JP2013021848A - Control device for power converter - Google Patents

Control device for power converter Download PDF

Info

Publication number
JP2013021848A
JP2013021848A JP2011154471A JP2011154471A JP2013021848A JP 2013021848 A JP2013021848 A JP 2013021848A JP 2011154471 A JP2011154471 A JP 2011154471A JP 2011154471 A JP2011154471 A JP 2011154471A JP 2013021848 A JP2013021848 A JP 2013021848A
Authority
JP
Japan
Prior art keywords
phase
current
positive
negative
axis current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011154471A
Other languages
Japanese (ja)
Other versions
JP5703151B2 (en
Inventor
Jun Narushima
じゅん 鳴島
Takashi Aihara
孝志 相原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011154471A priority Critical patent/JP5703151B2/en
Publication of JP2013021848A publication Critical patent/JP2013021848A/en
Application granted granted Critical
Publication of JP5703151B2 publication Critical patent/JP5703151B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform excellent power conversion between a power converter and a three-phase AC system by using vector control even when voltage in a power system is three-phase unbalanced because of a system accident and so on.SOLUTION: A control device for a power converter connected to a three-phase AC power system comprises: a reverse-phase coordinate conversion circuit calculating reverse-phase d-axis current and reverse-phase q-axis current by performing dq vector coordinate conversion on output current in a reverse-phase rotation direction of system voltage of the three-phase AC power system; a first current controller controlling command values of the reverse-phase d-axis current and the reverse-phase q-axis current by comparing the command values with the reverse-phase d-axis current and the reverse-phase q-axis current of the reverse-phase coordinate conversion circuit as feedback values; and a first oscillation component extraction circuit extracting a secondary oscillation component by positive-phase current included in the reverse-phase d-axis current and the reverse-phase q-axis current of the reverse-phase coordinate conversion circuit. The first current controller compares the current command value with the reverse-phase d-axis current and the reverse-phase q-axis current of the reverse-phase coordinate conversion circuit after excluding the extracted secondary oscillation component by the positive-phase current from the reverse-phase d-axis current and the reverse-phase q-axis current.

Description

本発明は,三相交流電力系統に連系され,前記三相交流電力系統から電力を授受する電力変換装置の制御装置に関し,特に前記三相交流電力系統へ出力する逆相電流を制御する電力変換装置の制御装置に関する。   The present invention relates to a control device for a power converter that is connected to a three-phase AC power system and receives power from the three-phase AC power system, and in particular, power for controlling a reverse-phase current output to the three-phase AC power system. The present invention relates to a control device for a conversion device.

通常運転状態における三相交流系統(以後,単に電力系統と称す)では、三相不平衡電圧成分である逆相電圧は三相平衡電圧成分である正相電圧に比べ十分に小さい。このため,ベクトル制御を実施する電力変換装置では、正相回転方向に座標変換して電力を制御する制御方式を採用しており、このことが通常運転状態において電力変換装置をベクトル制御するうえで支障になることは無かった。   In a three-phase AC system (hereinafter simply referred to as a power system) in a normal operation state, the negative phase voltage, which is a three-phase unbalanced voltage component, is sufficiently smaller than the positive phase voltage, which is a three-phase balanced voltage component. For this reason, a power conversion apparatus that performs vector control employs a control system that controls power by converting coordinates in the normal phase rotation direction. This is a vector control for the power conversion apparatus in a normal operation state. There was no hindrance.

しかし,1線地絡や2線地絡など不平衡な系統事故時では、逆相電圧や逆相電流が大きく含まれる。この場合に、先の制御方式を適用して逆相電圧や逆相電流を正相回転方向に座標変換すると、2次の振動成分を生じる。他方、電力変換装置の制御装置として、出力電流を制御する電流制御系に積分制御が適用されていると、2次の振動成分により位相遅れや定常偏差が残ってしまうなど制御性能が低下してしまう。   However, in the case of an unbalanced system fault such as a 1-wire ground fault or a 2-wire ground fault, negative phase voltage and negative phase current are largely included. In this case, if the previous control method is applied to coordinate-transform the negative phase voltage or negative phase current in the positive phase rotation direction, a secondary vibration component is generated. On the other hand, if integral control is applied to the current control system that controls the output current as a control device for the power converter, the control performance deteriorates, such as phase lag and steady deviation remaining due to secondary vibration components. End up.

そこで,例えば非特許文献1ではベクトル制御ではなく正相電流と逆相電流を含む電流指令値を90°位相のずれた二相交流に逆座標変換し,二相交流信号上で電流制御を実施している。   Therefore, for example, in Non-Patent Document 1, instead of vector control, the current command value including the positive phase current and the reverse phase current is inversely converted to a two-phase AC that is 90 ° out of phase, and the current control is performed on the two-phase AC signal. doing.

加藤,伊藤,相原,生田目著「フリッカ抑制機能付き自励式無効電力補償装置」,日立論評,89巻2号,2007年,p204−207Kato, Ito, Aihara, Ikuta, “Self-excited reactive power compensator with flicker suppression function”, Hitachi review, Vol. 89, No. 2, 2007, p204-207

しかるに、特許文献1のようにベクトル制御を用いず交流信号を交流信号のまま制御する場合、あるいはベクトル制御を適用しても制御対象が振動している場合には、積分制御を適用しても位相遅れが発生し,定常偏差を0にするのが困難である。   However, as in Patent Document 1, when the AC signal is controlled as it is without using vector control, or when the controlled object vibrates even if vector control is applied, the integration control is applied. A phase delay occurs and it is difficult to make the steady deviation zero.

そこで本発明は,例えば,系統事故時などで電力系統の電圧が三相不平衡である場合でもベクトル制御を用いて電力変換装置と三相交流系統との間で良好に電力を変換することを目的とする。   In view of this, the present invention is to convert power between a power converter and a three-phase AC system using vector control even when the voltage of the power system is three-phase unbalanced due to, for example, a system failure. Objective.

以上の目的を達成するために本発明においては、三相交流電力系統に接続された電力変換装置の制御装置において,三相交流電力系統の系統電圧の逆相回転方向に出力電流をdqベクトル座標変換して逆相d軸電流および逆相q軸電流を求める逆相座標変換回路、逆相座標変換回路の逆相d軸電流および逆相q軸電流を帰還値とし、これら電流の指令値と比較して指令値に制御する第1の電流制御器、逆相座標変換回路の逆相d軸電流および逆相q軸電流に含まれる正相電流による2次の振動成分を抽出する第1の振動成分抽出回路とを備え、抽出した正相電流による2次の振動成分を逆相座標変換回路の逆相d軸電流および逆相q軸電流から除外して、第1の電流制御器において電流指令値と比較する。   In order to achieve the above object, according to the present invention, in the control device for the power converter connected to the three-phase AC power system, the output current is expressed in the dq vector coordinates in the reverse phase rotation direction of the system voltage of the three-phase AC power system. A negative phase coordinate conversion circuit for obtaining a negative phase d-axis current and a negative phase q-axis current by conversion, and a negative phase d-axis current and a negative phase q-axis current of the negative phase coordinate conversion circuit are used as feedback values. A first current controller for comparing and controlling to a command value, a first vibration component extracted by a positive phase current included in the negative phase d-axis current and the negative phase q-axis current of the negative phase coordinate conversion circuit. A second vibration component extracted from the positive-phase current is excluded from the negative-phase d-axis current and the negative-phase q-axis current of the negative-phase coordinate transformation circuit, and the current is controlled by the first current controller. Compare with the command value.

以上の目的を達成するために本発明においては、三相交流電力系統に接続された電力変換装置の制御装置において,三相交流電力系統の系統電圧の正相回転方向に出力電流をdqベクトル座標変換して正相d軸電流および正相q軸電流を求める正相座標変換回路、正相座標変換回路の正相d軸電流および正相q軸電流を帰還値とし、これら電流の指令値と比較して指令値に制御する第2の電流制御器、正相座標変換回路の正相d軸電流および正相q軸電流に含まれる逆相電流による2次の振動成分を抽出する第2の振動成分抽出回路とを備え、抽出した逆相電流による2次の振動成分を正相座標変換回路の正相d軸電流および正相q軸電流から除外して、第2の電流制御器において電流指令値と比較する。   In order to achieve the above object, in the present invention, in a control device for a power converter connected to a three-phase AC power system, the output current is expressed in dq vector coordinates in the positive phase rotation direction of the system voltage of the three-phase AC power system. A positive phase coordinate conversion circuit for obtaining a positive phase d-axis current and a positive phase q-axis current by conversion, and a positive phase d-axis current and a positive phase q-axis current of the positive phase coordinate conversion circuit are used as feedback values. A second current controller that controls to a command value by comparison, a second vibration component that extracts a secondary vibration component due to a negative phase current included in the positive phase d-axis current and the positive phase q-axis current of the positive phase coordinate conversion circuit. A second vibration component extracting circuit that excludes the second-order vibration component due to the extracted negative-phase current from the positive-phase d-axis current and the positive-phase q-axis current of the positive-phase coordinate conversion circuit, and Compare with the command value.

以上の目的を達成するために本発明においては、三相交流電力系統の系統電圧の逆相回転方向に出力電流をdqベクトル座標変換して逆相d軸電流および逆相q軸電流を求める逆相座標変換回路、逆相座標変換回路の逆相d軸電流および逆相q軸電流を帰還値とし、これら電流の指令値と比較して指令値に制御する逆相電流制御器、逆相座標変換回路の逆相d軸電流および逆相q軸電流に含まれる正相電流による2次の振動成分を抽出する第1の振動成分抽出回路、抽出した正相電流による2次の振動成分を逆相座標変換回路の逆相d軸電流および逆相q軸電流から除外して、逆相電流制御器に帰還値として与える第1の加算部、三相交流電力系統の系統電圧の正相回転方向に出力電流をdqベクトル座標変換して正相d軸電流および正相q軸電流を求める正相座標変換回路、正相座標変換回路の正相d軸電流および正相q軸電流を帰還値とし、これら電流の指令値と比較して指令値に制御する正相電流制御器、正相座標変換回路の正相d軸電流および正相q軸電流に含まれる逆相電流による2次の振動成分を抽出する第2の振動成分抽出回路、抽出した逆相電流による2次の振動成分を正相座標変換回路の正相d軸電流および正相q軸電流から除外して、正相電流制御器に帰還値として与える第2の加算部とを備える。   In order to achieve the above object, in the present invention, a reverse phase d-axis current and a reverse phase q-axis current are obtained by performing dq vector coordinate conversion of the output current in the reverse phase rotation direction of the system voltage of the three-phase AC power system. A negative phase current controller and a negative phase coordinate for controlling the command value of the phase coordinate conversion circuit, the negative phase d axis current and the negative phase q axis current of the negative phase coordinate conversion circuit as feedback values and comparing them with the command values of these currents. A first vibration component extraction circuit that extracts a secondary vibration component due to the positive phase current included in the negative phase d-axis current and the negative phase q-axis current of the conversion circuit, and reverses the secondary vibration component due to the extracted positive phase current A first addition unit that is excluded from the negative-phase d-axis current and negative-phase q-axis current of the phase coordinate conversion circuit and provided as a feedback value to the negative-phase current controller, the normal-phase rotation direction of the system voltage of the three-phase AC power system The output current is converted into dq vector coordinates to convert the positive phase d-axis current and the positive phase q Positive phase coordinate conversion circuit for obtaining current, and positive phase current controller for controlling the positive phase d-axis current and positive phase q-axis current of the positive phase coordinate conversion circuit as feedback values and comparing them with command values of these currents , A second vibration component extraction circuit for extracting a secondary vibration component due to the negative phase current included in the positive phase d-axis current and the positive phase q-axis current of the positive phase coordinate conversion circuit; And a second addition unit that excludes the vibration component from the positive phase d-axis current and the positive phase q-axis current of the positive phase coordinate conversion circuit and provides the positive phase current controller as a feedback value.

