JP2013021787A - Synchronous motor control apparatus - Google Patents

Synchronous motor control apparatus Download PDF

Info

Publication number
JP2013021787A
JP2013021787A JP2011151976A JP2011151976A JP2013021787A JP 2013021787 A JP2013021787 A JP 2013021787A JP 2011151976 A JP2011151976 A JP 2011151976A JP 2011151976 A JP2011151976 A JP 2011151976A JP 2013021787 A JP2013021787 A JP 2013021787A
Authority
JP
Japan
Prior art keywords
mover
polarity
permanent magnet
magnetic
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011151976A
Other languages
Japanese (ja)
Other versions
JP5739254B2 (en
Inventor
Akiyoshi Satake
明喜 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp, Okuma Machinery Works Ltd filed Critical Okuma Corp
Priority to JP2011151976A priority Critical patent/JP5739254B2/en
Publication of JP2013021787A publication Critical patent/JP2013021787A/en
Application granted granted Critical
Publication of JP5739254B2 publication Critical patent/JP5739254B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Linear Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce effects due to a current ripple, etc. at inversion of a torque command, for example, thereby ensuring smooth drive.SOLUTION: Presented here is a control apparatus for a synchronous motor including a stator which has a salient pole structure so that magnetic resistance has a level difference with respect to the needle advance direction and a needle made of a soft magnetic material, whose permanent magnet is disposed in the advance direction so as to have a magnetic polarity periodically changing in the advance direction on a plane opposed to the stator, the needle having a coil wound round it so that the magnetic polarity on the needle surface changes when current is applied to the coil. In the control apparatus, the polarity of a permanent magnet flux component on the needle surface is made to change according to the polarity of a torque command, or a weight arithmetic unit is provided in which magnet flux of the permanent magnet of the needle is calculated for a first pole pair and a second pole pair portion differing by πrad in electric angle independently of each other, and then the weights of first and second magnetic flux is calculated according to the relative positions of the stator salient and the needle and the polarity of the torque command.

Description

本発明は工作機械等に利用される同期電動機の制御装置に関するものであり、特に磁気的な突極を持つ固定子と、可動子に永久磁石と巻線を併設する誘導子型と呼ばれる同期電動機の電流制御、電圧制御を精度良く行うことで電動機の構造に起因するインダクタンス変化による電流リップルによる影響を受けず、安定した滑らかな駆動が行える同期電動機の制御装置に関するものである。   The present invention relates to a control device for a synchronous motor used in a machine tool or the like, and more particularly, a stator having a magnetic salient pole, and a synchronous motor called an inductor type in which a permanent magnet and a winding are provided on a mover. The present invention relates to a control apparatus for a synchronous motor that can perform a stable and smooth drive without being affected by a current ripple due to an inductance change caused by the structure of the motor by performing current control and voltage control with high accuracy.

図9に一般的な同期電動機の制御装置のブロック図例を示す。   FIG. 9 shows an example of a block diagram of a general synchronous motor control device.

電流制御方式として公知のベクトル制御を基盤とするため、説明の便宜上、界磁成分をd軸、トルク(電機子)電流成分をq軸という表現を用いる。   Since the known vector control is based on the current control method, for the convenience of explanation, the expression of the field component is d-axis and the torque (armature) current component is q-axis.

図9において、STQCはトルク指令値、SIQCはq軸電流指令値、SVU、SVV、SVWはそれぞれU相、V相、W相の電圧指令値、SPHSは位相値、SPDは可動子位置検出値、SVDは可動子速度検出値である。   In FIG. 9, STQC is a torque command value, SIQC is a q-axis current command value, SVU, SVV, and SVW are U-phase, V-phase, and W-phase voltage command values, SPHS is a phase value, and SPD is a mover position detection value. , SVD is a mover speed detection value.

1は上位制御器からのトルク指令値STQCをq軸電流指令値SIQCに変換するq軸電流指令演算部である。   Reference numeral 1 denotes a q-axis current command calculation unit that converts a torque command value STQC from the host controller into a q-axis current command value SIQC.

q軸電流指令値SIQCは2/3相変換部2にて3相電圧指令、すなわち、それぞれ2π/3の位相差を持つU相、V相、W相の電流指令値を演算する。ベクトル演算上のd軸電流指令値SIDCは0として扱われる。   The q-axis current command value SIQC is calculated by the 2 / 3-phase converter 2 as a 3-phase voltage command, that is, current command values for the U phase, V phase, and W phase each having a phase difference of 2π / 3. The d-axis current command value SIDC in vector calculation is treated as zero.

特に図示はしないが、電動機9に印加される電流を検出するために設けられる電流検出手段により得られた各相電流検出値がフィードバックされ、PI演算器等の演算器により前記電流指令値との偏差を演算することで各相の電圧指令値SVU、SVV、SVWとする。   Although not shown in particular, each phase current detection value obtained by the current detection means provided for detecting the current applied to the electric motor 9 is fed back, and the current command value is compared with the current command value by a calculator such as a PI calculator. By calculating the deviation, the voltage command values SVU, SVV, SVW of each phase are obtained.

4は電力変換器であり、電圧指令値SVU、SVV、SVWに基づいた電圧を電動機9に印加することで電動機9の各相巻線に電流を流す。   Reference numeral 4 denotes a power converter, which applies a voltage based on the voltage command values SVU, SVV, SVW to the electric motor 9 to cause a current to flow through each phase winding of the electric motor 9.

10は可動子位置検出手段である。   Reference numeral 10 denotes a mover position detecting means.

通常、可動子位置検出手段10は電動機9の可動子に直結で取り付けられ、可動子位置検出値SPDを位相演算部7と速度演算部5に出力する。   Normally, the mover position detection means 10 is directly connected to the mover of the electric motor 9 and outputs the mover position detection value SPD to the phase calculation unit 7 and the speed calculation unit 5.

速度演算部5は可動子位置検出値SPDを微分等の演算処理を行うことで可動子速度検出値SVDとする。   The speed calculation unit 5 performs a calculation process such as differentiation on the mover position detection value SPD to obtain the mover speed detection value SVD.

位相演算部7では可動子位置検出手段10から得られる可動子位置検出値SPDに基づきU相、V相、W相の各q軸電流指令値位相値SPHSとして電圧指令演算部3に出力する。   The phase calculation unit 7 outputs the U-phase, V-phase, and W-phase q-axis current command value phase values SPHS to the voltage command calculation unit 3 based on the mover position detection value SPD obtained from the mover position detection means 10.

