JP2013023012A - Control device - Google Patents

Control device Download PDF

Info

Publication number
JP2013023012A
JP2013023012A JP2011157992A JP2011157992A JP2013023012A JP 2013023012 A JP2013023012 A JP 2013023012A JP 2011157992 A JP2011157992 A JP 2011157992A JP 2011157992 A JP2011157992 A JP 2011157992A JP 2013023012 A JP2013023012 A JP 2013023012A
Authority
JP
Japan
Prior art keywords
torque
control
state
clutch
rotating electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011157992A
Other languages
Japanese (ja)
Other versions
JP5565636B2 (en
Inventor
Takashi Yoshida
高志 吉田
Hiroaki Shiromura
陽明 白村
Yoichi Tajima
陽一 田島
Hideya Kawai
秀哉 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP2011157992A priority Critical patent/JP5565636B2/en
Priority to DE201211001420 priority patent/DE112012001420T5/en
Priority to CN201280021712.0A priority patent/CN103502070B/en
Priority to PCT/JP2012/067376 priority patent/WO2013005844A1/en
Priority to US14/112,733 priority patent/US9061681B2/en
Publication of JP2013023012A publication Critical patent/JP2013023012A/en
Application granted granted Critical
Publication of JP5565636B2 publication Critical patent/JP5565636B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Abstract

PROBLEM TO BE SOLVED: To provide a control device capable of suppressing occurrence of a torque step when a second friction engagement device moves from a slip engagement state to a direct coupling engagement state, irrespective of errors in the torque of an internal combustion engine or the transmission torque capacity of a first friction engagement device.SOLUTION: The control device for a driving device for a vehicle includes, on a power transmission path connecting the internal combustion engine and the wheels: the first friction engagement device; a rotating electric device 12; and a second friction engagement device CL2. In a state in which the torque of the internal combustion engine is transmitted to the wheels in the slip engagement state of the second friction engagement device CL2, the control device performs rotation state control for controlling the rotation state of the rotating electric device 12 to becomes a target rotation state. Also, while the second friction engagement device CL2 is transitioned from the slip engagement state to a direct coupling engagement state, the control device performs hydraulic adjustment control in order to control a hydraulic pressure Pc2 supplied to the second friction engagement device CL2 in the slip engagement state, based on the torque of the rotating electric device 12 whose rotation state is being controlled.

Description

本発明は、内燃機関と車輪とを結ぶ動力伝達経路に回転電機が設けられていると共に、内燃機関と回転電機との間に第一摩擦係合装置、回転電機と車輪との間に第二摩擦係合装置が設けられた車両用駆動装置を制御対象とする制御装置に関する。   According to the present invention, a rotary electric machine is provided in a power transmission path connecting the internal combustion engine and the wheel, and a first friction engagement device is provided between the internal combustion engine and the rotary electric machine, and a second is provided between the rotary electric machine and the wheel. The present invention relates to a control device that controls a vehicle drive device provided with a friction engagement device.

上記のような車両用駆動装置を制御対象とする制御装置として、特開2010−149640号公報(特許文献1)に記載された装置が既に知られている。以下、この背景技術の欄の説明では、〔〕内に特許文献1における符号(必要に応じて、対応する部材の名称を含む)を引用して説明する。この制御装置は、内燃機関〔エンジンE〕の停止状態且つ第一摩擦係合装置〔第1クラッチCL1〕の解放状態から、第一摩擦係合装置を直結係合状態として回転電機〔モータMG〕のトルクにより内燃機関を始動させる内燃機関始動制御を実行可能に構成されている。内燃機関始動制御の実行時には、回転電機の回転速度を目標回転速度に一致させる回転速度フィードバック制御が実行され、その際、変速機構〔自動変速機AT〕内の第二摩擦係合装置〔第2クラッチCL2〕は、スリップ係合状態で所定トルクを伝達するように目標伝達トルク容量〔目標クラッチ伝達トルク指令TCL2〕が制御される。   As a control device that controls the vehicle drive device as described above, a device described in Japanese Patent Application Laid-Open No. 2010-149640 (Patent Document 1) is already known. Hereinafter, in the description of the background art section, reference numerals in Patent Document 1 (including names of corresponding members as necessary) are quoted in []. This control device changes the rotating electrical machine [motor MG] from the stopped state of the internal combustion engine [engine E] and the released state of the first friction engagement device [first clutch CL1] to the first friction engagement device as a direct engagement state. The internal combustion engine start control for starting the internal combustion engine with the torque of the engine is executable. At the time of execution of the internal combustion engine start control, rotation speed feedback control is performed to match the rotation speed of the rotating electrical machine with the target rotation speed, and at this time, the second friction engagement device [second gear in the transmission mechanism [automatic transmission AT] is selected. In the clutch CL2], the target transmission torque capacity [target clutch transmission torque command TCL2] is controlled so as to transmit a predetermined torque in the slip engagement state.

特許文献1の制御装置は、回転電機の実トルクと当該回転電機が出力可能な最大トルクとの差分〔トルク偏差量ΔT〕、又は、第二摩擦係合装置の両側の係合部材間の差回転速度(回転数差ΔN)に基づいて、第二摩擦係合装置の目標伝達トルク容量を決定するように構成されている。これにより、第二摩擦係合装置の滑り(スリップ)状態を適正化して、第二摩擦係合装置の伝達トルク容量の誤差に起因するトルク変動を抑制できるとされている。   The control device disclosed in Patent Document 1 includes a difference between the actual torque of the rotating electrical machine and the maximum torque that can be output by the rotating electrical machine [torque deviation amount ΔT], or a difference between the engaging members on both sides of the second friction engagement device. The target transmission torque capacity of the second friction engagement device is determined based on the rotation speed (rotational speed difference ΔN). Thereby, it is supposed that the slip (slip) state of the second friction engagement device can be optimized, and the torque fluctuation caused by the error in the transmission torque capacity of the second friction engagement device can be suppressed.

特開2010−149640号公報JP 2010-149640 A

しかし、特許文献1の装置では、上記のような第二摩擦係合装置の目標伝達トルク容量の決定制御は第一摩擦係合装置がスリップ係合状態にある期間にのみ実行され、直結係合状態とされた後は実行されない。特許文献1の装置では、第一摩擦係合装置を所定の伝達トルク容量に制御してスリップ係合状態としているため、第一摩擦係合装置の伝達トルク容量に誤差がある場合には、第二摩擦係合装置がスリップ係合状態から直結係合状態となると共に回転電機の回転速度フィードバック制御を終了してトルク制御を開始する際に、第二摩擦係合装置を介して車輪に伝達されるトルクにトルク段差が生じて車両の乗員にショックを感じさせる可能性がある。このような課題は、内燃機関の始動のために第一摩擦係合装置をスリップ係合状態とする場合に限らず、内燃機関の動作中に第一摩擦係合装置をスリップ係合状態とする場合も同様である。また、第一摩擦係合装置がスリップしていない直結係合状態である場合でも、内燃機関の出力トルクに誤差がある場合には、同様の課題が生じる。   However, in the device of Patent Document 1, the determination control of the target transmission torque capacity of the second friction engagement device as described above is executed only during the period in which the first friction engagement device is in the slip engagement state, and the direct engagement is performed. It will not be executed after the status has been set. In the device of Patent Document 1, since the first friction engagement device is controlled to a predetermined transmission torque capacity to be in the slip engagement state, when there is an error in the transmission torque capacity of the first friction engagement device, When the two friction engagement device is changed from the slip engagement state to the direct connection engagement state and the rotation speed feedback control of the rotating electrical machine is finished and the torque control is started, the two friction engagement devices are transmitted to the wheels via the second friction engagement device. There is a possibility that a torque level difference will occur in the torque and the vehicle occupant will feel a shock. Such a problem is not limited to the case where the first friction engagement device is set to the slip engagement state for starting the internal combustion engine, and the first friction engagement device is set to the slip engagement state during the operation of the internal combustion engine. The same applies to the case. Even when the first friction engagement device is in the direct engagement state in which the first friction engagement device is not slipping, the same problem occurs when there is an error in the output torque of the internal combustion engine.

そこで、内燃機関のトルクの誤差や第一摩擦係合装置の伝達トルク容量の誤差によらずに、第二摩擦係合装置がスリップ係合状態から直結係合状態となる際におけるトルク段差の発生を抑制できる制御装置の実現が望まれる。   Therefore, the occurrence of a torque step when the second friction engagement device changes from the slip engagement state to the direct engagement state regardless of the torque error of the internal combustion engine or the transmission torque capacity of the first friction engagement device. Realization of a control device capable of suppressing the above is desired.

本発明に係る、内燃機関と車輪とを結ぶ動力伝達経路に回転電機が設けられていると共に、前記内燃機関と前記回転電機との間に第一摩擦係合装置、前記回転電機と前記車輪との間に第二摩擦係合装置が設けられた車両用駆動装置を制御対象とする制御装置の特徴構成は、前記第一摩擦係合装置及び前記第二摩擦係合装置の双方のスリップ係合状態で前記内燃機関の回転状態が目標回転状態に一致するように前記第一摩擦係合装置へ供給する油圧が制御されつつ前記内燃機関のトルクが前記車輪に伝達されている状態、又は、前記第一摩擦係合装置の直結係合状態且つ前記第二摩擦係合装置のスリップ係合状態で前記内燃機関のトルクが前記車輪に伝達されている状態で、前記回転電機の回転状態を目標回転状態になるように制御する回転状態制御を実行すると共に、前記第二摩擦係合装置をスリップ係合状態から直結係合状態へと移行させる間に、前記回転状態制御中における前記回転電機のトルクに基づいて、前記スリップ係合状態にある前記第二摩擦係合装置へ供給する油圧を制御する油圧調整制御を実行する点にある。   According to the present invention, a rotary electric machine is provided in a power transmission path connecting the internal combustion engine and the wheel, and a first friction engagement device, the rotary electric machine and the wheel are provided between the internal combustion engine and the rotary electric machine. The characteristic configuration of the control device that controls the vehicle drive device in which the second friction engagement device is provided between the first friction engagement device and the second friction engagement device is the slip engagement of both the first friction engagement device and the second friction engagement device. A state in which the torque of the internal combustion engine is transmitted to the wheels while the hydraulic pressure supplied to the first friction engagement device is controlled so that the rotational state of the internal combustion engine matches the target rotational state in the state, or The rotation state of the rotating electrical machine is set to the target rotation in a state where the torque of the internal combustion engine is transmitted to the wheels in the direct engagement engagement state of the first friction engagement device and the slip engagement state of the second friction engagement device. Rotation to control to be in a state The slip engagement state based on the torque of the rotating electrical machine during the rotation state control while executing the control and shifting the second friction engagement device from the slip engagement state to the direct engagement state. The hydraulic pressure adjustment control for controlling the hydraulic pressure supplied to the second friction engagement device is performed.

なお、「回転電機」は、モータ(電動機)、ジェネレータ(発電機)、及び必要に応じてモータ及びジェネレータの双方の機能を果たすモータ・ジェネレータのいずれをも含む概念として用いている。
また、「スリップ係合状態」は、対象となる摩擦係合装置によって係合される2つの係合部材が回転速度差を有する状態で駆動力を伝達可能に係合されている状態を意味する。「直結係合状態」は、2つの係合部材が一体回転する状態で係合されている状態を意味する。なお、「解放状態」は、2つの係合部材間で回転及び駆動力が伝達されない状態を意味する。
また、「回転状態」は、回転位置、回転速度、及び回転加速度を含む概念として用いている。従って、「回転状態制御」には、制御対象の回転位置を目標回転位置になるように制御する回転位置フィードバック制御、制御対象の回転速度を目標回転速度になるように制御する回転速度フィードバック制御、或いは、制御対象の回転加速度を目標回転加速度になるように制御する回転加速度フィードバック制御等が含まれる。
The “rotary electric machine” is used as a concept including any of a motor (electric motor), a generator (generator), and a motor / generator functioning as both a motor and a generator as necessary.
Further, the “slip engagement state” means a state in which the two engagement members engaged by the target friction engagement device are engaged so as to be able to transmit a driving force in a state having a difference in rotational speed. . The “directly engaged state” means a state in which the two engaging members are engaged in a state of rotating integrally. The “released state” means a state where rotation and driving force are not transmitted between the two engaging members.
The “rotation state” is used as a concept including a rotation position, a rotation speed, and a rotation acceleration. Therefore, in the “rotation state control”, the rotational position feedback control for controlling the rotational position of the controlled object to be the target rotational position, the rotational speed feedback control for controlling the rotational speed of the controlled object to be the target rotational speed, Alternatively, rotational acceleration feedback control for controlling the rotational acceleration of the control target to become the target rotational acceleration is included.

上記の特徴構成のように、第一摩擦係合装置のスリップ係合状態で内燃機関の回転状態が目標回転状態に一致するように第一摩擦係合装置へ供給する油圧が制御されている状態、又は、第一摩擦係合装置の直結係合状態では、内燃機関のトルクを、第一摩擦係合装置を介してそのまま回転電機側に伝達することができる。すなわち、第一摩擦係合装置の伝達トルク容量の誤差の影響を排除した状態で内燃機関のトルクを回転電機側に伝達することができる。ここで、内燃機関の出力トルクに誤差が含まれている場合、当該誤差に起因して回転電機の回転状態は目標回転状態に対して一時的に不一致の状態となるが、回転状態制御の実行により回転電機の出力トルクが逐次増減されて、回転電機の回転状態は目標回転状態に一致する状態となる。この状態で第二摩擦係合装置がスリップ係合状態から直結係合状態へと移行すると、回転電機の回転速度は車輪の回転速度に応じて一意に定まる状態となり、回転電機は所定のトルクを出力する状態となる。この際、第二摩擦係合装置の状態移行の前後で、車輪に伝達されるトルクには、回転状態制御中の出力トルクと第二摩擦係合装置の直結係合状態への移行後の所定のトルクとの差分に応じたトルク段差が生じ得る。
この点、上記の特徴構成によれば、油圧調整制御において第二摩擦係合装置への供給油圧を回転状態制御中における回転電機の出力トルクに基づいて適切に制御することにより、当該出力トルクを、第二摩擦係合装置の直結係合状態への移行後の所定のトルクに近づけることができる。よって、第二摩擦係合装置がスリップ係合状態から直結係合状態へと移行する際のトルク段差の発生を抑制することができる。
As in the above characteristic configuration, the hydraulic pressure supplied to the first friction engagement device is controlled so that the rotation state of the internal combustion engine matches the target rotation state in the slip engagement state of the first friction engagement device Alternatively, in the direct engagement state of the first friction engagement device, the torque of the internal combustion engine can be transmitted to the rotating electrical machine side as it is via the first friction engagement device. That is, the torque of the internal combustion engine can be transmitted to the rotating electrical machine side in a state where the influence of the error in the transmission torque capacity of the first friction engagement device is eliminated. Here, if the output torque of the internal combustion engine includes an error, the rotation state of the rotating electrical machine temporarily becomes inconsistent with the target rotation state due to the error, but the rotation state control is executed. As a result, the output torque of the rotating electrical machine is successively increased or decreased, so that the rotating state of the rotating electrical machine matches the target rotating state. In this state, when the second friction engagement device shifts from the slip engagement state to the direct engagement state, the rotational speed of the rotating electrical machine is uniquely determined according to the rotational speed of the wheel, and the rotating electrical machine has a predetermined torque. It will be in the state to output. At this time, before and after the state transition of the second friction engagement device, the torque transmitted to the wheels includes the output torque during the rotation state control and a predetermined value after the transition to the direct engagement state of the second friction engagement device. A torque step corresponding to the difference from the torque can occur.
In this regard, according to the above characteristic configuration, by appropriately controlling the hydraulic pressure supplied to the second friction engagement device in the hydraulic pressure adjustment control based on the output torque of the rotating electrical machine during the rotation state control, the output torque is controlled. The second friction engagement device can be brought close to the predetermined torque after the transition to the direct engagement state. Therefore, generation | occurrence | production of the torque level difference at the time of a 2nd friction engagement apparatus shifting from a slip engagement state to a direct connection engagement state can be suppressed.

ここで、前記車輪を駆動するための要求駆動力と前記内燃機関から前記回転電機に伝達されるトルクとの差分に基づいて前記回転電機の目標トルクを決定する目標トルク決定制御を更に実行し、前記回転状態制御として、前記目標トルクに対して補正トルクを加えて前記回転電機の回転速度を目標回転速度に一致させるように制御する回転速度フィードバック制御を実行し、前記要求駆動力と前記回転速度フィードバック制御の前記補正トルクとに基づいて前記油圧調整制御を実行する構成とすると好適である。   Here, further executing target torque determination control for determining a target torque of the rotating electrical machine based on a difference between a required driving force for driving the wheel and a torque transmitted from the internal combustion engine to the rotating electrical machine, As the rotational state control, a rotational speed feedback control is performed in which a correction torque is applied to the target torque to control the rotational speed of the rotating electrical machine to coincide with the target rotational speed, and the required driving force and the rotational speed are controlled. It is preferable that the hydraulic pressure adjustment control is executed based on the correction torque of feedback control.

回転電機の制御方式の一態様として、本構成のように目標トルク決定制御と回転速度フィードバック制御とを併用することが可能である。この場合、目標トルク決定制御の実行により決定される目標トルクと、回転速度フィードバック制御の実行により目標トルクに対して加えられる補正トルクとに基づいて、回転電機を制御することになる。この構成によれば、追従性高く回転電機の動作制御を行うことができる。
また、第二摩擦係合装置の制御方式に関しても、一態様として、本構成のように要求駆動力に基づく供給油圧の制御と、回転速度フィードバック制御の補正トルクに基づく供給油圧の制御とを併用することが可能である。要求駆動力と回転速度フィードバック制御の補正トルクとの双方に基づいて油圧調整制御を実行する構成とすることで、追従性高く第二摩擦係合装置の動作制御を行うことができると共に、トルク段差の発生を有効に抑制することができる。
As one aspect of the control method of the rotating electrical machine, it is possible to use the target torque determination control and the rotational speed feedback control together as in this configuration. In this case, the rotating electrical machine is controlled based on the target torque determined by executing the target torque determination control and the correction torque applied to the target torque by executing the rotation speed feedback control. According to this configuration, the operation control of the rotating electrical machine can be performed with high followability.
In addition, regarding the control method of the second friction engagement device, as one aspect, the control of the supply hydraulic pressure based on the required driving force and the control of the supply hydraulic pressure based on the correction torque of the rotational speed feedback control are combined as in this configuration. Is possible. By configuring the hydraulic pressure adjustment control based on both the required driving force and the correction torque of the rotational speed feedback control, it is possible to control the operation of the second friction engagement device with high follow-up performance, and to increase the torque step. Can be effectively suppressed.

また、前記回転速度フィードバック制御に際して前記目標回転速度に向かって回転速度を変化させるための前記回転電機の回転変化トルク相当分を除外して算出した前記補正トルクに基づいて、前記油圧調整制御を実行する構成とすると好適である。   Further, the hydraulic pressure adjustment control is executed based on the correction torque calculated by excluding the amount corresponding to the rotation change torque of the rotating electrical machine for changing the rotation speed toward the target rotation speed during the rotation speed feedback control. It is preferable to adopt a configuration to do so.

