に衝突エネルギー吸収体を設けて、サイドフレームからフロアフレームに伝わる衝突エネルギーを吸収する構成が開示されている。   2. Description of the Related Art Conventionally, a structure in which a collision energy absorber is provided in front of a cabin body to absorb collision energy applied to the body during a frontal collision is known. For example, Patent Document 1 below discloses a configuration in which a collision energy absorber is provided in front of a side frame to absorb collision energy transmitted from the side frame to the floor frame.

特開2002−120755号公報JP 2002-120755 A

しかしながら、従来の構造では、サイドフレーム前方に設けられた衝突エネルギー吸収体の車両上下方向の高さとフロアフレームの車両上下方向の高さとの差が大きく、衝突時に該サイドフレームと該フロアフレームとを繋ぐ部分(キック部)に生じる曲げモーメントが大きくなるという課題があった。   However, in the conventional structure, the difference between the height of the collision energy absorber provided in front of the side frame in the vertical direction of the vehicle and the height of the floor frame in the vertical direction of the vehicle is large, and the side frame and the floor frame are There was a problem that the bending moment generated in the connecting portion (kick portion) was increased.

本発明は上記事実を考慮し、衝突時に車体フロアに生じる曲げモーメントを低減できる車体の衝突エネルギー吸収体構造を得ることが目的である。   In view of the above facts, an object of the present invention is to obtain a vehicle body collision energy absorber structure capable of reducing a bending moment generated on a vehicle body floor at the time of a collision.

請求項1記載の本発明に係る車体の衝突エネルギー吸収体構造は、バンパカバーの内側に配設され、車幅方向を長手として車両前後方向及び車幅方向に延在する底壁部と、前記底壁部の車幅方向の一方の端部から車両上方向及び車両前後方向に延在する第1縦壁部と、前記底壁部の車幅方向の他方の端部から車両上方向及び車両前後方向に延在する第2縦壁部と、を備えることを特徴とする。   A vehicle body collision energy absorber structure according to a first aspect of the present invention includes a bottom wall portion that is disposed inside a bumper cover and extends in the vehicle longitudinal direction and the vehicle width direction with the vehicle width direction as a longitudinal direction, A first vertical wall portion extending in the vehicle upward direction and the vehicle front-rear direction from one end portion in the vehicle width direction of the bottom wall portion, and the vehicle upward direction and the vehicle from the other end portion in the vehicle width direction of the bottom wall portion. And a second vertical wall portion extending in the front-rear direction.

請求項1に係る本発明では、上記構成の底壁部と、第1縦壁部と、第2縦壁部とを備えている。そのため、車両前方又は後方から見た衝突エネルギー吸収体の断面は車両上方向に開口したU字状断面となり、当該断面の図心を車両下側に下げることができる。その結果、当該図心が乗員室の床面を形成する車体フロアのフロア部の高さに近づく。換言すると、当該図心とフロア部の高さとの差が小さくなり、その結果、衝突時に車体フロアに生じる曲げモーメントを低減できる。   In this invention which concerns on Claim 1, the bottom wall part of the said structure, the 1st vertical wall part, and the 2nd vertical wall part are provided. Therefore, the cross section of the collision energy absorber viewed from the front or the rear of the vehicle is a U-shaped cross section that opens upward in the vehicle, and the centroid of the cross section can be lowered to the vehicle lower side. As a result, the centroid approaches the height of the floor portion of the vehicle body floor that forms the floor of the passenger compartment. In other words, the difference between the centroid and the height of the floor portion is reduced, and as a result, the bending moment generated on the vehicle body floor at the time of collision can be reduced.

請求項2記載の本発明に係る車体の衝突エネルギー吸収体構造は、請求項1記載の車体の衝突エネルギー吸収体構造において、前記底壁部が、キャビンの床面を形成する車体フロアのフロア部の車両前後方向の延長上に配設されたことを特徴とする。   A vehicle body collision energy absorber structure according to a second aspect of the present invention is the vehicle body collision energy absorber structure according to the first aspect, wherein the bottom wall portion forms a floor surface of a cabin. It is arranged on the extension of the vehicle longitudinal direction.

請求項2に係る本発明では、底壁部がフロア部の車両前後方向の延長上に配設されているため、衝突時に車体前方又は後方から加わる荷重を効率よくフロア部に流すことができる。   In the present invention according to claim 2, since the bottom wall portion is disposed on the extension of the floor portion in the vehicle front-rear direction, a load applied from the front or rear of the vehicle body at the time of a collision can be efficiently flowed to the floor portion.

請求項3記載の本発明に係る車体の衝突エネルギー吸収体構造は、請求項1又は請求項2記載の車体の衝突エネルギー吸収体構造において、前記底壁部、前記第1縦壁部及び前記第2縦壁部は車両前後方向に延びる複数の湾曲部を含んだ形状にそれぞれ形成されていることを特徴とする。   A vehicle body collision energy absorber structure according to a third aspect of the present invention is the vehicle body collision energy absorber structure according to the first or second aspect, wherein the bottom wall portion, the first vertical wall portion, and the first wall portion are the same. The two vertical wall portions are each formed in a shape including a plurality of curved portions extending in the vehicle front-rear direction.

請求項3に係る本発明では、底壁部、第1縦壁部及び第2縦壁部には、車両前後方向に延びる複数の湾曲部が形成されているため、当該湾曲部が形成されていない衝突エネルギー吸収体と比べて、各々の部材を伝わる荷重をより均一な荷重とすることが可能となる。従って、衝突時に車体前方又は後方から加わる荷重をより均一に車体フロアに流すことができる。   In the present invention according to claim 3, since the plurality of curved portions extending in the vehicle front-rear direction are formed in the bottom wall portion, the first vertical wall portion, and the second vertical wall portion, the curved portions are formed. Compared with a collision energy absorber that does not exist, the load transmitted through each member can be made more uniform. Therefore, the load applied from the front or the rear of the vehicle body at the time of a collision can be made to flow more uniformly on the vehicle body floor.

請求項4記載の本発明に係る車体の衝突エネルギー吸収体構造は、請求項1乃至請求項3いずれか1項に記載の車体の衝突エネルギー吸収体構造において、前記第1縦壁部と前記第2縦壁部とを車幅方向に繋ぐ横壁を備えることを特徴とする。   A vehicle body collision energy absorber structure according to a fourth aspect of the present invention is the vehicle body collision energy absorber structure according to any one of the first to third aspects, wherein the first vertical wall portion and the first A horizontal wall that connects the two vertical wall portions in the vehicle width direction is provided.

請求項4に係る本発明では、第1縦壁部と第2縦壁部とを繋ぐ横壁を備えるため、第1縦壁部の上端部と第2縦壁部の上端部とが成形時の残留応力や熱変形などにより開いてしまうことを抑制できる。そのため、寸法精度の良い車体の衝突エネルギー吸収体を得ることができ、衝突エネルギー吸収体が有する性能を狙い通りに発揮させることができる。
In this invention which concerns on Claim 4, in order to provide the horizontal wall which connects a 1st vertical wall part and a 2nd vertical wall part, the upper end part of a 1st vertical wall part and the upper end part of a 2nd vertical wall part are the time of shaping | molding. Opening due to residual stress or thermal deformation can be suppressed. Therefore, it is possible to obtain a collision energy absorber for a vehicle body with good dimensional accuracy, and to exhibit the performance of the collision energy absorber as intended.

以上説明したように、請求項1記載の本発明に係る車体の衝突エネルギー吸収体構造は、衝突時に車体フロアに生じる曲げモーメントを低減できる、という優れた効果を有する。   As described above, the vehicle body collision energy absorber structure according to the first aspect of the present invention has an excellent effect that the bending moment generated on the vehicle body floor at the time of the collision can be reduced.

