JP2013023034A - Hydraulic working machine having generator using hydraulic flow energy - Google Patents

Hydraulic working machine having generator using hydraulic flow energy Download PDF

Info

Publication number
JP2013023034A
JP2013023034A JP2011158412A JP2011158412A JP2013023034A JP 2013023034 A JP2013023034 A JP 2013023034A JP 2011158412 A JP2011158412 A JP 2011158412A JP 2011158412 A JP2011158412 A JP 2011158412A JP 2013023034 A JP2013023034 A JP 2013023034A
Authority
JP
Japan
Prior art keywords
hydraulic
pressure
oil
generator
oil passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011158412A
Other languages
Japanese (ja)
Inventor
Manabu Togo
学 東郷
Hitoshi Aoyama
斉 青山
Sadaji Yoshida
貞治 吉田
Nobuyuki Yoshii
伸幸 吉井
Nobuhide Yanagawa
信英 柳川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2011158412A priority Critical patent/JP2013023034A/en
Publication of JP2013023034A publication Critical patent/JP2013023034A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Abstract

PROBLEM TO BE SOLVED: To provide an energy-saving technology for reducing wasteful use of hydraulic energy caused by the circulation of a hydraulic oil between a hydraulic pump and a tank.SOLUTION: This hydraulic working machine such as a tractor includes a hydraulic circuit, a generator using hydraulic flow energy 8 arranged in a discharge oil passage for discharging the hydraulic oil of this hydraulic circuit to the tank 90 and having moving blades 81 rotating by a hydraulic flow, and a charge-discharge control section 70 for charging electric power output from the generator 8 to a battery 7. The generator using the hydraulic flow energy 8 selects a generator 8a when the hydraulic oil is in a high pressure, and selects a generator 8b in a low pressure. Further, a generator 8c branches off the oil in an oil passage into a high pressure passage or a low pressure passage, by arranging a pressure sensitive branch valve.

Description

本発明は、油圧ポンプによって作り出された油圧を種々の油圧機器に供給する油圧回路を備えた油圧作業機械に関する。   The present invention relates to a hydraulic work machine including a hydraulic circuit that supplies hydraulic pressure generated by a hydraulic pump to various hydraulic devices.

そのような油圧回路では、組み込まれた油圧機器が種々の動作を行うために油圧ポンプで作り出された所定圧の油圧を有する作動油の供給を制御するために油圧弁を含む複雑な回路が構築されるが、供給された作動油は最終的にはタンクに戻され、再び油圧ポンプによって汲み上げられる。油圧回路によっては、制御弁の中立位置状態においては、油圧ポンプから送り出された作動油はリリーフ弁を通じてタンクに戻されるが、油圧ポンプにはリリーフ圧がかかったままであり、油圧ポンプによる油圧エネルギの無駄な消費は少なくない。また、アンロード回路を用いた場合には、油圧ポンプは無負荷となるが、油圧ポンプとタンクとの間の作動油の循環による油圧エネルギの無駄な消費はそのままである。   In such a hydraulic circuit, a complicated circuit including a hydraulic valve is constructed to control the supply of hydraulic oil having a predetermined hydraulic pressure created by a hydraulic pump so that the incorporated hydraulic equipment performs various operations. However, the supplied hydraulic oil is finally returned to the tank and pumped up again by the hydraulic pump. Depending on the hydraulic circuit, when the control valve is in the neutral position, the hydraulic fluid sent from the hydraulic pump is returned to the tank through the relief valve. However, the relief pressure is still applied to the hydraulic pump, and the hydraulic energy generated by the hydraulic pump remains. There is a lot of wasted consumption. Further, when the unload circuit is used, the hydraulic pump is unloaded, but the wasteful consumption of hydraulic energy due to the circulation of the hydraulic oil between the hydraulic pump and the tank remains unchanged.