本制御装置で制御される同期電動機は代表的なものに可動子表面に永久磁石を貼付した永久磁石(SPM)型、永久磁石を軟磁性材で被覆した永久磁石内挿(IPM)型、そして可動子を軟磁性材のみで構成するリラクタンス(RM)型があげられる。   Representative examples of the synchronous motor controlled by the control device include a permanent magnet (SPM) type in which a permanent magnet is attached to the surface of the mover, a permanent magnet insertion (IPM) type in which the permanent magnet is covered with a soft magnetic material, and A reluctance (RM) type in which the mover is composed only of a soft magnetic material can be used.

いずれの同期電動機もトルク成分であるq軸(電機子)電流の制御を行うことで電動機の推力を得る。   Both synchronous motors obtain the thrust of the motor by controlling the q-axis (armature) current that is a torque component.

リラクタンス力を利用するリラクタンス型や永久磁石内挿型同期電動機は可動子の表面に固定子巻線から見て移動方向に、可動子構造および固定子歯部の形状に起因するパーミアンス変化、またはインダクタンス変化が発生し、これらが、固定子と可動子間に蓄えられるエネルギーの変化となりトルクリップルの原因となっている。   A reluctance type or permanent magnet interpolated synchronous motor that uses reluctance force has a permeance change or inductance due to the shape of the mover structure and stator teeth in the moving direction as seen from the stator winding on the surface of the mover. Changes occur, which change the energy stored between the stator and the mover and cause torque ripple.

よって、工作機械の送り軸に利用した場合、トルクリップルは加工ワークに縞目になって現れるため、加工不良などの不具合や、電動機駆動時の騒音、振動になるため課題となる。   Therefore, when it is used for a feed axis of a machine tool, torque ripple appears as a streak on the workpiece, which causes problems such as machining defects and noise and vibration when the motor is driven.

特開2001−45736JP2001-45736

従来の電動機、例えば可動子表面に永久磁石を貼付した永久磁石(SPM)型、永久磁石を軟磁性材で被覆した永久磁石内挿(IPM)型同期電動機を制御する場合、固定子に永久磁石、可動子に巻線(または、その逆)といった、固定子、可動子それぞれに永久磁石、または巻線が独立して備えられており、電流・電圧制御を行う場合、永久磁石の磁束の極性は常に正、または負のどちらかに固定されて制御が行われる。   When controlling a conventional electric motor, for example, a permanent magnet (SPM) type in which a permanent magnet is attached to the surface of a mover, or a permanent magnet insertion (IPM) type synchronous motor in which a permanent magnet is covered with a soft magnetic material, the permanent magnet is used as a stator. The permanent magnet or winding is independently provided for each stator, such as a winding (or vice versa) on the mover, and the polarity of the magnetic flux of the permanent magnet when current / voltage control is performed. Is always fixed to either positive or negative and control is performed.

本発明が適用される電動機が、リラクタンス力を利用しており、固定子に磁気的な突極を持ち、可動子に永久磁石と巻線を備えた同期電動機の場合、電圧制御を行う際、推力の極性に応じて永久磁石の磁束極性が変化するため、従来のベクトル制御における極性の固定したd軸の電圧制御方法では、高速動作や方向反転時などの急峻な動作における制御上の電圧誤差が大きくなり、電動機巻線に過電流が流れ制御が不安定になる場合や、巻線インダクタンスに蓄えられるエネルギーの変化が大きくなりトルクリップルの原因となっている。   When the electric motor to which the present invention is applied uses a reluctance force, the stator has a magnetic salient pole, and the movable motor includes a permanent magnet and a winding, when performing voltage control, Since the magnetic flux polarity of the permanent magnet changes in accordance with the polarity of the thrust, the conventional voltage control method for d-axis voltage control in vector control has a control voltage error in a steep operation such as high-speed operation or direction reversal. Becomes larger, an overcurrent flows through the motor winding, and the control becomes unstable, or a change in energy stored in the winding inductance increases, causing torque ripple.

本発明の目的は同期電動機、特にリラクタンス力と永久磁石力を利用した誘導子型同期電動機における効率の良い高帯域化駆動が実現でき、低速回転時または高トルク発生時に低トルクリップルで安定した制御性が得られ、効率の向上ができる同期電動機の制御装置を提供することにある。   The object of the present invention is to realize efficient high-bandwidth driving in a synchronous motor, particularly an inductor type synchronous motor using reluctance force and permanent magnet force, and stable control with low torque ripple at low speed rotation or high torque generation It is an object of the present invention to provide a control device for a synchronous motor that can improve efficiency and improve efficiency.

上記目的は以下の手段により達成される。   The above object is achieved by the following means.

本発明は、可動子の進行方向に対して磁気抵抗が高低差を周期的に持つ様に突極構造を持つ固定子と、軟磁性材から成り、前記固定子と対向する可動子のティース表面に、可動子の進行方向において周期的に変化する磁気極性を持つよう異なる極性の永久磁石が進行方向に隣接して配置された可動子を持ち、前記可動子は巻線が巻回されており、巻線に電流を印加することで前記可動子のティース表面の磁極性が変化する同期電動機の制御装置であって、可動子の進行方向に対応するトルク指令の極性に応じて電圧指令の演算に使用する可動子表面の永久磁石磁束成分の極性を変化させることを特徴とする。   The present invention comprises a stator having a salient pole structure so that the magnetic resistance periodically has a height difference with respect to the moving direction of the mover, and a soft teeth material surface of the mover facing the stator. In addition, a permanent magnet having a different polarity is arranged adjacent to the moving direction so as to have a magnetic polarity that periodically changes in the moving direction of the moving element, and the moving element is wound with a winding. , A control device for a synchronous motor in which a magnetic pole property of a tooth surface of the mover changes by applying a current to a winding, and a voltage command is calculated according to a polarity of a torque command corresponding to a moving direction of the mover The polarity of the permanent magnet magnetic flux component on the surface of the mover used in the above is changed.

また、可動子の永久磁石の磁束は第1の極対と電気角でπrad異なる第2の極対部分について、それぞれ独立してd−q軸ベクトル演算し、固定子突極と可動子との相対位置に応じて第1、第2の磁束の重みづけ演算を行う重み演算部を備えることが好適である。   In addition, the magnetic flux of the permanent magnet of the mover is independently dq-axis vector-calculated for the second pole pair portion that differs by π rad in electrical angle from the first pole pair. It is preferable to include a weight calculation unit that performs weighting calculation of the first and second magnetic fluxes according to the relative position.