請求項2記載の本発明に係る車体の衝突エネルギー吸収体構造は、衝突時に車体前方又は後方から加わる荷重を効率よくフロア部に流すことができる、という優れた効果を有する。   The vehicle body collision energy absorber structure according to the second aspect of the present invention has an excellent effect that a load applied from the front or rear of the vehicle body at the time of a collision can be efficiently flowed to the floor portion.

請求項3記載の本発明に係る車体の衝突エネルギー吸収体構造は、衝突時に車体前方又は後方から加わる荷重をより均一に車体フロアに流すことができる、という優れた効果を有する。   The vehicle body collision energy absorber structure according to the third aspect of the present invention has an excellent effect that the load applied from the front or the rear of the vehicle body at the time of the collision can flow more uniformly to the vehicle body floor.

請求項4記載の本発明に係る車体の衝突エネルギー吸収体構造は、寸法精度の良い車体の衝突エネルギー吸収体を得ることができ、衝突エネルギー吸収体が有する性能を狙い通りに発揮させることができる、という優れた効果を有する。   The vehicle body collision energy absorber structure according to the fourth aspect of the present invention can provide a vehicle body collision energy absorber with good dimensional accuracy, and can exhibit the performance of the collision energy absorber as intended. , Has an excellent effect.

第1実施形態に係る車体の衝突エネルギー吸収体が適用された車体フロア前部を示す斜視図である。It is a perspective view which shows the vehicle body floor front part to which the collision energy absorber of the vehicle body which concerns on 1st Embodiment was applied. (A)は第1実施形態に係る車体の衝突エネルギー吸収体が適用された車体フロア前部を示す側面図であり、(B)は図2(A)におけるA−A線に沿った断面図である。なお、(B)において衝突エネルギー吸収体の断面以外の図示は省略してある。(A) is a side view which shows the vehicle body floor front part to which the collision energy absorber of the vehicle body concerning 1st Embodiment was applied, (B) is sectional drawing along the AA in FIG. 2 (A). It is. In addition, in (B), illustrations other than the cross section of the collision energy absorber are omitted. (A)は第1実施形態に係る車体の衝突エネルギー吸収体が適用された車体フロア前部を示す側面図であり、(B)は対比例に係る車体の衝突エネルギー吸収体が適用された車体フロア前部を示す側面図である。(A) is a side view showing a front part of a vehicle body floor to which a vehicle body collision energy absorber according to the first embodiment is applied, and (B) is a vehicle body to which a vehicle body collision energy absorber according to a comparative example is applied. It is a side view which shows a floor front part. 第2実施形態に係る車体の衝突エネルギー吸収体が適用された車体フロア前部を示す斜視図である。It is a perspective view which shows the vehicle body floor front part to which the collision energy absorber of the vehicle body which concerns on 2nd Embodiment was applied. (A)は第2実施形態に係る車体の衝突エネルギー吸収体が適用された車体フロア前部を示す側面図であり、(B)は図5(A)におけるA−A線に沿った断面図である。なお、(B)において衝突エネルギー吸収体の断面以外の図示は省略してある。(A) is a side view which shows the vehicle body floor front part to which the collision energy absorber of the vehicle body concerning 2nd Embodiment was applied, (B) is sectional drawing along the AA in FIG. 5 (A). It is. In addition, in (B), illustrations other than the cross section of the collision energy absorber are omitted. (A)は複数の湾曲部が適用された衝突エネルギー吸収体に加わる衝突荷重を模式的に表した平面図であり、(B)は複数の湾曲部が適用されていない衝突エネルギー吸収体に加わる衝突荷重を模式的に表した平面図である。(A) is the top view which represented typically the collision load added to the collision energy absorber to which the some curved part was applied, (B) is added to the collision energy absorber to which the some curved part is not applied. FIG. 6 is a plan view schematically showing a collision load. 第3実施形態に係る車体の衝突エネルギー吸収体が適用された車体フロア前部を示す斜視図である。It is a perspective view which shows the vehicle body floor front part to which the collision energy absorber of the vehicle body which concerns on 3rd Embodiment was applied. (A)は第3実施形態に係る車体の衝突エネルギー吸収体が適用された車体フロア前部を示す側面図であり、(B)は図8(A)におけるA−A線に沿った断面図である。なお、(B)において衝突エネルギー吸収体の断面以外の図示は省略してある。(A) is a side view which shows the vehicle body floor front part to which the collision energy absorber of the vehicle body which concerns on 3rd Embodiment was applied, (B) is sectional drawing along the AA in FIG. 8 (A). It is. In addition, in (B), illustrations other than the cross section of the collision energy absorber are omitted. (A)は複数の閉断面が形成された衝突エネルギー吸収体の断面図であり、(B)は(A)に示された衝突エネルギー吸収体と同じ断面積であり、かつ閉断面Cを備えない衝突エネルギー吸収体を示す断面図である。なお、衝突エネルギー吸収体の断面以外の図示は省略してある。(A) is sectional drawing of the collision energy absorber in which several closed cross sections were formed, (B) is the same cross-sectional area as the collision energy absorber shown to (A), and is provided with the closed cross section C. It is sectional drawing which shows a collision energy absorber without. In addition, illustrations other than the cross section of the collision energy absorber are omitted. 第4実施形態に係る車体の衝突エネルギー吸収体が適用された車体フロア前部を示す斜視図である。It is a perspective view which shows the vehicle body floor front part to which the collision energy absorber of the vehicle body which concerns on 4th Embodiment was applied. (A)は第4実施形態に係る車体の衝突エネルギー吸収体が適用された車体フロア前部を示す側面図であり、(B)は図11(A)におけるA−A線に沿った断面図である。なお、(B)において衝突エネルギー吸収体の断面以外の図示は省略してある。(A) is a side view which shows the vehicle body floor front part to which the collision energy absorber of the vehicle body which concerns on 4th Embodiment was applied, (B) is sectional drawing along the AA in FIG. 11 (A). It is. In addition, in (B), illustrations other than the cross section of the collision energy absorber are omitted. (A)は第4実施形態に係る車体の衝突エネルギー吸収体の図心を示す断面図であり、(B)は板厚がTである車体の衝突エネルギー吸収体の図心を示す断面図である。なお、衝突エネルギー吸収体の断面以外の図示は省略してある。(A) is sectional drawing which shows the centroid of the collision energy absorber of the vehicle body which concerns on 4th Embodiment, (B) is sectional drawing which shows the centroid of the collision energy absorber of the vehicle body whose board thickness is T. is there. In addition, illustrations other than the cross section of the collision energy absorber are omitted. キャビンの後方に本発明の車体の衝突エネルギー吸収体を適用した例を示す側面図である。It is a side view which shows the example which applied the collision energy absorber of the vehicle body of this invention behind the cabin.

<第1実施形態>
図1〜図3を用いて、本発明の第1実施形態に係る車体の衝突エネルギー吸収体構造について説明する。なお、車両前後方向前方側を矢印FRで示し、車幅方向外側を矢印OUTで示し、車両上下方向上側を矢印UPで示す。
<First Embodiment>
The vehicle body collision energy absorber structure according to the first embodiment of the present invention will be described with reference to FIGS. The front side in the vehicle front-rear direction is indicated by an arrow FR, the outer side in the vehicle width direction is indicated by an arrow OUT, and the upper side in the vehicle vertical direction is indicated by an arrow UP.