回転速度フィードバック制御において回転電機の目標トルクに加えるべき補正トルクには、内燃機関のトルクの誤差に対する補償分以外にも、目標回転速度に向かって回転電機の回転速度を変化させるための回転変化トルク(イナーシャトルク)が含まれ得る。
この点に鑑み、上記の構成によれば、回転変化トルク相当分を除外して補正トルクを算出するので、油圧調整制御において内燃機関のトルクの誤差による定常的な誤差を反映させて第二摩擦係合装置への供給油圧を適切に決定することができ、トルク段差の発生を有効に抑制することができる。
The correction torque to be added to the target torque of the rotating electrical machine in the rotational speed feedback control includes the rotation change torque for changing the rotational speed of the rotating electrical machine toward the target rotational speed, in addition to the compensation for the torque error of the internal combustion engine. (Inner shuttle) may be included.
In view of this point, according to the above configuration, the correction torque is calculated by excluding the portion corresponding to the rotational change torque, so that the second friction is reflected in the hydraulic adjustment control by reflecting a steady error due to the torque error of the internal combustion engine. The hydraulic pressure supplied to the engagement device can be determined appropriately, and the occurrence of a torque step can be effectively suppressed.

また、前記油圧調整制御において、前記補正トルクを時間積分した演算値に基づいて前記第二摩擦係合装置の伝達トルク容量を決定し、当該伝達トルク容量に基づいて前記第二摩擦係合装置へ供給する油圧を決定する構成とすると好適である。   Further, in the hydraulic pressure adjustment control, a transmission torque capacity of the second friction engagement device is determined based on a calculated value obtained by integrating the correction torque over time, and the second friction engagement device is determined based on the transmission torque capacity. It is preferable that the hydraulic pressure to be supplied is determined.

この構成のように第二摩擦係合装置の伝達トルク容量を決定することで、補正トルクを徐々に小さくしてやがてゼロとすることができる。よって、第二摩擦係合装置のスリップ係合状態から直結係合状態への移行の前後におけるトルク段差の発生を有効に抑制することができる。
また、油圧調整制御を行うことによって第二摩擦係合装置の伝達トルク容量が変化するが、補正トルクを徐々に小さくすることで第二摩擦係合装置の伝達トルク容量も徐々に変化させることができる。従って、第二摩擦係合装置の伝達トルク容量の変化に伴って車輪に伝達される駆動力が急変して車両の運転者に違和感を与えることを抑制することができる。
By determining the transmission torque capacity of the second friction engagement device as in this configuration, the correction torque can be gradually reduced to zero over time. Therefore, it is possible to effectively suppress the occurrence of a torque step before and after the transition from the slip engagement state to the direct engagement state of the second friction engagement device.
Further, the transmission torque capacity of the second friction engagement device is changed by performing the hydraulic pressure adjustment control, but the transmission torque capacity of the second friction engagement device can be gradually changed by gradually reducing the correction torque. it can. Therefore, it is possible to suppress the driving force transmitted to the wheels from being suddenly changed in accordance with the change in the transmission torque capacity of the second friction engagement device and causing the vehicle driver to feel uncomfortable.

ところで、第二摩擦係合装置がスリップ係合状態から直結係合状態になり、回転電機の制御状態が回転速度フィードバック制御からトルク制御に移行する場合には、回転速度フィードバック制御における補正トルクが瞬時的に解消されて、回転電機は目標トルク決定制御の実行により決定された目標トルクを出力する状態となる。このとき、上述したように第二摩擦係合装置の係合状態の移行の前後で、車輪に伝達されるトルクには補正トルク相当分のトルク段差が生じ得る。   By the way, when the second friction engagement device changes from the slip engagement state to the direct engagement state and the control state of the rotating electrical machine shifts from the rotation speed feedback control to the torque control, the correction torque in the rotation speed feedback control is instantaneous. Thus, the rotating electrical machine is in a state of outputting the target torque determined by executing the target torque determination control. At this time, as described above, before and after the transition of the engagement state of the second friction engagement device, a torque step corresponding to the correction torque may occur in the torque transmitted to the wheel.

この点に鑑み、前記回転電機の出力トルクを前記目標トルクに一致させるように制御するトルク制御を更に実行可能であり、前記油圧調整制御の実行中に前記第二摩擦係合装置が直結係合状態になったと判定した場合に、前記回転電機の制御状態を前記回転速度フィードバック制御から前記トルク制御に移行させる構成に、本発明を好適に適用することができる。このようにすれば、第二摩擦係合装置の係合状態の移行の前後におけるトルク段差の発生を有効に抑制することができる。   In view of this point, torque control for controlling the output torque of the rotating electrical machine to coincide with the target torque can be further executed, and the second friction engagement device is directly engaged during execution of the hydraulic pressure adjustment control. The present invention can be suitably applied to a configuration in which the control state of the rotating electrical machine is shifted from the rotational speed feedback control to the torque control when it is determined that the state has been reached. In this way, it is possible to effectively suppress the occurrence of a torque step before and after the transition of the engagement state of the second friction engagement device.

また、前記第二摩擦係合装置が直結係合状態になったと判定した際に前記補正トルクがゼロになっていない場合には、前記回転速度フィードバック制御から前記トルク制御への移行に際して、前記回転電機の出力トルクを、前記回転速度フィードバック制御中のトルクから前記目標トルクまで徐々に変化させる移行トルク制御を実行する構成とすると好適である。   Further, when the correction torque is not zero when it is determined that the second friction engagement device is in the direct engagement state, the rotation is performed when the rotational speed feedback control is shifted to the torque control. It is preferable to perform a transition torque control that gradually changes the output torque of the electric machine from the torque during the rotational speed feedback control to the target torque.

この構成によれば、回転速度フィードバック制御における補正トルクがゼロでない状態で第二摩擦係合装置が直結係合状態になった場合であっても、移行トルク制御により補正トルクを徐々に小さくして回転電機のトルクを目標トルクまで徐々に変化させ、トルク段差の発生を抑制することができる。   According to this configuration, even when the second frictional engagement device is in the direct engagement state when the correction torque in the rotational speed feedback control is not zero, the correction torque is gradually reduced by the transition torque control. The torque of the rotating electrical machine can be gradually changed to the target torque to suppress the occurrence of a torque step.

また、前記第二摩擦係合装置のスリップ係合状態から直結係合状態への移行時を含む当該移行時以前の所定期間に、前記油圧調整制御を実行する構成とすると好適である。   In addition, it is preferable that the hydraulic pressure adjustment control is executed in a predetermined period before the transition including the transition from the slip engagement state to the direct engagement state of the second friction engagement device.

この構成によれば、第二摩擦係合装置のスリップ係合状態から直結係合状態への移行時以前の所定期間に実行される油圧調整制御により、当該移行時におけるトルク段差の発生を有効に抑制することができる。   According to this configuration, the hydraulic pressure adjustment control executed during a predetermined period before the transition from the slip engagement state to the direct engagement state of the second friction engagement device effectively enables the generation of the torque step at the transition. Can be suppressed.

また、前記第二摩擦係合装置がスリップ係合状態となってから直結係合状態に移行するまでの間、継続的に前記油圧調整制御を実行する構成とすると好適である。   Further, it is preferable that the hydraulic pressure adjustment control is continuously executed from when the second friction engagement device is in the slip engagement state to when the second friction engagement device is shifted to the direct engagement state.

この構成によれば、第二摩擦係合装置がスリップ係合状態となってから直結係合状態への移行時までの間の全期間に亘って実行される油圧調整制御により、第二摩擦係合装置の係合状態の移行時におけるトルク段差の発生を有効に抑制することができる。   According to this configuration, the second friction engagement device is controlled by the hydraulic adjustment control that is performed over the entire period from when the second friction engagement device is in the slip engagement state to when the second friction engagement device is shifted to the direct engagement state. It is possible to effectively suppress the occurrence of a torque step at the transition of the engagement state of the combined device.

実施形態に係る車両用駆動装置及びその制御装置の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the vehicle drive device which concerns on embodiment, and its control apparatus. 油圧調整制御の基本概念を説明するための模式図である。It is a schematic diagram for demonstrating the basic concept of hydraulic pressure adjustment control. 回転電機制御部及び油圧調整制御部の詳細構成を示すブロック図である。It is a block diagram which shows the detailed structure of a rotary electric machine control part and a hydraulic pressure adjustment control part. 油圧調整制御を実行する際の各部の動作状態の一例を示すタイムチャートである。It is a time chart which shows an example of the operation state of each part at the time of performing hydraulic pressure adjustment control. 油圧調整制御を実行する際の各部の動作状態の他の一例を示すタイムチャートである。It is a time chart which shows another example of the operation state of each part at the time of performing hydraulic adjustment control. 油圧調整制御を実行する際の各部の動作状態の他の一例を示すタイムチャートである。It is a time chart which shows another example of the operation state of each part at the time of performing hydraulic adjustment control.

本発明に係る制御装置の実施形態について、図面を参照して説明する。図1に示すように、本実施形態に係る制御装置4は、駆動装置1を制御対象とする駆動装置用制御ユニットである。ここで、本実施形態に係る駆動装置1は、車輪15の駆動力源として内燃機関11及び回転電機12の双方を備えた車両(ハイブリッド車両)6を駆動するための車両用駆動装置(ハイブリッド車両用駆動装置)である。以下、本実施形態に係る制御装置4について、詳細に説明する。   An embodiment of a control device according to the present invention will be described with reference to the drawings. As shown in FIG. 1, the control device 4 according to the present embodiment is a drive device control unit that controls the drive device 1. Here, the drive device 1 according to the present embodiment is a vehicle drive device (hybrid vehicle) for driving a vehicle (hybrid vehicle) 6 including both the internal combustion engine 11 and the rotating electrical machine 12 as a driving force source for the wheels 15. Drive device). Hereinafter, the control device 4 according to the present embodiment will be described in detail.

なお、以下の説明では、「駆動連結」とは、2つの回転要素が駆動力を伝達可能に連結された状態を意味し、当該2つの回転要素が一体的に回転するように連結された状態、或いは当該2つの回転要素が一又は二以上の伝動部材を介して駆動力を伝達可能に連結された状態を含む概念として用いている。このような伝動部材としては、回転を同速で又は変速して伝達する各種の部材が含まれ、例えば、軸、歯車機構、ベルト、チェーン等が含まれる。ここで、「駆動力」は「トルク」と同義で用いている。
また、「係合圧」は、摩擦係合装置の一方の係合部材と他方の係合部材とを相互に押し付け合う圧力を表す。「解放圧」は、当該摩擦係合装置が定常的に解放状態となる圧を表す。「解放境界圧」は、当該摩擦係合装置が解放状態とスリップ係合状態との境界のスリップ境界状態となる圧(解放側スリップ境界圧)を表す。「係合境界圧」は、当該摩擦係合装置がスリップ係合状態と直結係合状態との境界のスリップ境界状態となる圧(係合側スリップ境界圧)を表す。「完全係合圧」は、当該摩擦係合装置が定常的に直結係合状態となる圧を表す。
In the following description, “driving connection” means a state where two rotating elements are connected so as to be able to transmit a driving force, and the two rotating elements are connected so as to rotate integrally. Alternatively, the two rotating elements are used as a concept including a state in which a driving force can be transmitted via one or more transmission members. Examples of such a transmission member include various members that transmit rotation at the same speed or a variable speed, and include, for example, a shaft, a gear mechanism, a belt, a chain, and the like. Here, “driving force” is used synonymously with “torque”.
The “engagement pressure” represents a pressure that presses one engagement member and the other engagement member of the friction engagement device against each other. “Release pressure” represents a pressure at which the friction engagement device is constantly released. “Release boundary pressure” represents a pressure (release side slip boundary pressure) at which the friction engagement device enters a slip boundary state between the released state and the slip engaged state. The “engagement boundary pressure” represents a pressure at which the friction engagement device enters a slip boundary state between the slip engagement state and the direct engagement state (engagement side slip boundary pressure). “Complete engagement pressure” represents a pressure at which the friction engagement device is constantly in a direct engagement state.

1.駆動装置の構成
本実施形態に係る制御装置4による制御対象となる駆動装置1の構成について説明する。本実施形態に係る駆動装置1は、いわゆる1モータパラレル方式のハイブリッド車両用の駆動装置として構成されている。この駆動装置1は、図1に示すように、内燃機関11に駆動連結される入力軸Iと車輪15に駆動連結される出力軸Oとを結ぶ動力伝達経路上に回転電機12を備えていると共に、回転電機12と出力軸Oとの間に変速機構13を備えている。入力軸Iと回転電機12との間には第一クラッチCL1が設けられている。また、変速機構13には後述するように第一クラッチCL1とは別の変速用の第二クラッチCL2が備えられている。これにより、駆動装置1は、入力軸Iと出力軸Oとを結ぶ動力伝達経路に、内燃機関11及び入力軸Iの側から順に、第一クラッチCL1、回転電機12、及び第二クラッチCL2、を備えている。これらの各構成は、駆動装置ケース(図示せず)内に収容されている。
1. Configuration of Drive Device A configuration of the drive device 1 to be controlled by the control device 4 according to the present embodiment will be described. The drive device 1 according to the present embodiment is configured as a drive device for a so-called 1-motor parallel type hybrid vehicle. As shown in FIG. 1, the driving apparatus 1 includes a rotating electrical machine 12 on a power transmission path that connects an input shaft I that is drivingly connected to the internal combustion engine 11 and an output shaft O that is drivingly connected to the wheels 15. In addition, a speed change mechanism 13 is provided between the rotating electrical machine 12 and the output shaft O. A first clutch CL1 is provided between the input shaft I and the rotating electrical machine 12. Further, the transmission mechanism 13 is provided with a second clutch CL2 for shifting different from the first clutch CL1, as will be described later. As a result, the drive device 1 is arranged in the power transmission path connecting the input shaft I and the output shaft O in order from the internal combustion engine 11 and the input shaft I side, the first clutch CL1, the rotating electrical machine 12, and the second clutch CL2. It has. Each of these components is housed in a drive device case (not shown).

内燃機関11は、機関内部における燃料の燃焼により駆動されて動力を取り出す原動機である。内燃機関11としては、例えば、ガソリンエンジンやディーゼルエンジン等を用いることができる。内燃機関11は入力軸Iと一体回転するように駆動連結されている。本例では、内燃機関11のクランクシャフト等の出力軸が入力軸Iに駆動連結されている。内燃機関11は、第一クラッチCL1を介して回転電機12に駆動連結されている。   The internal combustion engine 11 is a prime mover that is driven by combustion of fuel inside the engine to extract power. As the internal combustion engine 11, for example, a gasoline engine or a diesel engine can be used. The internal combustion engine 11 is drivingly connected so as to rotate integrally with the input shaft I. In this example, an output shaft such as a crankshaft of the internal combustion engine 11 is drivingly connected to the input shaft I. The internal combustion engine 11 is drivingly connected to the rotating electrical machine 12 via the first clutch CL1.

第一クラッチCL1は、内燃機関11と回転電機12との間の駆動連結を解除可能に設けられている。第一クラッチCL1は、入力軸Iと中間軸M及び出力軸Oとを選択的に駆動連結するクラッチであり、内燃機関切り離し用クラッチとして機能する。第一クラッチCL1としては、湿式多板クラッチや乾式単板クラッチ等を用いることができる。本実施形態では、第一クラッチCL1が本発明における「第一摩擦係合装置」に相当する。   The first clutch CL1 is provided so that the drive connection between the internal combustion engine 11 and the rotating electrical machine 12 can be released. The first clutch CL1 is a clutch that selectively drives and connects the input shaft I, the intermediate shaft M, and the output shaft O, and functions as an internal combustion engine disconnecting clutch. As the first clutch CL1, a wet multi-plate clutch, a dry single-plate clutch, or the like can be used. In the present embodiment, the first clutch CL1 corresponds to the “first friction engagement device” in the present invention.

回転電機12は、ロータとステータとを有して構成され(図示せず)、電力の供給を受けて動力を発生するモータ(電動機)としての機能と、動力の供給を受けて電力を発生するジェネレータ(発電機)としての機能とを果たすことが可能とされている。回転電機12のロータは中間軸Mと一体回転するように駆動連結されている。回転電機12は、インバータ装置27を介して蓄電装置28に電気的に接続されている。蓄電装置28としては、バッテリやキャパシタ等を用いることができる。回転電機12は、蓄電装置28から電力の供給を受けて力行し、或いは、内燃機関11が出力するトルクや車両6の慣性力により発電した電力を蓄電装置28に供給して蓄電させる。中間軸Mは、変速機構13に駆動連結されている。すなわち、回転電機12のロータの出力軸(ロータ出力軸)としての中間軸Mは、変速機構13の入力軸(変速入力軸)となっている。   The rotating electrical machine 12 includes a rotor and a stator (not shown), and functions as a motor (electric motor) that generates power by receiving power supply and generates power by receiving power supply. It is possible to fulfill the function as a generator (generator). The rotor of the rotating electrical machine 12 is drivingly connected so as to rotate integrally with the intermediate shaft M. The rotating electrical machine 12 is electrically connected to the power storage device 28 via the inverter device 27. As the power storage device 28, a battery, a capacitor, or the like can be used. The rotating electrical machine 12 receives power from the power storage device 28 and performs powering, or supplies the power storage device 28 with power generated by the torque output from the internal combustion engine 11 or the inertial force of the vehicle 6 to store the power. The intermediate shaft M is drivingly connected to the speed change mechanism 13. That is, the intermediate shaft M as an output shaft (rotor output shaft) of the rotor of the rotating electrical machine 12 is an input shaft (shift input shaft) of the speed change mechanism 13.

変速機構13は、本実施形態では、変速比の異なる複数の変速段を切替可能に有する自動有段変速機構である。変速機構13は、これら複数の変速段を形成するために、遊星歯車機構等の歯車機構と、この歯車機構の回転要素の係合又は解放を行い、変速段を切り替えるためのクラッチやブレーキ等の複数の摩擦係合装置とを備えている。ここでは、変速機構13は変速用の複数の摩擦係合装置のうちの1つとして、第二クラッチCL2を備えている。本実施形態では、第二クラッチCL2は、湿式多板クラッチとして構成されている。第二クラッチCL2は、中間軸Mと変速機構13内に設けられた変速中間軸Sとを選択的に駆動連結する。本実施形態においては、第二クラッチCL2が本発明における「第二摩擦係合装置」に相当する。変速中間軸Sは、変速機構13内の他のクラッチ等や軸部材を介して出力軸Oに駆動連結されている。   In this embodiment, the speed change mechanism 13 is an automatic stepped speed change mechanism that can switch between a plurality of speed stages having different speed ratios. The transmission mechanism 13 engages or releases a gear mechanism such as a planetary gear mechanism and a rotating element of the gear mechanism in order to form the plurality of gear speeds, and includes a clutch and a brake for switching the gear speed. A plurality of friction engagement devices. Here, the speed change mechanism 13 includes a second clutch CL2 as one of a plurality of friction engagement devices for speed change. In the present embodiment, the second clutch CL2 is configured as a wet multi-plate clutch. The second clutch CL2 selectively connects the intermediate shaft M and the transmission intermediate shaft S provided in the transmission mechanism 13 in a driving manner. In the present embodiment, the second clutch CL2 corresponds to the “second friction engagement device” in the present invention. The transmission intermediate shaft S is drivingly connected to the output shaft O via another clutch or the like in the transmission mechanism 13 or a shaft member.