これにより、d軸(永久磁石)磁束成分が、推力の極性に応じて変化して電圧制御に利用されるため、本発明によれば高速駆動時の効率の良い安定した制御が得られ、なおかつ電動機のトルクリップルを低減する制御が可能になる。   As a result, the d-axis (permanent magnet) magnetic flux component changes according to the polarity of the thrust and is used for voltage control. Therefore, according to the present invention, efficient and stable control during high-speed driving can be obtained, and Control to reduce torque ripple of the electric motor becomes possible.

以上のように本発明によれば、リラクタンス力と永久磁石力を利用した誘導子型同期電動機において、高速動作においても安定した駆動ができるような高帯域化が実現でき、かつ過電流などの不具合を発生しない制御ができるようになり、低トルクリップルで安定した制御性が得られる同期電動機の制御装置が得ることが可能になる。   As described above, according to the present invention, in the inductor type synchronous motor using the reluctance force and the permanent magnet force, it is possible to realize a high bandwidth capable of stable driving even at high speed operation, and problems such as overcurrent. As a result, it is possible to obtain a control device for a synchronous motor that can achieve stable controllability with low torque ripple.

本発明の同期電動機の制御装置の第1の実施形態を示す説明図である。It is explanatory drawing which shows 1st Embodiment of the control apparatus of the synchronous motor of this invention. 本発明の同期電動機の制御装置が適用される同期電動機の巻線無通電時の磁束の様子を示した図である。It is the figure which showed the mode of the magnetic flux at the time of the coil non-energization of the synchronous motor to which the control apparatus of the synchronous motor of this invention is applied. 本発明の同期電動機の制御装置が適用される同期電動機の動作原理図である。It is an operation principle diagram of the synchronous motor to which the control device for the synchronous motor of the present invention is applied. 本発明の同期電動機の制御装置が適用される同期電動機の巻線通電時の磁束の様子と動作例である。It is a mode and operation example of the magnetic flux at the time of coil energization of a synchronous motor to which a control device of a synchronous motor of the present invention is applied. 本発明の同期電動機の制御装置が適用される同期電動機の巻線通電時の磁束の様子と動作例である。It is a mode and operation example of the magnetic flux at the time of coil energization of a synchronous motor to which a control device of a synchronous motor of the present invention is applied. 本発明の同期電動機の巻線鎖交磁束を示す説明図である。It is explanatory drawing which shows the winding linkage magnetic flux of the synchronous motor of this invention. 本発明の同期電動機の制御装置の第2の実施形態を示す説明図である。It is explanatory drawing which shows 2nd Embodiment of the control apparatus of the synchronous motor of this invention. 本発明の同期電動機の制御装置の第2の実施形態における補足説明図である。It is supplementary explanatory drawing in 2nd Embodiment of the control apparatus of the synchronous motor of this invention. 従来の同期電動機の制御装置形態を示す説明図である。It is explanatory drawing which shows the control apparatus form of the conventional synchronous motor.

以下、添付図面をもとに本発明の実施形態を説明する。なお、特に断らない限り同記号、番号の要素、信号等は同機能・性能を有するものである。   Embodiments of the present invention will be described below with reference to the accompanying drawings. Unless otherwise noted, the same symbols, number elements, signals, etc. have the same functions and performance.

本説明ではリラクタンス力、永久磁石力を利用した誘導子型リニア同期電動機を扱い、説明の便宜上2相モデルにて説明を行う。   In this description, an inductor type linear synchronous motor using a reluctance force and a permanent magnet force is used, and the description will be made with a two-phase model for convenience of description.

図1は本発明の実施形態例であり、制御のブロック図例である。   FIG. 1 is an example of an embodiment of the present invention and an example of a control block diagram.

STQCはトルク指令値、SIQCはq軸電流指令値、SVU、SVV、SVWはそれぞれU相、V相、W相の電圧指令値、SPHSは位相値、SPDは可動子位置検出値、SVDは可動子速度検出値である。   STQC is the torque command value, SIQC is the q-axis current command value, SVU, SVV, and SVW are the U-phase, V-phase, and W-phase voltage command values, SPHS is the phase value, SPD is the mover position detection value, and SVD is movable This is the child speed detection value.

1は上位制御器からのトルク指令値STQCをq軸電流指令値SIQCに変換するq軸電流指令演算部である。   Reference numeral 1 denotes a q-axis current command calculation unit that converts a torque command value STQC from the host controller into a q-axis current command value SIQC.

q軸電流指令値SIQCは2/3相変換部2に供給され、2/3変換部2は、q軸電流指令値から3相電圧指令、すなわち、それぞれ2π/3の位相差を持つU相、V相、W相の電流指令値を演算する。   The q-axis current command value SIQC is supplied to the 2 / 3-phase conversion unit 2, and the 2/3 conversion unit 2 converts the q-axis current command value into a three-phase voltage command, that is, a U phase having a phase difference of 2π / 3. , V-phase and W-phase current command values are calculated.

特に図示はしないが、電動機9に印加される電流を検出するために設けられる電流検出手段により得られた各相電流検出値がフィードバックされ、PI演算器等の演算器により前記電流指令値との偏差を演算し、この偏差に基づき各相の電圧指令値SVU、SVV、SVWを算出する。   Although not shown in particular, each phase current detection value obtained by the current detection means provided for detecting the current applied to the electric motor 9 is fed back, and the current command value is compared with the current command value by a calculator such as a PI calculator. A deviation is calculated, and voltage command values SVU, SVV, SVW for each phase are calculated based on the deviation.

4は電力変換器であり、電圧指令値SVU、SVV、SVWに基づいた電圧を電動機9に印加することで電動機9の各相巻線に電流を流す。   Reference numeral 4 denotes a power converter, which applies a voltage based on the voltage command values SVU, SVV, SVW to the electric motor 9 to cause a current to flow through each phase winding of the electric motor 9.

10は可動子位置検出手段である。   Reference numeral 10 denotes a mover position detecting means.

通常、可動子位置検出手段10は電動機9の可動子に直結で取り付けられ、可動子位置検出値SPDを位相演算部7と速度演算部5に出力する。   Normally, the mover position detection means 10 is directly connected to the mover of the electric motor 9 and outputs the mover position detection value SPD to the phase calculation unit 7 and the speed calculation unit 5.

速度演算部5は可動子位置検出値SPDを微分等の演算処理を行うことで、可動子位置検出値SPDから可動子速度検出値SVDを演算する。   The speed calculation unit 5 calculates a mover speed detection value SVD from the mover position detection value SPD by performing a calculation process such as differentiation on the mover position detection value SPD.