図1には、本実施形態に係る車体の衝突エネルギー吸収体20Aが適用された車体フロア10の左側前方から見た斜視図が示されている。この図に示されるように、車体フロア10の前端部には左右一対のフロントサスペンションユニット12等を保持したフロントサスペンションメンバモジュール14が取り付けられている。また、フロントサスペンションメンバモジュール14の前端部には、本実施形態に係る車体の衝突エネルギー吸収体20Aが取り付けられている。また、図2(A)に示されるように、衝突エネルギー吸収体20Aはバンパカバー36F内側に配設され、衝突エネルギー吸収体20Aの前部にはバンパリインフォース38が取り付けられている。さらに、バンパリインフォース38の車両後側には、図示しないラジエタや冷暖房装置のコンデンサ等が取り付けられている。   FIG. 1 shows a perspective view of a vehicle body floor 10 to which a vehicle body collision energy absorber 20A according to this embodiment is applied, as viewed from the left front side. As shown in this figure, a front suspension member module 14 holding a pair of left and right front suspension units 12 and the like is attached to the front end portion of the vehicle body floor 10. Further, a vehicle body collision energy absorber 20 </ b> A according to the present embodiment is attached to a front end portion of the front suspension member module 14. As shown in FIG. 2A, the collision energy absorber 20A is disposed inside the bumper cover 36F, and a bumper reinforcement 38 is attached to the front of the collision energy absorber 20A. Furthermore, a radiator, a condenser of an air conditioner, etc. (not shown) are attached to the rear side of the bumper reinforcement 38.

まず、車体フロア10について説明すると、車体フロア10はバスタブ状に形成されており、キャビン11の主要部を構成している。具体的には、図2(A)に示されるように、車体フロア10の底部には車両前後方向及び車幅方向に延在しキャビン11の床面を構成するフロア部10Aを備えている。フロア部10Aには図示しないシートやセンタコンソール、その他内装意匠材が取り付けられている。また、フロア部10Aの前端部から車両上方及び車幅方向に延在するダッシュ部10Bを備えている。ダッシュ部10Bには、図示しないインストルメントパネルやステアリングホイール等が取り付けられている。   First, the vehicle body floor 10 will be described. The vehicle body floor 10 is formed in a bathtub shape and constitutes a main part of the cabin 11. Specifically, as shown in FIG. 2A, a floor portion 10 </ b> A that extends in the vehicle front-rear direction and the vehicle width direction and forms the floor surface of the cabin 11 is provided at the bottom of the vehicle body floor 10. A floor, a center console, and other interior design materials (not shown) are attached to the floor portion 10A. Further, a dash portion 10B extending from the front end portion of the floor portion 10A in the vehicle upper direction and the vehicle width direction is provided. An instrument panel, a steering wheel, etc. (not shown) are attached to the dash portion 10B.

次に、車体フロア10の前端部に取り付けられた、サスペンションメンバモジュール14について説明すると、図1に示されるように、複数の足回り部品がサスペンションメンバ13に取り付けられることにより、サスペンションメンバモジュール14が構成されている。本実施形態では、サスペンションユニット12、タイヤ19等を保持している図示しないアッパーアーム及びロアアーム等がフロントサスペンションメンバ13に取り付けられることにより、フロントサスペンションメンバモジュール14が構成されている。また、図2(A)に示されるように、フロントサスペンションメンバ13の車両下側の端部には、車幅方向を長手として延在する荷重伝達部材60が設けられている。なお、荷重伝達部材60の詳細な構成についての図示は省略するが、当該荷重伝達部材には所要の剛性が確保された部材が用いられていれば良く、例えばサスペンションメンバ13を補強するための部材と兼用しても良い。   Next, the suspension member module 14 attached to the front end portion of the vehicle body floor 10 will be described. As shown in FIG. 1, the suspension member module 14 is attached to the suspension member 13 by attaching a plurality of suspension parts. It is configured. In the present embodiment, an upper arm and a lower arm (not shown) that hold the suspension unit 12, the tire 19, and the like are attached to the front suspension member 13, thereby configuring the front suspension member module 14. Further, as shown in FIG. 2A, a load transmission member 60 extending in the vehicle width direction is provided at the lower end portion of the front suspension member 13 in the vehicle. Although a detailed illustration of the configuration of the load transmission member 60 is omitted, it is sufficient that a member having a required rigidity is used for the load transmission member, for example, a member for reinforcing the suspension member 13. You may also use.

次に、本発明の要部である衝突エネルギー吸収体について説明する。   Next, a collision energy absorber that is a main part of the present invention will be described.

図1に示されるように、衝突エネルギー吸収体20Aは、車両幅方向を長手として車両前後方向及び車幅方向に延在する底壁部22Aと、当該底壁部22Aの車両幅方向右側の端部から車両上方向及び車両前後方向に延在する右側縦壁部24Aと、車両幅方向左側の端部から車両上方向及び車両前後方向に延在する左側縦壁部26Aとが一体に成形されることにより構成されている。従って、図2(B)に示されるように、当該衝突エネルギー吸収体20Aを車両前方から見た断面は、車両上方向に開口部を有するU字状の断面を形成している。また、これらの衝突エネルギー吸収体20Aを構成する部材には繊維強化樹脂が用いられている。   As shown in FIG. 1, the collision energy absorber 20A includes a bottom wall portion 22A extending in the vehicle front-rear direction and the vehicle width direction with the vehicle width direction as a longitudinal direction, and the right end of the bottom wall portion 22A in the vehicle width direction. A right vertical wall portion 24A that extends in the vehicle upward direction and the vehicle front-rear direction and a left vertical wall portion 26A that extends in the vehicle upward direction and the vehicle front-rear direction from the left end in the vehicle width direction are integrally formed. It is constituted by. Therefore, as shown in FIG. 2B, the cross section of the collision energy absorber 20A viewed from the front of the vehicle forms a U-shaped cross section having an opening in the vehicle upper direction. Moreover, fiber reinforced resin is used for the members constituting these collision energy absorbers 20A.

右側縦壁部24A及び左側縦壁部26Aの車両後方側の端部には、ステアリングギヤボックス16の車幅方向両端に設けられたタイロッド18を逃がすための切り欠き30が設けられている。また、右側縦壁部24A及び左側縦壁部26Aの車両後方側の端部の上端及び下端には、それぞれ衝突エネルギー吸収体20Aとフロントサスペンションメンバモジュール14とを接合するためのフランジ部32が設けられている。当該フランジ部32に設けられた図示しない貫通孔にボルト34を通し、当該ボルト34をフロントサスペンションメンバモジュール14に設けられた図示しない螺子孔に締付けることにより衝突エネルギー吸収体20Aとフロントサスペンションメンバモジュール14とが接合されている。なお、繊維強化樹脂を挿んでボルトで締め上げて接合する場合、当該締め上げられた繊維強化樹脂がクリープ変形を起こすことにより、ボルトの軸力が低下することが考えられる。そのため、本実施形態ではフランジ部32に図示しないカラーが挿入されることにより、繊維強化樹脂材自体がボルトで締め上げられることが抑制されている。   Notches 30 for releasing the tie rods 18 provided at both ends in the vehicle width direction of the steering gear box 16 are provided at the vehicle rear side ends of the right vertical wall portion 24A and the left vertical wall portion 26A. Also, flange portions 32 for joining the collision energy absorber 20A and the front suspension member module 14 are provided at the upper and lower ends of the vehicle rear side ends of the right vertical wall portion 24A and the left vertical wall portion 26A, respectively. It has been. The bolt 34 is passed through a through hole (not shown) provided in the flange portion 32, and the bolt 34 is tightened into a screw hole (not shown) provided in the front suspension member module 14, thereby causing the collision energy absorber 20 </ b> A and the front suspension member module 14. And are joined. In addition, when fiber-reinforced resin is inserted and it fastens and joins with a volt | bolt, it is possible that the axial force of a volt | bolt falls because the said fiber-reinforced resin tightened raise | generates creep deformation. Therefore, in the present embodiment, the insertion of a collar (not shown) into the flange portion 32 suppresses the fiber reinforced resin material itself from being tightened with a bolt.