変速機構13は、複数のクラッチ等の係合状態に応じて形成される各変速段についてそれぞれ設定された所定の変速比に基づいて、中間軸Mの回転速度を変速するとともにトルクを変換して出力軸Oに伝達する。変速機構13から出力軸Oに伝達されたトルクは、出力用差動歯車装置14を介して左右2つの車輪15に分配されて伝達される。これにより、駆動装置1は、内燃機関11及び回転電機12の一方又は双方のトルクを車輪15に伝達させて車両6を走行させることができる。   The speed change mechanism 13 shifts the rotational speed of the intermediate shaft M and converts the torque based on a predetermined speed ratio set for each speed stage formed according to the engagement state of a plurality of clutches and the like. It is transmitted to the output shaft O. Torque transmitted from the speed change mechanism 13 to the output shaft O is distributed and transmitted to the left and right wheels 15 via the output differential gear unit 14. Thus, the drive device 1 can cause the vehicle 6 to travel by transmitting the torque of one or both of the internal combustion engine 11 and the rotating electrical machine 12 to the wheels 15.

本実施形態においては、駆動装置1は、中間軸Mに駆動連結されたオイルポンプ(図示せず)を備えている。オイルポンプは、駆動装置1の各部に油を供給するための油圧源として機能する。オイルポンプは、回転電機12及び内燃機関11の一方又は双方の駆動力により駆動されて作動し、油圧を発生させる。オイルポンプからの油は、油圧制御装置25により所定油圧に調整されてから、第一クラッチCL1や第二クラッチCL2等に供給される。このオイルポンプとは別に、専用の駆動モータを有するオイルポンプを備えた構成としても良い。   In the present embodiment, the drive device 1 includes an oil pump (not shown) that is drivingly connected to the intermediate shaft M. The oil pump functions as a hydraulic pressure source for supplying oil to each part of the driving device 1. The oil pump is driven by the driving force of one or both of the rotating electrical machine 12 and the internal combustion engine 11 to generate hydraulic pressure. The oil from the oil pump is adjusted to a predetermined oil pressure by the oil pressure control device 25 and then supplied to the first clutch CL1, the second clutch CL2, and the like. In addition to this oil pump, an oil pump having a dedicated drive motor may be provided.

図1に示すように、この駆動装置1が搭載された車両6の各部には、複数のセンサSe1〜Se5が備えられている。入力軸回転速度センサSe1は、入力軸Iの回転速度を検出するセンサである。入力軸回転速度センサSe1により検出される入力軸Iの回転速度は、内燃機関11の回転速度に等しい。中間軸回転速度センサSe2は、中間軸Mの回転速度を検出するセンサである。中間軸回転速度センサSe2により検出される中間軸Mの回転速度は、回転電機12のロータの回転速度に等しい。出力軸回転速度センサSe3は、出力軸Oの回転速度を検出するセンサである。制御装置4は、出力軸回転速度センサSe3により検出される出力軸Oの回転速度に基づいて、車両6の走行速度である車速を導出することもできる。   As shown in FIG. 1, each part of the vehicle 6 on which the driving device 1 is mounted is provided with a plurality of sensors Se1 to Se5. The input shaft rotational speed sensor Se1 is a sensor that detects the rotational speed of the input shaft I. The rotational speed of the input shaft I detected by the input shaft rotational speed sensor Se1 is equal to the rotational speed of the internal combustion engine 11. The intermediate shaft rotation speed sensor Se2 is a sensor that detects the rotation speed of the intermediate shaft M. The rotational speed of the intermediate shaft M detected by the intermediate shaft rotational speed sensor Se2 is equal to the rotational speed of the rotor of the rotating electrical machine 12. The output shaft rotation speed sensor Se3 is a sensor that detects the rotation speed of the output shaft O. The control device 4 can also derive the vehicle speed that is the traveling speed of the vehicle 6 based on the rotational speed of the output shaft O detected by the output shaft rotational speed sensor Se3.

アクセル開度検出センサSe4は、アクセルペダル17の操作量を検出することによりアクセル開度を検出するセンサである。充電状態検出センサSe5は、SOC(state of charge:充電状態)を検出するセンサである。制御装置4は、充電状態検出センサSe5により検出されるSOCに基づいて蓄電装置28の蓄電量を導出することもできる。これらの各センサSe1〜Se5による検出結果を示す情報は、制御装置4へ出力される。   The accelerator opening detection sensor Se4 is a sensor that detects the accelerator opening by detecting the operation amount of the accelerator pedal 17. The charge state detection sensor Se5 is a sensor that detects an SOC (state of charge). The control device 4 can also derive the amount of power stored in the power storage device 28 based on the SOC detected by the charge state detection sensor Se5. Information indicating detection results by these sensors Se <b> 1 to Se <b> 5 is output to the control device 4.

2.制御装置の構成
本実施形態に係る制御装置4の構成について説明する。図1に示すように、本実施形態に係る制御装置4は、駆動装置制御ユニット40を備えている。駆動装置制御ユニット40は、主に回転電機12、第一クラッチCL1、及び変速機構13を制御する。また、車両6には、駆動装置制御ユニット40とは別に、主に内燃機関11を制御する内燃機関制御ユニット30が備えられている。
2. Configuration of Control Device A configuration of the control device 4 according to the present embodiment will be described. As shown in FIG. 1, the control device 4 according to this embodiment includes a drive device control unit 40. The drive device control unit 40 mainly controls the rotating electrical machine 12, the first clutch CL1, and the speed change mechanism 13. Further, the vehicle 6 includes an internal combustion engine control unit 30 that mainly controls the internal combustion engine 11, separately from the drive device control unit 40.

内燃機関制御ユニット30と駆動装置制御ユニット40とは、互いに情報の受け渡しを行うことができるように構成されている。また、内燃機関制御ユニット30及び駆動装置制御ユニット40に備えられる各機能部も、互いに情報の受け渡しを行うことができるように構成されている。また、内燃機関制御ユニット30及び駆動装置制御ユニット40は、各センサSe1〜Se5による検出結果の情報を取得可能に構成されている。   The internal combustion engine control unit 30 and the drive device control unit 40 are configured to exchange information with each other. In addition, the functional units provided in the internal combustion engine control unit 30 and the drive device control unit 40 are also configured to exchange information with each other. Further, the internal combustion engine control unit 30 and the drive device control unit 40 are configured to be able to acquire information on detection results obtained by the sensors Se1 to Se5.

内燃機関制御ユニット30は、内燃機関制御部31を備えている。
内燃機関制御部31は、内燃機関11の動作制御を行う機能部である。内燃機関制御部31は、内燃機関11の出力トルク(内燃機関トルクTe)及び回転速度の制御目標としての目標トルク及び目標回転速度を決定し、この制御目標に応じて内燃機関11を動作させる。本実施形態では、内燃機関制御部31は、車両6の走行状態に応じて内燃機関11のトルク制御及び回転速度制御を切り替えることが可能である。トルク制御は、内燃機関11に目標トルクを指令し、内燃機関トルクTeをその目標トルクに一致させる(追従させる)制御である。回転速度制御は、内燃機関11に目標回転速度を指令し、内燃機関11の回転速度をその目標回転速度に一致させるように出力トルクを決定する制御である。
The internal combustion engine control unit 30 includes an internal combustion engine control unit 31.
The internal combustion engine control unit 31 is a functional unit that controls the operation of the internal combustion engine 11. The internal combustion engine control unit 31 determines an output torque (internal combustion engine torque Te) of the internal combustion engine 11 and a target torque and a target rotational speed as control targets for the rotational speed, and operates the internal combustion engine 11 according to the control target. In the present embodiment, the internal combustion engine control unit 31 can switch between torque control and rotational speed control of the internal combustion engine 11 according to the traveling state of the vehicle 6. The torque control is a control in which a target torque is commanded to the internal combustion engine 11 and the internal combustion engine torque Te is matched (followed) with the target torque. The rotational speed control is a control for instructing a target rotational speed to the internal combustion engine 11 and determining an output torque so that the rotational speed of the internal combustion engine 11 coincides with the target rotational speed.

駆動装置制御ユニット40は、走行モード決定部41、要求トルク決定部42、回転電機制御部43、第一クラッチ動作制御部44、変速機構動作制御部45、発進制御部46、及び油圧調整制御部47を備えている。   The drive device control unit 40 includes a travel mode determination unit 41, a required torque determination unit 42, a rotating electrical machine control unit 43, a first clutch operation control unit 44, a transmission mechanism operation control unit 45, a start control unit 46, and a hydraulic pressure adjustment control unit. 47 is provided.

走行モード決定部41は、車両6の走行モードを決定する機能部である。走行モード決定部41は、例えば出力軸回転速度センサSe3の検出結果に基づいて導出される車速や、アクセル開度検出センサSe4により検出されるアクセル開度、充電状態検出センサSe5の検出結果に基づいて導出される蓄電装置28の蓄電量等に基づいて、駆動装置1が実現すべき走行モードを決定する。その際、走行モード決定部41は、メモリ等の記録装置に記憶して備えられたモード選択マップ(図示せず)を参照する。   The travel mode determination unit 41 is a functional unit that determines the travel mode of the vehicle 6. The travel mode determination unit 41 is based on, for example, the vehicle speed derived based on the detection result of the output shaft rotation speed sensor Se3, the accelerator opening detected by the accelerator opening detection sensor Se4, or the detection result of the charging state detection sensor Se5. The driving mode to be realized by the drive device 1 is determined based on the amount of power stored in the power storage device 28 derived in this way. At that time, the travel mode determination unit 41 refers to a mode selection map (not shown) stored and provided in a recording device such as a memory.

本例では、走行モード決定部41が選択可能な走行モードには、電動走行モード、パラレル走行モード、及びスリップ走行モード(第一スリップ走行モードと第二スリップ走行モードを含む)が含まれる。電動走行モードでは、第一クラッチCL1が解放状態とされ、回転電機12の出力トルク(回転電機トルクTm)のみにより車両6を走行させる。パラレル走行モードでは、第一クラッチCL1及び第二クラッチCL2の双方が直結係合状態とされ、少なくとも内燃機関トルクTeにより車両6を走行させる。   In this example, the travel modes that can be selected by the travel mode determination unit 41 include an electric travel mode, a parallel travel mode, and a slip travel mode (including a first slip travel mode and a second slip travel mode). In the electric travel mode, the first clutch CL1 is disengaged and the vehicle 6 is traveled only by the output torque of the rotating electrical machine 12 (rotating electrical machine torque Tm). In the parallel travel mode, both the first clutch CL1 and the second clutch CL2 are in the direct engagement state, and the vehicle 6 is traveled by at least the internal combustion engine torque Te.

第一スリップ走行モードでは、第一クラッチCL1及び第二クラッチCL2の双方がスリップ係合状態とされ、少なくとも内燃機関トルクTeが車輪15に伝達されている状態で車両6を走行させる。第二スリップ走行モードでは、第一クラッチCL1及び第二クラッチCL2のうちの一方(本例では第一クラッチCL1)が直結係合状態、他方(本例では第二クラッチCL2)がスリップ係合状態とされ、少なくとも内燃機関トルクTeが車輪15に伝達されている状態で車両6を走行させる。パラレル走行モードやスリップ走行モードでは、回転電機12は、必要に応じて正の回転電機トルクTm(>0)を出力して内燃機関トルクTeによる駆動力を補助し、或いは負の回転電機トルクTm(<0)を出力して内燃機関トルクTeによって発電する。なお、ここで説明したモードは一例であり、これら以外の各種モードを備える構成を採用することも可能である。   In the first slip travel mode, both the first clutch CL1 and the second clutch CL2 are in the slip engagement state, and the vehicle 6 is traveled in a state where at least the internal combustion engine torque Te is transmitted to the wheels 15. In the second slip traveling mode, one of the first clutch CL1 and the second clutch CL2 (first clutch CL1 in this example) is in a direct engagement state, and the other (second clutch CL2 in this example) is in a slip engagement state. The vehicle 6 is caused to travel with at least the internal combustion engine torque Te being transmitted to the wheels 15. In the parallel traveling mode and the slip traveling mode, the rotating electrical machine 12 outputs a positive rotating electrical machine torque Tm (> 0) as needed to assist the driving force by the internal combustion engine torque Te, or the negative rotating electrical machine torque Tm. (<0) is output to generate electric power using the internal combustion engine torque Te. Note that the modes described here are merely examples, and a configuration including various modes other than these can be employed.

要求トルク決定部42は、車両6を駆動するために必要とされる車両要求トルクTdを決定する機能部である。要求トルク決定部42は、出力軸回転速度センサSe3の検出結果に基づいて導出される車速と、アクセル開度検出センサSe4により検出されるアクセル開度とに基づいて、所定のマップ(図示せず)を参照する等して車両要求トルクTdを決定する。本実施形態では、車両要求トルクTdが本発明における「要求駆動力」に相当する。決定された車両要求トルクTdは、内燃機関制御部31、回転電機制御部43、及び油圧調整制御部47等に出力される。   The required torque determining unit 42 is a functional unit that determines a vehicle required torque Td that is required to drive the vehicle 6. The required torque determination unit 42 is a predetermined map (not shown) based on the vehicle speed derived based on the detection result of the output shaft rotational speed sensor Se3 and the accelerator opening detected by the accelerator opening detection sensor Se4. ) To determine the vehicle required torque Td. In the present embodiment, the vehicle required torque Td corresponds to the “required driving force” in the present invention. The determined vehicle required torque Td is output to the internal combustion engine control unit 31, the rotating electrical machine control unit 43, the hydraulic pressure adjustment control unit 47, and the like.

回転電機制御部43は、回転電機12の動作制御を行う機能部である。回転電機制御部43は、回転電機トルクTm及び回転速度の制御目標としての目標トルク及び目標回転速度を決定し、この制御目標に応じて回転電機12を動作させる。本実施形態では、回転電機制御部43は、車両6の走行状態に応じて回転電機12のトルク制御及び回転速度制御を切り替えることが可能である。   The rotating electrical machine control unit 43 is a functional unit that controls the operation of the rotating electrical machine 12. The rotating electrical machine control unit 43 determines a target torque and a target rotational speed as control targets for the rotating electrical machine torque Tm and the rotational speed, and operates the rotating electrical machine 12 according to the control target. In the present embodiment, the rotating electrical machine control unit 43 can switch between torque control and rotational speed control of the rotating electrical machine 12 according to the traveling state of the vehicle 6.

回転電機制御部43は、このようなトルク制御及び回転速度制御を実行可能とするべく、目標トルク決定部43aと回転速度制御部43bとを備えている。目標トルク決定部43aは、回転電機12の目標トルクTmfを決定する機能部である。そして、回転電機制御部43は、目標トルク決定部43aにより決定された目標トルクTmfを回転電機12に指令し、回転電機トルクTmをその目標トルクTmfに一致させるようにフィードフォワード的に回転電機12のトルク制御を実行することが可能である。回転速度制御部43bは、回転電機12に目標回転速度Nmtを指令し、回転電機12の回転速度をその目標回転速度Nmtに一致させるように出力トルクを決定する回転速度制御を実行する機能部である。本実施形態においては、このような回転電機12の回転速度制御が本発明における「回転速度フィードバック制御」及び「回転状態制御」に相当する。なお、回転電機制御部43は、目標トルク決定部43aと回転速度制御部43bとを協働的に働かせて、回転電機トルクTmをフィードフォワード的に制御しつつ回転電機12の回転速度をフィードバック的に制御することも可能である。   The rotating electrical machine control unit 43 includes a target torque determination unit 43a and a rotation speed control unit 43b so that such torque control and rotation speed control can be executed. The target torque determining unit 43a is a functional unit that determines the target torque Tmf of the rotating electrical machine 12. Then, the rotating electrical machine control unit 43 instructs the rotating electrical machine 12 with the target torque Tmf determined by the target torque determining unit 43a, and feeds the rotating electrical machine 12 in a feed-forward manner so as to match the rotating electrical machine torque Tm with the target torque Tmf. Torque control can be executed. The rotational speed control unit 43b is a functional unit that performs a rotational speed control that commands the rotating electrical machine 12 for a target rotational speed Nmt and determines an output torque so that the rotational speed of the rotating electrical machine 12 matches the target rotational speed Nmt. is there. In the present embodiment, such rotational speed control of the rotating electrical machine 12 corresponds to “rotational speed feedback control” and “rotational state control” in the present invention. The rotating electrical machine control unit 43 cooperates with the target torque determining unit 43a and the rotational speed control unit 43b to control the rotating electrical machine torque Tm in a feedforward manner and feed back the rotational speed of the rotating electrical machine 12 in a feedback manner. It is also possible to control it.

第一クラッチ動作制御部44は、第一クラッチCL1の動作を制御する機能部である。第一クラッチ動作制御部44は、油圧制御装置25を介して第一クラッチCL1に供給される油圧を制御し、第一クラッチCL1の係合圧を制御することにより、当該第一クラッチCL1の動作を制御する。例えば、第一クラッチ動作制御部44は、第一クラッチCL1に対する油圧指令値を出力し、油圧制御装置25を介して第一クラッチCL1への供給油圧を解放境界圧未満とすることにより、第一クラッチCL1を解放状態とする。また、第一クラッチ動作制御部44は、油圧制御装置25を介して第一クラッチCL1への供給油圧を係合境界圧以上とすることにより、第一クラッチCL1を直結係合状態とする。また、第一クラッチ動作制御部44は、油圧制御装置25を介して第一クラッチCL1への供給油圧を、解放境界圧以上係合境界圧未満のスリップ係合圧とすることにより、第一クラッチCL1をスリップ係合状態とする。   The first clutch operation control unit 44 is a functional unit that controls the operation of the first clutch CL1. The first clutch operation control unit 44 controls the hydraulic pressure supplied to the first clutch CL1 via the hydraulic control device 25, and controls the engagement pressure of the first clutch CL1, thereby operating the first clutch CL1. To control. For example, the first clutch operation control unit 44 outputs a hydraulic pressure command value for the first clutch CL1, and sets the hydraulic pressure supplied to the first clutch CL1 via the hydraulic control device 25 to be less than the release boundary pressure. The clutch CL1 is released. Further, the first clutch operation control unit 44 sets the first clutch CL1 in the direct engagement state by setting the supply hydraulic pressure to the first clutch CL1 to be equal to or higher than the engagement boundary pressure via the hydraulic control device 25. Further, the first clutch operation control unit 44 sets the hydraulic pressure supplied to the first clutch CL1 via the hydraulic pressure control device 25 to a slip engagement pressure that is greater than or equal to the release boundary pressure and less than the engagement boundary pressure, whereby the first clutch CL1 is set to the slip engagement state.