また、第1の振動成分抽出回路は、第2の電流制御器の指令値である正相d軸電流指令値および正相q軸電流指令値を逆相回転方向に二度dqベクトル座標変換する回路である。   Further, the first vibration component extraction circuit converts the positive phase d-axis current command value and the normal phase q-axis current command value, which are the command values of the second current controller, into dq vector coordinates twice in the reverse phase rotation direction. Circuit.

また、第2の振動成分抽出回路は、第1の電流制御器の指令値である逆相d軸電流指令値および逆相q軸電流指令値を正相回転方向に二度dqベクトル座標変換する回路である。   In addition, the second vibration component extraction circuit converts the negative phase d-axis current command value and the negative phase q-axis current command value, which are the command values of the first current controller, into dq vector coordinates twice in the normal phase rotation direction. Circuit.

また、第1の振動成分抽出回路は、出力電流に含まれる正相電流振幅を抽出する正相電流振幅抽出器および系統電圧の二倍の周波数の正弦波信号および余弦波信号を出力する二次発振器を有し,正弦波信号および余弦波信号の位相は三相交流電力系統の系統電圧位相の2倍と出力電流の力率角の和であり,正相電流振幅抽出器の出力と余弦波信号の積および正相電流振幅抽出器の出力と正弦波信号の積を出力する回路である。   The first vibration component extraction circuit also outputs a positive phase current amplitude extractor that extracts a positive phase current amplitude included in the output current, and a secondary that outputs a sine wave signal and a cosine wave signal having a frequency twice that of the system voltage. The phase of the sine wave signal and cosine wave signal is the sum of the system voltage phase of the three-phase AC power system and the power factor angle of the output current, and the output of the positive phase current amplitude extractor and the cosine wave. This is a circuit for outputting the product of the signal and the product of the output of the positive phase current amplitude extractor and the sine wave signal.

また、第2の振動成分抽出回路は、出力電流に含まれる逆相電流振幅を抽出する逆相電流振幅抽出器および系統電圧の二倍の周波数の正弦波信号および余弦波信号を出力する二次発振器を有し,正弦波信号および余弦波信号の位相は系統電圧位相の−2倍と逆相電流の力率角の差であり,正相電流振幅抽出器の出力と余弦波信号の積および正相電流振幅抽出器の出力と正弦波信号の積を出力する回路である。   The second vibration component extraction circuit also outputs a negative-phase current amplitude extractor that extracts the negative-phase current amplitude included in the output current, and a secondary that outputs a sine wave signal and a cosine wave signal having a frequency twice that of the system voltage. The phase of the sine wave signal and cosine wave signal is -2 times the system voltage phase and the difference between the power factor angles of the negative phase current and the product of the output of the positive phase current amplitude extractor and the cosine wave signal and This circuit outputs the product of the output of the positive phase current amplitude extractor and the sine wave signal.

また、正相電流振幅抽出器は,三相二相変換器により電力変換装置の出力電流を互いに90°位相のずれた二相の電流Ia,Ibに変換し,FFT演算を実施するFFT演算器により,二相の電流Ia,Ib各々の系統電圧Vsと同じ周波数f0の正弦波成分Iare,Ibreと余弦波成分Iaim,Ibimに分解し,IareとIbimとの和とIbreとIaimの差を入力として二乗平均演算器により二乗平均演算を実施し,出力電流の正相成分振幅を算出する。   The positive phase current amplitude extractor converts the output current of the power converter into two phase currents Ia and Ib that are 90 ° out of phase with each other by a three phase two phase converter, and performs an FFT operation. Is decomposed into sine wave components Iare and Ibre and cosine wave components Iaim and Ibim having the same frequency f0 as the system voltage Vs of each of the two-phase currents Ia and Ib, and the sum of Iare and Ibim and the difference between Ibre and Iaim are input. As a result, the mean square calculation is performed by the mean square calculator, and the positive phase component amplitude of the output current is calculated.

また、逆相電流振幅抽出器は,三相二相変換器により電力変換装置の出力電流を互いに90°位相のずれた二相の電流Ia,Ibに変換し,FFT演算を実施するFFT演算器により,Ia,Ib各々の系統電圧Vsと同じ周波数f0の正弦波成分Iare,Ibreと余弦波成分Iaim,Ibimに分解し,IbimとIareとの差とIbreとIaimの和を入力として二乗平均演算器により二乗平均演算を実施し,出力電流の逆相成分振幅のみを算出する。   The negative phase current amplitude extractor converts the output current of the power conversion device into two-phase currents Ia and Ib that are 90 ° out of phase by a three-phase two-phase converter, and performs an FFT operation. Is decomposed into sine wave components Iare, Ibre and cosine wave components Iaim, Ibim having the same frequency f0 as the system voltage Vs of each of Ia, Ib, and the root mean square calculation using the difference between Ibim and Iare and the sum of Ibre and Iaim as inputs The root-mean-square calculation is performed by the detector, and only the negative phase component amplitude of the output current is calculated.

以上の目的を達成するために本発明においては、三相交流電力系統に変圧器を介して接続された電力変換装置の制御装置において,三相交流電力系統の系統電圧の逆相回転方向に出力電流をdqベクトル座標変換して逆相d軸電流および逆相q軸電流を求める逆相座標変換回路、逆相座標変換回路の逆相d軸電流および逆相q軸電流を帰還値とし、これら電流の指令値と比較して指令値に制御する逆相電流制御器、逆相座標変換回路の逆相d軸電流および逆相q軸電流に含まれる正相電流による2次の振動成分を抽出する第1の振動成分抽出回路、抽出した正相電流による2次の振動成分を逆相座標変換回路の逆相d軸電流および逆相q軸電流から除外して、逆相電流制御器に帰還値として与える第1の加算部、三相交流電力系統の系統電圧の正相回転方向に出力電流をdqベクトル座標変換して正相d軸電流および正相q軸電流を求める正相座標変換回路、正相座標変換回路の正相d軸電流および正相q軸電流を帰還値とし、これら電流の指令値と比較して指令値に制御する正相電流制御器、正相d軸電流指令値に変圧器のリアクトル値を乗じた値を正相q軸電流側の正相電流制御器出力から差し引き、正相q軸電流指令値に変圧器のリアクトル値を乗じた値を逆相d軸電流側の正相電流制御器出力に加算する補償回路を備えるとともに、逆相電流制御器の指令値を0に設定しておく。   In order to achieve the above object, in the present invention, in a control device for a power converter connected to a three-phase AC power system via a transformer, the system voltage of the three-phase AC power system is output in the reverse phase rotation direction. A negative phase coordinate conversion circuit for obtaining a negative phase d-axis current and a negative phase q-axis current by converting the current into a dq vector coordinate, and a negative phase d-axis current and a negative phase q-axis current of the negative phase coordinate conversion circuit as feedback values. Extraction of secondary vibration component due to the positive phase current included in the negative phase d-axis current and negative phase q-axis current of the negative phase coordinate conversion circuit, the negative phase current controller that controls to the command value compared with the current command value The first vibration component extracting circuit that removes the secondary vibration component due to the extracted normal phase current from the negative phase d-axis current and negative phase q-axis current of the negative phase coordinate conversion circuit, and is fed back to the negative phase current controller. 1st addition part given as a value, system voltage of three-phase AC power system Positive phase coordinate conversion circuit for obtaining positive phase d-axis current and positive phase q-axis current by converting dq vector coordinates of output current in the normal phase rotation direction, and positive phase d-axis current and positive phase q-axis current of positive phase coordinate conversion circuit Is a positive phase current controller that controls to a command value by comparing with the command value of these currents, and a value obtained by multiplying the positive phase d-axis current command value by the reactor value of the transformer on the positive phase q-axis current side A compensation circuit is provided that subtracts from the output of the positive phase current controller and adds the value obtained by multiplying the positive phase q-axis current command value by the reactor value of the transformer to the positive phase current controller output on the negative phase d-axis current side. The command value of the phase current controller is set to 0.

本発明の電力変換装置は,1線地絡事故や2線地絡事故など電力系統の電圧が三相不平衡の状態でも,正相電流および逆相電流を定常偏差0で制御でき制御性能が向上する。   The power converter of the present invention can control the positive phase current and the negative phase current with zero steady-state deviation even when the power system voltage is in a three-phase unbalanced state such as a one-wire ground fault or a two-wire ground fault. improves.

また,本発明の実施例では電力変換装置が正相電流だけを出力すればよい場合,電力変換装置の出力する逆相電流の電流指令値を0とすれば,電力系統の電圧が三相不平衡の状態でも電力変換装置の各相に流れる電流を三相平衡にできるため,装置容量を小さくすることができ,装置の小型化および低損失化が実現できる。   In the embodiment of the present invention, when the power converter only needs to output the positive phase current, if the current command value of the reverse phase current output from the power converter is set to 0, the voltage of the power system is not three-phase. Even in a balanced state, the current flowing in each phase of the power converter can be balanced in three phases, so that the capacity of the apparatus can be reduced, and the apparatus can be reduced in size and loss.

また,本実施例によれば不平衡補償装置のように出力する逆相電流を制御する必要がある場合でも,逆相電流と正相電流を独立して制御することができる。   Further, according to the present embodiment, even when it is necessary to control the output negative phase current as in the case of the unbalance compensation device, the negative phase current and the positive phase current can be controlled independently.

本発明の実施例1の電力変換装置の制御装置の構成を示す図。The figure which shows the structure of the control apparatus of the power converter device of Example 1 of this invention. 電力変換装置を含む電力系統の構成例を示す図。The figure which shows the structural example of the electric power grid | system including a power converter device. 本発明の実施例2の電力変換装置の制御装置の構成を示す図。The figure which shows the structure of the control apparatus of the power converter device of Example 2 of this invention. 逆相電流振幅抽出器の1例を示す図。The figure which shows one example of a negative phase current amplitude extractor. 正相電流振幅抽出器の1例を示す図。The figure which shows an example of a positive phase current amplitude extractor. 本発明の実施例3の電力変換装置の制御装置の構成を示す図。The figure which shows the structure of the control apparatus of the power converter device of Example 3 of this invention.

以下,本発明の実施例について,図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図2は,電力変換装置を含む電力系統の構成例を示す。   FIG. 2 shows a configuration example of a power system including a power conversion device.