位相演算部7では可動子位置検出手段10から得られる可動子位置検出値SPDに基づきU相、V相、W相の各q軸電流指令値位相値SPHSを演算し、これを電圧指令演算部3に出力する。   The phase calculation unit 7 calculates the U-phase, V-phase, and W-phase q-axis current command value phase values SPHS based on the mover position detection value SPD obtained from the mover position detection means 10, and uses this to calculate the voltage command calculation unit. 3 is output.

本実施形態の特徴は、可動子の推力極性であるトルク指令STQCの極性を極性判定部8にて判定し、この判定結果をd軸磁束演算部6にて磁束値SPHIMの極性に反映することで、電圧指令演算部3において推力極性に応じた磁束の値および極性にて電圧指令演算が行われることである。   The feature of this embodiment is that the polarity of the torque command STQC, which is the thrust polarity of the mover, is determined by the polarity determination unit 8, and the determination result is reflected in the polarity of the magnetic flux value SPHIM by the d-axis magnetic flux calculation unit 6. Thus, the voltage command calculation unit 3 performs the voltage command calculation with the magnetic flux value and polarity according to the thrust polarity.

上記処理が無い場合、本説明で扱う誘導子型電動機では、巻線による磁束、および永久磁石の磁束、さらには電動機の固定子と可動子の構造に起因するインダクタンス変化が考慮されずに、電圧演算されるため、電動機巻線に流れる電流に高調波が重畳することで、電流にリップルが生じるため、結果的に発生する推力にもリップルを生じることになる。   Without the above processing, in the inductor type electric motor treated in this description, the magnetic flux due to the winding, the magnetic flux of the permanent magnet, and the inductance change due to the structure of the stator and the mover of the electric motor are not taken into consideration. Since the calculation is performed, the harmonics are superimposed on the current flowing through the motor windings, and thus ripples are generated in the currents. Therefore, the resultant thrust is also rippled.

図2(a)〜(c)は本発明の同期電動機の制御装置が適用される電動機の一例であり、巻線C1、C2に電流を印加しない場合である。   FIGS. 2A to 2C are examples of an electric motor to which the synchronous motor control device of the present invention is applied, in which no current is applied to the windings C1 and C2.

この例の電動機は、固定子21の磁気的な突極により磁気吸引力(リラクタンス力)を得ており、可動子22の永久磁石M1、M2を利用する誘導子型電動機である。   The electric motor of this example is an inductor type electric motor that obtains a magnetic attractive force (reluctance force) by the magnetic salient pole of the stator 21 and uses the permanent magnets M1 and M2 of the mover 22.

固定子21には、図において上方に向けて突出する、磁気的な突極があるのみで永久磁石や巻線を備えていない。固定子21は、図における横方向に直線状に伸びる帯状のヨークとこのヨークから上方に向けて突出する台形状の突極からなり、突極がヨークの長手方向に一定間隔で形成されるラックギアのような形状を有する。従って、固定子21には、凹部と突極が交互に位置しており、後述する可動子の進行方向に対して磁気抵抗が高低差を周期的に持つ様に突極構造を持つ。   The stator 21 has only a magnetic salient pole that protrudes upward in the figure, and has no permanent magnet or winding. The stator 21 is composed of a belt-like yoke extending linearly in the horizontal direction in the figure and a trapezoidal salient pole projecting upward from the yoke, and the salient poles are formed at regular intervals in the longitudinal direction of the yoke. The shape is as follows. Accordingly, the stator 21 has salient pole structures in which the concave portions and the salient poles are alternately positioned, and the magnetic resistance periodically has a difference in height with respect to the moving direction of the mover described later.

また、可動子22は、軟磁性材からなり、図における下側に向けて伸びるティースとこれを結ぶヨークからなり、この例では2つのティースを有し、全体としてコ字型となっている。可動子22の2つのティースには巻線C1と巻線C2がそれぞれ巻回されている。また、可動子22のティースの固定子21の凹部または突極に対向する先端部には、それぞれ一対の永久磁石M1、M2が設けられている。この例では、図における左側のティースの先端には、左側に永久磁石M1、右側に永久磁石M2が設けられ、図における右側のティースの先端には、左側に永久磁石M2、右側に永久磁石M1が設けられている。この例において、可動子22のティースの幅は固定子21の突極の幅の2倍で、可動子22の中間の凹部の幅が固定子21の突極の幅に対応している。   The mover 22 is made of a soft magnetic material, and includes a tooth extending downward in the drawing and a yoke connecting the teeth. In this example, the mover 22 has two teeth, and has a U-shape as a whole. Windings C1 and C2 are wound around the two teeth of the mover 22, respectively. In addition, a pair of permanent magnets M1 and M2 are provided at the tips of the teeth of the mover 22 facing the recesses or salient poles of the stator 21 respectively. In this example, a permanent magnet M1 on the left side and a permanent magnet M2 on the right side are provided at the tip of the left tooth in the figure, and a permanent magnet M2 on the left side and a permanent magnet M1 on the right side at the tip of the right tooth in the figure. Is provided. In this example, the width of the teeth of the mover 22 is twice the width of the salient poles of the stator 21, and the width of the recess in the middle of the mover 22 corresponds to the width of the salient poles of the stator 21.

なお、永久磁石M1は磁束φm1を発生し、永久磁石M2は磁束φm2を発生する磁石であり、図における右側の永久磁石M1は図における下側がN極、上側がS極、左側の永久磁石M1は図における下側がS極、上側がN極となっており、図における右側の永久磁石M2は図における下側がS極、上側がN極、左側の永久磁石M2は図における下側がN極、上側がS極となっている。なお、磁束φm1と、磁束φm2は、同一であることが好ましい。   The permanent magnet M1 generates a magnetic flux φm1 and the permanent magnet M2 generates a magnetic flux φm2. The right permanent magnet M1 in the figure has an N pole on the lower side, an S pole on the upper side, and a permanent magnet M1 on the left side. In the figure, the lower side is the S pole and the upper side is the N pole. The right side permanent magnet M2 in the figure is the lower side in the figure, the upper side is the N pole, and the left side permanent magnet M2 is the lower side in the figure. The upper side is the S pole. The magnetic flux φm1 and the magnetic flux φm2 are preferably the same.