第一クラッチCL1のスリップ係合状態では、入力軸Iと中間軸Mとが相対回転する状態で、これらの間で駆動力が伝達される。なお、第一クラッチCL1の直結係合状態又はスリップ係合状態で伝達可能なトルクの大きさは、第一クラッチCL1のその時点での係合圧に応じて決まる。このときのトルクの大きさを、第一クラッチCL1の「伝達トルク容量Tc1」とする。本実施形態では、第一クラッチ動作制御部44は、第一クラッチCL1に対する油圧指令値に応じて比例ソレノイド等で第一クラッチCL1への供給油量及び供給油圧の大きさを連続的に制御することにより、係合圧及び伝達トルク容量Tc1の増減を連続的に制御可能である。なお、第一クラッチCL1のスリップ係合状態で当該第一クラッチCL1を介して伝達されるトルクの伝達方向は、入力軸Iと中間軸Mとの間の相対回転の向きに応じて決まる。つまり、入力軸Iの回転速度が中間軸Mの回転速度よりも高い場合には、第一クラッチCL1を介して入力軸I側から中間軸M側にトルクが伝達され、入力軸Iの回転速度が中間軸Mの回転速度よりも低い場合には、第一クラッチCL1を介して中間軸M側から入力軸I側にトルクが伝達される。   In the slip engagement state of the first clutch CL1, the driving force is transmitted between the input shaft I and the intermediate shaft M in a relative rotation state. The magnitude of torque that can be transmitted in the direct engagement state or slip engagement state of the first clutch CL1 is determined according to the engagement pressure of the first clutch CL1 at that time. The magnitude of the torque at this time is defined as “transmission torque capacity Tc1” of the first clutch CL1. In the present embodiment, the first clutch operation control unit 44 continuously controls the amount of oil supplied to the first clutch CL1 and the magnitude of the supplied oil pressure with a proportional solenoid or the like according to the oil pressure command value for the first clutch CL1. Thus, increase / decrease of the engagement pressure and the transmission torque capacity Tc1 can be controlled continuously. Note that the transmission direction of torque transmitted through the first clutch CL1 in the slip engagement state of the first clutch CL1 is determined according to the direction of relative rotation between the input shaft I and the intermediate shaft M. That is, when the rotational speed of the input shaft I is higher than the rotational speed of the intermediate shaft M, torque is transmitted from the input shaft I side to the intermediate shaft M side via the first clutch CL1, and the rotational speed of the input shaft I is increased. Is lower than the rotational speed of the intermediate shaft M, torque is transmitted from the intermediate shaft M side to the input shaft I side via the first clutch CL1.

また、本実施形態では、第一クラッチ動作制御部44は、車両6の走行状態に応じて第一クラッチCL1のトルク容量制御及び回転速度制御を切り替えることが可能である。トルク容量制御は、第一クラッチCL1の伝達トルク容量Tc1を所定の目標伝達トルク容量に一致させる制御である。回転速度制御は、第一クラッチCL1の一方の係合部材に連結された回転部材(本例では、入力軸I)の回転速度と他方の係合部材に連結された回転部材(本例では、中間軸M)の回転速度との間の回転速度差を所定の目標差回転速度に一致させるように、第一クラッチCL1への油圧指令値又は第一クラッチCL1の伝達トルク容量を決定する制御である。第一クラッチCL1の回転速度制御では、例えば中間軸Mの回転速度が所定値に制御された状態で上記回転速度差を所定の目標差回転速度に一致させることで、入力軸Iの回転速度を所定の目標回転速度に一致させるように制御することが可能である。   In the present embodiment, the first clutch operation control unit 44 can switch between the torque capacity control and the rotational speed control of the first clutch CL <b> 1 according to the traveling state of the vehicle 6. The torque capacity control is a control for making the transmission torque capacity Tc1 of the first clutch CL1 coincide with a predetermined target transmission torque capacity. The rotation speed control is performed by rotating the rotation member connected to one engagement member of the first clutch CL1 (in this example, the input shaft I) and the rotation member connected to the other engagement member (in this example, In the control for determining the hydraulic pressure command value to the first clutch CL1 or the transmission torque capacity of the first clutch CL1 so that the rotational speed difference with the rotational speed of the intermediate shaft M) matches the predetermined target differential rotational speed. is there. In the rotational speed control of the first clutch CL1, for example, the rotational speed of the input shaft I is adjusted by matching the rotational speed difference with a predetermined target differential rotational speed in a state where the rotational speed of the intermediate shaft M is controlled to a predetermined value. It is possible to control to coincide with a predetermined target rotational speed.

変速機構動作制御部45は、変速機構13の動作を制御する機能部である。変速機構動作制御部45は、アクセル開度及び車速に基づいて目標変速段を決定すると共に、変速機構13に対して決定された目標変速段を形成させる制御を行う。その際、変速機構動作制御部45は、メモリ等の記録装置に記憶して備えられた変速マップ(図示せず)を参照する。変速マップは、アクセル開度及び車速に基づくシフトスケジュールを設定したマップである。変速機構動作制御部45は、決定された目標変速段に基づいて、変速機構13内に備えられる所定のクラッチ及びブレーキ等への供給油圧を制御して目標変速段を形成する。   The transmission mechanism operation control unit 45 is a functional unit that controls the operation of the transmission mechanism 13. The transmission mechanism operation control unit 45 determines the target shift speed based on the accelerator opening and the vehicle speed, and controls the transmission mechanism 13 to form the determined target shift speed. At that time, the speed change mechanism operation control unit 45 refers to a speed change map (not shown) stored and stored in a recording device such as a memory. The shift map is a map in which a shift schedule based on the accelerator opening and the vehicle speed is set. The transmission mechanism operation control unit 45 controls the hydraulic pressure supplied to predetermined clutches and brakes provided in the transmission mechanism 13 based on the determined target shift stage to form the target shift stage.

上記のとおり、変速機構13には変速用の第二クラッチCL2が備えられている。この第二クラッチCL2は、例えば同じく変速機構13に備えられる所定のブレーキと協働して第1速段を形成する。この第二クラッチCL2も、当然に変速機構動作制御部45の制御対象に含まれる。ここでは、第二クラッチCL2の動作を制御する機能部を、特に第二クラッチ動作制御部45aとする。第二クラッチ動作制御部45aは、油圧制御装置25を介して第二クラッチCL2に供給される油圧を制御し、第二クラッチCL2の係合圧を制御することにより、当該第二クラッチCL2の動作を制御する。第二クラッチ動作制御部45aによる第二クラッチCL2の動作制御に関しては、制御対象及びそれに付随する事項が一部異なるだけで、第一クラッチ動作制御部44による第一クラッチCL1の動作制御と基本的には同様である。   As described above, the speed change mechanism 13 includes the second clutch CL2 for speed change. The second clutch CL2 forms a first gear stage in cooperation with, for example, a predetermined brake provided in the speed change mechanism 13. The second clutch CL2 is naturally included in the control target of the transmission mechanism operation control unit 45. Here, the function unit that controls the operation of the second clutch CL2 is particularly referred to as a second clutch operation control unit 45a. The second clutch operation control unit 45a controls the hydraulic pressure supplied to the second clutch CL2 via the hydraulic control device 25, and controls the engagement pressure of the second clutch CL2, thereby operating the second clutch CL2. To control. Regarding the operation control of the second clutch CL2 by the second clutch operation control unit 45a, the basic control and the operation control of the first clutch CL1 by the first clutch operation control unit 44 are basically different except that the control target and the matters accompanying it are partially different. Is the same.

発進制御部46は、発進制御を実行する機能部である。発進制御部46は、例えば車両6の停止中に運転者による発進操作を検知した場合に発進制御を実行する。ここで「発進操作」は、車両6の運転者による車両発進を意図した操作であり、本例では車両6をクリープ発進させ得る、ブレーキペダル(図示せず)の解除操作とされている。なお、アクセルペダル17の踏み込み操作を「発進操作」として検知する構成としても良い。発進制御部46は、発進制御を実行することで、内燃機関制御部31、回転電機制御部43、第一クラッチ動作制御部44、及び第二クラッチ動作制御部45a等を協調制御して車両6を適切に発進させる。   The start control unit 46 is a functional unit that executes start control. The start control unit 46 executes start control when, for example, a start operation by the driver is detected while the vehicle 6 is stopped. Here, the “start operation” is an operation intended by the driver of the vehicle 6 to start the vehicle. In this example, the operation is a release operation of a brake pedal (not shown) that can start the vehicle 6 creep. In addition, it is good also as a structure which detects depression operation of the accelerator pedal 17 as "start operation". The start control unit 46 executes the start control, thereby cooperatively controlling the internal combustion engine control unit 31, the rotating electrical machine control unit 43, the first clutch operation control unit 44, the second clutch operation control unit 45a, and the like, so that the vehicle 6 Start properly.

本実施形態では、発進制御部46は、所定の低車速状態にある期間、発進制御を実行する。ここで、「低車速状態」は、変速機構13において第1速段が形成されている場合において第一クラッチCL1及び第二クラッチCL2の双方が直結係合状態であると仮定した場合における入力軸I(内燃機関11)の推定回転速度が低車速判定閾値Th1(図示せず)以下となる状態である。入力軸Iと一体回転するように駆動連結された内燃機関11は、所定の内燃機関トルクTeを出力して自立運転を継続するためには一定速度以上で回転する必要がある。また、こもり音や振動の発生を抑制する点からも、内燃機関11は一定速度以上で回転する必要がある。そのため、本例ではこれらの点を考慮して低車速判定閾値Th1が設定されている。   In the present embodiment, the start control unit 46 performs start control during a period of a predetermined low vehicle speed state. Here, the “low vehicle speed state” is the input shaft when it is assumed that both the first clutch CL1 and the second clutch CL2 are in the direct engagement state when the first speed stage is formed in the transmission mechanism 13. In this state, the estimated rotational speed of I (internal combustion engine 11) is equal to or lower than a low vehicle speed determination threshold Th1 (not shown). The internal combustion engine 11 that is drivingly connected so as to rotate integrally with the input shaft I needs to rotate at a constant speed or higher in order to output a predetermined internal combustion engine torque Te and continue the self-sustaining operation. In addition, the internal combustion engine 11 needs to rotate at a constant speed or higher from the viewpoint of suppressing the generation of a booming noise and vibration. Therefore, in this example, the low vehicle speed determination threshold Th1 is set in consideration of these points.

本実施形態では、発進制御部46は、発進制御中、車両6の走行モードを第一スリップ走行モード、第二スリップ走行モードの順に順次実現する。すなわち、発進制御部46は、発進制御においてまず、第一クラッチCL1及び第二クラッチCL2の双方をスリップ係合状態とする。そして発進制御部46は、第一クラッチCL1及び第二クラッチCL2の双方のスリップ係合状態で、第一スリップ走行モードにて内燃機関トルクTeを車輪15に伝達させて車両6を発進させる。その際、発進制御部46は回転速度制御部43bに回転電機12の回転速度制御を実行させ、決定された目標回転速度Nmtに一致するように回転電機12の回転速度をフィードバック制御する。   In the present embodiment, the start control unit 46 sequentially realizes the travel modes of the vehicle 6 in the order of the first slip travel mode and the second slip travel mode during the start control. That is, in the start control, the start control unit 46 first places both the first clutch CL1 and the second clutch CL2 in the slip engagement state. The start control unit 46 starts the vehicle 6 by transmitting the internal combustion engine torque Te to the wheels 15 in the first slip traveling mode in the slip engagement state of both the first clutch CL1 and the second clutch CL2. At that time, the start control unit 46 causes the rotation speed control unit 43b to execute the rotation speed control of the rotary electric machine 12, and feedback-controls the rotation speed of the rotary electric machine 12 so as to coincide with the determined target rotation speed Nmt.

本実施形態では、特定発進制御中における回転電機12の目標回転速度Nmtは、変速機構13において第1速段が形成されていると仮定した場合における出力軸Oの回転速度に応じた中間軸Mの回転速度よりも高く、且つ、少なくとも自立運転を継続している内燃機関11の回転速度よりも低い値となるように設定される。なお、回転電機12の目標回転速度Nmtを決定するに際しては、車両6に備えられる補機類であって電力を用いて駆動されるもの(例えば、車載用エアコンディショナーのコンプレッサや灯火類等)の定格消費電力又は実消費電力を考慮しても良い。或いは、第一クラッチCL1及び第二クラッチCL2のそれぞれの差回転速度に基づく発熱量等を考慮しても良い。また或いは、駆動装置1に備えられる全ての油圧駆動式の摩擦係合装置(第一クラッチCL1及び第二クラッチCL2を含む)に必要とされる供給油圧を確保可能なオイルポンプ(図示せず)の回転速度を考慮しても良い。   In the present embodiment, the target rotational speed Nmt of the rotating electrical machine 12 during the specific start control is the intermediate shaft M corresponding to the rotational speed of the output shaft O when it is assumed that the first speed stage is formed in the speed change mechanism 13. Is set to be a value that is higher than the rotational speed of the internal combustion engine 11 and at least lower than the rotational speed of the internal combustion engine 11 that is continuing the independent operation. When determining the target rotational speed Nmt of the rotating electrical machine 12, auxiliary equipment provided in the vehicle 6 that is driven using electric power (for example, a compressor or a lamp of an in-vehicle air conditioner). You may consider rated power consumption or actual power consumption. Or you may consider the emitted-heat amount etc. based on each differential rotation speed of 1st clutch CL1 and 2nd clutch CL2. Alternatively, an oil pump (not shown) capable of ensuring the supply hydraulic pressure required for all the hydraulically driven frictional engagement devices (including the first clutch CL1 and the second clutch CL2) provided in the drive device 1 The rotation speed may be taken into consideration.

本例では、第一スリップ走行モードにおける回転電機12の目標回転速度Nmtは、車速に応じて設定されている(図4を参照)。図示の例では、車両6が停止したままの状態では目標回転速度Nmtが一定値に維持されており、車速が上昇し始めた後は車速に比例する変速中間軸Sの回転速度に応じて回転電機12の目標回転速度Nmtも一定の時間変化率で上昇している。そして、回転電機12の回転速度は、上記のような目標回転速度Nmtに追従して一定の時間変化率で上昇している。なお、このとき各時点において回転電機12の回転速度を目標回転速度Nmtに向かって変化させるためのトルク(イナーシャトルク)を、本願では「回転変化トルクTmi」と称する。   In this example, the target rotational speed Nmt of the rotating electrical machine 12 in the first slip traveling mode is set according to the vehicle speed (see FIG. 4). In the illustrated example, the target rotational speed Nmt is maintained at a constant value while the vehicle 6 is stopped, and after the vehicle speed starts to increase, the vehicle 6 rotates according to the rotational speed of the transmission intermediate shaft S proportional to the vehicle speed. The target rotational speed Nmt of the electric machine 12 also increases at a constant rate of time change. The rotational speed of the rotating electrical machine 12 increases at a constant rate of time following the target rotational speed Nmt as described above. At this time, the torque (inner torque) for changing the rotation speed of the rotating electrical machine 12 toward the target rotation speed Nmt at each time point is referred to as “rotation change torque Tmi” in the present application.

発進制御中における第一スリップ走行モードでは、内燃機関制御部31は内燃機関11をトルク制御し、第一クラッチ動作制御部44は、内燃機関11と回転電機12とが同期して直結係合状態となるまではスリップ係合状態にある第一クラッチCL1を回転速度制御する。回転速度制御部43bは上記のとおり回転電機12の回転速度制御を実行し、油圧調整制御部47は第二クラッチCL2を対象として油圧調整制御を実行する。油圧調整制御部47による油圧調整制御の詳細な内容については後述する。   In the first slip traveling mode during the start control, the internal combustion engine control unit 31 controls the torque of the internal combustion engine 11, and the first clutch operation control unit 44 is in the direct engagement state in which the internal combustion engine 11 and the rotating electrical machine 12 are synchronized. The rotational speed of the first clutch CL1 that is in the slip engagement state is controlled until The rotation speed control unit 43b executes the rotation speed control of the rotating electrical machine 12 as described above, and the hydraulic pressure adjustment control unit 47 executes the hydraulic pressure adjustment control for the second clutch CL2. Details of the hydraulic pressure adjustment control by the hydraulic pressure adjustment control unit 47 will be described later.

本実施形態では、内燃機関制御部31は、車両要求トルクTdから回転電機12の目標トルクを減算した値を発進制御中の目標トルクに設定し、内燃機関トルクTeがその目標トルクに一致するように内燃機関11をトルク制御する。なお、回転電機12が発電を行う場合には、内燃機関制御部31は、車両要求トルクTdと発電ためのトルク(発電トルク)との加算値を発進制御中の目標トルクに設定し、内燃機関トルクTeがその目標トルクに一致するように内燃機関11をトルク制御する。   In the present embodiment, the internal combustion engine control unit 31 sets a value obtained by subtracting the target torque of the rotating electrical machine 12 from the vehicle required torque Td as the target torque during start control so that the internal combustion engine torque Te matches the target torque. The internal combustion engine 11 is torque controlled. When the rotating electrical machine 12 generates power, the internal combustion engine control unit 31 sets an added value of the vehicle request torque Td and the torque for generating power (power generation torque) as a target torque during start control, and the internal combustion engine The internal combustion engine 11 is torque controlled so that the torque Te matches the target torque.

第一クラッチ動作制御部44は、第一クラッチCL1のスリップ係合状態で、入力軸I(内燃機関11)の目標回転速度を設定し、入力軸I(内燃機関11)の回転速度(回転状態の一種)がその目標回転速度に一致するように第一クラッチCL1の伝達トルク容量Tc1を制御する回転速度制御を実行する。この第一クラッチCL1の回転速度制御では、内燃機関トルクTeがそのまま回転電機12側に伝達される。なお、第一クラッチCL1が直結係合状態となった後も、内燃機関トルクTeはそのまま回転電機12側に伝達される。第二クラッチCL2は、スリップ係合状態で基本的には車両要求トルクTdに応じたトルクを伝達するようにトルク容量制御される。   The first clutch operation control unit 44 sets the target rotational speed of the input shaft I (internal combustion engine 11) in the slip engagement state of the first clutch CL1, and the rotational speed (rotational state) of the input shaft I (internal combustion engine 11). Rotational speed control for controlling the transmission torque capacity Tc1 of the first clutch CL1 is executed so that the first rotational speed) matches the target rotational speed. In the rotational speed control of the first clutch CL1, the internal combustion engine torque Te is transmitted as it is to the rotating electrical machine 12 side. Even after the first clutch CL1 is in the direct engagement state, the internal combustion engine torque Te is transmitted to the rotating electrical machine 12 side as it is. The second clutch CL2 is basically controlled in torque capacity so as to transmit torque corresponding to the vehicle required torque Td in the slip engagement state.

本実施形態では、回転電機12の回転速度が上昇し、やがて内燃機関11の回転速度に一致すると、第二クラッチCL2をスリップ係合状態に維持したままで第一クラッチ動作制御部44は第一クラッチCL1を直結係合状態とし、第二スリップ走行モードで内燃機関トルクTeを車輪15に伝達させて車両6を走行させる。発進制御部46は、第二スリップ走行モードでも回転速度制御部43bに回転電機12の回転速度制御を実行させ、決定された目標回転速度Nmtに一致するように回転電機12の回転速度をフィードバック制御する。本例では、第二スリップ走行モードにおける回転電機12の目標回転速度Nmtは、変速中間軸Sの回転速度との差回転速度を徐々に低下させるように、変速中間軸Sの回転速度の時間変化率よりも小さい一定の時間変化率で上昇している(図4を参照)。   In the present embodiment, when the rotation speed of the rotating electrical machine 12 increases and eventually matches the rotation speed of the internal combustion engine 11, the first clutch operation control unit 44 maintains the second clutch CL2 in the slip engagement state. The clutch CL1 is brought into the direct engagement state, and the vehicle 6 is caused to travel by transmitting the internal combustion engine torque Te to the wheels 15 in the second slip traveling mode. The start control unit 46 causes the rotational speed control unit 43b to perform the rotational speed control of the rotating electrical machine 12 even in the second slip traveling mode, and feedback-controls the rotational speed of the rotating electrical machine 12 so as to match the determined target rotational speed Nmt. To do. In this example, the target rotational speed Nmt of the rotating electrical machine 12 in the second slip traveling mode changes with time in the rotational speed of the transmission intermediate shaft S so as to gradually decrease the differential rotational speed with respect to the rotational speed of the transmission intermediate shaft S. It rises at a constant rate of time change smaller than the rate (see FIG. 4).