また、衝突エネルギー吸収体20Aの底壁部22Aはフロア部10Aの車両前後方向の延長上に配設されている。なお、図2(A)における2点鎖線で囲まれた部分はフロア部10Aの車両前後方向の延長上を示す。   Further, the bottom wall portion 22A of the collision energy absorber 20A is disposed on an extension of the floor portion 10A in the vehicle front-rear direction. In addition, the part enclosed with the dashed-two dotted line in FIG. 2 (A) shows the upper extension of the vehicle front-back direction of floor part 10A.

さらに、本実施形態では右側縦壁部24Aの上端の一部と左側縦壁部26Aの上端の一部とを繋ぐ横壁28を備える。横壁28の車幅方向両端部には図示しない螺子孔が形成されており、当該螺子孔に右側縦壁部24A及び左側縦壁部26Aの車幅方向外側から図示しないボルトを締めこむことにより、横壁28が衝突エネルギー吸収体20Aに取り付けられている   Furthermore, in this embodiment, the horizontal wall 28 which connects a part of upper end of the right side vertical wall part 24A and a part of upper end of the left side vertical wall part 26A is provided. Screw holes (not shown) are formed at both ends of the lateral wall 28 in the vehicle width direction, and bolts (not shown) are tightened into the screw holes from the vehicle width direction outside of the right vertical wall portion 24A and the left vertical wall portion 26A. The lateral wall 28 is attached to the collision energy absorber 20A.

(本実施形態の作用/効果)
次に、本実施形態の作用並びに効果について説明する。
(Operation / Effect of this embodiment)
Next, the operation and effect of this embodiment will be described.

衝突荷重が車体前方から加わると、先ずバンパカバー36Fが変形し、バンパカバー36Fとバンパリインフォース38とが接触する。バンパカバー36Fとバンパリインフォース38とが接触することにより、衝突荷重がバンパカバー36Fからバンパリインフォース38に入力される。次いで、衝突荷重はバンパリインフォース38から衝突エネルギー吸収体20Aに伝達される。この場合、衝突エネルギー吸収体20Aが変形することによって衝突エネルギーが吸収される共に、吸収しきれなかった荷重は衝突エネルギー吸収体20Aからサスペンションメンバモジュール14に流れる。そして更に、サスペンションメンバモジュール14に入力された衝突荷重は、車体フロア10へ流れる。   When a collision load is applied from the front of the vehicle body, the bumper cover 36F is first deformed, and the bumper cover 36F and the bumper reinforcement 38 come into contact with each other. When the bumper cover 36F and the bumper reinforcement 38 come into contact with each other, a collision load is input from the bumper cover 36F to the bumper reinforcement 38. Next, the collision load is transmitted from the bumper reinforcement 38 to the collision energy absorber 20A. In this case, the collision energy is absorbed by the deformation of the collision energy absorber 20A, and the load that cannot be absorbed flows from the collision energy absorber 20A to the suspension member module 14. Further, the collision load input to the suspension member module 14 flows to the vehicle body floor 10.

ここで、図2(B)に示されるように、衝突エネルギー吸収体20Aの車両前方向から見た断面は、車両上側に開口部を有するU字状の断面を形成している。そのため、断面の図心を車両下側に下げることができる。即ち、図3(A)に示されるように、衝突エネルギー吸収体20Aの断面の図心G1の車両上下方向の高さとフロア部10Aの車両上下方向の高さGfとの差を小さくできるため、前面衝突時に車体フロア10に生じる曲げモーメントを小さくできる。例えば、図3(A)に示された本実施形態の衝突エネルギー吸収体20Aの断面の図心G1と、図3(B)に示された対比例に係る矩形断面の衝突エネルギー吸収体20Eの断面の図心G2とを比べると、本実施形態では、その断面の図心G1が(L−l)の長さだけフロア部10Aの高さGfに近づく。その結果、車体フロア10に生じる曲げモーメントをMからm(M>m)に低減することができる。   Here, as shown in FIG. 2B, the cross section of the collision energy absorber 20A viewed from the front of the vehicle forms a U-shaped cross section having an opening on the upper side of the vehicle. Therefore, the centroid of the cross section can be lowered to the vehicle lower side. That is, as shown in FIG. 3 (A), the difference between the height in the vehicle vertical direction of the centroid G1 of the cross section of the collision energy absorber 20A and the height Gf in the vehicle vertical direction of the floor portion 10A can be reduced. The bending moment generated in the vehicle body floor 10 at the time of a frontal collision can be reduced. For example, the centroid G1 of the cross section of the collision energy absorber 20A of the present embodiment shown in FIG. 3A and the rectangular cross section of the collision energy absorber 20E according to the comparison shown in FIG. When compared with the centroid G2 of the cross section, in the present embodiment, the centroid G1 of the cross section approaches the height Gf of the floor portion 10A by the length of (L-1). As a result, the bending moment generated on the vehicle body floor 10 can be reduced from M to m (M> m).

さらに、本実施形態では、衝突エネルギー吸収体20Aの底壁部22Aがフロアロア10Lの車両前後方向の延長上に配設されているので、底壁部22Aを伝わる衝突荷重をフロア部10Aに効率良く流すことができる。また、本実施形態では荷重伝達部材60がフロントサスペンションメンバモジュール14の車両下側に設けられているため、衝突エネルギー吸収体からフロントサスペンションメンバモジュール14に入力された荷重をさらに効率良くフロア部10Aに流すことができる。   Furthermore, in the present embodiment, the bottom wall portion 22A of the collision energy absorber 20A is disposed on the vehicle front-rear direction extension of the floor lower 10L, so that the collision load transmitted through the bottom wall portion 22A can be efficiently applied to the floor portion 10A. It can flow. In this embodiment, since the load transmission member 60 is provided on the vehicle lower side of the front suspension member module 14, the load input from the collision energy absorber to the front suspension member module 14 is more efficiently applied to the floor portion 10A. It can flow.

また、本実施形態の衝突エネルギー吸収体20Aは、底壁部が車幅方向を長手として配設されているため、電柱やポールなどに衝突した場合等の局所的な入力に対しても効果的に衝突エネルギーを吸収できる。   Further, the collision energy absorber 20A of the present embodiment is effective for local input such as when colliding with a utility pole or pole because the bottom wall portion is disposed with the vehicle width direction as the longitudinal direction. Can absorb collision energy.

さらに、本実施形態の衝突エネルギー吸収体20Aには、右側縦壁部24Aの一部と左側縦壁部26Aの一部とを繋ぐ横壁28が設けられている。そのため、右側縦壁部24Aの上端と左側縦壁部26Aの上端との間の開きを抑制できる。その結果、寸法精度の良い車体の衝突エネルギー吸収体を得ることができ、衝突エネルギー吸収体が有する性能を狙い通りに発揮させることができる。   Further, the collision energy absorber 20A of the present embodiment is provided with a horizontal wall 28 that connects a part of the right vertical wall part 24A and a part of the left vertical wall part 26A. Therefore, the opening between the upper end of the right vertical wall portion 24A and the upper end of the left vertical wall portion 26A can be suppressed. As a result, it is possible to obtain a collision energy absorber for a vehicle body with good dimensional accuracy and to exhibit the performance of the collision energy absorber as intended.