また、近年高まってきた省エネルギ志向から、身近な生活環境における未利用の水力エネルギを有効利用するために、発電容量は小さいとしても、設置スペースも小さくなる発電機、いわゆるマイクロ水力発電が考え始められている。例えば、特許文献1に、トイレや洗面台に設置され、センサやスイッチなどによって電磁弁を開放して吐水を行うと共に、その吐水時の水流によって発電を行って電磁弁の駆動電力とする水栓装置が記載されている。ここでは、水栓装置に組み込まれた電気機器への給電のために、水栓用水力発電機が給水の流れを利用して発電している。
しかしながら、油圧回路における油圧流がもつ油圧エネルギの有効利用に関しては全く考えられていない。
In addition, in order to effectively use unused hydroelectric energy in a familiar living environment, a generator that reduces installation space, so-called micro hydroelectric power generation, has started to think about in order to effectively use unused hydroelectric energy in a familiar living environment. It has been. For example, in Patent Document 1, a faucet that is installed in a toilet or a washstand, opens a solenoid valve with a sensor, a switch, or the like to discharge water, and generates electric power by the water flow at the time of discharging water to drive the solenoid valve. An apparatus is described. Here, a faucet hydroelectric generator generates electricity using the flow of water supply in order to supply power to the electrical equipment incorporated in the faucet device.
However, no consideration is given to the effective use of the hydraulic energy of the hydraulic flow in the hydraulic circuit.

特開2011−12515号公報(図1)Japanese Patent Laying-Open No. 2011-12515 (FIG. 1)

上記実情から、油圧ポンプとタンクとの間の作動油の循環による油圧エネルギの無駄遣いを低減する省エネルギ技術が所望されている。   From the above situation, an energy saving technique for reducing waste of hydraulic energy due to the circulation of hydraulic oil between the hydraulic pump and the tank is desired.

本発明による油圧作業機械の特徴は、油圧回路と、前記油圧回路の作動油をタンクに排出する排出油路に設けられた、油圧流によって回転する動翼を有する油圧流式発電機と、前記発電機から出力された電力をバッテリに充電する充放電制御部とを備えていることである。
油圧回路を流れている作動油は最終的にはタンク(作動油タンク)に排出され、同所から油圧ポンプ等で汲み上げられ、所要の油圧を有する作動油として再び油圧回路を流れていく。従って、タンクに排出される作動油がもつ流れエネルギ(運動エネルギ)や位置エネルギは無駄となっている。本発明の上記構成によれば、このタンクに排出される作動油が有するエネルギを利用すべく、その油圧流によって油圧流式発電機の動翼を回転させる。この回転に基づいて発生する電力に必要な変換処理を施すことでその電力はバッテリに対する充電電力となる。これにより、これまで利用することがなかった、タンクに排出される作動油がもつエネルギを電力の形で回収することができ、省エネルギに貢献する。
The hydraulic working machine according to the present invention is characterized in that a hydraulic circuit, a hydraulic flow generator having a moving blade rotated by a hydraulic flow, provided in a discharge oil passage for discharging hydraulic oil of the hydraulic circuit to a tank, A charge / discharge control unit that charges the battery with the electric power output from the generator.
The hydraulic oil flowing in the hydraulic circuit is finally discharged to a tank (hydraulic oil tank), pumped up from the same place by a hydraulic pump or the like, and flows again through the hydraulic circuit as hydraulic oil having a required hydraulic pressure. Therefore, the flow energy (kinetic energy) and potential energy of the hydraulic oil discharged to the tank are wasted. According to the above configuration of the present invention, the moving blades of the hydraulic flow generator are rotated by the hydraulic flow so as to utilize the energy of the hydraulic oil discharged to the tank. By performing necessary conversion processing on the electric power generated based on this rotation, the electric power becomes charging electric power for the battery. Thereby, the energy of the hydraulic oil discharged to the tank, which has not been used so far, can be recovered in the form of electric power, contributing to energy saving.