このように、可動子22は、固定子21と対向するティースの表面に、可動子22の進行方向において周期的に変化する磁気極性を持つよう異なる極性の永久磁石M1,M2が進行方向に隣接して配置されている。   Thus, the mover 22 has permanent magnets M1 and M2 of different polarities adjacent to each other on the surface of the teeth facing the stator 21 so as to have a magnetic polarity that periodically changes in the travel direction of the mover 22. Are arranged.

図2(a)は固定子21の2つの突極に可動子22の永久磁石M1がそれぞれ対向しており、2つの永久磁石M2が固定子の凹部に対向している場合の磁束の様子を示している。この場合、巻線C1、C2を鎖交する磁束は2つの永久磁石M1による磁束φm1が支配的である。ただし、永久磁石M1は、同一のティース上で隣接する永久磁石M2との磁束φ2との間で磁気ループを構成するため、巻線C1、C2を鎖交する磁束は永久磁石M1の磁束φm1全てが鎖交する訳ではない。   FIG. 2A shows the state of the magnetic flux when the permanent magnet M1 of the mover 22 is opposed to the two salient poles of the stator 21 and the two permanent magnets M2 are opposed to the recesses of the stator. Show. In this case, the magnetic flux φm1 generated by the two permanent magnets M1 is dominant in the magnetic flux interlinking the windings C1 and C2. However, since the permanent magnet M1 forms a magnetic loop with the magnetic flux φ2 with the adjacent permanent magnet M2 on the same tooth, the magnetic flux interlinking the windings C1, C2 is all the magnetic flux φm1 of the permanent magnet M1. Are not interlinked.

以後、説明では可動子22内の磁束をφa、固定子21内の磁束をφsと表現する。図2(a)の場合、磁束φa、φsとで、可動子22、固定子21を回る磁気ループが形成される。   Hereinafter, in the description, the magnetic flux in the mover 22 is expressed as φa, and the magnetic flux in the stator 21 is expressed as φs. In the case of FIG. 2A, a magnetic loop that rotates around the mover 22 and the stator 21 is formed by the magnetic fluxes φa and φs.

図2(b)は、固定子21の突極に可動子22の永久磁石M1と永久磁石M2が1/2ずつ対向しており、同じく固定子21の凹部も1/2ずつ対向している場合の磁束の様子を示している。この場合、永久磁石M1の磁束φm1と隣接する永久磁石M2との磁束φ2との間で磁気ループを構成するため、巻線C1、C2を鎖交する磁束はほとんどなく、よって、可動子22内磁束φaと固定子21内磁束φsは、ほぼ0である。   In FIG. 2B, the permanent magnet M1 and the permanent magnet M2 of the movable element 22 are opposed to the salient pole of the stator 21 by 1/2, and the concave portion of the stator 21 is also opposed by 1/2. The state of the magnetic flux in the case is shown. In this case, since a magnetic loop is formed between the magnetic flux φm1 of the permanent magnet M1 and the magnetic flux φ2 of the adjacent permanent magnet M2, there is almost no magnetic flux interlinking the windings C1 and C2, and therefore, in the mover 22 The magnetic flux φa and the magnetic flux φs in the stator 21 are almost zero.

図2(c)は、(b)に対して可動子の位置が電気角でπradずれた状態であり、図2(b)と同様に固定子21の突極に可動子22の永久磁石M1と永久磁石M2が1/2ずつ対向しており、同じく凹部も1/2ずつ対向している場合の磁束の様子を示している。永久磁石M1の磁束φm1と永久磁石M2との磁束φ2との間で磁気ループを構成するため、巻線C1、C2を鎖交する磁束はほとんどなく、よって、可動子22内磁束φaと固定子21内磁束φsは、同じくほぼ0となる。   2C shows a state in which the position of the mover is deviated by π rad in electrical angle with respect to FIG. 2B, and the permanent magnet M1 of the mover 22 is arranged on the salient pole of the stator 21 as in FIG. And the permanent magnet M2 are opposed to each other by 1/2, and the state of the magnetic flux in the case where the concave portions are also opposed to each other by 1/2 is shown. Since a magnetic loop is formed between the magnetic flux φm1 of the permanent magnet M1 and the magnetic flux φ2 of the permanent magnet M2, there is almost no magnetic flux interlinking the windings C1, C2, and therefore the magnetic flux φa in the mover 22 and the stator Similarly, the magnetic flux φs in 21 is almost zero.

図3は本発明で適用する図2のような誘導子型同期電動機に一般的なベクトル制御の考え方を適用する場合の例であり、本発明の同期電動機の制御方法の原理図である。   FIG. 3 is an example in the case of applying the general concept of vector control to the inductor type synchronous motor as shown in FIG. 2 applied in the present invention, and is a principle diagram of the synchronous motor control method of the present invention.

図3(a)は可動子22と固定子21との間のd、q軸の設定方法であり、可動子永久磁石の極性に応じて磁極中心に+d軸、−d軸を設定する。また永久磁石M1、M2の境界(磁極極性の反転部)をq軸と設定する。固定子21の磁気的な突極の中心を基準とし、周期λの間隔にて電気角で0または2πと設定することで、基準0(または2πrad)に対する可動子22のd軸、q軸の相対位置に応じて巻線C1、C2に印加する電流位相を決定する。   FIG. 3A shows a method for setting the d and q axes between the mover 22 and the stator 21. The + d axis and the -d axis are set at the magnetic pole center according to the polarity of the mover permanent magnet. The boundary between the permanent magnets M1 and M2 (the magnetic pole polarity reversal part) is set as the q axis. With the center of the magnetic salient pole of the stator 21 as a reference, by setting the electrical angle to 0 or 2π at intervals of the period λ, the d-axis and q-axis of the mover 22 with respect to the reference 0 (or 2πrad) The phase of the current applied to the windings C1 and C2 is determined according to the relative position.

図3(b)および(c)は図3(a)の状態をベクトル図で示したものであり、図3(b)は推力極性が正(F>0)の場合、図3(c)は推力極性が負(F<0)の場合を示す。ここで特徴的なのは、推力の極性(正方向の推力か、負方向の推力か)に応じて永久磁石のd軸磁束成分の極性が変化する事である。   3 (b) and 3 (c) show the state of FIG. 3 (a) as a vector diagram, and FIG. 3 (b) shows the case of FIG. 3 (c) when the thrust polarity is positive (F> 0). Indicates the case where the thrust polarity is negative (F <0). What is characteristic here is that the polarity of the d-axis magnetic flux component of the permanent magnet changes according to the polarity of the thrust (whether the thrust is positive or negative).