<第2実施形態>
次に、図4〜図6を用いて、本発明の第2実施形態に係る車体の衝突エネルギー吸収体構造について説明する。なお、第1実施形態と同一の部材については同一の符号を付してその説明を省略する。
Second Embodiment
Next, a vehicle body collision energy absorber structure according to a second embodiment of the present invention will be described with reference to FIGS. In addition, about the member same as 1st Embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

この第2実施形態では、上記第1実施形態における底壁部22A、右側縦壁部24A及び左側縦壁部26Aに相当する、底壁部22B、右側縦壁部24B及び左側縦壁部26Bが所謂波板形状となっている点に特徴がある。具体的には、図4及び図5(B)に示されるように、底壁部22Bには、車両前後方向に延びる11個の湾曲部50が形成されている。また、右側縦壁部24B及び左側縦壁部26Bには、車両前後方向に延びる5個の湾曲部50がそれぞれ形成されている。   In the second embodiment, the bottom wall portion 22B, the right vertical wall portion 24B and the left vertical wall portion 26B corresponding to the bottom wall portion 22A, the right vertical wall portion 24A and the left vertical wall portion 26A in the first embodiment are provided. It is characterized by a so-called corrugated plate shape. Specifically, as shown in FIGS. 4 and 5B, eleven curved portions 50 extending in the vehicle front-rear direction are formed on the bottom wall portion 22B. Further, five curved portions 50 extending in the vehicle front-rear direction are formed in the right vertical wall portion 24B and the left vertical wall portion 26B, respectively.

(本実施形態の作用/効果)
次に、本実施形態の作用並びに効果について説明する。
(Operation / Effect of this embodiment)
Next, the operation and effect of this embodiment will be described.

本実施形態では、第1実施形態で説明した衝突エネルギー吸収体20Aの構成に加え、底壁部22B、右側縦壁部24B及び左側縦壁部26Bが所謂波板形状となっているため、第1実施形態で得られた効果に加えて、以下の効果を得ることができる。   In the present embodiment, in addition to the configuration of the collision energy absorber 20A described in the first embodiment, the bottom wall portion 22B, the right vertical wall portion 24B, and the left vertical wall portion 26B have a so-called corrugated shape. In addition to the effects obtained in the embodiment, the following effects can be obtained.

ここで、図6(A)及び(B)には、衝突エネルギー吸収体の前端部から後端部に掛けて伝達される衝突荷重の分布が模式的に表されている。図6(B)に示されるように湾曲部50を備えていない衝突エネルギー吸収体では、各壁部の中央付近での変形が大きくなり、衝突荷重に対する反力を得られない部分が生じる。即ち、衝突荷重を車両前後方向に効率よく伝達できない部分が生じる。   Here, FIGS. 6A and 6B schematically show the distribution of the collision load transmitted from the front end portion to the rear end portion of the collision energy absorber. As shown in FIG. 6B, in the collision energy absorber that does not include the curved portion 50, deformation near the center of each wall portion increases, and a portion where a reaction force against the collision load cannot be obtained occurs. That is, a portion where the collision load cannot be efficiently transmitted in the vehicle front-rear direction occurs.

これに対し、図6(A)に示された湾曲部50を備えている衝突エネルギー吸収体では、湾曲部50により変形が抑制されるため、衝突荷重に対する反力を得ることができる。即ち、上述した湾曲部50を備えていない衝突エネルギー吸収体のように、衝突荷重を車両前後方向に効率よく伝達できない部分が生じることがない。その結果、車体前方から入力された衝突荷重をフロントサスペンションメンバモジュール14に均一に流すことができ、ひいては衝突荷重を車体フロア10に均一に流すことができる。   On the other hand, in the collision energy absorber provided with the bending portion 50 shown in FIG. 6A, the deformation is suppressed by the bending portion 50, so that a reaction force against the collision load can be obtained. That is, there is no occurrence of a portion where the collision load cannot be efficiently transmitted in the vehicle front-rear direction, unlike the collision energy absorber that does not include the bending portion 50 described above. As a result, the collision load input from the front of the vehicle body can be made to flow uniformly to the front suspension member module 14, and consequently, the collision load can be made to flow uniformly to the vehicle body floor 10.

なお、本実施形態では湾曲部50を設けた例について説明したが、湾曲部50に代えて以下の第3実施形態で説明する屈曲部52を設けても良い。   In addition, although the example which provided the bending part 50 was demonstrated in this embodiment, it replaces with the bending part 50 and you may provide the bending part 52 demonstrated in the following 3rd Embodiment.

<第3実施形態>
次に、図7〜図9を用いて、本発明の第3実施形態に係る車体の衝突エネルギー吸収体構造について説明する。なお、第1実施形態等と同一の部材については同一の符号を付してその説明を省略する。
<Third Embodiment>
Next, a vehicle body collision energy absorber structure according to a third embodiment of the present invention will be described with reference to FIGS. In addition, about the member same as 1st Embodiment etc., the same code | symbol is attached | subjected and the description is abbreviate | omitted.

この第3実施形態の車体の衝突エネルギー吸収体20Cは、上記第1実施形態の衝突エネルギー吸収体と略同形状の第1部材21の上方から、複数の屈曲部を供えたパネル状の第2部材23を重ねて接合することによって複数の閉断面Cが形成されることに特徴がある。   The vehicle body collision energy absorber 20C of the third embodiment is a panel-like second member provided with a plurality of bent portions from above the first member 21 having substantially the same shape as the collision energy absorber of the first embodiment. A feature is that a plurality of closed cross sections C are formed by overlapping and joining the members 23.

具体的には、図7及び図8(B)に示されるように、第1部材21は、車両幅方向を長手として車両前後方向及び車幅方向に延在する底壁部21Aと、当該底壁部21Aの車両幅方向右側の端部から車両上下方向及び車両前後方向に延在する右側縦壁部21B及び車両幅方向左側の端部から車両上下方向及び車両前後方向に延在する左側縦壁部21Cとを備えている。また、右側縦壁部21B及び左側縦壁部21Cの上端部は、それぞれ第2部材と重ねあわされて接合されるフランジ部21Dとされている。   Specifically, as shown in FIGS. 7 and 8B, the first member 21 includes a bottom wall portion 21A extending in the vehicle front-rear direction and the vehicle width direction with the vehicle width direction as a longitudinal direction, and the bottom The right vertical wall portion 21B extending in the vehicle vertical direction and the vehicle front-rear direction from the end on the right side of the vehicle width direction of the wall 21A and the left vertical extending in the vehicle vertical direction and the vehicle front-rear direction from the left end in the vehicle width direction. And a wall portion 21C. The upper ends of the right vertical wall portion 21B and the left vertical wall portion 21C are flange portions 21D that are overlapped and joined to the second member.

第2部材23は、車両幅方向を長手として車両前後方向及び車幅方向に延在する底壁部23Aと、当該底壁部23Aの車両幅方向右側の端部から車両上下方向及び車両前後方向に延在する右側縦壁部23B及び車両幅方向左側の端部から車両上下方向及び車両前後方向に延在する左側縦壁部23Cとを備えている。更に、当該底壁部23A、右側縦壁部23B及び左側縦壁部23Cには、車両前後方向に延びる複数の屈曲部52がそれぞれ形成されている。底壁部23Aの車両上側の面には3つの屈曲部52が形成され、また、右側縦壁部23Bの車幅方向内側の面には2つの屈曲部52が形成され、さらに、左側縦壁部23Cの車幅方向内側の面には2つの屈曲部52が形成されている。   The second member 23 includes a bottom wall portion 23A extending in the vehicle front-rear direction and the vehicle width direction with the vehicle width direction as a longitudinal direction, and a vehicle vertical direction and a vehicle front-rear direction from the right end of the bottom wall portion 23A in the vehicle width direction. And a left vertical wall portion 23C extending in the vehicle vertical direction and the vehicle front-rear direction from the left end portion in the vehicle width direction. Furthermore, a plurality of bent portions 52 extending in the vehicle front-rear direction are formed in the bottom wall portion 23A, the right vertical wall portion 23B, and the left vertical wall portion 23C, respectively. Three bent portions 52 are formed on the vehicle upper surface of the bottom wall portion 23A, two bent portions 52 are formed on the inner surface in the vehicle width direction of the right vertical wall portion 23B, and the left vertical wall Two bent portions 52 are formed on the inner surface of the portion 23C in the vehicle width direction.