タンクにつながる油路を流れる作動油には、まだかなりの高い油圧値を有する高圧作動油ものと、ほとんど大気圧近くに低下した低圧作動油とがある。高圧作動油と低圧作動油とでは、運動エネルギが異なるので、より効率的にその油圧流を利用するには、油圧流式発電機の形態をそれぞれに適応させた方が効果的である。このため、本発明の好適な実施形態の1つでは、前記発電機は、低圧の作動油が流れる低圧油路に装着される低圧流発電機と、前記低圧油路より高圧の作動油が流れる高圧油路に装着される高圧流発電機とを含み、前記低圧流発電機の動翼は作動油の重力を利用した作動油掛け流しで回転するように構成され、前記高圧流発電機は作動油流通油路として機能するハウジング部を有し、前記高圧流発電機の動翼は前記ハウジング部を貫流する作動油によって回転するように構成されている。この構成では、低圧油圧流が流れ込む低圧流発電機では、水車のように、主に位置エネルギを利用する形態で動翼を回転させ、高圧油圧流が流れ込む高圧流発電機では、タービンのように、主に流れ込んでくる油圧流の運動エネルギを利用する形態で動翼を回転させる。これにより、低圧または高圧の作動油がもつエネルギをできるだけ効率よく電力として回収することができる。   There are high-pressure hydraulic oil that still has a considerably high hydraulic pressure value and low-pressure hydraulic oil that has almost decreased to atmospheric pressure. Since the kinetic energy differs between the high-pressure hydraulic oil and the low-pressure hydraulic oil, it is more effective to adapt the form of the hydraulic flow generator to each in order to use the hydraulic flow more efficiently. For this reason, in one preferred embodiment of the present invention, the generator has a low-pressure flow generator mounted in a low-pressure oil passage through which low-pressure hydraulic oil flows, and high-pressure hydraulic oil flows through the low-pressure oil passage. A high-pressure flow generator mounted on the high-pressure oil passage, and the moving blades of the low-pressure flow generator are configured to rotate with a working oil flow using gravity of the hydraulic oil, and the high-pressure flow generator operates. A housing portion that functions as an oil circulation oil passage is provided, and the moving blades of the high-pressure generator are configured to rotate by hydraulic oil that flows through the housing portion. In this configuration, in a low-pressure flow generator in which a low-pressure hydraulic flow flows, like a turbine, a rotor blade is rotated in a form that mainly uses potential energy, and in a high-pressure flow generator in which a high-pressure hydraulic flow flows, like a turbine. The rotor blades are rotated in a form that utilizes the kinetic energy of the hydraulic flow that mainly flows. Thereby, the energy of the low-pressure or high-pressure hydraulic oil can be recovered as electric power as efficiently as possible.

油圧回路には種々の回路形態があり、作動油をタンクに排出する排出油路によっては、油圧回路の油圧機器の作動状態によって高圧流が流れたり、または低圧流が流れたりする。このような排出油路における油圧流エネルギの効率的な回収のために、本発明の実施形態の1つでは、油圧流の所定油圧以上の油圧で第1分岐油路に分岐し、所定油圧を下回る油圧で第2分岐油路に分岐する圧力感応分岐弁が前記排出油路に備えられ、前記第1分岐油路に前記高圧流発電機が装着され、前記第2分岐油路に前記低圧流発電機が装着されている。   There are various circuit forms in the hydraulic circuit, and depending on the discharge oil passage for discharging the hydraulic oil to the tank, a high pressure flow or a low pressure flow flows depending on the operating state of the hydraulic equipment of the hydraulic circuit. In order to efficiently recover the hydraulic flow energy in such an exhaust oil passage, in one embodiment of the present invention, the hydraulic pressure is branched to the first branch oil passage with a hydraulic pressure equal to or higher than a predetermined hydraulic pressure, and the predetermined hydraulic pressure is increased. A pressure-sensitive branch valve that branches to the second branch oil passage with a lower hydraulic pressure is provided in the discharge oil passage, the high-pressure flow generator is attached to the first branch oil passage, and the low-pressure flow is supplied to the second branch oil passage. A generator is installed.

本発明で採用される油圧流発電の基本的な原理を図解する模式図である。It is a schematic diagram illustrating the basic principle of hydraulic flow power generation adopted in the present invention. 本発明による油圧作業機械の一例としての、油圧回路を搭載したトラクタの外観図である。1 is an external view of a tractor equipped with a hydraulic circuit as an example of a hydraulic working machine according to the present invention. 図2のトラクタにおける油圧を含む動力系統図である。FIG. 3 is a power system diagram including hydraulic pressure in the tractor of FIG. 2. 油圧流発電機を含む油圧回路図である。It is a hydraulic circuit diagram including a hydraulic fluid generator.