一般的な永久磁石を利用した電動機でベクトル制御を行う場合、このd軸磁束またはd軸電流成分の極性は、推力の極性によらず一定となり、正または負のどちらかの極性に固定されるため、本発明の制御方法と大きく異なる。   When vector control is performed with a motor using a general permanent magnet, the polarity of this d-axis magnetic flux or d-axis current component is constant regardless of the polarity of the thrust, and is fixed to either positive or negative polarity. Therefore, the control method of the present invention is greatly different.

本制御方法の他の特徴は、図3(b)と(c)からわかるように、同じ方向(矢印Vel)に加速している状態(図(b))から減速(図(c))を行う場合にもほとんど回生動作を行わず力行状態となる点である。このことから、本発明で扱う誘導子電動機は、可動子の表面にある永久磁石の極対の磁極性が異なるよう2組あり、推力の極性に応じて、永久磁石の組を切替えて使用していると見なすと良い。すなわち、一対の永久磁石M1を利用する場合と、一対の永久磁石M2を利用する場合がある。   As can be seen from FIGS. 3B and 3C, another feature of this control method is that the vehicle is decelerating from the state of acceleration (FIG. (B)) in the same direction (arrow Vel) (FIG. (C)). Even in the case of performing, it is a point where the regenerative operation is hardly performed and the power running state is obtained. For this reason, there are two sets of inductor motors handled in the present invention so that the magnetic properties of the pole pairs of the permanent magnets on the surface of the mover are different, and the set of permanent magnets is switched according to the polarity of thrust. It is good to consider that. That is, there are a case where a pair of permanent magnets M1 is used and a case where a pair of permanent magnets M2 is used.

図4と図5は、巻線C1とC2に電流を印加した場合を説明した図であり、巻線C1とC2が作る磁束の方向により、発生する推力極性が異なることを示した図である。   FIGS. 4 and 5 are diagrams illustrating the case where current is applied to the windings C1 and C2, and shows that the generated thrust polarity differs depending on the direction of the magnetic flux generated by the windings C1 and C2. .

図4(a)と図5(a)は無通電状態であり、固定子21と可動子22の相対位置は共に同じであり、磁束φa、φbも同一となる。図2(a)も同じ状態である。   4A and 5A are in a non-energized state, the relative positions of the stator 21 and the mover 22 are the same, and the magnetic fluxes φa and φb are also the same. FIG. 2A is the same state.

図4(b)と(c)では、巻線C1,C2に流れる電流によって、図面に向かって可動子22内に左回りに磁束φc1、φc2(図における右側のティースからヨークを通り左側のティースに回る磁束)が発生しており、巻線磁束が同じでも可動子22と固定子21との相対位置の違いにより(b)と(c)とでは発生する推力の方向が異なる。発生する力は永久磁石M1、M2と巻線磁束φc1、φc2と固定子22突極との間に働く磁気吸引力(リラクタンス力)F0であり、図面のx方向とy方向の吸引力に分解され、電動機として利用される推力はx方向の力Fxである。図4(a)では、磁束φm1が磁束φc1,φc2と同じ方向になり、図4(b)では磁束φm2が磁束φc1,φc2と同じ方向になる。   4 (b) and 4 (c), magnetic fluxes φc1 and φc2 (counterclockwise in the drawing from the right tooth through the yoke to the left tooth in the mover 22 in the direction of the drawing due to the current flowing in the windings C1 and C2. (B) and (c) differ in the direction of the generated thrust due to the difference in the relative positions of the mover 22 and the stator 21 even if the winding magnetic flux is the same. The generated force is a magnetic attractive force (reluctance force) F0 acting between the permanent magnets M1 and M2, the winding magnetic fluxes φc1 and φc2, and the stator 22 salient pole, and is decomposed into attractive forces in the x and y directions in the drawing. The thrust used as an electric motor is a force Fx in the x direction. In FIG. 4A, the magnetic flux φm1 is in the same direction as the magnetic fluxes φc1 and φc2, and in FIG. 4B, the magnetic flux φm2 is in the same direction as the magnetic fluxes φc1 and φc2.

図5(b)と(c)では、巻線C1,C2に流れる電流によって、図4とは反対に図面に向かって可動子22内に右回りに磁束φc1、φc2が発生しており、図4と同様に巻線磁束が同じでも可動子22と固定子21との相対位置の違いにより(b)と(c)とでは発生する推力の方向が異なる。   In FIGS. 5B and 5C, magnetic fluxes φc1 and φc2 are generated in the clockwise direction in the mover 22 toward the drawing by the current flowing through the windings C1 and C2, as opposed to FIG. 4, even if the winding magnetic flux is the same, the direction of thrust generated differs between (b) and (c) due to the difference in relative position between the mover 22 and the stator 21.

図6は巻線C1(もしくは巻線C2)の可動子22移動方向に対する鎖交磁束の変化を示したものであり、(a)は正の推力(F>0)の場合、(b)は負の推力(F<0)の場合の磁束変更である。巻線C1またはC2に電流を印加することで発生する磁束はφcであり、電流の大きさに比例して磁束φも増加する。また、破線で示す曲線は永久磁石M1、M2が作る磁束を示しており、可動子22と固定子21の相対位置によって永久磁石M1の作る磁束φm1、永久磁石M2の作る磁束φm2が支配的になる。   FIG. 6 shows the change of the interlinkage magnetic flux with respect to the moving direction of the mover 22 of the winding C1 (or winding C2). (A) is a positive thrust (F> 0), (b) is This is a magnetic flux change in the case of negative thrust (F <0). The magnetic flux generated by applying a current to the winding C1 or C2 is φc, and the magnetic flux φ increases in proportion to the magnitude of the current. The curved lines shown by broken lines indicate the magnetic fluxes generated by the permanent magnets M1 and M2, and the magnetic flux φm1 generated by the permanent magnet M1 and the magnetic flux φm2 generated by the permanent magnet M2 are dominant depending on the relative positions of the mover 22 and the stator 21. Become.