上述した第1部材21の底壁部21Aの車両上側の面に第2部材23の底壁部23Aの車両下側の面が重ね合わされることにより、底壁部21Aと底壁部23Aとの間に3つの閉断面Cが形成されている。ここで、接触部Jに熱溶着を施すことにより、第1部材21と第2部材23とが接合され、衝突エネルギー吸収体20Cの底壁部22Cが構成されている。なお、熱溶着とは熱可塑性樹脂同士を接合する技術であり、超音波溶着や高周波溶着等も広く熱溶着に含まれるものとする。   By overlapping the vehicle lower surface of the bottom wall portion 23A of the second member 23 with the vehicle upper surface of the bottom wall portion 21A of the first member 21 described above, the bottom wall portion 21A and the bottom wall portion 23A Three closed cross sections C are formed between them. Here, by applying heat welding to the contact portion J, the first member 21 and the second member 23 are joined, and the bottom wall portion 22C of the collision energy absorber 20C is configured. The thermal welding is a technique for joining thermoplastic resins together, and ultrasonic welding, high frequency welding, and the like are widely included in the thermal welding.

また、第1部材21の右側縦壁部21Bの車両幅方向内側の面に第2部材23の右側縦壁部23Bの車両幅方向外側の面が重ね合わされることにより、右側縦壁部21Bと右側縦壁部23Bとの間に2つの閉断面Cが形成されている。ここで、接触部Jに熱溶着を施すことにより、第1部材21と第2部材23とが接合され、衝突エネルギー吸収体20Cの右側縦壁部24Cが構成されている。   In addition, the surface on the vehicle width direction outer side of the right vertical wall portion 23B of the second member 23 is superimposed on the surface on the vehicle width direction inner side of the right vertical wall portion 21B of the first member 21, thereby Two closed cross sections C are formed between the right vertical wall portion 23B. Here, by applying heat welding to the contact portion J, the first member 21 and the second member 23 are joined, and the right vertical wall portion 24C of the collision energy absorber 20C is configured.

さらに、第1部材21の左側縦壁部21Cの車両幅方向内側の面に第2部材23の左側縦壁部23Cの車両幅方向外側の面が重ね合わされることにより、左側縦壁部21Cと左側縦壁部23Cとの間に2つの閉断面Cが形成されている。ここで、接触部Jに熱溶着を施すことにより、第1部材21と第2部材23とが接合され、衝突エネルギー吸収体20Cの左側縦壁部26Cが構成されている。   Furthermore, the surface on the vehicle width direction outer side of the left vertical wall portion 23C of the second member 23 is overlapped with the surface on the vehicle width direction inner side of the left vertical wall portion 21C of the first member 21, thereby Two closed cross sections C are formed between the left vertical wall portion 23C. Here, by applying heat welding to the contact portion J, the first member 21 and the second member 23 are joined, and the left vertical wall portion 26C of the collision energy absorber 20C is configured.

このように、第1部材21と第2部材23とが接合されることにより、衝突エネルギー吸収体20Cが構成されている。   Thus, the collision energy absorber 20 </ b> C is configured by joining the first member 21 and the second member 23.

(本実施形態の作用/効果)
次に、本実施形態の作用並びに効果について説明する。
(Operation / Effect of this embodiment)
Next, the operation and effect of this embodiment will be described.

本実施形態では、第1実施形態で説明した衝突エネルギー吸収体20Aの構成に加え、
上記第1部材21と第2部材23とが重ねて合わされて接合されることによって、複数の閉断面Cが形成されている。従って、第1実施形態で得られた効果に加えて、以下の効果を得ることができる。
In the present embodiment, in addition to the configuration of the collision energy absorber 20A described in the first embodiment,
The first member 21 and the second member 23 are overlapped and joined together to form a plurality of closed cross sections C. Therefore, in addition to the effects obtained in the first embodiment, the following effects can be obtained.

図9(A)には、閉断面Cを備える衝突エネルギー吸収体20Cの断面が示されており、(B)には(A)に示された衝突エネルギー吸収体20Cと同じ断面積であり、かつ閉断面を備えない衝突エネルギー吸収体20Fの断面が示されている。これらの図に示されるように、本実施形態では閉断面Cが設けられているため、閉断面を備えない衝突エネルギー吸収体20Fと比較して、底壁部22C、右側縦壁部24C及び左側縦壁部26CのL1、L2及びL3軸に対する断面2次モーメントを上げることができる。その結果、閉断面を備えていない衝突エネルギー吸収体20Fと比較して、底壁部22C、右側縦壁部24C及び左側縦壁部26Cが折れ曲がることを抑制することができ、衝突エネルギー吸収体を伝わる衝突荷重をより安定的に車体フロア10に流すことができる。   FIG. 9A shows a cross section of a collision energy absorber 20C having a closed cross section C, and FIG. 9B shows the same cross sectional area as the collision energy absorber 20C shown in FIG. A cross section of the collision energy absorber 20F that does not have a closed cross section is shown. As shown in these drawings, since the closed cross section C is provided in the present embodiment, the bottom wall portion 22C, the right vertical wall portion 24C, and the left side are compared with the collision energy absorber 20F that does not have a closed cross section. The cross-sectional secondary moment with respect to the L1, L2, and L3 axes of the vertical wall portion 26C can be increased. As a result, the bottom wall 22C, the right vertical wall 24C, and the left vertical wall 26C can be prevented from being bent compared to the collision energy absorber 20F that does not have a closed cross section. The transmitted collision load can be flowed to the vehicle body floor 10 more stably.

また、本実施形態では、複数の屈曲部52を備えるため、当該屈曲部52が上記第2実施形態で説明した湾曲部50と同様の効果を奏し、車体前方から入力された衝突荷重をフロントサスペンションメンバモジュール14に均一に流すことができ、ひいては衝突荷重を車体フロア10に均一に流すことができる。   Further, in the present embodiment, since the plurality of bent portions 52 are provided, the bent portions 52 have the same effect as the curved portion 50 described in the second embodiment, and the collision load input from the front of the vehicle body is applied to the front suspension. The member module 14 can be made to flow uniformly, and thus the collision load can be made to flow uniformly to the vehicle body floor 10.

さらに、本実施形態の衝突エネルギー吸収体20Cでは、第1部材21と第2部材23とを別々に成形しているため、各々の板厚や形状を変えることにより、衝突エネルギー吸収体20Cに生じる荷重の分布をより厳密にコントロールすることが可能となる。   Furthermore, in the collision energy absorber 20C of the present embodiment, since the first member 21 and the second member 23 are separately molded, the collision energy absorber 20C is generated by changing the thickness and shape of each member. It becomes possible to control the load distribution more strictly.

なお、本実施形態では屈曲部52を設けた例について説明したが、屈曲部52に代えて上述した湾曲部50を設けても良い。   In addition, although the example which provided the bending part 52 was demonstrated in this embodiment, it may replace with the bending part 52 and may provide the curved part 50 mentioned above.