本実施例の電力変換装置1は,直流コンデンサ111とIGBTやGCTなどの自己消弧形素子112を有する電圧形インバータ装置(以後,単にインバータ装置と称す)11と,インバータ装置11の出力電圧を制御するための出力電圧指令値Vcrを出力する制御装置12と,インバータ装置11の直流コンデンサ111の端子電圧Vdcを計測する直流電圧センサ15と,インバータ装置11と三相交流電力系統2を連系する漏れリアクタンス成分Xcをもつ連系用変圧器14と,インバータ装置11の出力する電流Icを測定する電流センサ16と,三相交流電力系統2の系統電圧Vsを測定する交流電圧センサ17と,制御装置12から与えられる出力電圧指令Vcrに応じてインバータ装置11の自己消弧形素子112のオン,オフを制御するためのゲートパルスGPを生成するPWM回路13を備えて構成される。   The power converter 1 of this embodiment includes a voltage-type inverter device (hereinafter simply referred to as an inverter device) 11 having a DC capacitor 111 and a self-extinguishing element 112 such as IGBT or GCT, and an output voltage of the inverter device 11. The control device 12 that outputs an output voltage command value Vcr for control, the DC voltage sensor 15 that measures the terminal voltage Vdc of the DC capacitor 111 of the inverter device 11, and the inverter device 11 and the three-phase AC power system 2 are linked. An interconnection transformer 14 having a leakage reactance component Xc, a current sensor 16 for measuring a current Ic output from the inverter device 11, an AC voltage sensor 17 for measuring a system voltage Vs of the three-phase AC power system 2, The self-extinguishing element 112 of the inverter device 11 is turned on in response to the output voltage command Vcr supplied from the control device 12. Configured with a PWM circuit 13 for generating the gate pulse GP to control off.

なお,本実施例では電流センサ16は連系用変圧器14の三相交流電力系統2側(以後,一次側と称す)に設置してあるが,連系用変圧器14のインバータ装置11側(以後,二次側と称す)に設置してもよい。   In this embodiment, the current sensor 16 is installed on the three-phase AC power system 2 side (hereinafter referred to as the primary side) of the interconnection transformer 14, but the inverter device 11 side of the interconnection transformer 14. (Hereinafter referred to as the secondary side).

次に,電力変換装置1の動作について説明する。電力変換装置1の制御装置12は,インバータ装置11から直流コンデンサ111の端子電圧Vdcと,三相交流電力系統2の系統電圧Vsと,電力変換装置1の出力する電流Icを入力とし,インバータ装置11の出力電圧Vcの指令値Vcrを出力する。   Next, operation | movement of the power converter device 1 is demonstrated. The control device 12 of the power conversion device 1 receives from the inverter device 11 the terminal voltage Vdc of the DC capacitor 111, the system voltage Vs of the three-phase AC power system 2, and the current Ic output from the power conversion device 1, and inputs the inverter device. 11 outputs the command value Vcr of the output voltage Vc.

PWM回路13は,出力電圧指令値Vcrと三角波などのキャリアとの大小関係に基づき,インバータ装置11の自己消弧形素子112のオン,オフを制御するためのゲートパルスGPを出力する。   The PWM circuit 13 outputs a gate pulse GP for controlling on / off of the self-extinguishing element 112 of the inverter device 11 based on the magnitude relationship between the output voltage command value Vcr and a carrier such as a triangular wave.

インバータ装置11は,PWM回路13の出力するゲートパルスGPに基づきインバータ装置11の出力電圧Vcを連系用変圧器14へ出力することで,三相交流電力系統1との間で電力を変換する。   The inverter device 11 converts the power with the three-phase AC power system 1 by outputting the output voltage Vc of the inverter device 11 to the interconnection transformer 14 based on the gate pulse GP output from the PWM circuit 13. .

次に,制御装置12の構成について述べる。図1は,図2で示した制御装置12の制御ブロックの概略を示した図である。ここでは、まず電力変換装置1のベクトル制御の基本的構成を説明し、その後で2次の振動成分に対する対応策を説明する。   Next, the configuration of the control device 12 will be described. FIG. 1 is a diagram showing an outline of a control block of the control device 12 shown in FIG. Here, first, the basic configuration of vector control of the power conversion device 1 will be described, and then countermeasures against secondary vibration components will be described.

図1の制御装置12は,その実施する機能を大きく4つのブロックに分けて考えることができる。第1のブロックは、系統電圧Vsから系統電圧の正相電圧位相θを検出する位相検出部A(位相検出器21)である。第2のブロックは正相電流演算部Bであり、第3のブロックは逆相電流演算部Cである。第4のブロックは電流合成部Dである。このうち、正相電流演算部Bと逆相電流演算部Cは取り扱う電気量が相違するが、基本的に同一回路構成とされている。   The control device 12 shown in FIG. 1 can be considered by dividing the function to be implemented into four blocks. The first block is a phase detector A (phase detector 21) that detects the positive phase voltage phase θ of the system voltage from the system voltage Vs. The second block is a normal phase current calculation unit B, and the third block is a negative phase current calculation unit C. The fourth block is a current synthesizer D. Among these, the positive phase current calculation unit B and the negative phase current calculation unit C are handled in different amounts, but basically have the same circuit configuration.

第1のブロックAの位相検出器21は、周知のPLL(Phase Locked Loop)回路やDFT(Discrete Fourier Transform)回路などにより、系統電圧Vsの正相電圧位相θを検出する。   The phase detector 21 of the first block A detects the positive phase voltage phase θ of the system voltage Vs by a known PLL (Phase Locked Loop) circuit, DFT (Discrete Fourier Transform) circuit, or the like.

正相電流演算部Bでは、まず三相二相変換器51において、電力変換装置1の3相の出力電流Icを入力して、90度位相の相違する二相の電流IαとIβに変換する。さらに正相座標変換器22において、位相検出器21で求めた正相電圧位相θと、三相二相変換器51で求めた二相の電流IαとIβを用いて周知のdq座標変換を行い,正相回転方向に座標変換したd軸電流Id1(以後,単に正相d軸電流Id1と称す)および正相回転方向に座標変換したq軸電流Iq1(以後,単に正相q軸電流Iq1と称す)を算出する。ここで正相d軸電流Id1、正相q軸電流Iq1に付した番号「1」は、正相分であることを意味する。この正相電流演算部Bは、電力系統の正相電圧と同期した方向に座標変換した正相dqベクトル座標系として構成したものであり、以後,単に正相座標系と称することにする。   In the positive phase current calculation unit B, first, the three-phase two-phase converter 51 receives the three-phase output current Ic of the power conversion device 1 and converts it into two-phase currents Iα and Iβ that are 90 degrees out of phase. . Further, the positive phase coordinate converter 22 performs known dq coordinate conversion using the positive phase voltage phase θ obtained by the phase detector 21 and the two-phase currents Iα and Iβ obtained by the three-phase two-phase converter 51. , D-axis current Id1 (hereinafter simply referred to as positive-phase d-axis current Id1) coordinate-converted in the normal phase rotation direction and q-axis current Iq1 (hereinafter simply referred to as positive-phase q-axis current Iq1) converted in the positive-phase rotation direction. Calculated). Here, the number “1” given to the positive phase d-axis current Id1 and the positive phase q-axis current Iq1 means that it corresponds to the positive phase. This positive phase current calculation unit B is configured as a positive phase dq vector coordinate system in which coordinates are converted in a direction synchronized with the positive phase voltage of the power system, and will be simply referred to as a positive phase coordinate system hereinafter.

同様に逆相電流演算部Cでは、まず三相二相変換器51において、電力変換装置1の3相の出力電流Icを入力して、90度位相の相違する二相の電流Iαと、Iβに変換する。さらに逆相座標変換器23において、位相検出器21で求めた正相電圧位相θと逆方向に回転する逆相電圧位相(−θ)と、三相二相変換器51で求めた二相の電流IαとIβを用いて周知のdq座標変換を行い,逆相回転方向に座標変換したd軸電流Id2(以後,単に逆相d軸電流Id2と称す)および逆相回転方向に座標変換したq軸電流Iq2(以後,単に逆相q軸電流Iq2と称す)を算出する。ここで逆相d軸電流Id2、逆相q軸電流Iq2に付した番号「2」は、逆相分であることを意味する。この逆相電流演算部Cは、電力系統の逆相電圧と同期した方向に座標変換した逆相dqベクトル座標系として構成したものであり、以後,単に逆相座標系と称することにする。   Similarly, in the negative phase current calculation unit C, first, in the three-phase two-phase converter 51, the three-phase output current Ic of the power conversion device 1 is input, and the two-phase currents Iα and Iβ that are 90 degrees out of phase are input. Convert to Further, in the negative phase coordinate converter 23, the negative phase voltage phase (−θ) rotating in the opposite direction to the positive phase voltage phase θ obtained by the phase detector 21, and the two phase obtained by the three phase two phase converter 51. A known dq coordinate transformation is performed using the currents Iα and Iβ, and a d-axis current Id2 (hereinafter simply referred to as a negative-phase d-axis current Id2) coordinate-transformed in the reverse-phase rotation direction and a q-transformed coordinate in the reverse-phase rotation direction An axial current Iq2 (hereinafter simply referred to as a reverse phase q-axis current Iq2) is calculated. Here, the number “2” attached to the negative phase d-axis current Id2 and the negative phase q-axis current Iq2 means that the phase is the negative phase. The negative phase current calculation unit C is configured as a negative phase dq vector coordinate system obtained by coordinate conversion in a direction synchronized with the negative phase voltage of the power system, and will be simply referred to as a negative phase coordinate system hereinafter.

なお,正相電流演算部Bあるいは逆相電流演算部Cで実施されるdq座標変換,三相二相変換,さらにはdq逆座標変換及び二相三相変換については周知であるため,ここでの詳しい説明は省略する。   The dq coordinate transformation, the three-phase two-phase transformation, the dq inverse coordinate transformation and the two-phase three-phase transformation performed by the positive phase current computing unit B or the negative phase current computing unit C are well known. Detailed description of is omitted.

上記のようにして求められた正相d軸電流Id1、正相q軸電流Iq1、さらには逆相d軸電流Id2、逆相q軸電流Iq2は、三相交流系統が平衡状態にあるときには直流量として導出される。これらの直流量は、ベクトル制御の帰還信号であり、これらに対するベクトル制御の指令値(正相d軸電流指令値Id1r、正相q軸電流指令値Iq1r、さらには逆相d軸電流指令値Id2r、逆相q軸電流指令値Iq2r)が与えられて、電流制御系を構成する。   The positive-phase d-axis current Id1, the positive-phase q-axis current Iq1, and the negative-phase d-axis current Id2 and the negative-phase q-axis current Iq2 obtained as described above are obtained when the three-phase AC system is in an equilibrium state. Derived as a flow rate. These DC amounts are feedback signals for vector control, and vector control command values (positive phase d-axis current command value Id1r, positive phase q-axis current command value Iq1r, and further negative phase d-axis current command value Id2r). , A negative phase q-axis current command value Iq2r) is provided to constitute a current control system.