発進制御中における第二スリップ走行モードでは、内燃機関制御部31は引き続き内燃機関11をトルク制御し、直結係合状態にある第一クラッチCL1を介して内燃機関トルクTeがそのまま回転電機12側に伝達される。回転速度制御部43bは引き続き回転電機12の回転速度制御を実行し、油圧調整制御部47は引き続き第二クラッチCL2を対象として油圧調整制御を実行する。これらの各制御に関しては、第一スリップ走行モード中の各制御と同様である。変速中間軸Sの回転速度が上昇し、やがて回転電機12の回転速度に一致すると、第二クラッチ動作制御部45aは第二クラッチCL2を直結係合状態とする。第二クラッチCL2が直結係合状態となった後は、回転電機12の回転速度は車輪15の回転速度に応じて一意に定まる状態となり、もはや回転速度制御を維持できなくなる。この場合、回転電機制御部43は、目標トルク決定部43aにより決定された目標トルクTmfを出力させるように回転電機12をトルク制御する。   In the second slip traveling mode during the start control, the internal combustion engine control unit 31 continues to control the torque of the internal combustion engine 11, and the internal combustion engine torque Te is directly applied to the rotating electrical machine 12 via the first clutch CL1 in the direct engagement state. Communicated. The rotation speed control unit 43b continues to execute the rotation speed control of the rotating electrical machine 12, and the hydraulic pressure adjustment control unit 47 continues to execute the hydraulic pressure adjustment control for the second clutch CL2. Each of these controls is the same as each control during the first slip traveling mode. When the rotational speed of the transmission intermediate shaft S increases and eventually coincides with the rotational speed of the rotating electrical machine 12, the second clutch operation control unit 45a places the second clutch CL2 in the direct engagement state. After the second clutch CL2 is in the direct engagement state, the rotational speed of the rotating electrical machine 12 is uniquely determined according to the rotational speed of the wheel 15, and the rotational speed control can no longer be maintained. In this case, the rotating electrical machine control unit 43 controls the torque of the rotating electrical machine 12 to output the target torque Tmf determined by the target torque determining unit 43a.

このように本実施形態では、発進制御中、第二クラッチCL2は、基本的にはスリップ係合状態とされると共に、伝達トルク容量Tc2が車両要求トルクTdに応じたトルクとなるように制御される。これにより、安定的に自立運転を継続できる回転速度で内燃機関11を駆動しながら、車両要求トルクTdを満足させて適切に車両6を駆動することができる。車両6の発進後、車速が十分に高くなると、第二クラッチCL2はスリップ係合状態から直結係合状態へと移行されてパラレル走行モードで走行する状態となる。   As described above, in the present embodiment, during the start control, the second clutch CL2 is basically in the slip engagement state and controlled so that the transmission torque capacity Tc2 becomes a torque corresponding to the vehicle required torque Td. The As a result, the vehicle 6 can be appropriately driven while satisfying the vehicle required torque Td while driving the internal combustion engine 11 at a rotational speed at which the independent operation can be stably continued. When the vehicle speed becomes sufficiently high after the vehicle 6 has started, the second clutch CL2 is shifted from the slip engagement state to the direct engagement state, and travels in the parallel travel mode.

ところで、発進制御中における回転電機12の目標トルクTmfは、車両要求トルクTdから内燃機関11の目標トルクを減算した値となる。なお、この回転電機12の目標トルクTmfは、発進制御の終了後(パラレル走行モードでの走行中)も維持される。   Incidentally, the target torque Tmf of the rotating electrical machine 12 during the start control is a value obtained by subtracting the target torque of the internal combustion engine 11 from the vehicle required torque Td. The target torque Tmf of the rotating electrical machine 12 is maintained even after the start control is finished (during traveling in the parallel traveling mode).

発進制御中、上述したような各制御が精確に実行される理想状態では、図2(a)に示すように、入力軸I及び第一クラッチCL1を介して回転電機12に伝達されるトルクは内燃機関11の目標トルク(ここではこれを「Te0」とする)に完全に一致し、スリップ係合状態にある第二クラッチCL2を介して出力軸Oに伝達されるトルクは、車両要求トルクTd(ここではこれを「Td0」とする)に完全に一致する。この場合、発進制御に伴う回転電機12の回転速度制御中における回転電機12の目標トルクTmf(ここではこれを「Tm0」とする)は、車両要求トルクTd0から内燃機関11の目標トルクTe0を減算した値に完全に一致する(Tm0=Td0−Te0)。そのため、発進制御が終了して回転電機12のトルク制御が開始されたとしても、第二クラッチCL2がスリップ係合状態から直結係合状態へと移行する前後で回転電機12の目標トルクTmfはTm0のまま維持され、出力軸Oにトルク変動が伝達されることはない。なお、ここではモデルを単純化して説明を簡略化するべく、第1速段での変速比を「1」としている。   In an ideal state where each control as described above is accurately executed during the start control, the torque transmitted to the rotating electrical machine 12 via the input shaft I and the first clutch CL1 is as shown in FIG. The torque that completely matches the target torque of the internal combustion engine 11 (here, “Te0”) and is transmitted to the output shaft O via the second clutch CL2 in the slip engagement state is the vehicle required torque Td. (This is assumed to be “Td0” here). In this case, the target torque Tmf of the rotating electrical machine 12 during the rotational speed control of the rotating electrical machine 12 in accordance with the start control (here, this is referred to as “Tm0”) is obtained by subtracting the target torque Te0 of the internal combustion engine 11 from the vehicle required torque Td0. (Tm0 = Td0−Te0). Therefore, even if the start control is finished and the torque control of the rotating electrical machine 12 is started, the target torque Tmf of the rotating electrical machine 12 is Tm0 before and after the second clutch CL2 shifts from the slip engagement state to the direct engagement state. The torque fluctuation is not transmitted to the output shaft O. Here, in order to simplify the model and simplify the description, the gear ratio at the first speed is set to “1”.

しかし現実的には、図2(b)に示すように入力軸I及び第一クラッチCL1を介して回転電機12に伝達される内燃機関11のトルク(ここではこれを「Te1」とする)は内燃機関11の目標トルクTe0に完全には一致せず、目標トルクTe0に対して所定の差分ΔTeを有する場合がある(Te1=Te0+ΔTe)。この場合、回転速度制御された回転電機12のトルク(ここではこれを「Tm1」とする)は、内燃機関トルクTeのうちの目標トルクTe0に対する差分ΔTeを打ち消すように目標トルクTm0から減算される(Tm1=Tm0−ΔTe)。その結果、スリップ係合状態にある第二クラッチCL2を介して出力軸Oに伝達されるトルクは、車両要求トルクTd0に一致する。   However, in reality, as shown in FIG. 2B, the torque of the internal combustion engine 11 transmitted to the rotating electrical machine 12 via the input shaft I and the first clutch CL1 (here, this is referred to as “Te1”) is In some cases, the target torque Te0 of the internal combustion engine 11 does not completely coincide with the target torque Te0 and has a predetermined difference ΔTe (Te1 = Te0 + ΔTe). In this case, the torque of the rotating electrical machine 12 whose rotational speed is controlled (here, this is referred to as “Tm1”) is subtracted from the target torque Tm0 so as to cancel the difference ΔTe of the internal combustion engine torque Te with respect to the target torque Te0. (Tm1 = Tm0−ΔTe). As a result, the torque transmitted to the output shaft O via the second clutch CL2 in the slip engagement state matches the vehicle required torque Td0.

一方、発進制御が終了して第二クラッチCL2が直結係合状態となり、パラレル走行モードで回転電機12のトルク制御が開始されると、回転電機12のトルクは瞬時的且つ強制的に目標トルクTm0に戻される。その結果、直結係合状態となった第二クラッチCL2を介して出力軸Oに伝達されるトルク(ここではこれを「Td1」とする)は、内燃機関トルクTe1(=Te0+ΔTe)と回転電機12の目標トルクTm0(=Td0−Te0)とを加算した値となる(Td1=Td0+ΔTe)。このように、内燃機関11が実際に出力するトルクの誤差(差分ΔTe)に起因して、発進制御が終了して回転電機12のトルク制御が開始される際(第二スリップ走行モードからパラレル走行モードへの切り替えの際)に、第二クラッチCL2がスリップ係合状態から直結係合状態へと移行する前後で、第二クラッチCL2を介して出力軸Oに伝達されるトルクがTd0からTd1(=Td0+ΔTe)へと変化する。すなわち、出力軸Oに伝達されるトルクには、内燃機関トルクTeのうちの目標トルクTe0に対する差分ΔTeに相当する分のトルク段差が生じる。このようなトルク段差が生じると、車両6の乗員にショックを感じさせる可能性があるので好ましくない。   On the other hand, when the start control is finished and the second clutch CL2 is in the direct engagement state and the torque control of the rotating electrical machine 12 is started in the parallel travel mode, the torque of the rotating electrical machine 12 is instantaneously and forcibly set to the target torque Tm0. Returned to As a result, the torque transmitted to the output shaft O via the second clutch CL2 in the direct engagement state (here, this is referred to as “Td1”) is the internal combustion engine torque Te1 (= Te0 + ΔTe) and the rotating electrical machine 12. The target torque Tm0 (= Td0−Te0) is added (Td1 = Td0 + ΔTe). As described above, when the start control is finished and the torque control of the rotating electrical machine 12 is started due to the error (difference ΔTe) of the torque actually output by the internal combustion engine 11 (from the second slip travel mode to the parallel travel). The torque transmitted to the output shaft O via the second clutch CL2 before and after the second clutch CL2 shifts from the slip engagement state to the direct engagement state when the mode is switched to the mode is changed from Td0 to Td1 ( = Td0 + ΔTe). That is, in the torque transmitted to the output shaft O, a torque step corresponding to the difference ΔTe with respect to the target torque Te0 in the internal combustion engine torque Te is generated. If such a torque level difference occurs, there is a possibility that an occupant of the vehicle 6 may feel a shock.

そこで、このような課題の解決を図るべく、本実施形態では発進制御と並行して油圧調整制御を実行する油圧調整制御部47を備える構成を採用している。以下では、油圧調整制御部47により実行される油圧調整制御の詳細について、図2〜図4を参照して説明する。   Therefore, in order to solve such problems, the present embodiment employs a configuration including a hydraulic pressure adjustment control unit 47 that executes hydraulic pressure adjustment control in parallel with the start control. Below, the detail of the hydraulic pressure adjustment control performed by the hydraulic pressure adjustment control part 47 is demonstrated with reference to FIGS.

3.油圧調整制御の内容
本実施形態に係る油圧調整制御の内容について説明する。なお、この油圧調整制御は、発進制御の開始と同時に開始される。本例では、油圧調整制御は、第一クラッチCL1及び第二クラッチCL2の双方のスリップ係合状態で第一クラッチCL1の回転速度制御が実行されつつ内燃機関トルクTeが車輪15に伝達されている状態で実行される。より具体的には、油圧調整制御は、車両6の発進時に第二クラッチCL2がスリップ係合状態となった後、当該第二クラッチCL2をスリップ係合状態から直結係合状態に移行させるまでの間に実行される。本実施形態では、油圧調整制御は、第二クラッチCL2がスリップ係合状態となった後、当該第二クラッチCL2がスリップ係合状態から直結係合状態に移行するまでの間、継続的に実行される。
3. Content of Hydraulic Adjustment Control The content of hydraulic adjustment control according to the present embodiment will be described. This hydraulic pressure adjustment control is started simultaneously with the start of the start control. In this example, in the hydraulic pressure adjustment control, the internal combustion engine torque Te is transmitted to the wheel 15 while the rotational speed control of the first clutch CL1 is executed in the slip engagement state of both the first clutch CL1 and the second clutch CL2. Executed in state. More specifically, the hydraulic pressure adjustment control is performed until the second clutch CL2 is shifted from the slip engagement state to the direct engagement state after the second clutch CL2 is in the slip engagement state when the vehicle 6 starts. Executed in between. In the present embodiment, the hydraulic pressure adjustment control is continuously executed after the second clutch CL2 enters the slip engagement state until the second clutch CL2 shifts from the slip engagement state to the direct engagement state. Is done.

図2(c)にその基本概念を示すように、油圧調整制御では、回転電機12の目標トルクをTm1(=Tm0−ΔTe)からTm0に向かって連続的に(徐々に)変化させると共に、第二クラッチCL2を介して出力軸Oに伝達されるトルクをTd0からTd1(=Td0+ΔTe)に向かって連続的に変化させる。   As shown in FIG. 2 (c), in the hydraulic pressure adjustment control, the target torque of the rotating electrical machine 12 is continuously (gradually) changed from Tm1 (= Tm0−ΔTe) to Tm0. The torque transmitted to the output shaft O via the second clutch CL2 is continuously changed from Td0 to Td1 (= Td0 + ΔTe).

図3は、回転電機制御部43(目標トルク決定部43aと回転速度制御部43bとを含む)及び油圧調整制御部47の構成を示すブロック図である。
目標トルク決定部43aには、内燃機関トルク指令Ceと車両要求トルクTdとが入力される。本実施形態では、内燃機関トルク指令Ceは、内燃機関11のトルク制御における目標トルクの指令値であり、内燃機関制御部31により決定される。車両要求トルクTdは、要求トルク決定部42により決定される。目標トルク決定部43aは目標トルク演算器51を備えている。目標トルク演算器51は、車両要求トルクTdから内燃機関トルク指令Ceを減算する演算を行い、その演算結果としての減算値(Td−Ce)を目標トルクTmfとして出力する。
FIG. 3 is a block diagram showing configurations of the rotating electrical machine control unit 43 (including the target torque determination unit 43a and the rotation speed control unit 43b) and the hydraulic pressure adjustment control unit 47.
The target torque determining unit 43a receives the internal combustion engine torque command Ce and the vehicle request torque Td. In the present embodiment, the internal combustion engine torque command Ce is a target torque command value in the torque control of the internal combustion engine 11, and is determined by the internal combustion engine control unit 31. The required vehicle torque Td is determined by the required torque determination unit 42. The target torque determination unit 43 a includes a target torque calculator 51. The target torque calculator 51 performs a calculation for subtracting the internal combustion engine torque command Ce from the vehicle request torque Td, and outputs a subtraction value (Td−Ce) as the calculation result as the target torque Tmf.

第一クラッチCL1が回転速度制御されている状態では、内燃機関トルク指令Ceに応じた内燃機関トルクTeが、入力軸I及び第一クラッチCL1を介してそのまま回転電機12側に伝達される。すなわち、第一クラッチCL1の伝達トルク容量Tc1の誤差の影響が排除された状態で、内燃機関トルク指令Ceに応じた内燃機関トルクTeが回転電機12側に伝達される。従って、目標トルク決定部43aは、車輪15を駆動するための車両要求トルクTdと入力軸Iを介して回転電機12に伝達されるトルクの指令値となる内燃機関トルク指令Ceとの差分に基づいて回転電機12の目標トルクTmfを決定する。なお、このようにして算出される目標トルクTmfは、フィードフォワード的に決定されるフィードフォワードトルク指令である。   In a state where the first clutch CL1 is controlled in rotational speed, the internal combustion engine torque Te according to the internal combustion engine torque command Ce is transmitted to the rotating electrical machine 12 side as it is through the input shaft I and the first clutch CL1. That is, the internal combustion engine torque Te corresponding to the internal combustion engine torque command Ce is transmitted to the rotating electrical machine 12 side in a state where the influence of the error of the transmission torque capacity Tc1 of the first clutch CL1 is eliminated. Therefore, the target torque determination unit 43a is based on the difference between the vehicle request torque Td for driving the wheels 15 and the internal combustion engine torque command Ce that is a command value of torque transmitted to the rotary electric machine 12 via the input shaft I. Thus, the target torque Tmf of the rotating electrical machine 12 is determined. The target torque Tmf calculated in this way is a feedforward torque command determined in a feedforward manner.

回転速度制御部43bには、回転電機12の目標回転速度Nmtと実回転速度Nmrとが入力される。回転電機12の目標回転速度Nmtは、上記で説明したように設定される。回転電機12の実回転速度Nmrは、中間軸回転速度センサSe2により検出される。目標回転速度Nmtと実回転速度Nmrとは減算器61に入力され、実回転速度Nmrと目標回転速度Nmtとの差分(Nmr−Nmt)が回転速度偏差ΔNmとして出力される。回転速度偏差ΔNmは補正トルク演算器52に入力される。   The target rotational speed Nmt and the actual rotational speed Nmr of the rotating electrical machine 12 are input to the rotational speed control unit 43b. The target rotational speed Nmt of the rotating electrical machine 12 is set as described above. The actual rotational speed Nmr of the rotating electrical machine 12 is detected by the intermediate shaft rotational speed sensor Se2. The target rotational speed Nmt and the actual rotational speed Nmr are input to the subtractor 61, and the difference (Nmr−Nmt) between the actual rotational speed Nmr and the target rotational speed Nmt is output as the rotational speed deviation ΔNm. The rotational speed deviation ΔNm is input to the correction torque calculator 52.

補正トルク演算器52は、入力された回転速度偏差ΔNmに基づいて、当該回転速度偏差ΔNmをゼロとするような補正トルクTmbを算出して出力する。補正トルク演算器52は、公知の比例制御、積分制御、及び微分制御の1つ以上を適宜組み合わせた演算を行う構成とすることができる。本実施形態では、補正トルク演算器52は比例積分制御(PI制御)演算を行う構成とされている。補正トルク演算器52は、その演算結果を、目標トルクTmfに対する補正トルクTmbとして出力する。なお、このようにして算出される補正トルクTmbは、フィードバック的に決定されるフィードバックトルク指令である。   The correction torque calculator 52 calculates and outputs a correction torque Tmb that makes the rotation speed deviation ΔNm zero based on the input rotation speed deviation ΔNm. The correction torque calculator 52 can be configured to perform calculation by appropriately combining at least one of known proportional control, integral control, and differential control. In the present embodiment, the correction torque calculator 52 is configured to perform proportional integral control (PI control) calculation. The correction torque calculator 52 outputs the calculation result as a correction torque Tmb for the target torque Tmf. The correction torque Tmb calculated in this way is a feedback torque command determined in a feedback manner.

目標トルク演算器51により算出された目標トルクTmfと補正トルク演算器52により算出された補正トルクTmbとは加算器62に入力され、目標トルクTmfと補正トルクTmbとの加算値(Tmf+Tmb)が、回転電機トルク指令Cmとして回転電機制御部43から出力される。回転電機制御部43は、この回転電機トルク指令Cmに基づいて回転電機12の動作を制御する。   The target torque Tmf calculated by the target torque calculator 51 and the correction torque Tmb calculated by the correction torque calculator 52 are input to the adder 62, and an added value (Tmf + Tmb) of the target torque Tmf and the correction torque Tmb is obtained. The rotating electrical machine control unit 43 outputs the rotating electrical machine torque command Cm. The rotating electrical machine control unit 43 controls the operation of the rotating electrical machine 12 based on the rotating electrical machine torque command Cm.