このように、本実施形態においては、可動子22の加速方向(推力の方向)に応じて可動子22と固定子21の相対位置が同じでも、ベクトル制御におけるd軸の極性を変更することで、所望の推力を得ることができる。例えば、可動子22の正方向への移動は、図5(b)の状態と、図4(c)の状態を、図6(a)に示すように巻線C1,C2による磁界をコントロールすることで行う。また、可動子22の負方向への移動の場合には、図5(c)の状態と、図4(b)の状態を、図6(b)に示すように巻線C1,C2による磁界をコントロールすることで行う。   Thus, in the present embodiment, even if the relative positions of the mover 22 and the stator 21 are the same according to the acceleration direction (thrust direction) of the mover 22, the polarity of the d axis in the vector control is changed. The desired thrust can be obtained. For example, the movement of the mover 22 in the positive direction controls the magnetic field by the windings C1 and C2 as shown in FIG. 6 (a) in the state of FIG. 5 (b) and FIG. 4 (c). Do that. When the mover 22 is moved in the negative direction, the state shown in FIG. 5C and the state shown in FIG. 4B are changed to the magnetic field generated by the windings C1 and C2, as shown in FIG. This is done by controlling

そして、この巻線C1,C2の電流コントロールにおいて、d軸、q軸磁束を制御するベクトル制御を行うが、この場合においてd軸の極性を上述のように、その時の推力の方向によって切り換える。これによって、適切な推力制御を達成することができる。   In the current control of the windings C1 and C2, vector control for controlling the d-axis and q-axis magnetic flux is performed. In this case, as described above, the polarity of the d-axis is switched depending on the direction of thrust at that time. Thereby, appropriate thrust control can be achieved.

図7は本発明の実施例の別例を示すものであり、図1と異なるのは第1dqベクトル演算部71と第2dqベクトル演算部72を備える事である。第1dqベクトル演算部71と第2dqベクトル演算部72ではそれぞれ永久磁石M1と永久磁石M2の磁束を独立に演算し、重み関数演算部73にて位相演算部7の位相情報(可動子22と固定子21の相対位置に相当)の応じて重み付けを行う。   FIG. 7 shows another example of the embodiment of the present invention. The difference from FIG. 1 is that a first dq vector calculation unit 71 and a second dq vector calculation unit 72 are provided. The first dq vector calculation unit 71 and the second dq vector calculation unit 72 calculate the magnetic fluxes of the permanent magnet M1 and the permanent magnet M2 independently, respectively, and the weight function calculation unit 73 calculates the phase information (fixed with the movable element 22). The weighting is performed according to the relative position of the child 21).

なお、第1dqベクトル演算部71と第2dqベクトル演算部72で扱うベクトルは、それぞれ電気角でπrad位相がずれているのが特徴である。すなわち、図6(a)、(b)についていえば、−π/2〜π/2の範囲では、永久磁石M1による磁束φm1を利用しており、第1dqベクトル演算部71がベクトル演算を行う。この際、推力の極性に応じてd軸の極性を変更して演算を行う。また、π/2〜−π/2の範囲では、永久磁石M2による磁束φm2を利用しており、第2dqベクトル演算部72がベクトル演算を行う。そして、この際も推力の極性に応じてd軸の極性を変更して演算を行う。   It should be noted that the vectors handled by the first dq vector computing unit 71 and the second dq vector computing unit 72 are characterized in that the π rad phase is shifted by an electrical angle. That is, in FIGS. 6A and 6B, in the range of −π / 2 to π / 2, the magnetic flux φm1 by the permanent magnet M1 is used, and the first dq vector calculation unit 71 performs vector calculation. . At this time, the calculation is performed by changing the polarity of the d-axis according to the polarity of the thrust. In the range of π / 2 to −π / 2, the magnetic flux φm2 by the permanent magnet M2 is used, and the second dq vector calculation unit 72 performs vector calculation. Also in this case, the calculation is performed by changing the polarity of the d-axis according to the polarity of the thrust.

図8は、重み関数演算部73の例を示したものであり、位相演算部7の演算結果より、第1dqベクトル演算部71用の重み関数81と第2dqベクトル演算部72用の重み関数82が演算される。重み関数81と重み関数82は、位相で2Δθの微小区間だけ交錯しており、可動子表面の永久磁石の取り付け間隔など構造に影響する永久磁石磁束の変化に応じて設定する。   FIG. 8 shows an example of the weighting function calculation unit 73. From the calculation result of the phase calculation unit 7, the weighting function 81 for the first dq vector calculation unit 71 and the weighting function 82 for the second dq vector calculation unit 72 are shown. Is calculated. The weighting function 81 and the weighting function 82 intersect with each other only in a minute section of 2Δθ in phase, and are set according to a change in the permanent magnet magnetic flux that affects the structure such as a permanent magnet mounting interval on the surface of the mover.

また、特に図示しないが、重み関数81と重み関数82はトルク指令値STQCの極性に応じて、重みKPHIの極性も変化する。   Although not particularly illustrated, the weighting function 81 and the weighting function 82 also change the polarity of the weight KPHI according to the polarity of the torque command value STQC.

このような重み関数演算部73における重みの乗算によって、第1dqベクトル演算部71と第2dqベクトル演算部72とが常時演算しつつ、その出力をπ毎に選択して利用することができる。   By such multiplication of weights in the weight function calculation unit 73, the first dq vector calculation unit 71 and the second dq vector calculation unit 72 can always calculate, and the output can be selected and used for each π.

なお、主旨を逸脱しない範囲で以下の変更を行っても良い。   The following changes may be made without departing from the spirit of the invention.

※以上の説明ではリニア型電動機について説明を行ったが回転型同期電動機に本発明の技術を適用しても良い。また、構造的に、可動子(回転子)と固定子を入れ替えても良い。   * In the above description, the linear motor has been described. However, the technology of the present invention may be applied to a rotary synchronous motor. Further, structurally, the mover (rotor) and the stator may be interchanged.

1 q軸電流指令演算部、2 2/3相変換部、3 電圧指令演算部、4 電力変換器、5 速度演算部、6 d軸磁束演算部、7 位相演算部、8 極性判定部、9 電動機、10 可動子位置検出手段、71 第1dqベクトル演算部、72 第2dqベクトル演算部、73 重み関数演算部、74 極性判定器、STQC トルク指令、SIQC q軸電流指令、SPD 可動子位置検出値。   1 q-axis current command calculation unit, 2 2/3 phase conversion unit, 3 voltage command calculation unit, 4 power converter, 5 speed calculation unit, 6 d-axis magnetic flux calculation unit, 7 phase calculation unit, 8 polarity determination unit, 9 Electric motor, 10 mover position detecting means, 71 1st dq vector computing unit, 72 2nd dq vector computing unit, 73 weight function computing unit, 74 polarity determiner, STQC torque command, SIQC q-axis current command, SPD mover position detection value .