正相電流演算部Bと逆相電流演算部Cの電流制御器28(28a、28b,28c,28d)は、その前段に設けた減算器AD(AD1,AD2,AD3,AD4)にベクトル制御の帰還信号と指令値を導入し、その差分に基づいて電流制御を行う。   The current controller 28 (28a, 28b, 28c, 28d) of the positive phase current calculation unit B and the negative phase current calculation unit C performs vector control on the subtractor AD (AD1, AD2, AD3, AD4) provided in the preceding stage. A feedback signal and a command value are introduced, and current control is performed based on the difference.

なお、電流制御器28aは、正相d軸電流Id1についての電流制御器、電流制御器28bは、正相q軸電流Iq1についての電流制御器、電流制御器28cは、逆相d軸電流Id2についての電流制御器、電流制御器28dは、逆相q軸電流Iq2についての電流制御器である。   The current controller 28a is a current controller for the positive phase d-axis current Id1, the current controller 28b is a current controller for the positive phase q-axis current Iq1, and the current controller 28c is a negative phase d-axis current Id2. The current controller 28d and the current controller 28d are current controllers for the anti-phase q-axis current Iq2.

これらの電流制御器28の出力はそれぞれVd1、Vq1,Vd2,Vq2である。このうちVd1、Vq1の意味するものは、電力変換装置1の出力電流Icを電流指令値Id1r,Iq1rに制御するための正相d軸補正電圧(Vd1)、および正相q軸補正電圧(Vq1)である。またVd2,Vq2の意味するものは、電力変換装置1の出力電流Icを電流指令値Id2r,Iq2rに制御するための逆相d軸補正電圧(Vd2)、および逆相q軸補正電圧(Vq2)である。   The outputs of these current controllers 28 are Vd1, Vq1, Vd2, and Vq2, respectively. Among these, Vd1 and Vq1 mean the positive phase d-axis correction voltage (Vd1) and the positive phase q-axis correction voltage (Vq1) for controlling the output current Ic of the power converter 1 to the current command values Id1r and Iq1r. ). Also, what Vd2 and Vq2 mean is a negative phase d-axis correction voltage (Vd2) and a negative phase q-axis correction voltage (Vq2) for controlling the output current Ic of the power converter 1 to the current command values Id2r and Iq2r. It is.

補正電圧Vd1、Vq1,Vd2,Vq2は、電流指令値と変圧器14の漏れリアクタンス成分Xcの積による干渉を排除してから、後段の制御に使用される。例えば、乗算器32aは正相d軸電流指令値Id1rと変圧器の漏れリアクタンス成分Xcを乗算したId1r×Xcを演算し、補償回路CP2において補正電圧Vq1から減算する。また乗算器32bは正相q軸電流指令値Iq1rと変圧器の漏れリアクタンス成分Xcを乗算したIq1r×Xcを演算し、補償回路CP1において補正電圧Vd1に加算する。   The correction voltages Vd1, Vq1, Vd2, and Vq2 are used for subsequent control after eliminating interference due to the product of the current command value and the leakage reactance component Xc of the transformer 14. For example, the multiplier 32a calculates Id1r × Xc obtained by multiplying the positive phase d-axis current command value Id1r by the leakage reactance component Xc of the transformer, and subtracts it from the correction voltage Vq1 in the compensation circuit CP2. The multiplier 32b calculates Iq1r × Xc obtained by multiplying the positive-phase q-axis current command value Iq1r and the leakage reactance component Xc of the transformer, and adds it to the correction voltage Vd1 in the compensation circuit CP1.

同様に、乗算器32cは逆相d軸電流指令値Id2rと変圧器の漏れリアクタンス成分Xcを乗算したId2r×Xcを演算し、補償回路CP4において補正電圧Vq2から減算する。また乗算器32dは逆相q軸電流指令値Iq2rと変圧器の漏れリアクタンス成分Xcを乗算したIq2r×Xcを演算し、補償回路CP3において補正電圧Vd2に加算する。   Similarly, the multiplier 32c calculates Id2r × Xc obtained by multiplying the negative phase d-axis current command value Id2r by the leakage reactance component Xc of the transformer, and subtracts it from the correction voltage Vq2 in the compensation circuit CP4. The multiplier 32d calculates Iq2r × Xc obtained by multiplying the anti-phase q-axis current command value Iq2r by the leakage reactance component Xc of the transformer, and adds it to the correction voltage Vd2 in the compensation circuit CP3.

なお、電流制御器28に与えられるベクトル制御の指令値(正相d軸電流指令値Id1r、正相q軸電流指令値Iq1r、逆相d軸電流指令値Id2r、逆相q軸電流指令値Iq2r)は、直流電圧Vdcを一定に制御し、あるいは交流電圧を一定に維持するために作られる。指令値の作り方は本発明に直接関係しないため詳しい説明は省略するが、一般には上位制御系で作成された信号とされる。つまり、電力変換装置を電動機制御に適用する場合であれば、電動機の速度あるいはトルク制御に関する上位制御系において電流制御の指令値を作成する。また、電力変換装置により電圧制御を行う場合には、電圧制御系が上位制御系とされる。   The vector control command values (positive phase d-axis current command value Id1r, positive phase q-axis current command value Iq1r, negative phase d-axis current command value Id2r, negative phase q-axis current command value Iq2r given to the current controller 28. ) Is made to control the DC voltage Vdc constant or to keep the AC voltage constant. Since the method for creating the command value is not directly related to the present invention, a detailed description thereof is omitted, but in general, it is a signal created by the host control system. In other words, if the power converter is applied to motor control, a command value for current control is created in a host control system related to motor speed or torque control. Further, when voltage control is performed by the power conversion device, the voltage control system is an upper control system.

次に正相逆座標変換器29では、補償回路CP1の信号(Iq1r×Xcと補正電圧Vd1との加算値)と,補償回路CP2の信号(Id1r×Xcと補正電圧Vq1との減算値)と,系統電圧位相θを入力とし、周知の逆dq座標変換を行い、90度位相の相違する二相の電流IαとIβに逆変換する。続いて二相三相変換器52において、三相成分を復元し正相座標系における電力変換装置1の出力電圧指令値Vc1rを出力する。   Next, in the normal phase inverse coordinate converter 29, the signal of the compensation circuit CP1 (addition value of Iq1r × Xc and the correction voltage Vd1) and the signal of the compensation circuit CP2 (subtraction value of Id1r × Xc and the correction voltage Vq1) , The system voltage phase θ is input, and known inverse dq coordinate transformation is performed to inversely transform the currents into two-phase currents Iα and Iβ having a phase difference of 90 degrees. Subsequently, the two-phase / three-phase converter 52 restores the three-phase component and outputs the output voltage command value Vc1r of the power conversion device 1 in the positive phase coordinate system.

同様にして、逆相逆座標変換器30では、補償回路CP3の信号(Iq2r×Xcと補正電圧Vd2との加算値)と,補償回路CP4の信号(Id2r×Xcと補正電圧Vq2との減算値)と,系統電圧逆位相(−θ)を入力とし、周知の逆dq座標変換を行い、90度位相の相違する二相の電流IαとIβに逆変換する。続いて二相三相変換器52において、三相成分を復元し逆相座標系における電力変換装置1の出力電圧指令値Vc2rを出力する。   Similarly, in the inverse phase inverse coordinate converter 30, a subtraction value between the signal of the compensation circuit CP3 (added value of Iq2r × Xc and the correction voltage Vd2) and the signal of the compensation circuit CP4 (Id2r × Xc and the correction voltage Vq2). ) And the system voltage reverse phase (−θ), and the known reverse dq coordinate conversion is performed to reversely convert the current into two-phase currents Iα and Iβ that are 90 degrees different in phase. Subsequently, the two-phase / three-phase converter 52 restores the three-phase component and outputs the output voltage command value Vc2r of the power conversion device 1 in the reverse phase coordinate system.

最後に第4のブロックの電流合成部Dでの処理が行われる。ここで位相回転器31は,系統電圧Vsを入力とし,図1の連系用変圧器14の1次側の電圧位相を2次側の電圧位相になるように位相を回転させる。例えば,連系用変圧器14の1次側がスター巻線,2次側がΔ巻線の場合,位相を30度進ませればよい。ただし,前記連系用変圧器の各巻線は上記に限るものではない。そのうえで、位相回転器31の出力とVc1rとVc2rの加算値を、インバータ装置11の出力電圧指令値VcrとしてPWM回路12に出力する。   Finally, processing in the current synthesizer D of the fourth block is performed. Here, the phase rotator 31 receives the system voltage Vs and rotates the phase so that the voltage phase on the primary side of the interconnection transformer 14 in FIG. 1 becomes the voltage phase on the secondary side. For example, if the primary side of the interconnection transformer 14 is a star winding and the secondary side is a Δ winding, the phase may be advanced by 30 degrees. However, each winding of the interconnection transformer is not limited to the above. Then, the output of the phase rotator 31 and the added value of Vc1r and Vc2r are output to the PWM circuit 12 as the output voltage command value Vcr of the inverter device 11.

ベクトル制御を実行する電力変換装置の制御装置は、通常は図1のように構成されている。本発明では、逆相電流による正相座標系における系統電圧周波数の2倍の変動成分(以後,単に逆相2次電流と称す)を再現する。また、正相電流による逆相座標系における系統電圧周波数の2倍の変動成分(以後,単に正相2次電流と称す)を再現する。また再現した逆相2次電流を正相電流から差し引き、再現した正相2次電流を逆相電流から差し引く。   A control device of a power conversion device that executes vector control is generally configured as shown in FIG. In the present invention, a fluctuation component twice the system voltage frequency in the normal phase coordinate system due to the negative phase current (hereinafter simply referred to as the negative phase secondary current) is reproduced. In addition, a fluctuation component twice the system voltage frequency in the negative phase coordinate system due to the positive phase current (hereinafter simply referred to as the positive phase secondary current) is reproduced. Further, the reproduced negative phase secondary current is subtracted from the positive phase current, and the reproduced positive phase secondary current is subtracted from the negative phase current.

具体的には、1線地絡や2線地絡など不平衡系統事故時に、正相座標変換器22あるいは逆相座標変換器23の出力(正相d軸電流Id1、正相q軸電流Iq1、逆相d軸電流Id2、逆相q軸電流Iq2)に含まれる二次の振動成分を求めて、減算回路ad(ad1,ad2,ad3,ad4)で除外する。   Specifically, in the event of an unbalanced system fault such as a 1-wire ground fault or a 2-wire ground fault, the outputs (positive phase d-axis current Id1, positive phase q-axis current Iq1) of the normal phase coordinate converter 22 or the negative phase coordinate converter 23 , Secondary vibration components included in the anti-phase d-axis current Id2 and anti-phase q-axis current Iq2) are obtained and excluded by the subtraction circuit ad (ad1, ad2, ad3, ad4).

逆相2次電流と正相2次電流を再現するに当り、図1の実施例では電流指令値(正相d軸電流指令値Id1r、正相q軸電流指令値Iq1r、さらには逆相d軸電流指令値Id2r、逆相q軸電流指令値Iq2r)から、二次の振動成分を再現する。   In reproducing the negative-phase secondary current and the positive-phase secondary current, in the embodiment of FIG. 1, the current command values (the positive-phase d-axis current command value Id1r, the positive-phase q-axis current command value Iq1r, and the negative-phase d The secondary vibration component is reproduced from the shaft current command value Id2r and the negative phase q-axis current command value Iq2r).