<第4実施形態>
次に、図10〜12を用いて、本発明の第4実施形態に係る車体の衝突エネルギー吸収体構造について説明する。なお、第1実施形態等と同一の部材については同一の符号を付してその説明を省略する。
<Fourth embodiment>
Next, a vehicle body collision energy absorber structure according to a fourth embodiment of the present invention will be described with reference to FIGS. In addition, about the member same as 1st Embodiment etc., the same code | symbol is attached | subjected and the description is abbreviate | omitted.

この第4実施形態の衝突エネルギー吸収体20Dは、上記第1実施形態の衝突エネルギー吸収体において、底壁部の板厚が右側縦壁部及び左側縦壁部の板厚と比較して厚くなっている点が特徴である。具体的には、図10及び図11(B)示されるように、底壁部22Dの板厚Tが、右側縦壁部24D及び左側縦壁部26Dの板厚tと比較して厚くなっている。なお、本実施形態の衝突エネルギー吸収体20Dは、底壁部22D、右側縦壁部24D及び左側縦壁部26Dにより構成される分割構造となっているが、各構成部材を一体で成形しても良い。   In the collision energy absorber 20D of the fourth embodiment, in the collision energy absorber of the first embodiment, the plate thickness of the bottom wall portion is thicker than the plate thicknesses of the right vertical wall portion and the left vertical wall portion. This is a feature. Specifically, as shown in FIGS. 10 and 11B, the plate thickness T of the bottom wall portion 22D is thicker than the plate thickness t of the right vertical wall portion 24D and the left vertical wall portion 26D. Yes. The collision energy absorber 20D of the present embodiment has a divided structure including a bottom wall portion 22D, a right vertical wall portion 24D, and a left vertical wall portion 26D. Also good.

(本実施形態の作用/効果)
次に、本実施形態の作用並びに効果について説明する。
(Operation / Effect of this embodiment)
Next, the operation and effect of this embodiment will be described.

本実施形態では、第1実施形態で説明した衝突エネルギー吸収体20Aの構成に加え、底壁部の板厚が右側縦壁部及び左側縦壁部の板厚と比較して厚くなっているため、第1実施形態で得られた効果に加えて、以下の効果を得ることができる。   In this embodiment, in addition to the configuration of the collision energy absorber 20A described in the first embodiment, the plate thickness of the bottom wall portion is thicker than the plate thicknesses of the right vertical wall portion and the left vertical wall portion. In addition to the effects obtained in the first embodiment, the following effects can be obtained.

本実施形態では、図12(A)に示されるように、底壁部22Dの板厚Tが、右側縦壁部24D及び左側縦壁部26Dの板厚tと比較して厚くなっている。そのため、図12(B)に示された、底壁部22G、右側縦壁部24G及び左側縦壁部26Gの板厚がTである衝突エネルギー吸収体20Gの断面の図心G4と比較して、断面の図心G3を車両下側に下げることができる。本実施形態では、断面の図心をH−h(H>h)だけ車両下側に下げることができる。その結果、衝突エネルギー吸収体20Dの断面の図心G3の車両上下方向の高さとフロア部10Aの車両上下方向の高さとの差をより一層小さくでき、前面衝突時に車体フロア10に生じる曲げモーメントをより一層低減できる。   In the present embodiment, as shown in FIG. 12A, the plate thickness T of the bottom wall portion 22D is thicker than the plate thickness t of the right vertical wall portion 24D and the left vertical wall portion 26D. Therefore, as compared with the centroid G4 of the cross section of the collision energy absorber 20G shown in FIG. 12B in which the plate thickness of the bottom wall portion 22G, the right vertical wall portion 24G and the left vertical wall portion 26G is T. The centroid G3 of the cross section can be lowered to the vehicle lower side. In the present embodiment, the centroid of the cross section can be lowered to the vehicle lower side by Hh (H> h). As a result, the difference between the height in the vehicle vertical direction of the centroid G3 of the cross section of the collision energy absorber 20D and the height in the vehicle vertical direction of the floor portion 10A can be further reduced, and the bending moment generated on the vehicle body floor 10 at the time of a frontal collision is reduced. It can be further reduced.

また、本実施形態では、底壁部22Dの板厚Tが右側縦壁部24D及び左側縦壁部26Dの板厚tよりも厚く設定されているため、底壁部22Dの強度が右側縦壁部24D及び左側縦壁部26Dの強度よりも高くなる。従って、本実施形態に係る衝突エネルギー吸収体構造では、底壁部22Dからフロア部10Aに荷重を効率よく流すことが可能となる。   In the present embodiment, since the plate thickness T of the bottom wall portion 22D is set to be thicker than the plate thickness t of the right vertical wall portion 24D and the left vertical wall portion 26D, the strength of the bottom wall portion 22D is set to the right vertical wall. It becomes higher than the strength of the portion 24D and the left vertical wall portion 26D. Therefore, in the collision energy absorber structure according to the present embodiment, it is possible to efficiently flow a load from the bottom wall portion 22D to the floor portion 10A.

なお、本実施形体では、衝突エネルギー吸収体20Dを構成する底壁部22D、右側縦壁部24D及び左側縦壁部26Dの材料として、同一の繊維強化樹脂が用いられている例を説明したが、各構成部材の材料を変更することにより衝突エネルギー吸収体20Dの強度バランスを調整しても良い。例えば、底壁部22Dの材料強度が、右側縦壁部24D及び左側縦壁部26Dの材料強度と比較して高くなっている構成とすることで、上記の底壁部22Dからフロア部10Aに荷重を効率よく流すことができる、という効果を得られる。   In the present embodiment, the example in which the same fiber reinforced resin is used as the material of the bottom wall portion 22D, the right vertical wall portion 24D, and the left vertical wall portion 26D constituting the collision energy absorber 20D has been described. The strength balance of the collision energy absorber 20D may be adjusted by changing the material of each constituent member. For example, the material strength of the bottom wall portion 22D is higher than the material strength of the right vertical wall portion 24D and the left vertical wall portion 26D. It is possible to obtain an effect that the load can flow efficiently.

以上、第1乃至第4実施形態では車両の前方に衝突エネルギー吸収体を設けた例について説明してきたが、本発明はこれに限定されず、車両の後方に本発明の車両の衝突エネルギー吸収体構造を適用することもできる。例えば、図13に示されるように、本発明の衝突エネルギー吸収体20Hをバンパカバー36Rの内側に配設することもできる。   As described above, in the first to fourth embodiments, the example in which the collision energy absorber is provided in front of the vehicle has been described, but the present invention is not limited to this, and the collision energy absorber of the vehicle of the present invention in the rear of the vehicle. A structure can also be applied. For example, as shown in FIG. 13, the collision energy absorber 20H of the present invention can be arranged inside the bumper cover 36R.