油圧調整制御部47には、少なくとも車両要求トルクTdが入力される。また、油圧調整制御部47は目標トルク容量演算器53を備えている。目標トルク容量演算器53は、入力された車両要求トルクTdに基づいて、当該車両要求トルクTdに応じた目標トルク容量Tcfを算出して出力する。なお、このようにして算出される目標トルク容量Tcfは、フィードフォワード的に決定されるフィードフォワードトルク容量指令である。このような目標トルク容量Tcfがそのまま第二クラッチトルク容量指令Cc2として算出され、この第二クラッチトルク容量指令Cc2に応じた第二クラッチ油圧指令Pc2に基づいて第二クラッチCL2の動作が制御される場合の構成は、本発明における前提構成であって従来公知である。   At least the vehicle required torque Td is input to the hydraulic pressure adjustment control unit 47. Further, the hydraulic pressure adjustment control unit 47 includes a target torque capacity calculator 53. The target torque capacity calculator 53 calculates and outputs a target torque capacity Tcf corresponding to the vehicle request torque Td based on the input vehicle request torque Td. The target torque capacity Tcf calculated in this way is a feedforward torque capacity command determined in a feedforward manner. Such target torque capacity Tcf is directly calculated as the second clutch torque capacity command Cc2, and the operation of the second clutch CL2 is controlled based on the second clutch hydraulic pressure command Pc2 corresponding to the second clutch torque capacity command Cc2. The configuration of the case is a premise configuration in the present invention and is conventionally known.

本実施形態では、油圧調整制御部47には、補正トルク演算器52により算出された補正トルクTmbと、中間軸回転速度センサSe2により検出された回転電機12の実回転速度Nmrとが更に入力される。また、油圧調整制御部47は、回転変化トルク演算器54とトルク容量補正量演算器55と油圧指令生成器56とを備えている。回転変化トルク演算器54は、入力された実回転速度Nmrに基づいて、回転電機12のロータの回転変化トルクTmiを算出する演算を行う。ここで回転変化トルクTmiは、回転電機12の回転速度制御に際して目標回転速度Nmtに向かって実回転速度Nmrを変化させるためのトルク(イナーシャトルク)である。回転変化トルク演算器54は、回転電機12のロータのイナーシャJmと実回転速度Nmrの時間微分とを乗算し、その乗算値(Jm・(dNmr/dt))を回転変化トルクTmiとして出力する。   In the present embodiment, the hydraulic pressure adjustment controller 47 further receives the correction torque Tmb calculated by the correction torque calculator 52 and the actual rotational speed Nmr of the rotating electrical machine 12 detected by the intermediate shaft rotational speed sensor Se2. The The hydraulic pressure adjustment control unit 47 includes a rotation change torque calculator 54, a torque capacity correction amount calculator 55, and a hydraulic pressure command generator 56. The rotation change torque calculator 54 calculates the rotation change torque Tmi of the rotor of the rotating electrical machine 12 based on the inputted actual rotation speed Nmr. Here, the rotation change torque Tmi is a torque (inner torque) for changing the actual rotation speed Nmr toward the target rotation speed Nmt when the rotation speed of the rotating electrical machine 12 is controlled. The rotation change torque calculator 54 multiplies the rotor inertia Jm of the rotating electrical machine 12 by the time derivative of the actual rotation speed Nmr and outputs the multiplication value (Jm · (dNmr / dt)) as the rotation change torque Tmi.

補正トルク演算器52により算出された補正トルクTmbと回転変化トルク演算器54により算出された回転変化トルクTmiとは減算器63に入力され、補正トルクTmbと回転変化トルクTmiとの差分(Tmb−Tmi)がトルク誤差ΔTとして出力される。このトルク誤差ΔTは、内燃機関11が実際に出力する内燃機関トルクTeの誤差に起因するものであり、「回転変化トルクTmi相当分を除外して算出した補正トルクTmb」であるとも言える。回転電機12の実回転速度Nmrが既に目標回転速度Nmtに一致している状態では回転変化トルクTmiはゼロであり、トルク誤差ΔTは補正トルクTmbに一致する。このトルク誤差ΔTはトルク容量補正量演算器55に入力される。   The correction torque Tmb calculated by the correction torque calculator 52 and the rotation change torque Tmi calculated by the rotation change torque calculator 54 are input to the subtractor 63, and the difference (Tmb−) between the correction torque Tmb and the rotation change torque Tmi. Tmi) is output as the torque error ΔT. This torque error ΔT is caused by the error of the internal combustion engine torque Te actually output by the internal combustion engine 11, and can be said to be “a correction torque Tmb calculated by excluding the portion corresponding to the rotational change torque Tmi”. In a state where the actual rotation speed Nmr of the rotating electrical machine 12 already matches the target rotation speed Nmt, the rotation change torque Tmi is zero, and the torque error ΔT matches the correction torque Tmb. This torque error ΔT is input to the torque capacity correction amount calculator 55.

トルク容量補正量演算器55は、入力されたトルク誤差ΔTに基づいてトルク容量補正量Tcbを算出する。本実施形態では、トルク容量補正量演算器55は、トルク誤差ΔTをゼロに近づけるようなトルク容量補正量Tcbを算出して出力する。トルク容量補正量演算器55は、公知の比例制御、積分制御、及び微分制御の1つ以上を適宜組み合わせた演算を行う構成とすることができる。本実施形態では、トルク容量補正量演算器55は積分制御(I制御)演算を行う構成とされている。すなわち、トルク容量補正量演算器55は、トルク誤差ΔTを時間積分した演算値に基づいて、トルク容量補正量Tcbを算出する。トルク容量補正量演算器55は、その演算結果を、目標トルク容量Tcfに対するトルク容量補正量Tcbとして出力する。なお、このようにして算出されるトルク容量補正量Tcbは、フィードバック的に決定されるフィードバックトルク容量指令である。   The torque capacity correction amount calculator 55 calculates a torque capacity correction amount Tcb based on the input torque error ΔT. In the present embodiment, the torque capacity correction amount calculator 55 calculates and outputs a torque capacity correction amount Tcb that brings the torque error ΔT close to zero. The torque capacity correction amount calculator 55 can be configured to perform a calculation by appropriately combining at least one of known proportional control, integral control, and differential control. In this embodiment, the torque capacity correction amount calculator 55 is configured to perform integral control (I control) calculation. That is, the torque capacity correction amount calculator 55 calculates the torque capacity correction amount Tcb based on the calculated value obtained by integrating the torque error ΔT over time. The torque capacity correction amount calculator 55 outputs the calculation result as a torque capacity correction amount Tcb for the target torque capacity Tcf. The torque capacity correction amount Tcb calculated in this way is a feedback torque capacity command determined in a feedback manner.

目標トルク容量演算器53により算出された目標トルク容量Tcfとトルク容量補正量演算器55により算出されたトルク容量補正量Tcbとは減算器64に入力され、目標トルク容量Tcfからトルク容量補正量Tcbを減算した減算値(Tcf−Tcb)が、第二クラッチトルク容量指令Cc2として算出される。   The target torque capacity Tcf calculated by the target torque capacity calculator 53 and the torque capacity correction amount Tcb calculated by the torque capacity correction amount calculator 55 are input to the subtractor 64, and the torque capacity correction amount Tcb is calculated from the target torque capacity Tcf. A subtraction value (Tcf−Tcb) obtained by subtracting is calculated as the second clutch torque capacity command Cc2.

油圧指令生成器56は、算出された第二クラッチトルク容量指令Cc2に基づいて、第二クラッチCL2に対する供給油圧の指令値である第二クラッチ油圧指令Pc2を生成する。生成された第二クラッチ油圧指令Pc2は、油圧調整制御部47から油圧制御装置25に対して出力される。油圧制御装置25は、第二クラッチ油圧指令Pc2に応じた油圧を第二クラッチCL2に供給する。   Based on the calculated second clutch torque capacity command Cc2, the hydraulic pressure command generator 56 generates a second clutch hydraulic pressure command Pc2 that is a command value of the supply hydraulic pressure to the second clutch CL2. The generated second clutch hydraulic pressure command Pc2 is output from the hydraulic pressure adjustment control unit 47 to the hydraulic pressure control device 25. The hydraulic control device 25 supplies the hydraulic pressure corresponding to the second clutch hydraulic pressure command Pc2 to the second clutch CL2.

このように本実施形態では、スリップ係合状態にある第二クラッチCL2の回転速度制御が実行されている状態で回転電機12の回転速度制御が実行されると共に、第二クラッチCL2がスリップ係合状態となった後、当該第二クラッチCL2のスリップ係合状態から直結係合状態への移行までの間に継続的に実行される油圧調整制御により、回転電機12の回転速度制御中におけるトルク誤差ΔT(補正トルクTmbを含む)に基づいて第二クラッチCL2への供給油圧が制御される。具体的には、油圧調整制御部47にはトルク容量補正量演算器55が備えられ、油圧調整制御部47は、スリップ係合状態にある第二クラッチCL2が直結係合状態へと移行する際に、回転電機12の回転速度制御におけるトルク誤差ΔT(補正トルクTmbを含む)をゼロとするようなトルク容量補正量Tcbを決定する。また、本実施形態では、油圧調整制御部47は、決定したトルク容量補正量Tcbを、同じく油圧調整制御部47に備えられる目標トルク容量演算器53により算出された目標トルク容量Tcfから減算することによって第二クラッチトルク容量指令Cc2を決定する。油圧調整制御部47は、この第二クラッチトルク容量指令Cc2に基づいて第二クラッチ油圧指令Pc2を生成し、この第二クラッチ油圧指令Pc2に基づいて第二クラッチCL2の伝達トルク容量Tc2を制御する。   As described above, in the present embodiment, the rotational speed control of the rotating electrical machine 12 is executed while the rotational speed control of the second clutch CL2 in the slip engagement state is being executed, and the second clutch CL2 is slip-engaged. The torque error during the rotational speed control of the rotating electrical machine 12 is performed by the hydraulic pressure adjustment control that is continuously executed after the second clutch CL2 transitions from the slip engagement state to the direct engagement state. The hydraulic pressure supplied to the second clutch CL2 is controlled on the basis of ΔT (including the correction torque Tmb). Specifically, the hydraulic pressure adjustment control unit 47 is provided with a torque capacity correction amount calculator 55, and the hydraulic pressure adjustment control unit 47 is used when the second clutch CL2 in the slip engagement state shifts to the direct engagement state. Then, a torque capacity correction amount Tcb is determined so that the torque error ΔT (including the correction torque Tmb) in the rotational speed control of the rotating electrical machine 12 is zero. In the present embodiment, the hydraulic adjustment control unit 47 subtracts the determined torque capacity correction amount Tcb from the target torque capacity Tcf calculated by the target torque capacity calculator 53 that is also provided in the hydraulic pressure adjustment control unit 47. To determine the second clutch torque capacity command Cc2. The hydraulic pressure adjustment control unit 47 generates a second clutch hydraulic pressure command Pc2 based on the second clutch torque capacity command Cc2, and controls the transmission torque capacity Tc2 of the second clutch CL2 based on the second clutch hydraulic pressure command Pc2. .

このような構成を採用したことにより、仮に実際の内燃機関トルクTeがある程度の誤差を有していたとしても、それに起因して生じるトルク誤差ΔT(補正トルクTmb)を連続的に(徐々に)小さくすることができる。そして、そのトルク誤差ΔT(補正トルクTmb)を、第二クラッチCL2がスリップ係合状態から直結係合状態へと移行する時点において十分にゼロに近づけることができる。よって、第二スリップ走行モードからパラレル走行モードへのモード切替時に、第二クラッチCL2がスリップ係合状態から直結係合状態へと移行する際におけるトルク段差の発生を抑制することができる。従って、車両6の乗員にショックを感じさせることを極力回避することができる。   By adopting such a configuration, even if the actual internal combustion engine torque Te has a certain amount of error, the torque error ΔT (correction torque Tmb) caused by it is continuously (gradually) increased. Can be small. The torque error ΔT (correction torque Tmb) can be made sufficiently close to zero at the time when the second clutch CL2 shifts from the slip engagement state to the direct engagement state. Therefore, when the mode is switched from the second slip traveling mode to the parallel traveling mode, it is possible to suppress the occurrence of a torque step when the second clutch CL2 shifts from the slip engagement state to the direct engagement state. Therefore, it can be avoided as much as possible that the passenger of the vehicle 6 feels a shock.

また、油圧調整制御部47には回転変化トルク演算器54及び減算器63が備えられ、油圧調整制御部47は、回転電機12の実回転速度Nmrを目標回転速度Nmtに向かって変化させるための回転変化トルクTmi相当分を除外して算出した補正トルクTmb(すなわち、上述したトルク誤差ΔT)に基づいて油圧調整制御を実行する。このような構成を採用したことにより、油圧調整制御において、内燃機関トルクTeの誤差による定常的な誤差のみを考慮して第二クラッチトルク容量指令Cc2及びそれに応じた第二クラッチ油圧指令Pc2を適切に決定することができ、トルク段差の発生を有効に抑制することができる。このような構成は、本実施形態における時刻T02以降のように、回転電機12の回転速度制御における目標回転速度Nmtが経時変化し、それに応じた回転変化トルクTmiの出力が必要となるような構成では特に有効である。   The hydraulic pressure adjustment control unit 47 includes a rotation change torque calculator 54 and a subtractor 63. The hydraulic pressure adjustment control unit 47 changes the actual rotation speed Nmr of the rotating electrical machine 12 toward the target rotation speed Nmt. The hydraulic pressure adjustment control is executed based on the correction torque Tmb calculated by excluding the amount corresponding to the rotation change torque Tmi (that is, the torque error ΔT described above). By adopting such a configuration, in the hydraulic pressure adjustment control, the second clutch torque capacity command Cc2 and the second clutch hydraulic pressure command Pc2 corresponding to the second clutch torque capacity command Cc2 are appropriately considered in consideration of only a steady error due to the error of the internal combustion engine torque Te. Therefore, it is possible to effectively suppress the occurrence of a torque step. Such a configuration is a configuration in which the target rotational speed Nmt in the rotational speed control of the rotating electrical machine 12 changes with time, and the output of the rotational change torque Tmi corresponding thereto is required, as at time T02 and thereafter in the present embodiment. Is particularly effective.

4.具体例
本実施形態に係る発進制御及び油圧調整制御の具体例について、図4のタイムチャートを参照して説明する。なお、本例では、車両6が停車中に発電を行っている状態から、第一スリップ走行モード及び第二スリップ走行モードをこの順に経て、最終的にパラレル走行モードに切り替えられる状況を想定している。
4). Specific Example A specific example of start control and hydraulic pressure adjustment control according to the present embodiment will be described with reference to a time chart of FIG. In this example, it is assumed that the vehicle 6 is generating electricity while it is stopped, and the first slip travel mode and the second slip travel mode are passed through in this order, and finally the parallel travel mode is switched. Yes.

車両6の停車中に内燃機関トルクTeを用いて回転電機12が発電を行っている状態で、時刻T01において車両6の運転者による発進動作が検知されると発進制御が開始され、第一スリップ走行モードが実現される。この第一スリップ走行モードでは、第一クラッチCL1及び第二クラッチCL2の双方のスリップ係合状態で内燃機関トルクTeが車輪15に伝達される。時刻T01において、内燃機関制御部31は内燃機関11のトルク制御を開始すると共に、第一クラッチ動作制御部44は第一クラッチCL1の回転速度制御を開始する。ここで、第一クラッチCL1の回転速度制御では、本例では入力軸Iの回転速度を目標回転速度に一致させるように、第一クラッチCL1の伝達トルク容量Tc1が制御される。この第一クラッチCL1の回転速度制御では、内燃機関トルクTeがそのまま回転電機12側に伝達される。また、時刻T01において、回転速度制御部43bは回転電機12の回転速度制御を開始する。   When the starting operation by the driver of the vehicle 6 is detected at time T01 in a state where the rotating electrical machine 12 is generating electric power using the internal combustion engine torque Te while the vehicle 6 is stopped, the start control is started and the first slip A running mode is realized. In the first slip traveling mode, the internal combustion engine torque Te is transmitted to the wheels 15 in the slip engagement state of both the first clutch CL1 and the second clutch CL2. At time T01, the internal combustion engine control unit 31 starts torque control of the internal combustion engine 11, and the first clutch operation control unit 44 starts rotation speed control of the first clutch CL1. Here, in the rotational speed control of the first clutch CL1, in this example, the transmission torque capacity Tc1 of the first clutch CL1 is controlled so that the rotational speed of the input shaft I matches the target rotational speed. In the rotational speed control of the first clutch CL1, the internal combustion engine torque Te is transmitted as it is to the rotating electrical machine 12 side. At time T01, the rotation speed control unit 43b starts the rotation speed control of the rotating electrical machine 12.

本実施形態では、発進制御の開始と同時に油圧調整制御が開始されている。すなわち、第一クラッチCL1が直結係合状態となるよりも前から油圧調整制御が実行されている。本実施形態では第一クラッチCL1は回転速度制御され、内燃機関トルクTeがそのまま回転電機12側に伝達されるので、第一スリップ走行モードが実現された時刻T01において直ちに油圧調整制御が開始されている。   In the present embodiment, the hydraulic pressure adjustment control is started simultaneously with the start control. That is, the hydraulic pressure adjustment control is executed before the first clutch CL1 is in the direct engagement state. In the present embodiment, the rotation speed of the first clutch CL1 is controlled, and the internal combustion engine torque Te is directly transmitted to the rotating electrical machine 12, so that the hydraulic pressure adjustment control is immediately started at time T01 when the first slip traveling mode is realized. Yes.

また図示の例では、第一スリップ走行モードにおける回転電機12の目標回転速度は、車速に応じて設定されている。すなわち、車両が停止したままの状態では目標回転速度が一定値に維持されており、車速が上昇し始める時刻T02以降、変速中間軸Sの回転速度に応じて回転電機12の目標回転速度も上昇している。回転電機12及び中間軸Mの回転速度が上昇し、やがて時刻T03において第一クラッチCL1によって係合される2つの(第一クラッチCL1の両側の)係合部材間の差回転速度(本例では回転電機12と内燃機関11との間の差回転速度に等しい)が所定の第一同期判定閾値Th2以下となると、第一クラッチ動作制御部44は、第一クラッチCL1がスリップ係合状態から直結係合状態になったと判定する。第一クラッチCL1の直結係合状態への移行判定後、第一クラッチ動作制御部44は第一クラッチCL1への供給油圧を徐々に上昇させ、所定時間経過後の時刻T04においてステップ的に完全係合圧まで上昇させて第一クラッチCL1を直結係合状態とする。   In the illustrated example, the target rotational speed of the rotating electrical machine 12 in the first slip traveling mode is set according to the vehicle speed. That is, the target rotational speed is maintained at a constant value when the vehicle is stopped, and the target rotational speed of the rotating electrical machine 12 increases according to the rotational speed of the transmission intermediate shaft S after time T02 when the vehicle speed starts to increase. doing. The rotational speeds of the rotating electrical machine 12 and the intermediate shaft M are increased, and eventually a differential rotational speed (in this example) between two engaging members (on both sides of the first clutch CL1) engaged by the first clutch CL1 at time T03. Is equal to or less than a predetermined first synchronization determination threshold value Th2, the first clutch operation control unit 44 directly connects the first clutch CL1 from the slip engagement state. It is determined that the engaged state has been reached. After determining that the first clutch CL1 is shifted to the direct engagement state, the first clutch operation control unit 44 gradually increases the hydraulic pressure supplied to the first clutch CL1, and completes stepwise engagement at time T04 after a predetermined time has elapsed. The first clutch CL1 is brought into a direct engagement state by raising to the combined pressure.