本発明の具体的な実施形態を説明する前に、本発明による油圧作業機械で採用される油圧流発電の基本的な原理を図1の模式図を用いて説明する。
図1では、油圧回路に含まれている油圧機器群からタンク90に接続されている排出油路に油圧流式発電機8が介装されている。油圧流式発電機8は、当該排出油路9を流れる油圧流によって回転する動翼81を有している。図1では、3つのタイプの発電機8、つまりAタイプ発電機8a、Bタイプ発電機8b、Cタイプ発電機8cが示されているが、特に区別する必要がない場合には、単に発電機8という語句が用いられる。
Before describing specific embodiments of the present invention, the basic principle of hydraulic flow power generation employed in a hydraulic working machine according to the present invention will be described with reference to the schematic diagram of FIG.
In FIG. 1, a hydraulic fluid generator 8 is interposed in a discharge oil passage connected to a tank 90 from a group of hydraulic devices included in the hydraulic circuit. The hydraulic flow generator 8 includes a moving blade 81 that is rotated by a hydraulic flow that flows through the discharged oil passage 9. In FIG. 1, three types of generators 8, that is, an A type generator 8 a, a B type generator 8 b, and a C type generator 8 c are shown. The word 8 is used.

Aタイプ発電機8aは、高圧の作動油が流れる油路9に装着されるものであり、その動翼81はハウジング部80aによって流れ方向に沿って小さな隙間でもって包囲されており、噴流タービンのように高圧流で動翼81を貫流しながら動翼81を回転させる構造を有する。
Bタイプ発電機8bは、低圧の作動油が流れる油路9に装着されるものであり、その動翼81はハウジング部80bによって流れ方向に沿って大きな隙間でもって包囲されているか、あるいは動翼81はハウジング部80bによって包囲されていない。つまり、水車のように重力差(高低差)で流れてくる作動油を動翼81に掛け流すことで動翼81を回転させる構造を有する。
Cタイプ発電機8cは、Aタイプ発電機8aとBタイプ発電機8bとを組み合わせたものであり、高圧の作動油が流れる期間と低圧の作動油が流れる期間がある油路9に装着される。つまり、このCタイプ発電機8c内にハウジング部80cとして、高油圧流を流す第1分岐油路と低油圧流を流す第2分岐油路が形成されており、第1分岐油路にAタイプ発電機8aが介装されており、第2分岐油路にBタイプ発電機8bが介装されている。第1分岐油路と第2分岐油路の分岐点に、油圧流の所定油圧以上の油圧で第1分岐油路に分岐するとともに所定油圧を下回る油圧で第2分岐油路に分岐する圧力感応分岐弁が設けられている。
The A-type generator 8a is mounted on the oil passage 9 through which high-pressure hydraulic oil flows, and the moving blade 81 is surrounded by a small gap along the flow direction by the housing portion 80a. Thus, the moving blade 81 is rotated while flowing through the moving blade 81 with a high-pressure flow.
The B type generator 8b is mounted on the oil passage 9 through which low-pressure hydraulic oil flows, and the moving blade 81 is surrounded by a housing portion 80b with a large gap along the flow direction or the moving blade. 81 is not enclosed by the housing part 80b. That is, it has a structure in which the moving blade 81 is rotated by flowing hydraulic oil flowing through the difference in gravity (height difference) over the moving blade 81 like a water wheel.
The C-type generator 8c is a combination of an A-type generator 8a and a B-type generator 8b, and is attached to an oil passage 9 having a period during which high-pressure hydraulic oil flows and a period during which low-pressure hydraulic oil flows. . That is, a first branch oil passage for flowing a high hydraulic flow and a second branch oil passage for flowing a low hydraulic flow are formed in the C-type generator 8c as a housing portion 80c. A generator 8a is interposed, and a B-type generator 8b is interposed in the second branch oil passage. At the branch point of the first branch oil passage and the second branch oil passage, pressure sensitivity is branched to the first branch oil passage with a hydraulic pressure equal to or higher than a predetermined hydraulic pressure of the hydraulic flow and branched to the second branch oil passage with a hydraulic pressure lower than the predetermined hydraulic pressure. A branch valve is provided.