10 車体フロア
10A フロア部
11 キャビン
14 フロントサスペンションメンバモジュール
20A 衝突エネルギー吸収体(第1実施形態)
20B 衝突エネルギー吸収体(第2実施形態)
20C 衝突エネルギー吸収体(第3実施形態)
20D 衝突エネルギー吸収体(第4実施形態)
20H 衝突エネルギー吸収体
22A 底壁部(第1実施形態)
22B 底壁部(第2実施形態)
22C 底壁部(第3実施形態)
22D 底壁部(第4実施形態)
24A 右側縦壁部(第1実施形態の第1縦壁部)
24B 右側縦壁部(第2実施形態の第1縦壁部)
24C 右側縦壁部(第3実施形態の第1縦壁部)
24D 右側縦壁部(第4実施形態の第1縦壁部)
26A 左側縦壁部(第1実施形態の第2縦壁部)
26B 左側縦壁部(第2実施形態の第2縦壁部)
26C 左側縦壁部(第3実施形態の第2縦壁部)
26D 左側縦壁部(第4実施形態の第2縦壁部)
28 横壁
36F バンパカバー
36R バンパカバー
50 湾曲部
10 body floor
10A floor
11 cabin
14 Front suspension member module
20A collision energy absorber (first embodiment)
20B collision energy absorber (second embodiment)
20C collision energy absorber (third embodiment)
20D collision energy absorber (fourth embodiment)
20H collision energy absorber
22A bottom wall (first embodiment)
22B bottom wall (second embodiment)
22C bottom wall (third embodiment)
22D bottom wall (fourth embodiment)
24A Right vertical wall (first vertical wall of the first embodiment)
24B Right side vertical wall part (1st vertical wall part of 2nd Embodiment)
24C Right vertical wall (first vertical wall of the third embodiment)
24D Right vertical wall (first vertical wall of the fourth embodiment)
26A Left vertical wall (second vertical wall of the first embodiment)
26B Left vertical wall (second vertical wall of the second embodiment)
26C Left vertical wall (second vertical wall of the third embodiment)
26D Left vertical wall (second vertical wall of the fourth embodiment)
28 Side wall
36F bumper cover
36R bumper cover
50 Curved part

Claims (4)

バンパカバーの内側に配設され、車幅方向を長手として車両前後方向及び車幅方向に延在する底壁部と、
前記底壁部の車幅方向の一方の端部から車両上方向及び車両前後方向に延在する第1縦壁部と、
前記底壁部の車幅方向の他方の端部から車両上方向及び車両前後方向に延在する第2縦壁部と、
を備える車体の衝突エネルギー吸収体構造。
A bottom wall disposed inside the bumper cover and extending in the vehicle longitudinal direction and the vehicle width direction with the vehicle width direction as a longitudinal direction;
A first vertical wall extending from one end of the bottom wall in the vehicle width direction to the vehicle upward direction and the vehicle front-rear direction;
A second vertical wall extending from the other end of the bottom wall in the vehicle width direction to the vehicle upward direction and the vehicle front-rear direction;
Body collision energy absorber structure comprising:
前記底壁部が、キャビンの床面を形成する車体フロアのフロア部の車両前後方向の延長上に配設された請求項1記載の車体の衝突エネルギー吸収体構造。   The vehicle body collision energy absorber structure according to claim 1, wherein the bottom wall portion is disposed on an extension in a vehicle front-rear direction of a floor portion of a vehicle body floor forming a floor surface of a cabin. 前記底壁部、前記第1縦壁部及び前記第2縦壁部は車両前後方向に延びる複数の湾曲部を含んだ形状にそれぞれ形成されている請求項1又は請求項2記載の車体の衝突エネルギー吸収体構造。   The vehicle body collision according to claim 1, wherein the bottom wall portion, the first vertical wall portion, and the second vertical wall portion are each formed in a shape including a plurality of curved portions extending in a vehicle front-rear direction. Energy absorber structure. 前記第1縦壁部と前記第2縦壁部とを車幅方向に繋ぐ横壁を備える請求項1乃至請求項3いずれか1項に記載の車体の衝突エネルギー吸収体構造。   The collision energy absorber structure for a vehicle body according to any one of claims 1 to 3, further comprising a lateral wall that connects the first vertical wall portion and the second vertical wall portion in a vehicle width direction.
JP2011162612A 2011-07-25 2011-07-25 Body collision energy absorber structure Active JP5803379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011162612A JP5803379B2 (en) 2011-07-25 2011-07-25 Body collision energy absorber structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011162612A JP5803379B2 (en) 2011-07-25 2011-07-25 Body collision energy absorber structure

Publications (2)

Publication Number Publication Date
JP2013023162A true JP2013023162A (en) 2013-02-04
JP5803379B2 JP5803379B2 (en) 2015-11-04

Family

ID=47781956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011162612A Active JP5803379B2 (en) 2011-07-25 2011-07-25 Body collision energy absorber structure

Country Status (1)

Country Link
JP (1) JP5803379B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017094847A (en) * 2015-11-20 2017-06-01 マツダ株式会社 Shock absorbing structure for vehicle
JP2017094846A (en) * 2015-11-20 2017-06-01 マツダ株式会社 Shock absorbing structure for vehicle
JP2017094845A (en) * 2015-11-20 2017-06-01 マツダ株式会社 Shock absorbing structure for vehicle
JP2017094848A (en) * 2015-11-20 2017-06-01 マツダ株式会社 Shock absorbing structure for vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49127316A (en) * 1973-03-22 1974-12-05
JP2001513727A (en) * 1997-02-28 2001-09-04 ゾムメル,ウルリッヒ Passenger car
JP2007008283A (en) * 2005-06-29 2007-01-18 Toyota Industries Corp Load energy absorber
JP2010208605A (en) * 2009-03-12 2010-09-24 Toyota Motor Corp Vehicular body front structure
JP2011051508A (en) * 2009-09-03 2011-03-17 Fuji Heavy Ind Ltd Shock absorbing material of shock absorbing bumper for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49127316A (en) * 1973-03-22 1974-12-05
JP2001513727A (en) * 1997-02-28 2001-09-04 ゾムメル,ウルリッヒ Passenger car
JP2007008283A (en) * 2005-06-29 2007-01-18 Toyota Industries Corp Load energy absorber
JP2010208605A (en) * 2009-03-12 2010-09-24 Toyota Motor Corp Vehicular body front structure
JP2011051508A (en) * 2009-09-03 2011-03-17 Fuji Heavy Ind Ltd Shock absorbing material of shock absorbing bumper for vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017094847A (en) * 2015-11-20 2017-06-01 マツダ株式会社 Shock absorbing structure for vehicle
JP2017094846A (en) * 2015-11-20 2017-06-01 マツダ株式会社 Shock absorbing structure for vehicle
JP2017094845A (en) * 2015-11-20 2017-06-01 マツダ株式会社 Shock absorbing structure for vehicle
JP2017094848A (en) * 2015-11-20 2017-06-01 マツダ株式会社 Shock absorbing structure for vehicle
US10479302B2 (en) 2015-11-20 2019-11-19 Mazda Motor Corporation Impact absorbing structure of vehicles

Also Published As

Publication number Publication date
JP5803379B2 (en) 2015-11-04

Similar Documents

Publication Publication Date Title
JP6148915B2 (en) vehicle
EP3063052B1 (en) Suspension tower and vehicle front structure
JP5907126B2 (en) Auto body front structure
JP6052408B2 (en) Body front structure
JP6172848B2 (en) vehicle
JP6128569B2 (en) Impact energy absorption structure for vehicles
JP5516361B2 (en) Vehicle side sill structure
WO2013105398A1 (en) Vehicle body frame structure of motor vehicle
JP5862555B2 (en) Auto body structure
WO2014069108A1 (en) Fiber-reinforced resinous impact-receiving member and method for manufacturing impact-receiving member
JP6120460B2 (en) Automotive bumper
JP5533587B2 (en) Vehicle side sill structure
KR100929527B1 (en) Front side member assembly
JP5803379B2 (en) Body collision energy absorber structure
JP5995115B2 (en) Automotive bumper beam structure
JP2013220734A (en) Front body structure of automobile
KR101277861B1 (en) Front Body for Electric Vehicle
JP5831246B2 (en) Body front structure
EP3446929A1 (en) Energy absorbing structure
JP5902636B2 (en) Body front structure
JP5881117B2 (en) Auto body structure
JP5928880B2 (en) CFRP cabin of automobile
JP2015036281A (en) Vehicle front part structure
WO2014097765A1 (en) Automobile body structure
JP2013141850A (en) Body frame structure of vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150817

R151 Written notification of patent or utility model registration

Ref document number: 5803379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151