この再現処理を、正相電流演算部Bでは以下のように実施する。まず出力電流Icに逆相電流が含まれる場合,正相d軸電流Id1,正相q軸電流Iq1には逆相電流による系統電圧の2倍の周波数の振動成分が重畳している。   This reproduction process is performed in the positive phase current calculation unit B as follows. First, when the output current Ic includes a reverse phase current, a vibration component having a frequency twice that of the system voltage due to the negative phase current is superimposed on the positive phase d axis current Id1 and the positive phase q axis current Iq1.

本発明の正相電流演算部Bの処理では,インバータ装置11に出力させたいd軸およびq軸の逆相電流指令値Id2r,Iq2rを、電流制御器28c,28dの制御応答遅れを模擬するローパスフィルタLPF53a,53bに入力する。そして,正相座標変換器22を2段に構成して、これにより2度正相方向に座標変換する。このことで,逆相電流による系統電圧の2倍の周波数の振動成分を再現したd軸電流Id12,q軸電流Iq12(以後単に逆相再現d軸電流Id12,逆相再現q軸電流Iq12と称す)を得る。減算器ad1において逆相再現d軸電流Id12を正相d軸電流Id1から差し引き,また減算器ad2において逆相再現q軸電流Iq12を正相q軸電流Iq1から差し引くことで振動成分を除去することができる。   In the processing of the normal phase current calculation unit B of the present invention, the d-axis and q-axis negative phase current command values Id2r and Iq2r to be output to the inverter device 11 are low-passes that simulate the control response delay of the current controllers 28c and 28d. Input to the filters LPF 53a and 53b. Then, the normal phase coordinate converter 22 is configured in two stages, thereby performing coordinate conversion twice in the normal phase direction. Thus, a d-axis current Id12 and a q-axis current Iq12 (hereinafter simply referred to as a negative-phase reproduction d-axis current Id12 and a negative-phase reproduction q-axis current Iq12) that reproduce vibration components having a frequency twice that of the system voltage due to the negative-phase current. ) The vibration component is removed by subtracting the negative phase reproduction d-axis current Id12 from the positive phase d axis current Id1 in the subtractor ad1 and subtracting the negative phase reproduction q axis current Iq12 from the positive phase q axis current Iq1 in the subtractor ad2. Can do.

この正相電流演算部Bでの考え方は要するに、正相電流に含まれる二次振動成分を逆相電流指令値から再現したことにある。またこの再現は、dq軸ごとに行われる。   In short, the concept of the positive phase current calculation unit B is that the secondary vibration component included in the positive phase current is reproduced from the negative phase current command value. This reproduction is performed for each dq axis.

またこの再現処理を、逆相電流演算部Cでは以下のように実施する。まず出力電流Icに逆相電流が含まれる場合,逆相d軸電流Id2,逆相q軸電流Iq2には逆相電流による系統電圧の2倍の周波数の振動成分が重畳している。   In addition, this reproduction process is performed in the negative phase current calculation unit C as follows. First, when the output current Ic includes a reverse phase current, a vibration component having a frequency twice that of the system voltage due to the negative phase current is superimposed on the negative phase d axis current Id2 and the negative phase q axis current Iq2.

本発明の逆相電流演算部Cの処理では,インバータ装置11に出力させたいd軸およびq軸の正相電流指令値Id1r,Iq1rを、電流制御器28a,28bの制御応答遅れを模擬するローパスフィルタLPF53c,53dに入力する。そして,逆相座標変換器23を2段に構成して、これにより2度逆相方向に座標変換する。このことで,逆相電流による系統電圧の2倍の周波数の振動成分を再現したd軸電流Id22,q軸電流Iq22(以後単に正相再現d軸電流Id22,正相再現q軸電流Iq22と称す)を得る。減算器ad3において正相再現d軸電流Id22を逆相d軸電流Id2から差し引き,また減算器ad4において正相再現q軸電流Iq22を逆相q軸電流Iq2から差し引くことで振動成分を除去することができる。   In the processing of the negative phase current calculation unit C of the present invention, the d axis and q axis positive phase current command values Id1r and Iq1r to be output to the inverter device 11 are low-passes that simulate the control response delay of the current controllers 28a and 28b. Input to the filters LPF 53c and 53d. Then, the anti-phase coordinate converter 23 is configured in two stages, thereby converting the coordinates in the anti-phase direction twice. Thus, a d-axis current Id22 and a q-axis current Iq22 (hereinafter simply referred to as a positive-phase reproduction d-axis current Id22 and a positive-phase reproduction q-axis current Iq22) that reproduce a vibration component having a frequency twice that of the system voltage due to the reverse-phase current. ) The subtractor ad3 subtracts the positive phase reproduction d-axis current Id22 from the negative phase d axis current Id2, and the subtractor ad4 subtracts the positive phase reproduction q axis current Iq22 from the negative phase q axis current Iq2. Can do.

この逆相電流演算部Cでの考え方は要するに、逆相電流に含まれる二次振動成分を正相電流指令値から再現したことにある。またこの再現は、dq軸ごとに行われる。   In short, the idea of the negative phase current calculation unit C is that the secondary vibration component included in the negative phase current is reproduced from the normal phase current command value. This reproduction is performed for each dq axis.

この結果、電流制御器28での演算は、二次振動成分の影響を受けないものとすることができる。   As a result, the calculation by the current controller 28 can be not affected by the secondary vibration component.

本実施例の構成にすることで,正相座標系における逆相成分による2次の振動成分、および逆相座標系における正相成分による2次の振動成分を除去でき,不平衡補償装置のように出力する逆相電流を制御する必要がある場合でも,逆相電流と正相電流を独立して制御することができる。   By adopting the configuration of the present embodiment, it is possible to remove the secondary vibration component due to the antiphase component in the normal phase coordinate system and the secondary vibration component due to the positive phase component in the antiphase coordinate system. Even if it is necessary to control the negative-phase current output to, the negative-phase current and the positive-phase current can be controlled independently.

また,電流制御器28a〜28dに、積分制御を適用することができるので、定常偏差を0とすることができ,制御性能を向上できる。   Further, since integral control can be applied to the current controllers 28a to 28d, the steady deviation can be set to 0, and the control performance can be improved.

また,電力変換装置が正相電流だけを出力すればよい場合,電力変換装置の出力する逆相電流の電流指令値を0とすれば,電力系統の電圧が三相不平衡の状態でも電力変換装置の各相に流れる電流を三相平衡にできるため,装置容量を小さくすることができ,装置の小型化および低損失化が実現できる。   If the power converter needs to output only the positive phase current, the current command value of the negative phase current output from the power converter can be set to 0, even if the power system voltage is three-phase unbalanced. Since the current flowing through each phase of the device can be balanced in three phases, the device capacity can be reduced, and the device can be downsized and reduced in loss.

なお,図1の説明において、ここでは乗算器32a,32bの入力は指令値Id1rとIq1rとしたが,Id1,iq1からId12,iq12をそれぞれ差し引いた信号としてもよい。同様に乗算器32c,32dの入力は指令値Id2refとIq2refとしたが,Id2,iq2からId22,iq22をそれぞれ差し引いた信号としてもよい。   In the description of FIG. 1, the inputs of the multipliers 32a and 32b are the command values Id1r and Iq1r here, but they may be signals obtained by subtracting Id12 and iq12 from Id1 and iq1, respectively. Similarly, the inputs of the multipliers 32c and 32d are the command values Id2ref and Iq2ref, but they may be signals obtained by subtracting Id22 and iq22 from Id2 and iq2, respectively.

図3は,実施例2に係る電力変換装置1の制御装置12の制御ブロックの概略を示した図である。   FIG. 3 is a diagram illustrating an outline of a control block of the control device 12 of the power conversion device 1 according to the second embodiment.

以下実施例2の構成および動作について説明するが、実施例1と同じまたは相当する部分については説明を省略し,異なる部分のみを説明する。   Hereinafter, the configuration and operation of the second embodiment will be described, but the description of the same or corresponding parts as those of the first embodiment will be omitted, and only different parts will be described.

実施例2では,正相座標系における逆相電流、および逆相座標系における正相電流による系統電圧の2倍の振動成分を推定する手法が実施例1とは異なる。他の回路部分は、実施例1と同じである。   The second embodiment is different from the first embodiment in a method of estimating a negative phase current in the normal phase coordinate system and a vibration component twice the system voltage due to the positive phase current in the negative phase coordinate system. Other circuit portions are the same as those in the first embodiment.

実施例2における2次電流推定の考え方について、式を用いて説明する。まず,三相の出力電流Icを三相二相変換した二相電流をiα、iβ、系統電圧の正相電圧位相をθとすると,出力電流Icを逆相回転方向にdq座標変換したd軸逆相電流id2、q軸逆相電流iq2は二相電流iαとiβを用いて(1)式で表すことができる。   The concept of secondary current estimation in the second embodiment will be described using equations. First, if the two-phase current obtained by three-phase to two-phase conversion of the three-phase output current Ic is iα, iβ, and the positive phase voltage phase of the system voltage is θ, the d-axis obtained by converting the output current Ic by dq coordinates in the reverse phase rotation direction The negative-phase current id2 and the q-axis negative-phase current iq2 can be expressed by the equation (1) using the two-phase currents iα and iβ.

Figure 2013021848
またここで,二相電流iαとiβは、正相電流振幅I1,力率角θ(以後単に正相力率角)の正相電流が含まれており、(2)式で示すことができる。
Figure 2013021848
Here, the two-phase currents iα and iβ include a positive-phase current having a positive-phase current amplitude I1 and a power factor angle θ 0 (hereinafter simply referred to as a positive-phase power factor angle). it can.

Figure 2013021848
(1)(2)式の関係から,d軸逆相電流id2とq軸逆相電流iq2は、正相電流を用いて(3)式で表すことができる。
Figure 2013021848
(1) From the relationship of the formula (2), the d-axis reverse phase current id2 and the q-axis reverse phase current iq2 can be expressed by the formula (3) using a positive phase current.

Figure 2013021848
(3)式は、d軸逆相電流id2とq軸逆相電流iq2が,その大きさはI1つまり正相電流の振幅であり,位相は正相電圧位相θの2倍と正相力率角θの和である信号として求められることを示している。
Figure 2013021848
In the equation (3), the d-axis negative phase current id2 and the q-axis negative phase current iq2 are I1, that is, the amplitude of the positive phase current, and the phase is twice the positive phase voltage phase θ and the positive phase power factor. It is shown that it is obtained as a signal that is the sum of the angle θ 0 .

また同様に,出力電流Icを正相回転方向にdq座標変換したd軸正相電流id1、q軸正相電流iq1は、二相電流iαとiβを用いて(4)式で表すことができる。   Similarly, a d-axis positive phase current id1 and a q-axis positive phase current iq1 obtained by converting the output current Ic into dq coordinates in the positive phase rotation direction can be expressed by the equation (4) using the two-phase currents iα and iβ. .