これにより第一スリップ走行モードから第二スリップ走行モードへのモード切替が行われるが、この第二スリップ走行モードでも内燃機関11のトルク制御及び回転電機12の回転速度制御はそのまま継続して実行される。また、第二クラッチCL2の油圧調整制御もそのまま継続して実行される。この油圧調整制御の詳細に関しては、上述したとおりである。図4には、発進制御が開始される時刻T01から、第二クラッチCL2がスリップ係合状態から直結係合状態へと移行する時刻T05までの期間において、回転電機12の目標トルクTmfに対する補正トルクTmbがゼロに向かって徐々に低下するように、第二クラッチCL2の目標トルク容量Tcfに対するトルク容量補正量Tcbが適宜増減される様子が示されている。   As a result, the mode switching from the first slip traveling mode to the second slip traveling mode is performed. Even in the second slip traveling mode, the torque control of the internal combustion engine 11 and the rotational speed control of the rotating electrical machine 12 are continuously performed as they are. The Further, the hydraulic pressure adjustment control of the second clutch CL2 is continuously executed as it is. The details of this hydraulic pressure adjustment control are as described above. FIG. 4 shows a correction torque for the target torque Tmf of the rotating electrical machine 12 during a period from time T01 when the start control is started to time T05 when the second clutch CL2 shifts from the slip engagement state to the direct engagement state. It is shown that the torque capacity correction amount Tcb with respect to the target torque capacity Tcf of the second clutch CL2 is appropriately increased or decreased so that Tmb gradually decreases toward zero.

車速の上昇に伴って変速中間軸Sの回転速度が上昇し、やがて時刻T05において第二クラッチCL2の両側の係合部材間の差回転速度(本例では回転電機12及び中間軸Mと変速中間軸Sとの間の差回転速度に等しい)が所定の第二同期判定閾値Th3以下となると、第二クラッチ動作制御部45aは第二クラッチCL2がスリップ係合状態から直結係合状態になったと判定する。第二クラッチCL2の直結係合状態への移行判定後、第二クラッチ動作制御部45aは第二クラッチCL2への供給油圧を徐々に上昇させ、所定時間経過後の時刻T06においてステップ的に完全係合圧まで上昇させて第二クラッチCL2を直結係合状態とする。これにより第二スリップ走行モードからパラレル走行モードへのモード切替が行われ、時刻T06以降、パラレル走行モードでの走行が開始される。本実施形態では、これまで説明してきたような油圧調整制御を実行することにより、仮に実際の内燃機関トルクTeがある程度の誤差を有していたとしても、第二スリップ走行モードからパラレル走行モードへのモード切替時に、第二クラッチCL2がスリップ係合状態から直結係合状態へと移行する際におけるトルク段差の発生を抑制することができる。従って、車両6の乗員にショックを感じさせることを極力回避することが可能である。   As the vehicle speed increases, the rotational speed of the transmission intermediate shaft S increases, and eventually the differential rotational speed between the engaging members on both sides of the second clutch CL2 at time T05 (in this example, the rotating electrical machine 12 and the intermediate shaft M and the intermediate transmission speed) Is equal to or less than a predetermined second synchronization determination threshold Th3, the second clutch operation control unit 45a determines that the second clutch CL2 has changed from the slip engagement state to the direct engagement state. judge. After determining the transition of the second clutch CL2 to the direct engagement state, the second clutch operation control unit 45a gradually increases the hydraulic pressure supplied to the second clutch CL2, and completes stepwise engagement at time T06 after a predetermined time has elapsed. The pressure is raised to the combined pressure, and the second clutch CL2 is brought into the direct engagement state. Thereby, mode switching from the second slip traveling mode to the parallel traveling mode is performed, and traveling in the parallel traveling mode is started after time T06. In the present embodiment, by executing the hydraulic pressure adjustment control as described above, even if the actual internal combustion engine torque Te has some error, the second slip travel mode is changed to the parallel travel mode. When the mode is switched, it is possible to suppress the occurrence of a torque step when the second clutch CL2 shifts from the slip engagement state to the direct engagement state. Therefore, it is possible to avoid as much as possible that the passenger of the vehicle 6 feels a shock.

5.その他の実施形態
最後に、本発明に係る制御装置の、その他の実施形態について説明する。なお、以下のそれぞれの実施形態で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することも可能である。
5. Other Embodiments Finally, other embodiments of the control device according to the present invention will be described. Note that the configurations disclosed in the following embodiments can be applied in combination with the configurations disclosed in other embodiments as long as no contradiction arises.

(1)上記の実施形態では、第二スリップ走行モードでは、第一クラッチCL1が直結係合状態とされると共に第二クラッチCL2がスリップ係合状態とされ、第二クラッチCL2の油圧調整制御により、第二スリップ走行モードからパラレル走行モードへのモード切替時におけるトルク段差の発生を抑制する場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、例えば第二スリップ走行モードにおいて、第二クラッチCL2が直結係合状態とされると共に第一クラッチCL1がスリップ係合状態とされる構成とすることも、本発明の好適な実施形態の一つである。この場合、第二スリップ走行モードでは、回転電機12は目標トルク決定部43aにより決定された目標トルクTmfに従ってトルク制御される。 (1) In the above embodiment, in the second slip traveling mode, the first clutch CL1 is brought into the direct engagement state and the second clutch CL2 is brought into the slip engagement state, and is controlled by the hydraulic pressure adjustment control of the second clutch CL2. The case has been described as an example in which the occurrence of a torque step during the mode switching from the second slip traveling mode to the parallel traveling mode is suppressed. However, the embodiment of the present invention is not limited to this. That is, for example, in the second slip traveling mode, the second clutch CL2 is in the direct engagement state and the first clutch CL1 is in the slip engagement state. One. In this case, in the second slip traveling mode, the rotating electrical machine 12 is torque-controlled according to the target torque Tmf determined by the target torque determining unit 43a.

この場合における発進制御及び油圧調整制御を実行する際のタイムチャートを図5に示している。本例でも、発進制御の開始と同時に油圧調整制御が開始されている。本例では、回転電機12及び中間軸Mの回転速度が上昇し、やがて時刻T13において第二クラッチCL2の両側の係合部材間の差回転速度(本例では回転電機12及び中間軸Mと変速中間軸Sとの間の差回転速度)が第三同期判定閾値Th4以下となると、第二クラッチ動作制御部45aは第二クラッチCL2がスリップ係合状態から直結係合状態になったと判定する。第二クラッチCL2の直結係合状態への移行判定後、第二クラッチ動作制御部45aは第二クラッチCL2への供給油圧を徐々に上昇させ、所定時間経過後の時刻T14においてステップ的に完全係合圧まで上昇させて第二クラッチCL2を直結係合状態とする。この場合、発進制御中における第一スリップ走行モードから第二スリップ走行モードへのモード切替時に、上記の実施形態と同様の課題が生じ得る。しかし、そのような場合でも、本例では第二クラッチCL2の油圧調整制御を実行することにより、第二クラッチCL2がスリップ係合状態から直結係合状態へと移行する際におけるトルク段差の発生を抑制することができ、車両6の乗員にショックを感じさせることを極力回避することが可能である。   A time chart for executing the start control and the hydraulic pressure adjustment control in this case is shown in FIG. Also in this example, the hydraulic pressure adjustment control is started simultaneously with the start control. In this example, the rotational speeds of the rotating electrical machine 12 and the intermediate shaft M increase, and eventually the differential rotational speed between the engaging members on both sides of the second clutch CL2 at time T13 (in this example, the rotational speed of the rotating electrical machine 12 and the intermediate shaft M is changed). When the differential rotation speed with respect to the intermediate shaft S becomes equal to or less than the third synchronization determination threshold Th4, the second clutch operation control unit 45a determines that the second clutch CL2 has changed from the slip engagement state to the direct engagement state. After determining the transition to the direct engagement state of the second clutch CL2, the second clutch operation control unit 45a gradually increases the hydraulic pressure supplied to the second clutch CL2, and completes the engagement stepwise at time T14 after a predetermined time has elapsed. The pressure is raised to the combined pressure, and the second clutch CL2 is brought into the direct engagement state. In this case, the same problem as in the above-described embodiment may occur when the mode is switched from the first slip travel mode to the second slip travel mode during the start control. However, even in such a case, in this example, by executing the hydraulic pressure adjustment control of the second clutch CL2, a torque step is generated when the second clutch CL2 shifts from the slip engagement state to the direct engagement state. Therefore, it is possible to prevent the passenger of the vehicle 6 from feeling a shock as much as possible.

第二スリップ走行モードにおいて、車速の上昇に伴って変速中間軸S及び回転電機12の回転速度が上昇し、やがて時刻T15において第一クラッチCL1の両側の係合部材間の差回転速度(本例では回転電機12と内燃機関11との間の差回転速度)が第四同期判定閾値Th5以下となると、第一クラッチ動作制御部44は、第一クラッチCL1がスリップ係合状態から直結係合状態になったと判定する。第一クラッチCL1の直結係合状態への移行判定後、第一クラッチ動作制御部44は第一クラッチCL1への供給油圧を徐々に上昇させ、所定時間経過後の時刻T16においてステップ的に完全係合圧まで上昇させて第一クラッチCL1を直結係合状態とする。これにより第二スリップ走行モードからパラレル走行モードへのモード切替が行われる。   In the second slip traveling mode, the rotational speeds of the transmission intermediate shaft S and the rotating electrical machine 12 increase as the vehicle speed increases, and eventually the differential rotational speed between the engaging members on both sides of the first clutch CL1 (this example) at time T15. Then, when the differential rotational speed between the rotating electrical machine 12 and the internal combustion engine 11 becomes equal to or less than the fourth synchronization determination threshold Th5, the first clutch operation control unit 44 determines that the first clutch CL1 is in the direct engagement state from the slip engagement state. It is determined that After determining that the first clutch CL1 is shifted to the direct engagement state, the first clutch operation control unit 44 gradually increases the hydraulic pressure supplied to the first clutch CL1, and completes stepwise engagement at time T16 after a predetermined time has elapsed. The first clutch CL1 is brought into a direct engagement state by raising to the combined pressure. Thereby, the mode switching from the second slip traveling mode to the parallel traveling mode is performed.

(2)上記の実施形態では、実際の内燃機関トルクTeの誤差に起因して生じるトルク誤差ΔT(補正トルクTmb)が、油圧調整制御により第二クラッチCL2の直結係合状態への移行時においてゼロとなり、回転電機12の制御状態が回転速度制御から直ちにトルク制御へと移行される場合を例として説明した。しかし、場合によっては、油圧調整制御が実行されても第二クラッチCL2の直結係合状態への移行時においてトルク誤差ΔTが完全にゼロとはならない場合もある(図6の時刻T23を参照)。このような場合には、回転電機制御部43は、回転速度制御からトルク制御への移行に際して、回転電機トルクTmを、回転速度制御中のトルク(Tmf+Tmb)から、トルク制御における目標トルクTmfまで徐々に変化させる移行トルク制御を実行する構成とすると好適である。図6には、時刻T23〜T24にかけて実行される移行トルク制御(「移行制御」と表示)において、回転電機トルクTmが一定の時間変化率で徐々に変化して最終的に目標トルクTmfに一致する様子が示されている。このような移行トルク制御を実行する構成とすることで、トルク誤差ΔTがゼロでない状態で第二クラッチCL2が直結係合状態に移行した場合であっても、回転電機トルクTmを目標トルクTmfまで徐々に変化させ、トルク段差の発生を抑制することができる。 (2) In the above embodiment, the torque error ΔT (correction torque Tmb) caused by the error of the actual internal combustion engine torque Te is changed when the second clutch CL2 is shifted to the direct engagement state by the hydraulic pressure adjustment control. An example in which the control state of the rotating electrical machine 12 is shifted from the rotational speed control to the torque control immediately has been described as an example. However, in some cases, even when the hydraulic pressure adjustment control is executed, the torque error ΔT may not be completely zero when the second clutch CL2 is shifted to the direct engagement state (see time T23 in FIG. 6). . In such a case, the rotating electrical machine control unit 43 gradually changes the rotating electrical machine torque Tm from the torque (Tmf + Tmb) during the rotational speed control to the target torque Tmf in the torque control when shifting from the rotational speed control to the torque control. It is preferable that the transition torque control to be changed to be executed. In FIG. 6, in the transition torque control (displayed as “transition control”) executed from time T23 to T24, the rotating electrical machine torque Tm gradually changes at a constant time change rate and finally matches the target torque Tmf. The state of doing is shown. By adopting such a transition torque control configuration, the rotating electrical machine torque Tm is reduced to the target torque Tmf even when the second clutch CL2 shifts to the direct engagement state with the torque error ΔT being not zero. The torque can be gradually changed to suppress the occurrence of a torque step.

(3)上記の実施形態では、第一クラッチCL1及び第二クラッチCL2の双方のスリップ係合状態で第一クラッチCL1の回転速度制御が実行され、内燃機関トルクTeが車輪15に伝達されている状態で油圧調整制御が実行される場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、例えば第一クラッチCL1の直結係合状態且つ第二クラッチCL2のスリップ係合状態で内燃機関トルクTeが車輪15に伝達されている状態でも、内燃機関トルクTeがそのまま回転電機12側に伝達される。そのような状況下で油圧調整制御を実行する構成としても、上記の実施形態と同様の効果を得ることができる。 (3) In the above embodiment, the rotational speed control of the first clutch CL1 is executed in the slip engagement state of both the first clutch CL1 and the second clutch CL2, and the internal combustion engine torque Te is transmitted to the wheels 15. The case where the hydraulic pressure adjustment control is executed in the state has been described as an example. However, the embodiment of the present invention is not limited to this. That is, for example, even when the internal combustion engine torque Te is transmitted to the wheel 15 in the direct engagement engagement state of the first clutch CL1 and the slip engagement state of the second clutch CL2, the internal combustion engine torque Te is directly transmitted to the rotating electrical machine 12 side. Is done. Even when the hydraulic pressure adjustment control is executed under such circumstances, the same effects as those of the above-described embodiment can be obtained.

(4)上記の実施形態では、油圧調整制御部47が、発進制御の開始と同時に油圧調整制御を開始する場合、言い換えれば、第二クラッチCL2がスリップ係合状態となった後、当該第二クラッチCL2が直結係合状態に移行するまでの間、継続的に油圧調整制御を実行する場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、油圧調整制御部47は、少なくとも第二クラッチCL2がスリップ係合状態となった後、当該第二クラッチCL2が直結係合状態に移行するまでの間に油圧調整制御を実行すれば良く、例えば発進制御の開始時を基準として所定時間の経過後に油圧調整制御を開始する構成とすることも、本発明の好適な実施形態の一つである。 (4) In the above embodiment, when the hydraulic pressure adjustment control unit 47 starts the hydraulic pressure adjustment control simultaneously with the start of the start control, in other words, after the second clutch CL2 is in the slip engagement state, The case where the hydraulic pressure adjustment control is continuously executed until the clutch CL2 shifts to the direct engagement state has been described as an example. However, the embodiment of the present invention is not limited to this. That is, the hydraulic pressure adjustment control unit 47 only needs to execute the hydraulic pressure adjustment control after the second clutch CL2 is in the slip engagement state and before the second clutch CL2 shifts to the direct engagement state. For example, it is also a preferred embodiment of the present invention that the hydraulic pressure adjustment control is started after a lapse of a predetermined time with reference to the start of the start control.

(5)上記の実施形態では、油圧調整制御部47が、車両6の発進時に油圧調整制御を実行する場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、例えばパラレル走行モードでの走行中に車速が低下して「低車速状態」となった場合等にもスリップ走行モードを実現可能な構成とし、油圧調整制御部47がそのスリップ走行モードでの走行時に油圧調整制御を実行する構成とすることも、本発明の好適な実施形態の一つである。このような場合であっても、上記の実施形態と同様の効果を得ることができる。 (5) In the above embodiment, the case where the hydraulic adjustment control unit 47 executes the hydraulic adjustment control when the vehicle 6 starts is described as an example. However, the embodiment of the present invention is not limited to this. That is, for example, the slip traveling mode can be realized even when the vehicle speed decreases to the “low vehicle speed state” during traveling in the parallel traveling mode, and the hydraulic pressure adjustment control unit 47 is configured to operate in the slip traveling mode. It is one of the preferred embodiments of the present invention that the hydraulic pressure adjustment control is executed during traveling. Even in such a case, the same effect as that of the above-described embodiment can be obtained.

(6)上記の実施形態では、油圧調整制御部47が、回転変化トルクTmi相当分を除外して算出した補正トルクTmb(トルク誤差ΔT)に基づいて油圧調整制御を実行する場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、油圧調整制御部47が、回転変化トルクTmi相当分を除外することなく補正トルク演算器52により算出された補正トルクTmbをそのまま用いて油圧調整制御を実行する構成とすることも、本発明の好適な実施形態の一つである。 (6) In the above embodiment, the case where the hydraulic pressure adjustment control unit 47 executes the hydraulic pressure adjustment control based on the correction torque Tmb (torque error ΔT) calculated by excluding the portion corresponding to the rotation change torque Tmi will be described as an example. did. However, the embodiment of the present invention is not limited to this. That is, the hydraulic pressure adjustment control unit 47 may be configured to execute the hydraulic pressure adjustment control using the correction torque Tmb calculated by the correction torque calculator 52 without removing the portion corresponding to the rotational change torque Tmi. This is one of the preferred embodiments.

(7)上記の実施形態では、実際の内燃機関トルクTeの誤差に起因して発生し得るトルク段差を抑制するべく油圧調整制御を実行する場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、回転電機12の回転速度制御中に何らかの要因(例えば、第二クラッチCL2における実際の伝達トルク容量Tc2の誤差等)に基づいて補正トルクTmbが算出される場合には、上記の実施形態と同様に第二クラッチCL2の直結係合状態への移行時にトルク段差が発生する可能性がある。この場合であっても、本発明の油圧調整制御によれば、発生要因によらずにトルク段差を抑制することが可能である。 (7) In the above embodiment, the case where the hydraulic pressure adjustment control is executed so as to suppress the torque step that may be caused by the error of the actual internal combustion engine torque Te has been described as an example. However, the embodiment of the present invention is not limited to this. That is, when the correction torque Tmb is calculated based on some factor (for example, an error in the actual transmission torque capacity Tc2 in the second clutch CL2) during the rotation speed control of the rotating electrical machine 12, the above-described embodiment and Similarly, a torque step may occur when the second clutch CL2 is shifted to the direct engagement state. Even in this case, according to the hydraulic pressure adjustment control of the present invention, it is possible to suppress the torque step regardless of the generation factor.