図1では模式的にしか図示されていないが、発電機8は、筒状に形成されたハウジング部80a,80b,80cと、動翼81と共通の軸を有するロータ82、ステータ83、を保持する保持ブラケットを備えている。動翼81が回転することで連動回転するロータ82とステータ83との協働作用によって生み出される電力は充電部と放電部とからなる充放電制御部70によってバッテリ7に充電に利用される。   Although only schematically shown in FIG. 1, the generator 8 holds housing portions 80 a, 80 b, 80 c formed in a cylindrical shape, a rotor 82 having a common axis with the moving blade 81, and a stator 83. A holding bracket is provided. The electric power generated by the cooperative action of the rotor 82 and the stator 83 that rotate in conjunction with the rotation of the moving blade 81 is used for charging the battery 7 by the charge / discharge control unit 70 including the charging unit and the discharging unit.

最終的にタンク90に戻された作動油を汲み上げて油圧機器群に油圧を供給する油圧ポンプ91は、油圧作業機械の動力源として用いられている内燃機関や電気モータの出力軸から回転動力を受ける。   A hydraulic pump 91 that pumps up the hydraulic oil finally returned to the tank 90 and supplies hydraulic pressure to the hydraulic equipment group receives rotational power from an output shaft of an internal combustion engine or an electric motor used as a power source of the hydraulic work machine. receive.

上述した、油圧流発電の基本的な原理を有する油圧作業機械の一つの実施形態であるトラクタを以下に説明する。図2は、油圧流発電機能を備えた油圧回路を搭載したトラクタの外観図である。図3は、このトラクタにおける油圧回路60を含む動力系統図である。   A tractor which is one embodiment of the hydraulic working machine having the basic principle of hydraulic flow power generation described above will be described below. FIG. 2 is an external view of a tractor equipped with a hydraulic circuit having a hydraulic flow power generation function. FIG. 3 is a power system diagram including a hydraulic circuit 60 in the tractor.

このトラクタでは、ディーゼルタイプのエンジン1の出力軸30からの動力は無段変速装置の一例である静油圧式無段変速装置(以下、HSTと略称する)2とHST変速動力をさらに複数段(ここでは高低2段)に変速する副変速装置32とを介して変速出力軸31に伝達され、最終的に駆動輪(前輪または後輪あるいはその両方)3を回転させる。さらに、このエンジン1の出力軸30からの動力はPTO伝動系40を経てトラクタに装備された耕耘作業機などの外部作業機4にも伝達される。PTO伝動系40には、PTO伝動系40に   In this tractor, the power from the output shaft 30 of the diesel-type engine 1 is a hydrostatic continuously variable transmission (hereinafter abbreviated as HST) 2 that is an example of a continuously variable transmission, and a plurality of HST transmission powers. Here, it is transmitted to the transmission output shaft 31 via the auxiliary transmission 32 that shifts in two steps (high and low), and finally the driving wheel (front wheel and / or rear wheel) 3 is rotated. Further, the power from the output shaft 30 of the engine 1 is transmitted to the external work machine 4 such as a tillage work machine equipped on the tractor via the PTO transmission system 40. In the PTO transmission system 40, the PTO transmission system 40

このHST2は、よく知られているようにアキシャルプランジャ式に構成された可変容量型の油圧ポンプと油圧モータとを有する。油圧ポンプはエンジン1の出力軸30によって回転駆動される。油圧ポンプにおける斜板の斜板角度が変更されることで、吐出される圧油の吐出方向および吐出量が変更され、その圧油を受ける油圧モータの出力軸の回転が正転方向(前進)あるいは逆転方向(後進)に無段階で変速される。   As is well known, the HST 2 includes a variable displacement hydraulic pump and a hydraulic motor configured in an axial plunger type. The hydraulic pump is rotationally driven by the output shaft 30 of the engine 1. By changing the swash plate angle of the swash plate in the hydraulic pump, the discharge direction and the discharge amount of the discharged pressure oil are changed, and the rotation of the output shaft of the hydraulic motor that receives the pressure oil rotates in the forward direction (forward). Alternatively, the speed is changed steplessly in the reverse direction (reverse).

図4で示すように、このトラクタにおける油圧回路には、HST油圧回路61、PTO油圧回路62、作業機油圧回路64、圧力調整油圧回路65、パワーステアリング油圧回路66、さらに図4では省略されているが副変速油圧回路63が含まれている。   As shown in FIG. 4, the hydraulic circuit in this tractor includes an HST hydraulic circuit 61, a PTO hydraulic circuit 62, a work implement hydraulic circuit 64, a pressure adjustment hydraulic circuit 65, a power steering hydraulic circuit 66, and further omitted in FIG. However, an auxiliary transmission hydraulic circuit 63 is included.