Figure 2013021848
また二相電流iα、iβは、逆相電流振幅I2,力率角θ(以後単に逆相力率角)の逆相電流が含まれており、(5)式で示すことができる。
Figure 2013021848
Further, the two-phase currents iα and iβ include a negative-phase current having a negative-phase current amplitude I2 and a power factor angle θ 1 (hereinafter simply referred to as a negative-phase power factor angle), and can be expressed by Expression (5).

Figure 2013021848
このとき(4)式から,d軸正相電流id1、q軸正相電流iq1は、(6)式で表すことができる。
Figure 2013021848
At this time, from the equation (4), the d-axis positive phase current id1 and the q-axis positive phase current iq1 can be expressed by the equation (6).

Figure 2013021848
(6)式は,d軸正相電流id1、q軸正相電流iq1が、その大きさはI2,つまり逆相電流の振幅であり,位相は逆相電圧位相θの2倍と逆相力率角θの差である信号として求められることを示している。
Figure 2013021848
In the equation (6), the d-axis positive phase current id1 and the q-axis positive phase current iq1 are I2, that is, the amplitude of the negative phase current, and the phase is twice the negative phase voltage phase θ and the negative phase force. It shows that it is obtained as a signal that is the difference of the rate angle θ 1 .

以上の関係から,正相座標系における逆相電流、および逆相座標系における正相電流による系統電圧の2倍の振動成分を再現するには,正相電流および逆相電流の振幅と振動成分と同期した正弦波,余弦波信号を作ればよいことがわかる。   Based on the above relationship, the amplitude and vibration components of the positive and negative phase currents can be reproduced in order to reproduce the negative phase current in the normal phase coordinate system and the oscillation component twice the system voltage due to the positive phase current in the negative phase coordinate system. It can be seen that it is only necessary to create a sine wave and cosine wave signal synchronized with the.

上記の解析を元に本発明の第2の実施例では,正相電流演算部Bに、出力電流Icの逆相成分のみの振幅である逆相電流振幅I2を抽出する逆相電流振幅抽出器60と,逆相電流振幅抽出器60から出力される逆相電流振幅I2と系統電圧の逆相電圧位相θと前記逆相力率角θを入力とし,正相座標系における逆相電流による二次の振動電流を再現した信号Id12,Iq12を出力する逆相2次発振器63とを備える。逆相2次発振器61では、これらの入力を用いて(7)(8)式を演算する。 Based on the above analysis, in the second embodiment of the present invention, the negative phase current amplitude extractor for extracting the negative phase current amplitude I2, which is the amplitude of only the negative phase component of the output current Ic, into the positive phase current calculation unit B. 60, the negative phase current amplitude I2 output from the negative phase current amplitude extractor 60, the negative phase voltage phase θ of the system voltage, and the negative phase power factor angle θ 1 are input, and by the negative phase current in the normal phase coordinate system. And an anti-phase secondary oscillator 63 that outputs signals Id12 and Iq12 reproducing the secondary oscillating current. In the anti-phase secondary oscillator 61, equations (7) and (8) are calculated using these inputs.

[数7]
Id12= I×cos(2θ+θ) (7)
[Equation 7]
Id12 = I 2 × cos (2θ + θ 1 ) (7)

[数8]
Iq12= I×sin(2θ+θ) (8)
上記の解析を元に本発明の第2の実施例では,逆相電流演算部Cに、出力電流Icの正相成分のみの振幅である正相電流振幅I1を抽出する正相電流振幅抽出器62と,正相電流振幅抽出器62から出力される正相電流振幅I1と系統電圧の正相電圧位相θと正相力率角θを入力とし,逆相座標系における正相電流による二次の振動電流を再現した信号Id22,Iq22を出力する正相2次発振器63とを備える。正相2次発振器63では、これらの入力を用いて(9)(10)式を演算する。
[Equation 8]
Iq12 = I 2 × sin (2θ + θ 1 ) (8)
Based on the above analysis, in the second embodiment of the present invention, the positive phase current amplitude extractor for extracting the positive phase current amplitude I1, which is the amplitude of only the positive phase component of the output current Ic, into the negative phase current calculation unit C. 62, the positive-phase current amplitude I1 output from the positive-phase current amplitude extractor 62, the positive-phase voltage phase θ of the system voltage, and the positive-phase power factor angle θ 0 are input. And a positive phase secondary oscillator 63 that outputs signals Id22 and Iq22 reproducing the next oscillating current. The positive-phase secondary oscillator 63 calculates equations (9) and (10) using these inputs.

[数9]
Id22= I×cos(2θ+θ) (9)
[Equation 9]
Id22 = I 1 × cos (2θ + θ 1 ) (9)

[数10]
Iq22= I×sin(2θ+θ) (10)
その上で本発明の第2の実施例では、正相2次発振器61と逆相2次発振器63の出力をそれぞれd軸正相電流Id1,q軸正相電流Iq1,d軸逆相電流Id2,q軸逆相電流Iq2から差し引くことで振動成分を除去することができる。
[Equation 10]
Iq22 = I 1 × sin (2θ + θ 1 ) (10)
In addition, in the second embodiment of the present invention, the outputs of the positive-phase secondary oscillator 61 and the negative-phase secondary oscillator 63 are respectively converted into the d-axis positive phase current Id1, the q-axis positive phase current Iq1, and the d-axis negative phase current Id2. , The vibration component can be removed by subtracting from the q-axis reverse phase current Iq2.

図4に逆相電流振幅抽出器60の一例を示す。逆相電流振幅抽出器60では、まず三相二相変換演算器41により三相二相変換演算を実施し,三相電流である出力電流Icを互いに90°位相のずれた二相の電流Ia,Ibに変換する。   FIG. 4 shows an example of the negative phase current amplitude extractor 60. In the negative phase current amplitude extractor 60, first, a three-phase two-phase conversion calculation is performed by the three-phase two-phase conversion calculator 41, and the two-phase current Ia having a phase difference of 90 ° from the output current Ic, which is a three-phase current. , Ib.

次に,周知のFFT(Fast Fourier Transform)演算を実施するFFT演算器42により,Ia,Ib各々の系統電圧Vsと同じ周波数f0の正弦波成分Iare,Ibreと、余弦波成分Iaim,Ibimに分解する。   Next, the FFT computing unit 42 that performs a well-known FFT (Fast Fourier Transform) operation is decomposed into sine wave components Iare and Ibre of the same frequency f0 as the system voltage Vs of each of Ia and Ib, and cosine wave components Iaim and Ibim. To do.

次に,IareとIbimの差と、IbreとIaimの和を入力として二乗平均演算器43により二乗平均演算を実施する。これにより、出力電流の逆相成分のみの振幅である逆相電流振幅I2を算出することができる。   Next, the root mean square operation is performed by the mean square computing unit 43 using the difference between Iare and Ibim and the sum of Ibre and Iaim as inputs. Thereby, the negative phase current amplitude I2 which is an amplitude of only the negative phase component of the output current can be calculated.

また,図5は正相電流振幅抽出器62の一例である。正相電流振幅抽出器62は、三相二相変換演算器41により周知の三相二相変換演算を実施し,三相電流である出力電流Icを互いに90°位相のずれた二相の電流Ia,Ibに変換する。   FIG. 5 is an example of the positive phase current amplitude extractor 62. The positive phase current amplitude extractor 62 performs a well-known three-phase two-phase conversion calculation by the three-phase two-phase conversion calculator 41, and the two-phase currents that are 90 ° out of phase with the output current Ic that is a three-phase current. Convert to Ia and Ib.

次に,周知のFFT演算を実施するFFT演算器42により,Ia,Ib各々の系統電圧Vsと同じ周波数f0の正弦波成分Iare,Ibreと余弦波成分Iaim,Ibimに分解する。   Next, the FFT calculator 42 that performs a well-known FFT calculation is decomposed into sine wave components Iare and Ibre and cosine wave components Iaim and Ibim having the same frequency f0 as the system voltage Vs of each of Ia and Ib.

次に,IareとIbimとの和とIbreとIaimの差を入力として二乗平均演算器43により二乗平均演算を実施することで出力電流の正相成分のみの振幅である正相電流振幅I1を算出することができる。   Next, a square average calculation is performed by the square average calculator 43 using the sum of Iare and Ibim and the difference between Ibre and Iaim as inputs, thereby calculating a positive phase current amplitude I1 that is an amplitude of only the positive phase component of the output current. can do.

以上,本実施例の構成にすることで,正相座標系における逆相成分による2次の振動成分、および逆相座標系における正相成分による2次の振動成分を除去でき,不平衡補償装置のように出力する逆相電流を制御する必要がある場合でも,前記逆相電流と正相電流を独立して制御することができる。   As described above, by adopting the configuration of this embodiment, it is possible to remove the secondary vibration component due to the antiphase component in the normal phase coordinate system and the secondary vibration component due to the positive phase component in the antiphase coordinate system. Even when it is necessary to control the output negative phase current as described above, the negative phase current and the positive phase current can be controlled independently.

また,電力変換装置が正相電流だけを出力すればよい場合,前記電力変換装置の出力する逆相電流の電流指令値を0とすれば,電力系統の電圧が三相不平衡の状態でも電力変換装置の各相に流れる電流を三相平衡にできるため,装置容量を小さくすることができ,装置の小型化および低損失化が実現できる。   In addition, when the power converter only needs to output the positive phase current, if the current command value of the negative phase current output from the power converter is set to 0, the power can be output even when the voltage of the power system is three-phase unbalanced. Since the current flowing through each phase of the converter can be balanced in three phases, the capacity of the device can be reduced, and the size and loss of the device can be reduced.

また,電流制御器28a〜28dに周知の積分制御が適用することで定常偏差を0とすることができ,制御性能を向上できる。   In addition, the well-known integral control is applied to the current controllers 28a to 28d, so that the steady-state deviation can be set to 0, and the control performance can be improved.

図6は,本発明の実施例3に係る電力変換装置1の制御装置12の制御ブロックの概略を示した図である。図6の実施例3は、基本的に図3の実施例2の考え方を踏襲しているので、以下においては実施例2と同じまたは相当する部分についての説明を省略し,異なる部分のみを説明する。   FIG. 6 is a diagram schematically illustrating a control block of the control device 12 of the power conversion device 1 according to the third embodiment of the present invention. Since Example 3 in FIG. 6 basically follows the concept of Example 2 in FIG. 3, the description of the same or corresponding parts as in Example 2 is omitted, and only different parts are described below. To do.

図6で示す電力変換装置1の制御装置12の制御ブロックは,図3で示した制御ブロックのうち逆相電流振幅抽出器60および逆相二次発振器61を省略し,かつd軸逆相電流指令値Id2rを0とし,q軸逆相電流指令値Iq2rを0とするところが異なる。   The control block of the control device 12 of the power conversion device 1 shown in FIG. 6 omits the negative phase current amplitude extractor 60 and the negative phase secondary oscillator 61 from the control block shown in FIG. The difference is that the command value Id2r is set to 0 and the q-axis reverse phase current command value Iq2r is set to 0.