Claims (2)

可動子の進行方向に対して磁気抵抗が高低差を周期的に持つ様に突極構造を持つ固定子と、
軟磁性材から成り、前記固定子と対向する可動子のティース表面に、可動子の進行方向において周期的に変化する磁気極性を持つよう異なる極性の永久磁石が進行方向に隣接して配置された可動子を持ち、
前記可動子は巻線が巻回されており、巻線に電流を印加することで前記可動子のティース表面の磁極性が変化する同期電動機の制御装置であって、
可動子の進行方向に対応するトルク指令の極性に応じて電圧指令の演算に使用する可動子表面の永久磁石磁束成分の極性を変化させることを特徴とする同期電動機の制御装置。
A stator having a salient pole structure so that the magnetic resistance periodically has a height difference with respect to the moving direction of the mover;
Made of soft magnetic material, permanent magnets of different polarities are arranged adjacent to each other in the traveling direction so as to have a magnetic polarity that periodically changes in the traveling direction of the movable member, on the tooth surface of the movable member facing the stator. With a mover,
The movable element has a winding wound thereon, and is a control device for a synchronous motor in which a magnetic property of a tooth surface of the movable element is changed by applying a current to the winding,
A control apparatus for a synchronous motor, wherein a polarity of a permanent magnet magnetic flux component on a surface of a mover used for calculation of a voltage command is changed according to a polarity of a torque command corresponding to a traveling direction of the mover.
請求項1に記載の同期電動機の制御装置において、
可動子の永久磁石の磁束は第1の極対と電気角でπrad異なる第2の極対部分について、それぞれ独立してd−q軸ベクトル演算し、固定子突極と可動子との相対位置に応じて第1、第2の磁束の重みづけ演算を行う重み演算部を備えることを特徴とする同期電動機の制御装置。
In the synchronous motor control device according to claim 1,
The magnetic flux of the permanent magnet of the mover is dq-axis vector-calculated independently for the second pole pair portion that differs by π rad in electrical angle from the first pole pair, and the relative position between the stator salient pole and the mover. A control apparatus for a synchronous motor, comprising a weight calculation unit that performs weighting calculation of the first and second magnetic fluxes according to the frequency.
JP2011151976A 2011-07-08 2011-07-08 Control device for synchronous motor Active JP5739254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011151976A JP5739254B2 (en) 2011-07-08 2011-07-08 Control device for synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011151976A JP5739254B2 (en) 2011-07-08 2011-07-08 Control device for synchronous motor

Publications (2)

Publication Number Publication Date
JP2013021787A true JP2013021787A (en) 2013-01-31
JP5739254B2 JP5739254B2 (en) 2015-06-24

Family

ID=47692687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011151976A Active JP5739254B2 (en) 2011-07-08 2011-07-08 Control device for synchronous motor

Country Status (1)

Country Link
JP (1) JP5739254B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015027230A (en) * 2013-07-29 2015-02-05 株式会社安川電機 Linear motor
WO2019102761A1 (en) * 2017-11-24 2019-05-31 Kyb株式会社 Tubular linear motor
JP2019097377A (en) * 2017-11-24 2019-06-20 Kyb株式会社 Cylindrical liner motor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04127891A (en) * 1990-09-18 1992-04-28 Yokogawa Electric Corp Motor drive system
JP2002101636A (en) * 2000-09-20 2002-04-05 Yaskawa Electric Corp Linear motor
JP2006109653A (en) * 2004-10-07 2006-04-20 Okuma Corp Linear motor
JP2006311687A (en) * 2005-04-27 2006-11-09 Sanyo Denki Co Ltd Linear motor
JP2009219199A (en) * 2008-03-07 2009-09-24 Okuma Corp Linear motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04127891A (en) * 1990-09-18 1992-04-28 Yokogawa Electric Corp Motor drive system
JP2002101636A (en) * 2000-09-20 2002-04-05 Yaskawa Electric Corp Linear motor
JP2006109653A (en) * 2004-10-07 2006-04-20 Okuma Corp Linear motor
JP2006311687A (en) * 2005-04-27 2006-11-09 Sanyo Denki Co Ltd Linear motor
JP2009219199A (en) * 2008-03-07 2009-09-24 Okuma Corp Linear motor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015027230A (en) * 2013-07-29 2015-02-05 株式会社安川電機 Linear motor
KR20150014392A (en) * 2013-07-29 2015-02-06 가부시키가이샤 야스카와덴키 Linear motor
US9270156B2 (en) 2013-07-29 2016-02-23 Kabushiki Kaisha Yaskawa Denki Linear motor
KR101647189B1 (en) * 2013-07-29 2016-08-09 가부시키가이샤 야스카와덴키 Linear motor
WO2019102761A1 (en) * 2017-11-24 2019-05-31 Kyb株式会社 Tubular linear motor
JP2019097377A (en) * 2017-11-24 2019-06-20 Kyb株式会社 Cylindrical liner motor
US11456654B2 (en) 2017-11-24 2022-09-27 Kyb Corporation Tubular linear motor
JP7240569B2 (en) 2017-11-24 2023-03-16 Kyb株式会社 Cylindrical linear motor

Also Published As

Publication number Publication date
JP5739254B2 (en) 2015-06-24

Similar Documents

Publication Publication Date Title
JP5827026B2 (en) Rotating electric machine and rotating electric machine drive system
JP5718668B2 (en) Rotating electric machine drive system
JP5781785B2 (en) Rotating electric machine drive system
JP2012222941A (en) Rotating electric machine
JP5933810B2 (en) Motor control device
JP2008005665A (en) Cylindrical linear motor and vehicle using it
US11863018B2 (en) Reluctance motor
JP5835450B2 (en) Rotating machine control device
KR20140051957A (en) Motor controller
JPWO2011043118A1 (en) Electric motor system
JP5739254B2 (en) Control device for synchronous motor
JP2014007853A (en) Motor
JP2009291069A (en) Cylindrical linear motor and vehicle using the same
JP6075161B2 (en) Switched reluctance motor controller
JP5095134B2 (en) Motor control device and motor control method
JP5885423B2 (en) Permanent magnet rotating electric machine
JP2006050705A (en) Motor control unit
JP5841000B2 (en) motor
Wu et al. A novel starting control for sensorless three-phase permanent-magnet brushless DC motor
JP5623346B2 (en) Rotating electric machine drive system
JP2777714B2 (en) Control device for brushless motor
JP7393763B2 (en) Rotating electrical machine control system
WO2024034501A1 (en) Drive device for permanent magnet synchronous motor, and control device
Kelkar et al. Direct torque control of permanent magnet synchronous motor
JP4867611B2 (en) Drive device for rotating electrical machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150423

R150 Certificate of patent or registration of utility model

Ref document number: 5739254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150