HST2の油圧ポンプや油圧モータはHST油圧回路61に組み込まれており、油圧ポンプの斜板角度はHST油圧回路61の斜板制御油圧機器によって変更される。斜板制御油圧機器は、シリンダや電磁制御弁など油圧機器で構成されている。
PTO油圧回路62は、PTOクラッチ41に組み込まれたピストンに作動油を給排することで入り切り操作する。副変速油圧回路63は、PTO油圧回路62と類似した構成を有し、副変速用クラッチのピストンに作動油を給排することで高低副変速装置32の高速段または低速段を選択的に作り出す。
The hydraulic pump and hydraulic motor of HST 2 are incorporated in the HST hydraulic circuit 61, and the swash plate angle of the hydraulic pump is changed by the swash plate control hydraulic device of the HST hydraulic circuit 61. The swash plate control hydraulic equipment includes hydraulic equipment such as a cylinder and an electromagnetic control valve.
The PTO hydraulic circuit 62 is turned on and off by supplying and discharging hydraulic oil to and from a piston incorporated in the PTO clutch 41. The auxiliary transmission hydraulic circuit 63 has a configuration similar to that of the PTO hydraulic circuit 62, and selectively generates a high speed stage or a low speed stage of the high / low auxiliary transmission device 32 by supplying and discharging hydraulic oil to / from the piston of the auxiliary transmission clutch. .

作業機油圧回路64は、ここでは油圧シリンダを動作させるための油圧機器だけしか示されていないが、複数の油圧シリンダや油圧モータなど多くの油圧機器が組み込まれた外部作業機4が装着された場合は、かなり複雑で、大容量の作動油が給排される油圧回路となる。
圧力調整油圧回路65は、油圧回路における圧力調整を行う回路であり、所定圧を越える油圧の発生に伴ってリリーフ弁が作動し、作動油をタンクに戻すことで油圧回路の油圧を所定圧に維持する。
パワーステアリング油圧回路66は、ステアリング操作機構のパワーステアリングシリンダやアシスト用油圧モータを操作する。
Only the hydraulic equipment for operating the hydraulic cylinder is shown here as the working equipment hydraulic circuit 64, but the external working machine 4 incorporating a number of hydraulic equipment such as a plurality of hydraulic cylinders and hydraulic motors is mounted. In this case, the hydraulic circuit is considerably complicated and a large amount of hydraulic fluid is supplied and discharged.
The pressure adjustment hydraulic circuit 65 is a circuit that performs pressure adjustment in the hydraulic circuit, and the relief valve is activated in response to the generation of the hydraulic pressure exceeding the predetermined pressure, and the hydraulic oil in the hydraulic circuit is set to the predetermined pressure by returning the hydraulic oil to the tank. maintain.
The power steering hydraulic circuit 66 operates the power steering cylinder and assist hydraulic motor of the steering operation mechanism.

この油圧回路60では、HST油圧回路61を除いて、エンジン1の出力軸30によって駆動される、油圧ポンプ91によって油圧供給されている。なお、図4では、2台の油圧ポンプ91が出力軸30に連設されている。油圧回路60で必要とされる油圧の最大必要量に基づいて油圧ポンプ91の容量が決定されるので、通常の運転時には、油圧ポンプ91によって油圧回路60に供給される作動油にはかなりの余剰油圧流が含まれることになる。この余剰油圧流のもつエネルギの少なくとも一部は、油圧流式発電機8によって電力の形で回収される。   In this hydraulic circuit 60, except for the HST hydraulic circuit 61, hydraulic pressure is supplied by a hydraulic pump 91 driven by the output shaft 30 of the engine 1. In FIG. 4, two hydraulic pumps 91 are connected to the output shaft 30. Since the capacity of the hydraulic pump 91 is determined based on the maximum required amount of hydraulic pressure required by the hydraulic circuit 60, a considerable surplus is present in the hydraulic oil supplied to the hydraulic circuit 60 by the hydraulic pump 91 during normal operation. Hydraulic flow will be included. At least a part of the energy of the surplus hydraulic flow is recovered in the form of electric power by the hydraulic flow generator 8.