(8)上記の実施形態では、追従性高く油圧調整制御を実行可能とするべく、油圧調整制御部47が目標トルク容量演算器53及びトルク容量補正量演算器55の双方を備え、それぞれ算出される目標トルク容量Tcfとトルク容量補正量Tcbとに基づいて第二クラッチトルク容量指令Cc2を決定する場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、例えば油圧調整制御部47が、目標トルク容量演算器53を備えることなくトルク容量補正量演算器55のみを備え、当該トルク容量補正量演算器55で算出されたトルク容量補正量Tcbをそのまま第二クラッチトルク容量指令Cc2として決定する構成とすることも、本発明の好適な実施形態の一つである。このような構成でも、上記の実施形態と同様の効果を得ることができる。 (8) In the above embodiment, the hydraulic pressure adjustment control unit 47 includes both the target torque capacity calculator 53 and the torque capacity correction amount calculator 55 so that the hydraulic pressure adjustment control can be executed with high follow-up performance. In the above description, the second clutch torque capacity command Cc2 is determined based on the target torque capacity Tcf and the torque capacity correction amount Tcb. However, the embodiment of the present invention is not limited to this. That is, for example, the hydraulic pressure adjustment control unit 47 includes only the torque capacity correction amount calculator 55 without including the target torque capacity calculator 53, and uses the torque capacity correction amount Tcb calculated by the torque capacity correction amount calculator 55 as it is. A configuration in which the second clutch torque capacity command Cc2 is determined is also one preferred embodiment of the present invention. Even with such a configuration, the same effects as those of the above-described embodiment can be obtained.

(9)上記の実施形態では、制御装置4による制御対象となる駆動装置1に備えられる「第一摩擦係合装置」としての第一クラッチCL1や「第二摩擦係合装置」としての第二クラッチCL2が、供給される油圧に応じて係合圧が制御される、油圧駆動式の摩擦係合装置とされている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、第一摩擦係合装置及び第二摩擦係合装置は、係合圧の増減に応じて伝達トルク容量を調整可能であれば良く、例えばこれらのうちの一方又は双方が、発生される電磁力に応じて係合圧が制御される、電磁式の摩擦係合装置として構成されることも、本発明の好適な実施形態の一つである。 (9) In the above embodiment, the first clutch CL1 as the “first friction engagement device” or the second as the “second friction engagement device” provided in the drive device 1 to be controlled by the control device 4. The case where the clutch CL2 is a hydraulically driven frictional engagement device in which the engagement pressure is controlled according to the supplied hydraulic pressure has been described as an example. However, the embodiment of the present invention is not limited to this. In other words, the first friction engagement device and the second friction engagement device only need to be able to adjust the transmission torque capacity in accordance with the increase or decrease of the engagement pressure. It is also one of preferred embodiments of the present invention to be configured as an electromagnetic frictional engagement device in which the engagement pressure is controlled according to the force.

(10)上記の実施形態では、制御装置4による制御対象となる駆動装置1において、変速機構13に備えられる複数の摩擦係合装置のうちの1つである変速用の第二クラッチCL2が「第二摩擦係合装置」とされている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、例えば変速機構13に備えられる他のクラッチ、ブレーキ等が「第二摩擦係合装置」とされた構成とすることも、本発明の好適な実施形態の一つである。なお、第二摩擦係合装置が変速機構13内のブレーキとされる場合には、当該ブレーキの一方の係合部材には駆動装置ケース等の非回転部材が連結され、当該一方の係合部材の回転速度は常にゼロとなる。 (10) In the above embodiment, in the drive device 1 to be controlled by the control device 4, the second clutch CL <b> 2 for shifting that is one of the plurality of friction engagement devices provided in the transmission mechanism 13 is “ The case where the second friction engagement device is used has been described as an example. However, the embodiment of the present invention is not limited to this. That is, it is also one of preferred embodiments of the present invention that, for example, other clutches, brakes, and the like provided in the speed change mechanism 13 are configured as “second friction engagement devices”. When the second friction engagement device is a brake in the speed change mechanism 13, a non-rotating member such as a drive device case is connected to one engagement member of the brake, and the one engagement member The rotation speed of is always zero.

(11)上記の実施形態では、制御装置4による制御対象となる駆動装置1において、変速機構13に備えられる変速用の第二クラッチCL2が「第二摩擦係合装置」とされている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、入力軸Iと出力軸Oとを結ぶ動力伝達経路上で回転電機12と出力軸Oとの間に設けられた摩擦係合装置であれば、変速機構13に備えられる変速用のクラッチ等とは別のクラッチを「第二摩擦係合装置」とすることも可能である。例えば回転電機12と変速機構13との間にトルクコンバータ等の流体伝動装置を備える場合において、当該トルクコンバータが有するロックアップクラッチが「第二摩擦係合装置」とされた構成とすることも、本発明の好適な実施形態の一つである。或いは、例えば回転電機12と変速機構13との間、又は変速機構13と出力軸Oとの間に設けられる専用の伝達クラッチが「第二摩擦係合装置」とされた構成とすることも、本発明の好適な実施形態の一つである。これらの場合には、変速機構13として、自動有段変速機構に代えて、自動無段変速機構、手動有段変速機構、及び固定変速機構等を用いることもできる。また、変速機構13の位置も任意に設定することができる。 (11) In the above embodiment, in the drive device 1 to be controlled by the control device 4, the second clutch CL2 for shifting provided in the transmission mechanism 13 is a “second friction engagement device”. Described as an example. However, the embodiment of the present invention is not limited to this. That is, as long as it is a friction engagement device provided between the rotating electrical machine 12 and the output shaft O on the power transmission path connecting the input shaft I and the output shaft O, a speed change clutch provided in the speed change mechanism 13 or the like. It is also possible to use another clutch as a “second friction engagement device”. For example, when a fluid transmission device such as a torque converter is provided between the rotating electrical machine 12 and the speed change mechanism 13, the lock-up clutch of the torque converter may be configured as a “second friction engagement device”. It is one of the preferred embodiments of the present invention. Alternatively, for example, a dedicated transmission clutch provided between the rotating electrical machine 12 and the transmission mechanism 13 or between the transmission mechanism 13 and the output shaft O may be configured as a “second friction engagement device”. It is one of the preferred embodiments of the present invention. In these cases, instead of the automatic stepped transmission mechanism, an automatic continuously variable transmission mechanism, a manual stepped transmission mechanism, a fixed transmission mechanism, or the like can be used as the transmission mechanism 13. Further, the position of the transmission mechanism 13 can also be set arbitrarily.

(12)上記の実施形態では、主に内燃機関11を制御するための内燃機関制御ユニット30と、主に回転電機12、第一クラッチCL1、及び変速機構13を制御するための駆動装置制御ユニット40(制御装置4)とが個別に備えられている構成を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、例えば単一の制御装置4が内燃機関11、回転電機12、第一クラッチCL1、及び変速機構13等の全てを制御する構成とすることも、本発明の好適な実施形態の一つである。或いは、制御装置4が、回転電機12を制御するための制御ユニットと、それ以外の各種構成を制御するための制御ユニットとを更に個別に備える構成とすることも、本発明の好適な実施形態の一つである。また、上記の各実施形態で説明した機能部の割り当ては単なる一例であり、複数の機能部を組み合わせたり、1つの機能部をさらに区分けしたりすることも可能である。 (12) In the above embodiment, the internal combustion engine control unit 30 mainly for controlling the internal combustion engine 11, and the drive device control unit for mainly controlling the rotating electrical machine 12, the first clutch CL 1, and the speed change mechanism 13. The configuration in which 40 (control device 4) is individually provided has been described as an example. However, the embodiment of the present invention is not limited to this. That is, for example, a configuration in which the single control device 4 controls all of the internal combustion engine 11, the rotating electrical machine 12, the first clutch CL1, the speed change mechanism 13, and the like is also one preferred embodiment of the present invention. is there. Alternatively, the control device 4 may further include a control unit for controlling the rotating electrical machine 12 and a control unit for controlling other various configurations separately. one of. The assignment of the function units described in the above embodiments is merely an example, and a plurality of function units can be combined or one function unit can be further divided.

(13)その他の構成に関しても、本明細書において開示された実施形態は全ての点で例示であって、本発明の実施形態はこれに限定されない。すなわち、本願の特許請求の範囲に記載されていない構成に関しては、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。 (13) Regarding other configurations as well, the embodiments disclosed herein are illustrative in all respects, and embodiments of the present invention are not limited thereto. In other words, configurations that are not described in the claims of the present application can be modified as appropriate without departing from the object of the present invention.

本発明は、内燃機関と車輪とを結ぶ動力伝達経路に回転電機が設けられていると共に、内燃機関と回転電機との間に第一摩擦係合装置、回転電機と車輪との間に第二摩擦係合装置が設けられた車両用駆動装置を制御対象とする制御装置に好適に利用することができる。   According to the present invention, a rotary electric machine is provided in a power transmission path connecting the internal combustion engine and the wheel, and a first friction engagement device is provided between the internal combustion engine and the rotary electric machine, and a second is provided between the rotary electric machine and the wheel. The present invention can be suitably used for a control device that controls a vehicle drive device provided with a friction engagement device.

1 駆動装置(車両用駆動装置)
4 制御装置
11 内燃機関
12 回転電機
15 車輪
43 回転電機制御部
43a 目標トルク決定部
43b 回転速度制御部
44 発進クラッチ動作制御部
47 油圧調整制御部
I 入力軸
O 出力軸
CL1 第一クラッチ(第一摩擦係合装置)
CL2 第二クラッチ(第二摩擦係合装置)
Td 車両要求トルク(要求駆動力)
Ce 内燃機関トルク指令
Nmt 目標回転速度
Nmr 実回転速度
Tmf 目標トルク
Tmb 補正トルク
Tmi 回転変化トルク
Cc2 第二クラッチトルク容量指令
1 Drive device (vehicle drive device)
4 control device 11 internal combustion engine 12 rotating electrical machine 15 wheel 43 rotating electrical machine control unit 43a target torque determination unit 43b rotational speed control unit 44 start clutch operation control unit 47 hydraulic pressure adjustment control unit I input shaft O output shaft CL1 first clutch (first clutch Friction engagement device)
CL2 second clutch (second friction engagement device)
Td Vehicle required torque (required driving force)
Ce Internal combustion engine torque command Nmt Target rotational speed Nmr Actual rotational speed Tmf Target torque Tmb Correction torque Tmi Rotational change torque Cc2 Second clutch torque capacity command

Claims (8)

内燃機関と車輪とを結ぶ動力伝達経路に回転電機が設けられていると共に、前記内燃機関と前記回転電機との間に第一摩擦係合装置、前記回転電機と前記車輪との間に第二摩擦係合装置が設けられた車両用駆動装置を制御対象とする制御装置であって、
前記第一摩擦係合装置及び前記第二摩擦係合装置の双方のスリップ係合状態で前記内燃機関の回転状態が目標回転状態に一致するように前記第一摩擦係合装置へ供給する油圧が制御されつつ前記内燃機関のトルクが前記車輪に伝達されている状態、又は、前記第一摩擦係合装置の直結係合状態且つ前記第二摩擦係合装置のスリップ係合状態で前記内燃機関のトルクが前記車輪に伝達されている状態で、前記回転電機の回転状態を目標回転状態になるように制御する回転状態制御を実行すると共に、
前記第二摩擦係合装置をスリップ係合状態から直結係合状態へと移行させる間に、前記回転状態制御中における前記回転電機のトルクに基づいて、前記スリップ係合状態にある前記第二摩擦係合装置へ供給する油圧を制御する油圧調整制御を実行する制御装置。
A rotary electric machine is provided in a power transmission path connecting the internal combustion engine and the wheel, a first friction engagement device is provided between the internal combustion engine and the rotary electric machine, and a second is provided between the rotary electric machine and the wheel. A control device for controlling a vehicle drive device provided with a friction engagement device,
The hydraulic pressure supplied to the first friction engagement device so that the rotation state of the internal combustion engine matches the target rotation state in the slip engagement state of both the first friction engagement device and the second friction engagement device. In a state where the torque of the internal combustion engine is transmitted to the wheels while being controlled, or in a direct engagement engagement state of the first friction engagement device and a slip engagement state of the second friction engagement device, In a state where torque is transmitted to the wheels, the rotational state control for controlling the rotational state of the rotating electrical machine to be a target rotational state is performed,
During the transition of the second friction engagement device from the slip engagement state to the direct engagement state, the second friction in the slip engagement state based on the torque of the rotating electrical machine during the rotation state control. A control device that executes hydraulic pressure adjustment control for controlling the hydraulic pressure supplied to the engagement device.
前記車輪を駆動するための要求駆動力と前記内燃機関から前記回転電機に伝達されるトルクとの差分に基づいて前記回転電機の目標トルクを決定する目標トルク決定制御を更に実行し、
前記回転状態制御として、前記目標トルクに対して補正トルクを加えて前記回転電機の回転速度を目標回転速度に一致させるように制御する回転速度フィードバック制御を実行し、
前記要求駆動力と前記回転速度フィードバック制御の前記補正トルクとに基づいて前記油圧調整制御を実行する請求項1に記載の制御装置。
Further executing target torque determination control for determining a target torque of the rotating electrical machine based on a difference between a required driving force for driving the wheel and a torque transmitted from the internal combustion engine to the rotating electrical machine,
As the rotation state control, a rotation speed feedback control is performed for controlling the rotation speed of the rotating electrical machine to match the rotation speed of the rotating electrical machine by adding a correction torque to the target torque,
The control device according to claim 1, wherein the hydraulic pressure adjustment control is executed based on the required driving force and the correction torque of the rotation speed feedback control.
前記回転速度フィードバック制御に際して前記目標回転速度に向かって回転速度を変化させるための前記回転電機の回転変化トルク相当分を除外して算出した前記補正トルクに基づいて、前記油圧調整制御を実行する請求項2に記載の制御装置。   The hydraulic pressure adjustment control is executed based on the correction torque calculated by excluding a portion corresponding to the rotation change torque of the rotating electrical machine for changing the rotation speed toward the target rotation speed during the rotation speed feedback control. Item 3. The control device according to Item 2. 前記油圧調整制御において、前記補正トルクを時間積分した演算値に基づいて前記第二摩擦係合装置の伝達トルク容量を決定し、当該伝達トルク容量に基づいて前記第二摩擦係合装置へ供給する油圧を決定する請求項2又は3に記載の制御装置。   In the hydraulic pressure adjustment control, a transmission torque capacity of the second friction engagement device is determined based on a calculation value obtained by integrating the correction torque with time, and is supplied to the second friction engagement device based on the transmission torque capacity. The control device according to claim 2 or 3, wherein oil pressure is determined. 前記回転電機の出力トルクを前記目標トルクに一致させるように制御するトルク制御を更に実行可能であり、
前記油圧調整制御の実行中に前記第二摩擦係合装置が直結係合状態になったと判定した場合に、前記回転電機の制御状態を前記回転速度フィードバック制御から前記トルク制御に移行させる請求項2から4のいずれか一項に記載の制御装置。
Torque control for controlling the output torque of the rotating electrical machine to match the target torque can be further executed,
The control state of the rotating electrical machine is shifted from the rotational speed feedback control to the torque control when it is determined that the second friction engagement device is in the direct engagement state during execution of the hydraulic pressure adjustment control. 5. The control device according to any one of 4 to 4.
前記第二摩擦係合装置が直結係合状態になったと判定した際に前記補正トルクがゼロになっていない場合には、前記回転速度フィードバック制御から前記トルク制御への移行に際して、前記回転電機の出力トルクを、前記回転速度フィードバック制御中のトルクから前記目標トルクまで徐々に変化させる移行トルク制御を実行する請求項5に記載の制御装置。   When the correction torque is not zero when it is determined that the second friction engagement device is in the direct engagement state, the transition of the rotating electrical machine from the rotation speed feedback control to the torque control is performed. The control device according to claim 5, wherein transition torque control for gradually changing output torque from the torque during the rotation speed feedback control to the target torque is executed. 前記第二摩擦係合装置のスリップ係合状態から直結係合状態への移行時を含む当該移行時以前の所定期間に、前記油圧調整制御を実行する請求項1から6のいずれか一項に記載の制御装置。   7. The hydraulic pressure adjustment control is executed in a predetermined period before the transition including a transition from the slip engagement state to the direct engagement state of the second friction engagement device. The control device described. 前記第二摩擦係合装置がスリップ係合状態となってから直結係合状態に移行するまでの間、継続的に前記油圧調整制御を実行する請求項1から7のいずれか一項に記載の制御装置。   8. The hydraulic pressure adjustment control according to claim 1, wherein the hydraulic pressure adjustment control is continuously performed during a period from when the second friction engagement device is in a slip engagement state to when the second friction engagement device is shifted to a direct engagement state. Control device.
JP2011157992A 2011-07-06 2011-07-19 Control device Active JP5565636B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011157992A JP5565636B2 (en) 2011-07-19 2011-07-19 Control device
DE201211001420 DE112012001420T5 (en) 2011-07-06 2012-07-06 control device
CN201280021712.0A CN103502070B (en) 2011-07-06 2012-07-06 Control setup
PCT/JP2012/067376 WO2013005844A1 (en) 2011-07-06 2012-07-06 Control device
US14/112,733 US9061681B2 (en) 2011-07-06 2012-07-06 Control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011157992A JP5565636B2 (en) 2011-07-19 2011-07-19 Control device

Publications (2)

Publication Number Publication Date
JP2013023012A true JP2013023012A (en) 2013-02-04
JP5565636B2 JP5565636B2 (en) 2014-08-06

Family

ID=47781847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011157992A Active JP5565636B2 (en) 2011-07-06 2011-07-19 Control device

Country Status (1)

Country Link
JP (1) JP5565636B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014213823A (en) * 2013-04-30 2014-11-17 日産自動車株式会社 Control system of hybrid vehicle
WO2015198809A1 (en) * 2014-06-26 2015-12-30 ジヤトコ株式会社 Hybrid vehicle control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070138A (en) * 2008-09-22 2010-04-02 Nissan Motor Co Ltd Controller for hybrid vehicle
JP2010149640A (en) * 2008-12-24 2010-07-08 Nissan Motor Co Ltd Engine start controller and engine start control method
JP2010201962A (en) * 2009-02-27 2010-09-16 Nissan Motor Co Ltd Controller for hybrid car

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070138A (en) * 2008-09-22 2010-04-02 Nissan Motor Co Ltd Controller for hybrid vehicle
JP2010149640A (en) * 2008-12-24 2010-07-08 Nissan Motor Co Ltd Engine start controller and engine start control method
JP2010201962A (en) * 2009-02-27 2010-09-16 Nissan Motor Co Ltd Controller for hybrid car

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014213823A (en) * 2013-04-30 2014-11-17 日産自動車株式会社 Control system of hybrid vehicle
WO2015198809A1 (en) * 2014-06-26 2015-12-30 ジヤトコ株式会社 Hybrid vehicle control device
JP2016008016A (en) * 2014-06-26 2016-01-18 日産自動車株式会社 Control device of hybrid vehicle

Also Published As

Publication number Publication date
JP5565636B2 (en) 2014-08-06

Similar Documents

Publication Publication Date Title
WO2013005844A1 (en) Control device
JP5807560B2 (en) Control device
JP5884842B2 (en) Control device
JP6019732B2 (en) Control device for hybrid vehicle
JP5553175B2 (en) Control device
WO2012043555A1 (en) Control device
JP5817908B2 (en) Control device
JP2014196101A5 (en)
KR20130081298A (en) Hybrid vehicle control device
JP5565637B2 (en) Control device
JP5472227B2 (en) Control device
JP5501269B2 (en) Control device for hybrid vehicle
JP5505734B2 (en) Control device
JP6492908B2 (en) Control device for hybrid vehicle
JP5565636B2 (en) Control device
JP5418850B2 (en) Control device
JP5578362B2 (en) Control device
JP2012091776A (en) Control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140604

R150 Certificate of patent or registration of utility model

Ref document number: 5565636

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150