次に,制御装置12の動作および効果について,実施例2と異なる部分のみ述べる。まず、図6の実施例3では、正相電流演算部Bに逆相電流振幅抽出器60と逆相二次発振器61を備えていない。このため,Id1およびIq1には逆相電流による2次の振動成分を含む。かつこの回路構成では、これを除去することはできない。   Next, only the differences from the second embodiment will be described regarding the operation and effects of the control device 12. First, in the third embodiment of FIG. 6, the positive phase current calculation unit B is not provided with the negative phase current amplitude extractor 60 and the negative phase secondary oscillator 61. For this reason, Id1 and Iq1 include a secondary vibration component due to a reverse phase current. In addition, this circuit configuration cannot be removed.

これに対し、逆相電流演算部Cでは、d軸逆相電流指令値Id2r,q軸逆相電流指令値Iq2rを0としているので,電力変換装置の出力電流Icに含まれる逆相電流を,電流制御器28a,28bの制御応答時間後には抑制可能である。このため,Id1およびIq1に含まれる逆相電流による2次の振動成分は小さくなる。   On the other hand, in the negative phase current calculation unit C, since the d-axis negative phase current command value Id2r and the q-axis negative phase current command value Iq2r are set to 0, the negative phase current included in the output current Ic of the power converter is It can be suppressed after the control response time of the current controllers 28a and 28b. For this reason, the secondary vibration component due to the reverse phase current included in Id1 and Iq1 is reduced.

この結果、電力変換装置1の制御性能に大きな影響は与えず,逆相電流振幅抽出器60および逆相二次発振器61を削減できるため制御装置12の演算負荷低減が可能である。   As a result, the control performance of the power converter 1 is not significantly affected, and the negative-phase current amplitude extractor 60 and the negative-phase secondary oscillator 61 can be reduced, so that the calculation load of the controller 12 can be reduced.

本発明は,IGBTやGCTなどの自己消弧形素子を用いた電力変換装置のうち特に,逆相電流を制御可能な機能を有する電力変換装置に適用することができる。   The present invention can be applied to a power conversion device using a self-extinguishing element such as an IGBT or a GCT, particularly a power conversion device having a function capable of controlling a reverse phase current.

1:電力変換装置
2:三相交流系統
11:インバータ装置
12:制御装置
13:PWM回路
14:連系用変換器
15:直流電圧センサ
16:電流センサ
17:交流電圧センサ
21:位相検出器
22:正相座標変換器
23:逆相座標変換器
28a〜28d:電流制御器
29:正相逆座標変換器
30:逆相逆座標変換器
31:位相回転器
32a〜d:乗算器
41:三相二相変換器
42:FFT演算器
43:二乗平均演算器
51:三相二相変換器
52:二相三相変換器
60:逆相電流振幅抽出器
61:逆相二次発振器
62:正相電流振幅抽出器
63:正相二次発振器
1: Power conversion device 2: Three-phase AC system 11: Inverter device 12: Control device 13: PWM circuit 14: Converter for interconnection 15: DC voltage sensor 16: Current sensor 17: AC voltage sensor 21: Phase detector 22 : Normal phase coordinate converter 23: reverse phase coordinate converters 28a to 28d: current controller 29: normal phase reverse coordinate converter 30: reverse phase reverse coordinate converter 31: phase rotator 32a to d: multiplier 41: three Phase-to-phase converter 42: FFT calculator 43: root mean square calculator 51: three-phase two-phase converter 52: two-phase three-phase converter 60: negative phase current amplitude extractor 61: negative phase secondary oscillator 62: positive Phase current amplitude extractor 63: positive phase secondary oscillator

Claims (10)