上述した各種油圧回路を含む、このトラクタの油圧回路60に含まれる油圧機器群は、油圧制御手段6によって制御される。また、この油圧制御手段6に制御指令を与えるのは、車両制御コントローラ5Aや外部作業機制御コントローラ5Bである。   The hydraulic equipment group included in the hydraulic circuit 60 of the tractor including the various hydraulic circuits described above is controlled by the hydraulic control means 6. The vehicle control controller 5A and the external work machine control controller 5B give a control command to the hydraulic pressure control means 6.

〔別実施の形態〕
(1)上述した実施形態では、タンク90への排出油路毎に油圧流式発電機8が設けられていたが、いくつかあるいは全ての排出油路を統合して、その統合された排出油路に油圧流式発電機8を設ける構成を採用してもよい。
(2)油圧流式発電機8の形態は上述した実施形態で示したもの以外、マイクロ水力発電等に用いられている種々の形態のものを利用することができる。
(3)上述した実施形態では、無段変速装置としてHST2を採用していたが、これに代えて、利用可能なHMT(Hydraulic Mechanical Transmission)などの油圧式変速装置にも、本発明による油圧流発電を適用することができる。
(4)本発明を適用できる油圧作業機械として、車両関係では、トラクタ以外、田植機、コンバイン、芝刈り機、土木・建築作業機、バギーなどのオフロードカーなどが挙げられるが、油圧式クレーンなど定置式の油圧作業機械にも本発明を適用することが可能である。
[Another embodiment]
(1) In the above-described embodiment, the hydraulic flow generator 8 is provided for each oil discharge path to the tank 90. However, some or all of the oil discharge paths are integrated, and the integrated oil discharge is performed. You may employ | adopt the structure which provides the hydraulic flow type generator 8 in a path.
(2) As the form of the hydraulic flow generator 8, various forms used for micro hydroelectric power generation and the like other than those shown in the above-described embodiments can be used.
(3) In the above-described embodiment, the HST2 is adopted as the continuously variable transmission. However, instead of this, the hydraulic flow according to the present invention is also applied to a hydraulic transmission such as an HMT (Hydraulic Mechanical Transmission). Power generation can be applied.
(4) Examples of the hydraulic working machine to which the present invention can be applied include, in relation to vehicles, other than a tractor, a rice transplanter, a combine, a lawn mower, a civil engineering / architectural work machine, an off-road car such as a buggy, etc. The present invention can also be applied to a stationary hydraulic working machine.

本発明は、作動油をタンクに排出する油路を備えた全ての油圧作業機械に適用することができる。   The present invention can be applied to all hydraulic work machines having an oil passage for discharging hydraulic oil to a tank.

60:油圧回路
7:バッテリ
70:充放電制御部(充電制御部)
8:油圧流式発電機
8a:高圧流発電機
8b:低圧流発電機
80a:ハウジング部
80d:圧力感応分岐弁
81:動翼
9:油路(排出油路)
90:作動油タンク(タンク)
60: Hydraulic circuit 7: Battery 70: Charge / discharge control unit (charge control unit)
8: Hydraulic flow type generator 8a: High pressure flow generator 8b: Low pressure flow generator 80a: Housing portion 80d: Pressure sensitive branch valve 81: Moving blade 9: Oil passage (discharge oil passage)
90: Hydraulic oil tank (tank)

Claims (3)

油圧回路と、前記油圧回路の作動油をタンクに排出する排出油路に設けられた、油圧流によって回転する動翼を有する油圧流式発電機と、前記発電機から出力された電力をバッテリに充電する充放電制御部とを備えた油圧作業機械。 A hydraulic circuit, a hydraulic flow generator having a moving blade rotated by a hydraulic flow, provided in a discharge oil passage for discharging hydraulic oil of the hydraulic circuit to a tank, and electric power output from the generator to a battery A hydraulic working machine including a charge / discharge control unit for charging. 前記発電機は、低圧の作動油が流れる低圧油路に装着される低圧流発電機と、前記低圧油路より高圧の作動油が流れる高圧油路に装着される高圧流発電機とを含み、前記低圧流発電機の動翼は作動油の重力掛け流しで回転するように構成され、前記高圧流発電機は作動油流通油路として機能するハウジング部を有し、前記高圧流発電機の動翼は前記ハウジング部を貫流する作動油によって回転するように構成されている請求項1に記載の油圧作業機械。 The generator includes a low-pressure flow generator attached to a low-pressure oil passage through which low-pressure hydraulic oil flows, and a high-pressure flow generator attached to a high-pressure oil passage through which high-pressure hydraulic oil flows from the low-pressure oil passage, The moving blades of the low-pressure flow generator are configured to rotate by a gravity flow of hydraulic oil, and the high-pressure flow generator includes a housing portion that functions as a hydraulic oil distribution oil passage. The hydraulic working machine according to claim 1, wherein the blade is configured to rotate by hydraulic oil flowing through the housing portion. 油圧流の所定油圧以上の油圧で第1分岐油路に分岐し、所定油圧を下回る油圧で第2分岐油路に分岐する圧力感応分岐弁が前記排出油路に備えられ、前記第1分岐油路に前記高圧流発電機が装着され、前記第2分岐油路に前記低圧流発電機が装着されている請求項2に記載の油圧作業機械。 A pressure-sensitive branch valve that branches to the first branch oil passage with a hydraulic pressure equal to or higher than a predetermined hydraulic pressure of the hydraulic flow and branches to the second branch oil passage with a hydraulic pressure lower than the predetermined hydraulic pressure is provided in the discharge oil passage, and the first branch oil The hydraulic working machine according to claim 2, wherein the high-pressure flow generator is attached to a road, and the low-pressure flow generator is attached to the second branch oil passage.
JP2011158412A 2011-07-19 2011-07-19 Hydraulic working machine having generator using hydraulic flow energy Pending JP2013023034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011158412A JP2013023034A (en) 2011-07-19 2011-07-19 Hydraulic working machine having generator using hydraulic flow energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011158412A JP2013023034A (en) 2011-07-19 2011-07-19 Hydraulic working machine having generator using hydraulic flow energy

Publications (1)

Publication Number Publication Date
JP2013023034A true JP2013023034A (en) 2013-02-04

Family

ID=47781866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011158412A Pending JP2013023034A (en) 2011-07-19 2011-07-19 Hydraulic working machine having generator using hydraulic flow energy

Country Status (1)

Country Link
JP (1) JP2013023034A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11107311A (en) * 1997-09-30 1999-04-20 Yutani Heavy Ind Ltd Power generator of construction machine
JP2008087914A (en) * 2006-10-02 2008-04-17 Toyota Industries Corp Energy recovery device of cargo handling apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11107311A (en) * 1997-09-30 1999-04-20 Yutani Heavy Ind Ltd Power generator of construction machine
JP2008087914A (en) * 2006-10-02 2008-04-17 Toyota Industries Corp Energy recovery device of cargo handling apparatus

Similar Documents

Publication Publication Date Title
US8186154B2 (en) Rotary flow control valve with energy recovery
KR102015094B1 (en) Hydraulic hybrid swing drive system for excavators
US9151019B2 (en) Hybrid type construction machine
JP5600274B2 (en) Electro-hydraulic drive system for work machines
US20130197768A1 (en) Hybrid construction machine
JP2005076781A (en) Drive unit of working machine
CN101845837A (en) The driver that is used for hydraulic crawler excavator
JP2013536927A (en) Hydraulic circuit for construction machinery
RU2018118221A (en) Electrohydraulic Hybrid Drive Device For Vehicle
KR20120064620A (en) Hybrid working machine
CN110621825A (en) Hydraulic system for construction machinery
JP2004028233A (en) Oil pressure energy recovering/regenerating apparatus
JPH09224354A (en) Hydraulic drive device
US20220307595A1 (en) Hydraulic circuit architecture with enhanced operation efficency
JP2014066259A (en) Hybrid type hydraulic device
JP5152530B2 (en) Hybrid earth mover
JP2013023034A (en) Hydraulic working machine having generator using hydraulic flow energy
JP3875900B2 (en) Power equipment for construction machinery
US8763737B2 (en) Powertrain cooling circuit
JP2004100810A (en) Pressure converter
JP5972351B2 (en) Drive system especially for self-propelled construction machines, especially compactors
US20220136534A1 (en) Pump/motor with integrated variator for use in hydraulic systems
JP5367783B2 (en) Excavator with turning motor generator
JP4798149B2 (en) Hybrid hydraulic system
JP2005282577A (en) Hydraulic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141204