三相交流電力系統に接続された電力変換装置の制御装置において,
前記三相交流電力系統の系統電圧の逆相回転方向に前記出力電流をdqベクトル座標変換して逆相d軸電流および逆相q軸電流を求める逆相座標変換回路、該逆相座標変換回路の逆相d軸電流および逆相q軸電流を帰還値とし、これら電流の指令値と比較して指令値に制御する第1の電流制御器、前記逆相座標変換回路の逆相d軸電流および逆相q軸電流に含まれる正相電流による2次の振動成分を抽出する第1の振動成分抽出回路とを備え、抽出した正相電流による2次の振動成分を前記逆相座標変換回路の逆相d軸電流および逆相q軸電流から除外して、前記第1の電流制御器において電流指令値と比較することを特徴とする電力変換装置の制御装置。
In the control device of the power converter connected to the three-phase AC power system,
A negative phase coordinate conversion circuit for obtaining a negative phase d-axis current and a negative phase q-axis current by performing a dq vector coordinate conversion of the output current in the negative phase rotation direction of the system voltage of the three-phase AC power system, and the negative phase coordinate conversion circuit A negative phase d-axis current and a negative phase d-axis current of the negative phase coordinate conversion circuit, wherein the negative phase d-axis current and the negative phase q-axis current are feedback values, and are compared with the command values of these currents to control the command values. And a first vibration component extraction circuit that extracts a secondary vibration component due to the positive phase current included in the negative phase q-axis current, and the second phase vibration component due to the extracted positive phase current is converted into the negative phase coordinate conversion circuit. A control device for a power converter, wherein the first current controller compares the current command value with a current command value, excluding the negative phase d-axis current and negative phase q-axis current.
三相交流電力系統に接続された電力変換装置の制御装置において,
前記三相交流電力系統の系統電圧の正相回転方向に前記出力電流をdqベクトル座標変換して正相d軸電流および正相q軸電流を求める正相座標変換回路、該正相座標変換回路の正相d軸電流および正相q軸電流を帰還値とし、これら電流の指令値と比較して指令値に制御する第2の電流制御器、前記正相座標変換回路の正相d軸電流および正相q軸電流に含まれる逆相電流による2次の振動成分を抽出する第2の振動成分抽出回路とを備え、抽出した逆相電流による2次の振動成分を前記正相座標変換回路の正相d軸電流および正相q軸電流から除外して、前記第2の電流制御器において電流指令値と比較することを特徴とする電力変換装置の制御装置。
In the control device of the power converter connected to the three-phase AC power system,
A positive phase coordinate conversion circuit that obtains a positive phase d-axis current and a positive phase q-axis current by performing dq vector coordinate conversion of the output current in the positive phase rotation direction of the system voltage of the three-phase AC power system, and the positive phase coordinate conversion circuit The positive-phase d-axis current and the positive-phase d-axis current of the positive-phase coordinate conversion circuit are the second current controller that controls the positive-phase d-axis current and the positive-phase q-axis current as feedback values and compares them with the command values. And a second vibration component extraction circuit for extracting a secondary vibration component due to the negative phase current included in the normal phase q-axis current, and the positive phase coordinate conversion circuit for extracting the secondary vibration component due to the extracted negative phase current. A control device for a power converter, wherein the second current controller compares the current command value with a current command value by excluding the positive phase d-axis current and positive phase q-axis current.
三相交流電力系統に接続された電力変換装置の制御装置において,
前記三相交流電力系統の系統電圧の逆相回転方向に前記出力電流をdqベクトル座標変換して逆相d軸電流および逆相q軸電流を求める逆相座標変換回路、該逆相座標変換回路の逆相d軸電流および逆相q軸電流を帰還値とし、これら電流の指令値と比較して指令値に制御する逆相電流制御器、前記逆相座標変換回路の逆相d軸電流および逆相q軸電流に含まれる正相電流による2次の振動成分を抽出する第1の振動成分抽出回路、抽出した正相電流による2次の振動成分を前記逆相座標変換回路の逆相d軸電流および逆相q軸電流から除外して、前記逆相電流制御器に帰還値として与える第1の加算部、前記三相交流電力系統の系統電圧の正相回転方向に前記出力電流をdqベクトル座標変換して正相d軸電流および正相q軸電流を求める正相座標変換回路、該正相座標変換回路の正相d軸電流および正相q軸電流を帰還値とし、これら電流の指令値と比較して指令値に制御する正相電流制御器、前記正相座標変換回路の正相d軸電流および正相q軸電流に含まれる逆相電流による2次の振動成分を抽出する第2の振動成分抽出回路、抽出した逆相電流による2次の振動成分を前記正相座標変換回路の正相d軸電流および正相q軸電流から除外して、前記正相電流制御器に帰還値として与える第2の加算部とを備えることを特徴とする電力変換装置の制御装置。
In the control device of the power converter connected to the three-phase AC power system,
A negative phase coordinate conversion circuit for obtaining a negative phase d-axis current and a negative phase q-axis current by performing a dq vector coordinate conversion of the output current in the negative phase rotation direction of the system voltage of the three-phase AC power system, and the negative phase coordinate conversion circuit The negative-phase d-axis current and the negative-phase q-axis current are used as feedback values, and compared with the command values of these currents to control to the command value, A first vibration component extraction circuit for extracting a secondary vibration component due to a positive phase current included in the negative phase q-axis current, and a second phase vibration component due to the extracted positive phase current as a negative phase d of the negative phase coordinate conversion circuit. A first adder that is excluded from an axial current and a negative-phase q-axis current and provided as a feedback value to the negative-phase current controller, and the output current is dq in the positive-phase rotation direction of the system voltage of the three-phase AC power system Obtains positive phase d-axis current and positive phase q-axis current by vector coordinate transformation A phase coordinate conversion circuit, a positive phase d-axis current and a positive phase q-axis current of the positive phase coordinate conversion circuit as feedback values, and a positive phase current controller for controlling to a command value by comparing with a command value of these currents; A second vibration component extraction circuit for extracting a secondary vibration component due to the negative phase current included in the positive phase d-axis current and the positive phase q-axis current of the phase coordinate conversion circuit; a secondary vibration component due to the extracted negative phase current; Including a second addition unit that excludes the positive phase d-axis current and the positive phase q-axis current from the positive phase coordinate conversion circuit and gives the positive phase current controller as a feedback value. Control device for the device.
請求項3に記載の電力変換装置の制御装置において,
前記第1の振動成分抽出回路は、第2の電流制御器の指令値である正相d軸電流指令値および正相q軸電流指令値を逆相回転方向に二度dqベクトル座標変換する回路であることを特徴とする電力変換装置の制御装置。
In the control apparatus of the power converter device according to claim 3,
The first vibration component extraction circuit is a circuit that performs dq vector coordinate conversion twice in the reverse phase rotation direction of the positive phase d-axis current command value and the positive phase q-axis current command value, which are command values of the second current controller. A control device for a power conversion device.
請求項3に記載の電力変換装置の制御装置において,
前記第2の振動成分抽出回路は、第1の電流制御器の指令値である逆相d軸電流指令値および逆相q軸電流指令値を正相回転方向に二度dqベクトル座標変換する回路であることを特徴とする電力変換装置の制御装置。
In the control apparatus of the power converter device according to claim 3,
The second vibration component extraction circuit is a circuit that converts the negative phase d-axis current command value and the negative phase q-axis current command value, which are command values of the first current controller, twice in the normal phase rotation direction by dq vector coordinates. A control device for a power conversion device.
請求項3に記載の電力変換装置の制御装置において,
前記第1の振動成分抽出回路は、前記出力電流に含まれる正相電流振幅を抽出する正相電流振幅抽出器および系統電圧の二倍の周波数の正弦波信号および余弦波信号を出力する二次発振器を有し,前記正弦波信号および前記余弦波信号の位相は前記三相交流電力系統の系統電圧位相の2倍と前記出力電流の力率角の和であり,前記正相電流振幅抽出器の出力と前記余弦波信号の積および前記正相電流振幅抽出器の出力と前記正弦波信号の積を出力する回路であることを特徴とする電力変換装置の制御装置。
In the control apparatus of the power converter device according to claim 3,
The first vibration component extraction circuit extracts a positive phase current amplitude included in the output current and a secondary that outputs a sine wave signal and a cosine wave signal having a frequency twice the system voltage. And a phase of the sine wave signal and the cosine wave signal is a sum of a system voltage phase of the three-phase AC power system and a power factor angle of the output current, and the positive phase current amplitude extractor And a circuit for outputting the product of the output of the cosine wave signal and the product of the output of the positive phase current amplitude extractor and the sine wave signal.
請求項3に記載の電力変換装置の制御装置において,
前記第2の振動成分抽出回路は、前記出力電流に含まれる逆相電流振幅を抽出する逆相電流振幅抽出器および系統電圧の二倍の周波数の正弦波信号および余弦波信号を出力する二次発振器を有し,前記正弦波信号および前記余弦波信号の位相は前記系統電圧位相の−2倍と前記逆相電流の力率角の差であり,前記正相電流振幅抽出器の出力と前記余弦波信号の積および前記正相電流振幅抽出器の出力と前記正弦波信号の積を出力する回路であることを特徴とする電力変換装置の制御装置。
In the control apparatus of the power converter device according to claim 3,
The second vibration component extraction circuit extracts a negative phase current amplitude included in the output current and a secondary phase that outputs a sine wave signal and a cosine wave signal having a frequency twice the system voltage. The phase of the sine wave signal and the cosine wave signal is a difference between -2 times the system voltage phase and the power factor angle of the negative current, and the output of the positive phase current amplitude extractor and the A control device for a power conversion device, wherein the control device is a circuit that outputs a product of a cosine wave signal and a product of the output of the positive phase current amplitude extractor and the sine wave signal.
請求項6に記載の電力変換装置の制御装置において,
前記正相電流振幅抽出器は,三相二相変換器により前記電力変換装置の出力電流を互いに90°位相のずれた二相の電流Ia,Ibに変換し,FFT演算を実施するFFT演算器により,二相の電流Ia,Ib各々の系統電圧Vsと同じ周波数f0の正弦波成分Iare,Ibreと余弦波成分Iaim,Ibimに分解し,前記IareとIbimとの和とIbreとIaimの差を入力として二乗平均演算器により二乗平均演算を実施し,出力電流の正相成分振幅を算出することを特徴とした電力変換装置の制御装置。
In the control apparatus of the power converter according to claim 6,
The positive-phase current amplitude extractor converts an output current of the power conversion device into two-phase currents Ia and Ib that are shifted from each other by 90 ° by a three-phase two-phase converter, and performs an FFT operation. Is decomposed into sine wave components Iare, Ibre and cosine wave components Iaim, Ibim having the same frequency f0 as the system voltage Vs of each of the two-phase currents Ia, Ib, and the difference between the sum of Iare and Ibim and Ibre and Iaim is calculated. A control apparatus for a power converter, wherein a mean square calculation is performed as an input by a mean square calculator to calculate a positive phase component amplitude of an output current.
請求項7に記載の電力変換装置の制御装置において,
前記逆相電流振幅抽出器は,三相二相変換器により前記電力変換装置の出力電流を互いに90°位相のずれた二相の電流Ia,Ibに変換し,FFT演算を実施するFFT演算器により,Ia,Ib各々の系統電圧Vsと同じ周波数f0の正弦波成分Iare,Ibreと余弦波成分Iaim,Ibimに分解し,前記IbimとIareとの差とIbreとIaimの和を入力として二乗平均演算器により二乗平均演算を実施し,出力電流の逆相成分振幅のみを算出することを特徴とした電力変換装置の制御装置。
In the control apparatus of the power converter device according to claim 7,
The reverse-phase current amplitude extractor converts an output current of the power converter into two-phase currents Ia and Ib that are 90 ° out of phase with each other by a three-phase two-phase converter, and performs an FFT operation. Is decomposed into sine wave components Iare, Ibre and cosine wave components Iaim, Ibim having the same frequency f0 as the system voltage Vs of each of Ia, Ib, and the root mean square with the difference between Ibim and Iare and the sum of Ibre and Iaim as inputs A control apparatus for a power converter, wherein a mean square calculation is performed by an arithmetic unit to calculate only the negative phase component amplitude of the output current.
三相交流電力系統に変圧器を介して接続された電力変換装置の制御装置において,
前記三相交流電力系統の系統電圧の逆相回転方向に前記出力電流をdqベクトル座標変換して逆相d軸電流および逆相q軸電流を求める逆相座標変換回路、該逆相座標変換回路の逆相d軸電流および逆相q軸電流を帰還値とし、これら電流の指令値と比較して指令値に制御する逆相電流制御器、前記逆相座標変換回路の逆相d軸電流および逆相q軸電流に含まれる正相電流による2次の振動成分を抽出する第1の振動成分抽出回路、抽出した正相電流による2次の振動成分を前記逆相座標変換回路の逆相d軸電流および逆相q軸電流から除外して、前記逆相電流制御器に帰還値として与える第1の加算部、
前記三相交流電力系統の系統電圧の正相回転方向に前記出力電流をdqベクトル座標変換して正相d軸電流および正相q軸電流を求める正相座標変換回路、該正相座標変換回路の正相d軸電流および正相q軸電流を帰還値とし、これら電流の指令値と比較して指令値に制御する正相電流制御器、前記正相d軸電流指令値に前記変圧器のリアクトル値を乗じた値を正相q軸電流側の正相電流制御器出力から差し引き、前記正相q軸電流指令値に前記変圧器のリアクトル値を乗じた値を逆相d軸電流側の正相電流制御器出力に加算する補償回路を備えるとともに、前記逆相電流制御器の指令値を0に設定しておくことを特徴とする電力変換装置の制御装置。
In a control device for a power converter connected to a three-phase AC power system via a transformer,
A negative phase coordinate conversion circuit for obtaining a negative phase d-axis current and a negative phase q-axis current by performing a dq vector coordinate conversion of the output current in the negative phase rotation direction of the system voltage of the three-phase AC power system, and the negative phase coordinate conversion circuit The negative-phase d-axis current and the negative-phase q-axis current are used as feedback values, and compared with the command values of these currents to control to the command value, A first vibration component extraction circuit for extracting a secondary vibration component due to a positive phase current included in the negative phase q-axis current, and a second phase vibration component due to the extracted positive phase current as a negative phase d of the negative phase coordinate conversion circuit. A first addition unit that is excluded from the axial current and the negative-phase q-axis current and gives the negative-phase current controller as a feedback value;
A positive phase coordinate conversion circuit that obtains a positive phase d-axis current and a positive phase q-axis current by performing dq vector coordinate conversion of the output current in the positive phase rotation direction of the system voltage of the three-phase AC power system, and the positive phase coordinate conversion circuit The positive-phase d-axis current and the positive-phase q-axis current are used as feedback values, and are compared with the command values of these currents to control the command values. The value multiplied by the reactor value is subtracted from the output of the positive phase current controller on the positive phase q-axis current side, and the value obtained by multiplying the positive phase q-axis current command value by the reactor value of the transformer is calculated on the negative phase d-axis current side. A control device for a power converter, comprising a compensation circuit for adding to an output of a positive phase current controller, and setting a command value of the negative phase current controller to 0.
JP2011154471A 2011-07-13 2011-07-13 Control device for power converter Expired - Fee Related JP5703151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011154471A JP5703151B2 (en) 2011-07-13 2011-07-13 Control device for power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011154471A JP5703151B2 (en) 2011-07-13 2011-07-13 Control device for power converter

Publications (2)

Publication Number Publication Date
JP2013021848A true JP2013021848A (en) 2013-01-31
JP5703151B2 JP5703151B2 (en) 2015-04-15

Family

ID=47692736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011154471A Expired - Fee Related JP5703151B2 (en) 2011-07-13 2011-07-13 Control device for power converter

Country Status (1)

Country Link
JP (1) JP5703151B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019097260A (en) * 2017-11-20 2019-06-20 東芝三菱電機産業システム株式会社 Power conversion device
JP2021019481A (en) * 2019-07-24 2021-02-15 株式会社明電舎 Modular multilevel cascade converter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000116148A (en) * 1998-02-13 2000-04-21 Mitsubishi Electric Corp Power conversion apparatus
JP2009038885A (en) * 2007-08-01 2009-02-19 Daihen Corp Signal extracting device and reactive power compensator containing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000116148A (en) * 1998-02-13 2000-04-21 Mitsubishi Electric Corp Power conversion apparatus
JP2009038885A (en) * 2007-08-01 2009-02-19 Daihen Corp Signal extracting device and reactive power compensator containing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019097260A (en) * 2017-11-20 2019-06-20 東芝三菱電機産業システム株式会社 Power conversion device
JP2021019481A (en) * 2019-07-24 2021-02-15 株式会社明電舎 Modular multilevel cascade converter
JP7322566B2 (en) 2019-07-24 2023-08-08 株式会社明電舎 Modular multilevel cascade converter

Also Published As

Publication number Publication date
JP5703151B2 (en) 2015-04-15

Similar Documents

Publication Publication Date Title
JP3813637B2 (en) AC motor control device
JP5936770B2 (en) Rotating machine control device
CN102916596A (en) Input and output power resonance control method of PWM (pulse width modulation) rectifier under voltage unsymmetrical fault
JP2011254681A (en) Position sensorless controller of synchronous machine
CN111969910A (en) Method and device for controlling motor, electronic equipment and computer readable medium
JP6145300B2 (en) Inverter device and inverter generator
CN110729922B (en) Motor control method, motor control device and computer equipment
WO2012026568A1 (en) Single-phase signal input device and system interconnection device
JP5703151B2 (en) Control device for power converter
WO2015186406A1 (en) Periodic disturbance automatic suppression device
JP6341770B2 (en) Two-phase signal phase detection device and two-phase signal phase detection method
JP5998663B2 (en) AC motor drive control device
JP5549644B2 (en) Power converter and control method thereof
JP7218700B2 (en) motor controller
CN114928076A (en) Virtual synchronous machine double closed-loop control method without alternating-current voltage sensor
Orfanoudakis et al. Combined positive-sequence flux estimation and current balancing for sensorless motor control under imbalanced conditions
JP2018019466A (en) Power conversion device
WO2012176826A1 (en) Inverter device
JP2005168212A (en) Motor control device
JP6342354B2 (en) Isolated operation detection device, isolated operation detection device control method, and grid-connected inverter
JP2014023313A (en) Inverter control device
JP2012139029A (en) Motor controller
JP5464704B2 (en) AC signal phase detection method
JP2019009968A (en) Polyphase motor drive device
JP2022131542A (en) Inverter controller and method for manufacturing inverter controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150223

R150 Certificate of patent or registration of utility model

Ref document number: 5703151

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees