JP2013021307A - High frequency transformer - Google Patents

High frequency transformer Download PDF

Info

Publication number
JP2013021307A
JP2013021307A JP2012133934A JP2012133934A JP2013021307A JP 2013021307 A JP2013021307 A JP 2013021307A JP 2012133934 A JP2012133934 A JP 2012133934A JP 2012133934 A JP2012133934 A JP 2012133934A JP 2013021307 A JP2013021307 A JP 2013021307A
Authority
JP
Japan
Prior art keywords
coil
coils
iron core
conductor plate
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012133934A
Other languages
Japanese (ja)
Other versions
JP5950706B2 (en
Inventor
Yoshihiro Tani
良浩 谷
Toshinori Tanaka
敏則 田中
Satoru Murakami
哲 村上
Shinichi Yamaguchi
信一 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012133934A priority Critical patent/JP5950706B2/en
Publication of JP2013021307A publication Critical patent/JP2013021307A/en
Application granted granted Critical
Publication of JP5950706B2 publication Critical patent/JP5950706B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a high frequency transformer including a new winding structure corresponding to a frequency increase and a capacity increase.SOLUTION: The high frequency transformer includes an iron core 1 acting as a main magnetic flux path with an iron core center leg 1a provided in the center portion thereof, and coils 4, 3 and 5 having cylindrical longitudinally-wound structures spirally wound with the iron core center leg 1a as a center. The coils 4, 3 and 5 form a primary side coil 3 and secondary side coils 4 and 5 which are electromagnetically coupled, the primary side coil 3 and the secondary side coils 4 and 5 are each formed by a continuous belt-like conductor plate 14 having an almost rectangular cross section, the belt-like conductor plate 14 is bent toward the reverse side or the front side two or more times on a crease 16 at an angle other than parallel with a current passing direction and the vertical, and as to bending of the belt-like conductor plate 14 toward the front side or the reverse side with respect to the current passing direction, it is bent continuously toward the same sides at least once, either toward the front side or toward the reverse side, in one turn of the coils 3-5. Thus, the belt-like conductor plate 14 has a spiral and cylindrical longitudinally-wound coil structure.

Description

この発明は高周波トランスに関し、特に、スイッチング電源用高周波トランスに関するものである。   The present invention relates to a high frequency transformer, and more particularly to a high frequency transformer for a switching power supply.

一次側と二次側とを電気的に絶縁する構成のスイッチング電源(以下、単に電源)では、その絶縁のため、変換トランス(以下、単にトランス)が使用される。従来、この変換トランスとして、主磁束経路となる鉄心の回りに銅線を巻いた巻線トランスや箔銅板を巻いたシートトランスが使用されてきた。最近では導体断面が円形ではない通称平角線(あるいはリボン銅線)と呼ばれる、長方形断面をなす導体を加工したコイルも使用されている。   In a switching power supply (hereinafter simply referred to as a power supply) configured to electrically insulate the primary side and the secondary side, a conversion transformer (hereinafter simply referred to as a transformer) is used for the insulation. Conventionally, as the conversion transformer, a winding transformer in which a copper wire is wound around an iron core serving as a main magnetic flux path or a sheet transformer in which a foil copper plate is wound has been used. Recently, a so-called rectangular wire (or ribbon copper wire) whose conductor cross section is not circular has been used, and a coil obtained by processing a conductor having a rectangular cross section has been used.

近年、電源は一層の小型・高効率化に加え、数kW程度の大容量対応が求められ、電源用半導体部品の高周波対応が進められている。一方、トランスは高周波化により小型化できる反面、効率に関わる損失の低減が不可欠である。そのためには、低損失コア材の採用に加え、銅損につながるコイルの直流抵抗と交流抵抗(導体中の表皮効果、導体間の近接効果、鉄心からの漏洩磁束による渦電流損失)を低減させることが必要である。銅損の低減では、従来の巻線トランスでは表皮効果、近接効果の問題があった。そのため、導体細線を束にして撚り合わせたリッツ線と称する線材が使用されているが、これは高価であり、しかも端子の接続加工での線材の絶縁被膜の除去が容易でないため、作業性が悪いという問題を抱えている。シートトランス方式では近接効果の問題が残る。これらの問題を踏まえ、平角線を使用した高周波トランスについての様々な技術が開示されており、例えば、特許文献1に当該技術の1つが記載されている。   In recent years, in addition to further miniaturization and higher efficiency of the power supply, it is required to handle a large capacity of about several kW, and the high-frequency response of power supply semiconductor components is being promoted. On the other hand, the transformer can be miniaturized by increasing the frequency, but it is essential to reduce the loss related to the efficiency. To that end, in addition to adopting a low-loss core material, reduce the DC resistance and AC resistance of the coil that leads to copper loss (skin effect in conductor, proximity effect between conductors, eddy current loss due to leakage flux from iron core) It is necessary. In reducing copper loss, conventional winding transformers have problems of skin effect and proximity effect. For this reason, a wire rod called a litz wire, which is formed by bundling thin conductor wires, is used, but this is expensive, and it is not easy to remove the insulating film of the wire in the terminal connection process, so workability is improved. I have the problem of being bad. The problem of proximity effect remains in the sheet transformer system. In view of these problems, various techniques for a high-frequency transformer using a rectangular wire are disclosed. For example, Patent Document 1 describes one of the techniques.

特許文献1では、平角導線を導体断面の幅方向に縦巻きした構造(エッジワイズ構造)をとっている。高周波化に対応しかつ大電流を流すには、平角線の厚みを薄くし、かつ、幅を広くする必要がある。特許文献1では、平角線を幅方向に二分割し、しかも加工変形後の内周と外周のコイルで導体断面積が同等となるよう設計が行われると共に、それらを並行接続することで大電流化に対応している。   In Patent Document 1, a structure (edgewise structure) in which a rectangular conductive wire is vertically wound in the width direction of the conductor cross section is taken. In order to cope with higher frequencies and to pass a large current, it is necessary to reduce the thickness of the rectangular wire and increase the width. In Patent Document 1, a flat wire is divided into two in the width direction, and the conductor cross-sectional area is equalized between the inner and outer coils after machining deformation, and a large current is obtained by connecting them in parallel. It corresponds to the conversion.

特許文献2では、巻回始端部及び巻回終端部を有する平角導線を、巻回始端部側から順次、巻回終端部に向かって縦巻きする際、平角線の平面側を順次任意の角度に折り曲げ複数の屈曲部を設けると共に、折り重なる各屈曲部を互いに密接するように圧接し、各屈曲部が前記平角線の厚さに近づくよう圧延したことを特徴とする積層巻線が示されている。この構成の巻線コイルでは各線間の密着度が高まり、導体占積率を更に大きくすることができる。   In Patent Document 2, when a flat wire having a winding start end and a winding end is sequentially wound from the winding start end to the winding end, the plane side of the flat wire is sequentially set at an arbitrary angle. The laminated winding is characterized in that it is provided with a plurality of bent portions and is pressed so that the bent portions are in close contact with each other and rolled so that each bent portion approaches the thickness of the rectangular wire. Yes. In the winding coil having this configuration, the degree of adhesion between the wires is increased, and the conductor space factor can be further increased.

特開平9−7854号公報(4ページ、図1)JP-A-9-7854 (page 4, FIG. 1) 特許第4573323号公報(5ページ、図1)Japanese Patent No. 4573323 (page 5, FIG. 1)

しかしながら、近年の駆動周波数の高周波化において、例えば周波数が100kHz、電流10Aがコイルに流れるとすると、平角線の厚みは、少なくとも下記の(1)式にて定義される表皮厚みd(銅線で0.2mm)程度にする必要がある。しかも平角線の幅は導線の電流密度を5〜6A/mmとすると、幅は少なくとも9mmは必要であり、その結果、幅/厚みの比(以下、扁平率と呼ぶ)は、優に30を越えることになる。 However, in the recent increase in driving frequency, for example, assuming that the frequency is 100 kHz and the current 10A flows through the coil, the thickness of the flat wire is at least the skin thickness d defined by the following formula (1) (copper wire) 0.2 mm). Moreover, if the current density of the conducting wire is 5 to 6 A / mm 2 , the width of the flat wire needs to be at least 9 mm. As a result, the width / thickness ratio (hereinafter referred to as flatness) is preferably 30. Will be exceeded.

Figure 2013021307
Figure 2013021307

ここで、ρは電気抵抗、fは周波数、μは透磁率である。   Here, ρ is electric resistance, f is frequency, and μ is magnetic permeability.

平角線に仕上げることが可能な扁平率は、板厚にもよるが最大で30程度である。0.2mm厚の平角線では、製作可能な扁平率はせいぜい5程度であり、9mm幅とするには平角線9本を並列接続することになる。しかし、複数線を単一平角線と同様な縦巻きとすることは非常に困難である。また、平角線を縦巻きするには金型を用いた塑性加工を伴う特殊な巻き線機が必要であり、丸線を巻回すのに比較し製作コストが高いという問題もある。   The flatness that can be finished into a flat wire is about 30 at the maximum although it depends on the plate thickness. In the case of a rectangular wire having a thickness of 0.2 mm, the flatness that can be produced is at most about 5. To obtain a width of 9 mm, nine rectangular wires are connected in parallel. However, it is very difficult to make a plurality of lines into a vertical winding similar to a single rectangular line. Further, in order to wind a rectangular wire vertically, a special winding machine with plastic working using a mold is required, and there is a problem that the production cost is higher than that of winding a round wire.

特許文献2ではこの問題解決のため、平角線の平面側を順次任意の角度に折り曲げ複数の屈曲部を設けると共に、折り重なる各屈曲部を互いに密接するように圧接し、各屈曲部が前記平角線の厚さに近づくよう圧延することでコイルの縦巻きが可能としている。しかし、折り曲げた屈曲部を圧接、圧延し塑性変形させるための圧延機が必要であり、やはり製作行程が複雑でコストも高くなるという問題がある。また、コイル各ターン間の間隔は各屈曲部での圧接率により制御する必要があり、コイル積層間隔の均一度の確保が容易ではないという問題もある。   In Patent Document 2, in order to solve this problem, a plurality of bent portions are sequentially bent at an arbitrary angle on the flat side of the flat wire, and the bent portions are pressed so as to be in close contact with each other. The coil can be wound vertically by rolling to approach the thickness. However, a rolling mill for pressing and rolling the bent portion to be plastically deformed is necessary, and there is a problem that the manufacturing process is complicated and the cost is increased. In addition, it is necessary to control the interval between the turns of the coil by the pressure contact ratio at each bent portion, and there is a problem that it is not easy to ensure the uniformity of the coil stacking interval.

このように、従来の平角導線を塑性変形させての縦巻方式ではトランスでのより一層の高周波化と大容量化が困難となっている。   As described above, it is difficult to further increase the frequency and increase the capacity of the transformer in the vertical winding method in which the conventional rectangular conducting wire is plastically deformed.

この発明は、上記のような問題点を解決するためになされたものであり、高周波化と大容量化に対応した新たな巻き線構造を備えた高周波トランスを得ることを目的としている。   The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a high-frequency transformer having a new winding structure corresponding to high frequency and large capacity.

この発明は、中央部分に鉄心中央脚が設けられ、主磁束経路となる鉄心と、前記鉄心中央脚を中心にして螺旋状に巻回された筒状の縦巻構造のコイルとを備えた高周波トランスであって、前記コイルは、電磁結合した一次側コイルと二次側コイルとを構成しており、前記一次側コイルと前記二次側コイルは、それぞれ略矩形の断面を有する連続した帯状導体板から形成されていて、前記帯状導体板は、電流通電方向に対し平行以外かつ垂直以外の角度にて裏側または表側に複数回折り曲げられた螺旋状の筒状の縦巻コイル構造を有しており、前記コイルの1ターンの中で、電流通電方向に対する表側または裏側への前記帯状導体板の折り曲げが、少なくとも一回は連続して表側または裏側の同じ側へ折り曲げられることを特徴とする高周波トランスである。   The present invention provides a high-frequency circuit including an iron core central leg provided at a central portion, a core serving as a main magnetic flux path, and a coil having a cylindrical vertical winding structure spirally wound around the iron core central leg. The transformer includes a primary side coil and a secondary side coil that are electromagnetically coupled, and the primary side coil and the secondary side coil are continuous strip-shaped conductors each having a substantially rectangular cross section. The strip-shaped conductor plate is formed from a plate, and has a spiral cylindrical longitudinally wound coil structure that is bent a plurality of times on the back side or the front side at an angle other than parallel and perpendicular to the current-carrying direction. In one turn of the coil, the band-like conductor plate is bent at the front side or the back side with respect to the direction of current application at least once and continuously bent to the same side of the front side or the back side. G Is Nsu.

この発明は、中央部分に鉄心中央脚が設けられ、主磁束経路となる鉄心と、前記鉄心中央脚を中心にして螺旋状に巻回された筒状の縦巻構造のコイルとを備えた高周波トランスであって、前記コイルは、電磁結合した一次側コイルと二次側コイルとを構成しており、前記一次側コイルと前記二次側コイルは、それぞれ略矩形の断面を有する連続した帯状導体板から形成されていて、前記帯状導体板は、電流通電方向に対し平行以外かつ垂直以外の角度にて裏側または表側に複数回折り曲げられた螺旋状の筒状の縦巻コイル構造を有しており、前記コイルの1ターンの中で、電流通電方向に対する表側または裏側への前記帯状導体板の折り曲げが、少なくとも一回は連続して表側または裏側の同じ側へ折り曲げられることを特徴とする高周波トランスであるので、高周波化と大容量化に対応した新たな巻き線構造を備えた高周波トランスを実現することができる。   The present invention provides a high-frequency circuit including an iron core central leg provided at a central portion, a core serving as a main magnetic flux path, and a coil having a cylindrical vertical winding structure spirally wound around the iron core central leg. The transformer includes a primary side coil and a secondary side coil that are electromagnetically coupled, and the primary side coil and the secondary side coil are continuous strip-shaped conductors each having a substantially rectangular cross section. The strip-shaped conductor plate is formed from a plate, and has a spiral cylindrical longitudinally wound coil structure that is bent a plurality of times on the back side or the front side at an angle other than parallel and perpendicular to the current-carrying direction. In one turn of the coil, the band-like conductor plate is bent at the front side or the back side with respect to the direction of current application at least once and continuously bent to the same side of the front side or the back side. G Since in Nsu, it is possible to realize a high-frequency transformer with a new winding structure corresponding to high frequency and large capacity.

本発明の実施の形態1による高周波トランスおよび巻き線構成を示す断面図である。It is sectional drawing which shows the high frequency transformer and winding structure by Embodiment 1 of this invention. 本発明の実施の形態1による高周波トランスの巻き線作製手順を示す図である。It is a figure which shows the winding preparation procedure of the high frequency transformer by Embodiment 1 of this invention. 本発明の実施の形態2による高周波トランスの巻き線構成を示す断面図である。It is sectional drawing which shows the winding structure of the high frequency transformer by Embodiment 2 of this invention. 本発明の実施の形態2による高周波トランスの巻き線構成を示す断面図ならびに一次側リーケージインダクタンスへの影響を比較した図である。It is sectional drawing which shows the winding structure of the high frequency transformer by Embodiment 2 of this invention, and the figure which compared the influence on the primary side leakage inductance. 本発明の実施の形態2による二次コイル導体厚みの銅損への影響を比較した図である。It is the figure which compared the influence on the copper loss of the secondary coil conductor thickness by Embodiment 2 of this invention. 本発明の実施の形態3による高周波トランスの巻き線構成を示す断面図である。It is sectional drawing which shows the winding structure of the high frequency transformer by Embodiment 3 of this invention. 本発明の実施の形態3による高周波トランスの一次側リーケージインダクタンスへの影響を比較した図である。It is the figure which compared the influence on the primary side leakage inductance of the high frequency transformer by Embodiment 3 of this invention. 本発明の実施の形態1による高周波トランスのE型コアおよびコイルボビンの構成を示した斜視図である。It is the perspective view which showed the structure of the E-type core and coil bobbin of the high frequency transformer by Embodiment 1 of this invention.

実施の形態1.
図1は、本発明の実施の形態1による高周波トランスおよび巻き線構成を示す図である。図1(a)は、本実施の形態1による高周波トランスの側断面図、図1(b)は、本実施の形態1の高周波トランスのコイルを構成する帯状導体板14の上面図、図1(c)は、図1(b)の帯状導体板14の側面図である。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a high-frequency transformer and winding configuration according to Embodiment 1 of the present invention. 1A is a side sectional view of the high-frequency transformer according to the first embodiment, FIG. 1B is a top view of the strip-shaped conductor plate 14 constituting the coil of the high-frequency transformer according to the first embodiment, and FIG. (C) is a side view of the strip-shaped conductor plate 14 of FIG.1 (b).

本実施の形態1に係る高周波トランスは、図1に示すように、中央部分に鉄心中央脚1aを備えた鉄心1と、鉄心中央脚1aに対して設けられたコイルボビン2と、コイルボビン2を介在させて鉄心中央脚1aに巻き回された複数のコイル3,4,5とから構成されている。なお、これらの複数のコイル3,4,5は、電磁結合した一次側コイル3と二次側コイル4,5とを構成している。鉄心1は、例えば図7(a)に示すような、EE形状あるいはEI形状のE型コア1bを複数個組み合わせて構成されている。E型コア1bの側面形状は、略々Eの字型となっており、中央の鉄心中央脚1aとなる部分を除けば、略々コの字となっている。当該コの字型部分における両端の垂直方向に延びている部分1cは、2つのE型コア1bの組み合わせ後は、高周波トランスの側壁部分となり、一方、部分1cに挟まれている部分1dは、高周波トランスの上板部分または下板部分となる。また、各E型コア1bの部分1dの中央部分には、略々正方形断面を有する四角柱型の部材が設けられており、これらが上下で連結されて固着され、1つの鉄心中央脚1aとなる。さらに、鉄心中央脚1aには、例えば図7(b)に示すような、コイルボビン2が嵌合される。コイルボビン2は、図7(b)に示すように、上板と下板とが、それぞれ同型の略々正方形のドーナツ型で、中央部分が、内部が空洞の、外形形状が略々正方形の、四角筒となっている。組立工程としては、2つのE型コア1bを上下に連結して固着する前に、一方のE型コア1bにコイルボビン2と螺旋状に巻き上げたコイル5、コイル3、コイル4とを装着しておき、その後に、他方のE型コア1bを合わせて、形成する。鉄心1、コイルボビン2、および、コイル3〜5はこのように構成され、鉄心中央脚1aには、コイルボビン2を介して、コイル5、コイル3、コイル4が、螺旋状に順に巻き上げられている。   As shown in FIG. 1, the high-frequency transformer according to the first embodiment includes an iron core 1 having an iron core central leg 1a at the center, a coil bobbin 2 provided for the iron core central leg 1a, and a coil bobbin 2. The plurality of coils 3, 4 and 5 are wound around the iron core central leg 1a. The plurality of coils 3, 4, 5 constitute an electromagnetically coupled primary side coil 3 and secondary side coils 4, 5. The iron core 1 is configured by combining a plurality of E-type or EI-shaped E-type cores 1b as shown in FIG. 7A, for example. The shape of the side surface of the E-type core 1b is substantially E-shaped, and is substantially U-shaped except for the portion that becomes the central iron core central leg 1a. After the combination of the two E-shaped cores 1b, the portion 1c extending in the vertical direction at both ends of the U-shaped portion becomes the side wall portion of the high-frequency transformer, while the portion 1d sandwiched between the portions 1c is It becomes the upper plate portion or the lower plate portion of the high-frequency transformer. In addition, a quadrangular prism-shaped member having a substantially square cross section is provided at the central portion of the portion 1d of each E-type core 1b. Become. Further, for example, a coil bobbin 2 as shown in FIG. 7B is fitted to the iron core central leg 1a. In the coil bobbin 2, as shown in FIG. 7B, the upper plate and the lower plate are each a substantially donut shape of the same shape, the central portion is hollow inside, and the outer shape is substantially square. It is a square tube. As an assembling process, before the two E-type cores 1b are vertically connected and fixed, the coil bobbin 2 and the coil 5, coil 3, and coil 4 wound up spirally are attached to one E-type core 1b. Then, the other E-type core 1b is formed together. The iron core 1, the coil bobbin 2, and the coils 3 to 5 are configured as described above, and the coil 5, the coil 3, and the coil 4 are sequentially wound around the iron core central leg 1a via the coil bobbin 2 in a spiral manner. .

なお、コイル3は一次側縦巻コイル(以下、一次側縦巻コイル3とする)であり、コイル4,5は二次側縦巻コイル(以下、二次側縦巻No.1コイル4および二次側縦巻No.2コイル5とする)である。一次側縦巻コイル3、二次側縦巻No.1コイル4、および、二次側縦巻No.2コイル5は、二次側縦巻No.1コイル4、一次側縦巻コイル3、二次側縦巻No.2コイル5の順に直列配置され、かつ、二次側縦巻No.1コイル4、および、二次側縦巻No.2コイル5は直列接続されている。本実施の形態1では、これらのコイル3〜5を、真っ直ぐな1つの帯状導体板14を表側および裏側に交互に複数回折り返すことにより形成する。折り曲げ後の帯状導体板14は、螺旋状に巻き回された筒状の縦巻構造のコイルとなっている。なお、本実施の形態1では、一次側縦巻コイル3が二次側縦巻No.1コイル4および二次側縦巻No.2コイル5にてサンドイッチされた構成を取ったが、その場合に限らず、逆に、一次側縦巻コイル3を分割しその中央に二次側縦巻コイルをサンドイッチする構成、あるいは、各コイルを分割することなく直列に配する構成等、トランスに要求される結合性能に合わせ任意に選択が可能である。また、本実施の形態では、コイル3〜5を1つの連続した帯状導体板14から構成する例について説明するが、その場合に限らず、各コイル3〜5をそれぞれ1つずつの帯状導体板14から別々に形成し、それら3つの螺旋状縦巻コイルを直列配置し、かつ、二個の二次側コイル同士を直列接続してもよい。このように、各コイル3〜5は、一次側コイルと二次側コイルとが電磁結合したものであればよく、各コイル3〜5の配列順序及び個数は適宜変更可能である。   The coil 3 is a primary-side vertical coil (hereinafter referred to as primary-side vertical coil 3), and the coils 4 and 5 are secondary-side vertical coils (hereinafter referred to as secondary-side vertical winding No. 1 coil 4 and Secondary side vertical winding No. 2 coil 5). Primary side vertical winding coil 3, secondary side vertical winding No. 1 coil 4 and secondary side vertical winding No. The two coil 5 is a secondary side vertical winding No. No. 1 coil 4, primary side vertical winding coil 3, secondary side vertical winding No. 2 coils 5 are arranged in series in the order of the secondary side vertical winding No. 1 coil 4 and secondary side vertical winding No. The two coils 5 are connected in series. In the first embodiment, these coils 3 to 5 are formed by alternately bending a straight strip-shaped conductor plate 14 a plurality of times on the front side and the back side. The band-shaped conductor plate 14 after being bent is a coil having a cylindrical vertical winding structure wound spirally. In the first embodiment, the primary-side vertical winding coil 3 is connected to the secondary-side vertical winding No. 1 coil 4 and secondary side vertical winding No. Although the configuration in which the two coils 5 are sandwiched is adopted, the configuration is not limited to this, and conversely, the configuration in which the primary side longitudinally wound coil 3 is divided and the secondary side longitudinally wound coil is sandwiched at the center, or each coil. Can be arbitrarily selected in accordance with the coupling performance required for the transformer, such as a configuration in which the coils are arranged in series without being divided. Moreover, although this Embodiment demonstrates the example which comprises the coils 3-5 from the one continuous strip | belt-shaped conductor board 14, it does not restrict to that case but each strip | belt 3-5 is each one strip | belt-shaped conductor board. 14 may be formed separately from each other, the three spirally wound coils may be arranged in series, and the two secondary coils may be connected in series. Thus, each coil 3-5 should just be what the primary side coil and the secondary side coil electromagnetically coupled, and the arrangement | sequence order and number of each coil 3-5 can be changed suitably.

以下、さらに詳しく、本実施の形態1の高周波トランスの構成について説明する。本実施の形態1の高周波トランスは、上述のように、EE形状あるいはEI形状のE型コア1bを組み合わせて閉磁路(主磁束経路)とした鉄心1の鉄心中央脚1aに対して、1つの一次側縦巻コイル3と、一次側縦巻コイル3に対してその両側に直列配線された2つの二次側縦巻No.1コイル4および二次側縦巻No.2コイル5とが、鉄心対称軸6方向に、縦列配置に、巻き回された構成となっており、鉄心中央脚1aに縦巻きされるこれらのコイル4,3,5全部が、概略長方形(矩形)の断面を有する、一本の真っ直ぐな帯状導体板14から構成されている。帯状導体板14は、図1(b)に示すように、電流通電方向8に対し平行以外および垂直以外の角度の折り目16にて、帯状導体板14の裏側と表側とに交互に複数回折り返され、全体として、鉄心中央脚1aを取り囲むように、螺旋状に巻き上げられている。この結果、例えば、図1(b)では、帯状導体板14の17a部分では導体の表面が上を向いており、17b部分では導体の裏面が上を向いており、17c部分では再び導体の表面が上を向き、17d部分では再び導体の裏面が上を向いている。このように、帯状導体板14は、導体の表側、続いて裏側に、交互に折り返されている。   Hereinafter, the configuration of the high-frequency transformer according to the first embodiment will be described in more detail. As described above, the high-frequency transformer according to the first embodiment has one core center leg 1a of the iron core 1 that forms a closed magnetic circuit (main magnetic flux path) by combining the E-type or EI-shaped E-type core 1b. The primary-side vertical winding coil 3 and two secondary-side vertical winding Nos. 1 coil 4 and secondary side vertical winding No. The two coils 5 are wound in a tandem arrangement in the direction of the axis of symmetry 6 of the iron core, and all of the coils 4, 3, 5 wound vertically around the iron core central leg 1a are substantially rectangular ( (Rectangular) cross section, which is composed of a single straight strip-shaped conductor plate 14. As shown in FIG. 1B, the strip-shaped conductor plate 14 is folded back and forth alternately on the back side and the front side of the strip-shaped conductor plate 14 at folds 16 at angles other than parallel and perpendicular to the current-carrying direction 8. As a whole, it is wound up spirally so as to surround the iron core central leg 1a. As a result, for example, in FIG. 1B, the surface of the conductor faces upward in the portion 17a of the strip-shaped conductor plate 14, the back surface of the conductor faces upward in the portion 17b, and the surface of the conductor again in the portion 17c. Facing upward, and the back surface of the conductor again faces upward in the 17d portion. In this way, the strip-shaped conductor plate 14 is alternately folded back on the front side of the conductor and then on the back side.

帯状導体板14の折り目16の間隔および折り曲げ角度は、コイル3〜5を貫通する鉄心中央脚1aの形状に合わせ適宜調整すればよい。本実施の形態1では、図1(b)に示すように、鉄心中央脚1aが略々正方形断面を有しているため、帯状導体板14は、電流通電方向に対し±45度の角度で、導体の表側あるいは裏側に、交互に折り返され、全体として、正方形断面の鉄心中央脚1aに接する四辺形コイルが形成されている。なお、本実施の形態1では、鉄心中央脚1aが正方形断面を有している例について述べたが、正方形に限定されるものではなく、長方形等の他の矩形や、あるいは、多角形等でもよい。また、電流通電方向に対し±45度の角度を例に挙げたが、これは鉄心中央脚1aの形状が矩形の場合であって、他の形状の場合には、それに合わせて、角度を適宜決定する。角度は、平行以外および垂直以外の角度であれば任意の角度でよいので、電流通電方向に対する角度のうち、小さい方の角度が、0度より大きく、±90度より小さい角度であればよい。   What is necessary is just to adjust suitably the space | interval of the crease | fold 16 and the bending angle of the strip | belt-shaped conductor board 14 according to the shape of the iron core center leg 1a which penetrates the coils 3-5. In the first embodiment, as shown in FIG. 1 (b), since the iron core central leg 1a has a substantially square cross section, the strip-shaped conductor plate 14 has an angle of ± 45 degrees with respect to the direction of current flow. On the front side or the back side of the conductor, a quadrilateral coil is formed that is alternately folded and is in contact with the iron core central leg 1a having a square cross section as a whole. In the first embodiment, an example in which the iron core central leg 1a has a square cross section has been described. However, the present invention is not limited to a square, and other rectangles such as rectangles, polygons, etc. Good. In addition, an angle of ± 45 degrees with respect to the direction of current flow is given as an example, but this is a case where the shape of the iron core central leg 1a is rectangular, and in the case of other shapes, the angle is appropriately set accordingly. decide. The angle may be an arbitrary angle as long as it is an angle other than parallel and vertical, and therefore, the smaller one of the angles with respect to the direction of current application may be an angle larger than 0 degree and smaller than ± 90 degrees.

なお、図1(c)と図1(b)との整合性がとれていないが、これは、図を簡略化するためであり、図1(c)ではコイル2ターン分記載したにもかかわらず、図1(b)ではコイル1ターン分しか記載しなかったため、これらの図で整合性がとれていない結果となっている。これらの図においては、このように、図の簡略化のため、コイル1ターン分またはコイル2ターン分しか記載していないが、実際には、コイル4,3,5を構成するために必要な分のターン分(多数ターン)が積み上げられていることは言うまでもない。   In addition, although consistency between FIG. 1C and FIG. 1B is not taken, this is for simplifying the drawing, and although FIG. 1C shows two turns of the coil. In FIG. 1 (b), only one turn of the coil is shown, and the results are not consistent in these drawings. In these drawings, for simplification of the drawing, only one turn of the coil or two turns of the coil are shown, but actually, it is necessary to configure the coils 4, 3, and 5. It goes without saying that minutes of turns (many turns) are stacked.

図2は、図1で示した、帯状導体板14による、折り返しコイルの作製工程を示す図である。図2において、12は、帯状導体板14を構成する帯状導体、12a〜12hは帯状導体12の各部分(図1の17に相当)、13a〜13gは各折り目(図1の16に相当)である。   FIG. 2 is a diagram showing a folded coil manufacturing process using the strip-shaped conductor plate 14 shown in FIG. In FIG. 2, 12 is a strip conductor constituting the strip conductor plate 14, 12a to 12h are portions of the strip conductor 12 (corresponding to 17 in FIG. 1), and 13a to 13g are folds (corresponding to 16 in FIG. 1). It is.

帯状導体12は、図示しないスリッターにより広幅の板状の導体を所定の幅に切断して帯状に成形されると共に、その後、表面に絶縁膜が付与されて、形成される。絶縁膜は、導体の表面および裏面だけでなく、切断面である側面にも付与される。この状態が図2(a)である。次に、この帯状導体12を折り曲げ加工のため、巻き線成形治具10に沿い送り方向11へと送り出し、図2(b)に示すように、電流通電方向に対し45度の角度をなす折り目13bにて一旦左手に折り曲げる(帯状導体表側面より見て谷折り)。次に図2(c)〜(d)に示すよう電流通電方向に対し−45度の角度をなす折り目13aにて右手に折り曲げ(帯状導体表面より見て谷折り)、さらに電流通電方向に対し−45度の角度をなす折り目13cにて右手に折り曲げ(帯状導体表側面より見て谷折り)、最後に電流通電方向に対し−45度の角度をなす折り目13dにて右手に折り曲げることで(帯状導体表側面より見て山折り)、1ターン分のコイルが形成される。上記のように、部分12cを部分12bよりも先に折り目13bにて折り曲げることで、帯状導体の折り曲げ方向を(本実施例では紙面法線方向の下から上に抜ける向きに)揃えることができ、コイルの折り曲げ時の作業性を高めることができる。   The strip-shaped conductor 12 is formed by cutting a wide plate-shaped conductor into a predetermined width by a slitter (not shown) and then forming an strip with an insulating film. The insulating film is applied not only to the front and back surfaces of the conductor, but also to the side surfaces that are cut surfaces. This state is shown in FIG. Next, in order to bend the strip-shaped conductor 12, the strip conductor 12 is fed along the winding forming jig 10 in the feeding direction 11, and as shown in FIG. At 13b, it is once bent to the left (valley fold as viewed from the front surface of the belt-like conductor). Next, as shown in FIGS. 2 (c) to 2 (d), it is bent to the right (folded as viewed from the surface of the belt-like conductor) at a fold 13a that forms an angle of -45 degrees with respect to the direction of current flow, and further to the direction of current flow. Bending in the right hand at the crease 13c forming an angle of −45 degrees (valley fold as viewed from the side surface of the belt-like conductor), and finally bending to the right hand in the crease 13d forming an angle of −45 degrees with respect to the direction of current application ( When viewed from the front side of the strip conductor, the coil is formed for one turn. As described above, by folding the portion 12c at the fold line 13b before the portion 12b, the folding direction of the strip-shaped conductor can be aligned (in this embodiment, from the bottom normal direction to the top). The workability at the time of bending the coil can be improved.

このときの折り方として注意すべきことは、帯状導体板14が、巻き線成形治具10を囲むように、螺旋状に折り曲げられていく必要があるので、帯状導体板14を折るときは、帯状導体板14の折り曲げられる各部分において外側にあたる辺(巻き線成形治具10側の辺に対して反対側になる辺)が、コイル1ターン分を折り曲げ形成した後に、巻き線成形治具10側にくるように、折っていく。これを繰り返すことにより、帯状導体板14は時計回りまたは反時計回りの方向に螺旋状に巻かれていくことになる。具体的に説明すると、図2(a)の部分12bを折り目13aで折る場合に、折る前の図2(a)の状態では、略々台形の12b部分の一番長い辺が外側になっているが、折り曲げ後には、その外側になっていた一番長い辺が、図2(c)に示すように、巻き線成形治具10側に来ている。また、部分12cについても部分12bより先に折り曲げているが、部分12bを折り曲げた後には図2(c)に示すように、外側になっていた一番長い辺が巻き線成形治具10側に来ている。このことは、表側(谷折り)に折る時も、裏側(山折り)に折る時も同じである。このように、折り曲げ前は外側にあった辺が折り曲げ後には巻き線成形治具10側にくるように折っていくことにより、帯状導体板14は、巻き線成形治具10の外周に沿って螺旋状に縦巻きに巻き上げられていく。   What should be noted as a way of folding at this time is that the strip-shaped conductor plate 14 needs to be folded spirally so as to surround the winding forming jig 10, so when folding the strip-shaped conductor plate 14, After each side portion of the strip-shaped conductor plate 14 is bent, a side corresponding to the outer side (side opposite to the side on the winding forming jig 10 side) is bent by one turn of the coil, and then the winding forming jig 10 is turned. Fold it to the side. By repeating this, the strip-shaped conductor plate 14 is spirally wound in the clockwise or counterclockwise direction. Specifically, when the portion 12b of FIG. 2A is folded at the fold line 13a, the longest side of the substantially trapezoidal 12b portion is outside in the state of FIG. 2A before folding. However, after bending, the longest side on the outer side comes to the winding forming jig 10 side as shown in FIG. Further, the portion 12c is also bent before the portion 12b. After the portion 12b is bent, the longest side that is on the outer side is the winding forming jig 10 side as shown in FIG. 2 (c). Have come to. This is the same when folding to the front side (valley fold) and folding to the back side (mountain fold). In this way, the belt-like conductor plate 14 is formed along the outer periphery of the winding forming jig 10 by folding the side that was on the outside before the bending so that the side is on the winding forming jig 10 side after the bending. It is rolled up in a spiral form.

本実施の形態1の帯状導体板14は、「谷、谷、谷、山、谷、谷、谷、山、・・・」というように、谷折りと山折りとが完全な交互ではなく、谷折りが少なくとも一回は連続するように折り返されている点である。なお、本実施の形態1では、「谷、谷、谷、山、谷、谷、谷、山、・・・」なので、谷折りの次に、同じ方向の谷折りが2回連続しているが、その場合に限らず、「谷、山、山、山、谷、山、山、山、・・・」というように山折りが2回連続でもよく、要するに、少なくとも1回以上であれば、任意の回数でよいが、望ましくは折り返しの数が4以上の偶数でかつ異なる方向への折り返し数が1回となることである。但し、巻き線成形治具10が正方形断面のときには、2回連続が望ましい。   The strip-shaped conductor plate 14 according to the first embodiment is not completely alternating between the valley fold and the mountain fold, such as “valley, valley, valley, mountain, valley, valley, valley, mountain,... The point is that the valley folds are folded back at least once. In the first embodiment, since “valley, valley, valley, mountain, valley, valley, valley, mountain,...”, The valley fold in the same direction is continued twice after the valley fold. However, the present invention is not limited to this, and mountain folds may be repeated twice, such as “valley, mountain, mountain, mountain, valley, mountain, mountain, mountain,... The number of turns may be any number, but preferably the number of turns is an even number of 4 or more and the number of turns in a different direction is one. However, when the winding forming jig 10 has a square cross section, it is desirable that the winding is continuous twice.

このように、本実施の形態1に係る帯状導体板14は、コイル1ターンを形成する過程で、電流通電方向に対する表裏への帯状導体板14の折り曲げが、表側裏側が完全に交互ではなく、少なくとも一回は連続して同じ側となる部分交互折りのタイプである。   Thus, in the process of forming the coil 1 turn, the band-shaped conductor plate 14 according to the first embodiment is not completely alternate between the front and back sides of the band-shaped conductor plate 14 when the band-shaped conductor plate 14 is bent to the front and back in the current conduction direction. This is a type of partial alternating folding that is continuously on the same side at least once.

本実施の形態では、帯状導体板14を、図1(b)に示すように、折り目16aで谷折り、折り目16bで谷折り、折り目16cで谷折り、最後に山折りを行えば、図1(c)のコイル側面状態が形成される。このため、帯状導体板14を折り返すたびに積み上がっていく板厚分を考えると、図1(c)に示されるように、本実施の形態では、3回連続同じ方向に折るので、コイル1ターンごとに2個の折り曲げ数が相殺され、コイル間隔は、「板厚×(折り曲げ数−非交互折り曲げ数×2)」となる。従って、4辺コイルの場合、コイル間隔は「板厚×2」となる。   In the present embodiment, as shown in FIG. 1 (b), the strip-shaped conductor plate 14 is valley-folded at the fold 16a, valley-folded at the fold 16b, valley-folded at the fold 16c, and finally mountain-folded. The coil side surface state of (c) is formed. For this reason, when considering the thickness of the sheet piled up each time the strip-shaped conductor plate 14 is folded back, as shown in FIG. 1C, in this embodiment, the coil 1 is folded three times in the same direction. Two turns are canceled for each turn, and the coil interval is “plate thickness × (bending number−non-alternating folding number × 2)”. Accordingly, in the case of a four-sided coil, the coil interval is “plate thickness × 2”.

この構成によれば、特許文献2のように折り返し部を圧接、圧延しなくても狭いコイル間隔での縦巻が可能となり、コイル巻き上げ方向に対する鉄心サイズをコンパクトにすることができる。図1(c)では、積層サイズが、コイル2ターンで、板厚の4枚分となっており、帯状導体の表側裏側が完全に交互折り返しに比較し積層サイズが半分となる。従って、鉄心サイズも、鉄心中央脚1aの長さを半分とすることができるので、大幅に小さくすることができる。   According to this configuration, it is possible to perform vertical winding at a narrow coil interval without pressing and rolling the folded portion as in Patent Document 2, and the iron core size in the coil winding direction can be made compact. In FIG. 1 (c), the stack size is two turns of the coil and the plate thickness is four sheets, and the front and back sides of the strip conductor are completely halved compared to the alternate folding. Accordingly, the size of the iron core can also be greatly reduced because the length of the iron core central leg 1a can be halved.

一方、鉄心サイズを変えない場合は、図3A(a)に示したように1ターン形成後の折り返しにおいて曲率調整治具31にて折り返し曲率を変えると共に、コイルの折曲げ部位置の層間にコイル間隔調整用絶縁物材32を挿入保持することでコイル間隔を一定に調整することができる。これにより、一次側コイルのリーケージインダクタを適宜調整することができる。従来の電源回路にはトランスの一次側に共振用インダクタが別途設置されており、これをトランスのリーケージインダクタで置き換えられれば、電源機器が小型化し、部品点数の削減によるコスト低減が可能となる。図3B(b)〜(d)は、コイル間隔を変えた場合のリーケージインダクタの変化を磁界解析(鉄心にはフェライトを使用)により評価した結果を示している。図3B(c)はコイル間隔が通常折り曲げの場合、図3B(d)はコイル間隔を広げた場合である。コイル間隔を広げた図3B(d)では、図3B(c)に対し、一次側リーケージインダクタンスを37%小さくすることができる。図3A,3Bでは、一次側縦巻コイルあるいは二次側縦巻コイル全部に対し部分交互折りし、1ターン形成後の折り返しにてその曲率を同じ値とすることでコイル間隔を均等に与えた場合を示した。さらに、1ターン形成後の折り返し曲率を適宜変更すれば不均等なコイル間隔が設定でき、それによりリーケージインダクタの調整が可能である。従来の折り曲げによらない縦巻きコイルや折り曲げ圧接コイルでも均等なコイル間隔の調整は可能であるが、コイル間隔を不均等に変える調整は難しく、本実施の形態によれば、より微細な調整が可能となる。   On the other hand, when the iron core size is not changed, as shown in FIG. 3A (a), the turn-up curvature is changed by the curvature adjusting jig 31 in the turn-up after one turn is formed, and the coil is placed between the layers at the position of the coil bend. The coil interval can be adjusted to be constant by inserting and holding the interval adjusting insulator 32. Thereby, the leakage inductor of a primary side coil can be adjusted suitably. In a conventional power supply circuit, a resonance inductor is separately installed on the primary side of the transformer. If this is replaced with a leakage inductor of the transformer, the power supply device can be downsized and the cost can be reduced by reducing the number of components. 3B (b) to 3 (d) show the results of evaluating the change in the leakage inductor when the coil interval is changed by magnetic field analysis (using ferrite for the iron core). FIG. 3B (c) shows a case where the coil interval is normally bent, and FIG. 3B (d) shows a case where the coil interval is widened. In FIG. 3B (d) in which the coil interval is widened, the primary side leakage inductance can be reduced by 37% compared to FIG. 3B (c). In FIGS. 3A and 3B, the primary side longitudinally wound coil or the secondary side longitudinally wound coil is partially alternately folded, and the coil spacing is evenly given by setting the curvature to the same value by folding after forming one turn. Showed the case. Furthermore, if the turn-up curvature after the formation of one turn is appropriately changed, an uneven coil interval can be set, and thus the leakage inductor can be adjusted. Although it is possible to adjust the coil interval even with the longitudinal winding coil and the bending pressure welding coil that do not depend on the conventional bending, it is difficult to adjust the coil interval unevenly, and according to this embodiment, finer adjustment is possible. It becomes possible.

以上のように、本実施の形態1においては、コイル3〜5の1ターンの中で、電流通電方向に対する表裏への帯状導体板14の折り曲げが、少なくとも一回、連続して同じ方向であるようにしたので、この構成により、上述したように、螺旋状に巻き上げるコイル3〜5の積層サイズを小さくできるので、コイル3〜5をコンパクト化させ、それにより、鉄心サイズを大幅に小さくし、高周波トランス全体の大きさの小型を図ることができる。あるいは、鉄心サイズをそのままにした場合は、コイル3〜5のコイル間隔をコイル巻き上げ方向に対し適宜可変とすることができるので、コイル3〜5がコンパクト化するだけでなく、一次側縦巻コイル3と二次側縦巻コイル4,5間の結合係数を変化させることで、一次側リーケージインダクタ値の調整が可能となる。   As described above, in the first embodiment, in one turn of the coils 3 to 5, the folding of the strip-shaped conductor plate 14 to the front and back with respect to the current conduction direction is the same direction continuously at least once. As described above, as described above, the stack size of the coils 3 to 5 wound up spirally can be reduced as described above, so that the coils 3 to 5 are made compact, thereby significantly reducing the core size. The overall size of the high-frequency transformer can be reduced. Alternatively, when the iron core size is left as it is, the coil interval of the coils 3 to 5 can be appropriately changed with respect to the coil winding direction, so that not only the coils 3 to 5 are made compact, but also the primary side longitudinally wound coil. The primary side leakage inductor value can be adjusted by changing the coupling coefficient between 3 and the secondary side longitudinally wound coils 4 and 5.

実施の形態2.
高周波トランスの一次側縦巻コイル3に流れる一次電流と二次側縦巻コイル4,5に流れる二次電流との比は、それらの各コイルの巻き線数に依存し、式(2)の関係となる。
Embodiment 2. FIG.
The ratio of the primary current flowing in the primary side longitudinal winding coil 3 of the high frequency transformer and the secondary current flowing in the secondary side longitudinal winding coils 4 and 5 depends on the number of windings of each of those coils, and the equation (2) It becomes a relationship.

/A=N/N=1/a・・・(2) A 1 / A 2 = N 2 / N 1 = 1 / a ··· (2)

ここで、Aは一次電流、Aは二次電流、Nは一次側縦巻コイル3の巻き線数、Nは二次側縦巻コイル4,5の巻き線数である。また、aは巻き数比を表す。 Here, A 1 is the primary current, A 2 is the secondary current, N 1 is the number of windings of the primary-side vertical winding coil 3, and N 2 is the number of windings of the secondary-side vertical winding coils 4, 5. Moreover, a represents a winding number ratio.

例えば、N/N=2とすれば、式(2)から、A=A/2、a=0.5となり、一次側縦巻コイル3と二次側縦巻コイル4,5の電流密度を同等にて設計した場合、二次側縦巻コイル4,5の導体断面積を、一次側縦巻コイル3に比べ、半減することができる。実施の形態2においては、一次側コイル3と二次側コイル4、5の巻き数比が1:n(nは1以上の実数)の関係を有し、二次コイルでの電流密度が巻き数比に合わせ最大一次コイルの電流密度と同一となるまで、コイル幅ないしコイル厚みの少なくとも一方を、一次コイル>=二次コイルとなるよう構成したものである。すなわち、一次コイルのコイル幅(またはコイル厚み)の値が、二次コイルのコイル幅(またはコイル厚み)の値以上となるように構成している。 For example, N 2 / N 1 = if 2, from equation (2), A 2 = A 1 /2,a=0.5 next, primary Tatemaki coil 3 and the secondary side Tatemaki coils 4 and 5 If the current density is designed to be equal, the cross-sectional area of the conductors of the secondary-side vertical coils 4 and 5 can be halved compared to the primary-side vertical coil 3. In the second embodiment, the winding ratio between the primary coil 3 and the secondary coils 4 and 5 has a relationship of 1: n (n is a real number of 1 or more), and the current density in the secondary coil is wound. In accordance with the number ratio, at least one of the coil width or the coil thickness is configured so that the primary coil is equal to the secondary coil until the current density of the primary coil is the same as the maximum primary coil. That is, the coil width (or coil thickness) value of the primary coil is configured to be equal to or greater than the coil width (or coil thickness) value of the secondary coil.

図4は、図3B(d)の構成にて二次コイルの帯状導体(導体幅9mm)の厚みを一次コイルと同じ0.25mmの場合と巻き数比を考慮して0.15mmとした場合について磁界解析にて求めた銅損の比較である。解析は、二次側短絡状態にて一次コイルに振幅15Aの正弦波電流(f=10kHz〜150kHz)を通電している。縦軸の銅損は帯状導体t0.25x9mm、100kHzでの銅損を基準に規格化している。二次側コイルの導体厚みを一次側より0.1mm薄くすることで100kHzでの銅損が40%減している。実施の形態2においては、縦巻きした一次側コイル3と二次側コイル4、5の巻き数比が1:n(nは1以上の実数)の関係を有し、二次コイルでの電流密度が巻き数比に合わせ最大一次コイルの電流密度と同一となるまで、コイル厚みを、一次コイル>=二次コイルとなるよう構成したものであるが、これにより効率の高い高周波トランスの製作が可能となる。   FIG. 4 shows the case where the thickness of the strip-shaped conductor (conductor width 9 mm) of the secondary coil is 0.25 mm, which is the same as that of the primary coil, and the winding ratio is 0.15 mm in the configuration of FIG. 3B (d). Is a comparison of copper loss obtained by magnetic field analysis. In the analysis, a sine wave current (f = 10 kHz to 150 kHz) having an amplitude of 15 A is applied to the primary coil in the secondary side short-circuit state. The copper loss on the vertical axis is standardized based on the copper loss at a strip-shaped conductor t0.25 × 9 mm and 100 kHz. Copper loss at 100 kHz is reduced by 40% by making the conductor thickness of the secondary coil 0.1 mm thinner than the primary side. In the second embodiment, the winding ratio between the vertically wound primary side coil 3 and secondary side coils 4 and 5 has a relationship of 1: n (n is a real number of 1 or more), and the current in the secondary coil The coil thickness is configured so that the primary coil> = secondary coil until the density is the same as the current density of the maximum primary coil in accordance with the turn ratio, but this makes it possible to produce a high-efficiency high-frequency transformer. It becomes possible.

実施の形態3.
図5は、本発明の実施の形態3による高周波トランスの構成を示す図である。図5(a)は、本実施の形態3の高周波トランスの側断面図、図5(b)は、本実施の形態3の帯状導体板の上面図である。図5において、21は帯状導体板であり、図1の帯状導体板14に対応するものである。また、図5において、符号1〜6で示す構成は、いずれも、図1の符号1〜6で示す構成と同じものである。また、25A,25Bはそれぞれコイル3〜5の一部分(以下、単に、部分とする)、25B2,25B3,25B4,25A1,25A2は、それぞれ、帯状導体板21における折り曲げ間隔(以下、単に、間隔とする)、25A’,25B’は、それぞれ、筒状のコイル3〜5の部分25A,25Bにおける、鉄心中央脚1aが貫通する、コイルの内部空間の断面の内径(開口間口)である。コイルのこの内部空間を以下では窓と呼ぶ。
Embodiment 3 FIG.
FIG. 5 is a diagram showing the configuration of the high-frequency transformer according to the third embodiment of the present invention. FIG. 5A is a side sectional view of the high-frequency transformer according to the third embodiment, and FIG. 5B is a top view of the strip-shaped conductor plate according to the third embodiment. In FIG. 5, reference numeral 21 denotes a strip-shaped conductor plate corresponding to the strip-shaped conductor plate 14 of FIG. In FIG. 5, the configurations indicated by reference numerals 1 to 6 are the same as the configurations indicated by reference numerals 1 to 6 in FIG. 1. 25A and 25B are parts of the coils 3 to 5 (hereinafter simply referred to as “parts”), and 25B2, 25B3, 25B4, 25A1 and 25A2 are folding intervals (hereinafter simply referred to as “intervals”) of the strip-shaped conductor plate 21, respectively. 25A ′ and 25B ′ are inner diameters (opening openings) of the cross section of the internal space of the coil through which the iron core central leg 1a penetrates in the portions 25A and 25B of the cylindrical coils 3 to 5, respectively. This internal space of the coil is hereinafter referred to as a window.

本実施の形態3は、上述の実施の形態2の変形例である。本実施の形態3と上述の実施の形態2との違いについて説明する。実施の形態2でのコイル構成は、二次コイルの導体厚みが実施の形態1と異なることを除けば、図1に示すように、帯状導体板14の折り曲げ間隔、すなわち、隣り合う折り目16間(図2の折り目13も併せて参照)の長さが常に一定(折り目16間は台形形状であるので、短い辺の長さ同士、長い辺同士の長さが同じという意味である)であったが、本実施の形態3においては、隣り合う折り目16間の長さを可変とした。このことは、例えば、実施の形態1を示す図1(a),(b)と本実施の形態3を示す図5(a),(b)との比較から分かる。本実施の形態3においては、図5(b)の実線で示されている1ターンにおける隣り合う折り目間の長さが、図5(b)の破線で示されている1ターンにおける隣り合う折り目間の長さより、長くなっている。このように、本実施の形態3では、帯状導体板21の折り曲げ間の長さを可変させ、縦型多角形コイル1ターン毎の鉄心中央脚1aが貫通する窓面積(筒状コイルの内部空間の断面積)をコイル巻き上げ方向で適宜変化させている点が異なる。この結果、図5(a)に示されるように、例えば、コイル5の部分25Aでは窓面積が大きく、鉄心中央脚1aとコイル5との間に隙間(空き空間)(厳密にいえば、コイルボビン2とコイル5との間の隙間であるが、ここでは、鉄心中央脚1aとの間の隙間と呼ぶ)がある。一方、コイル5の部分25Bでは窓面積が、コイル3部分と同じで、部分25Aよりも小さい。従って、コイル3と同様に、鉄心中央脚1aとコイル5との間に隙間(空き空間)がない。なお、補足ながら、帯状導体板をすべて同じ幅のまま、折り曲げ間隔を大きくすると、E型コア1bの部分1cにコイルがぶつかってしまう。したがって、少なくとも、折り曲げ間隔を大きくする部分での折り曲げ間隔の増加分を相殺できるような幅の細い帯状導体板を用いることが望ましい。図5の例では、コイル4,5の部分に、コイル3よりも、細い幅の鉄心導体板を用いる例を示しているため、窓面積がコイル3と同じ部分25Bでは、E型コア1bの部分1cとコイル5との間に隙間(空き空間)ができている。また、窓面積がコイル3より大きい部分25Aでは、E型コア1bの部分1cからコイル5がはみ出すことなく、ちょうどE型コア1bの部分1cに接触する程度で、きれいに収まっている。   The third embodiment is a modification of the above-described second embodiment. A difference between the third embodiment and the second embodiment will be described. As shown in FIG. 1, the coil configuration of the second embodiment is different from that of the first embodiment except that the conductor thickness of the secondary coil is different from that of the first embodiment. (See also fold line 13 in FIG. 2). The length is always constant (since the crease 16 has a trapezoidal shape, it means that the lengths of the short sides and the long sides are the same). However, in the third embodiment, the length between adjacent creases 16 is variable. This can be seen from, for example, a comparison between FIGS. 1A and 1B showing the first embodiment and FIGS. 5A and 5B showing the third embodiment. In the third embodiment, the length between adjacent creases in one turn indicated by the solid line in FIG. 5B is equal to the adjacent crease in one turn indicated by the broken line in FIG. 5B. It is longer than the length between. Thus, in this Embodiment 3, the length between the bending of the strip | belt-shaped conductor board 21 is changed, and the window area (internal space of a cylindrical coil) which the iron core center leg 1a penetrates for every turn of a vertical polygon coil The cross-sectional area is appropriately changed in the coil winding direction. As a result, as shown in FIG. 5A, for example, the window area of the portion 25A of the coil 5 is large, and a gap (empty space) (strictly speaking, a coil bobbin between the iron core central leg 1a and the coil 5 is used. 2 and the coil 5, here referred to as a gap between the iron core central leg 1 a). On the other hand, the window area of the portion 25B of the coil 5 is the same as that of the coil 3 portion and is smaller than that of the portion 25A. Therefore, like the coil 3, there is no gap (empty space) between the iron core central leg 1 a and the coil 5. As a supplementary note, if the folding interval is increased with all the strip-like conductor plates having the same width, the coil collides with the portion 1c of the E-type core 1b. Therefore, it is desirable to use a thin strip-shaped conductor plate that can offset at least the increase in the folding interval at the portion where the folding interval is increased. In the example of FIG. 5, an example in which the core conductor plate having a narrower width than that of the coil 3 is used for the coils 4 and 5, and therefore, in the portion 25 </ b> B having the same window area as that of the coil 3, A gap (vacant space) is formed between the portion 1c and the coil 5. Further, in the portion 25A where the window area is larger than that of the coil 3, the coil 5 does not protrude from the portion 1c of the E-type core 1b, and is neatly accommodated to the extent that it is in contact with the portion 1c of the E-type core 1b.

なお、本実施の形態3においては、図5(a)に示すように、帯状導体板21の折り曲げ間の長さを可変にしているのは、二次側縦巻No.1コイル4と二次側縦巻No.2コイル5であり、一次側縦巻コイル3では可変としていない。   In the third embodiment, as shown in FIG. 5 (a), the length between the bending of the strip-shaped conductor plate 21 is variable because the secondary-side vertical winding No. 1 coil 4 and secondary side vertical winding No. There are two coils 5, and the primary side coil 3 is not variable.

これは式(2)の関係と巻き数比が1:n(nは1以上の実数)の関係より、一次側縦巻コイル3と二次側縦巻コイル4,5の電流密度を同等にて設計した場合、二次側縦巻コイル4,5の導体断面積を、一次側縦巻コイル3に比べ、(導体厚みを一定とすれば)導体幅を減少することができる。二次側縦巻コイル4,5の導体面積を、一次側縦巻コイル3より縮小すると、二次側縦巻コイル4,5は鉄心1内の巻スペースにおいて、上述のように空き空間が生ずる。この空き空間を利用し、例えば二次側縦巻コイル5において、部分25Bから部分25Aへと巻き上げる際に、帯状導体板21の折り曲げ間隔を可変にし、例えば、図5(b)に示すように、折り曲げ間隔を、順に、間隔25B2、間隔25B3、間隔25B4、間隔25A1、間隔25A2、・・・としたときに、間隔25B2=間隔25B3<間隔25B4<間隔25A1=間隔25A2の関係になるように巻き上げれば、内部を鉄心中央脚1aが貫通する二次側縦巻コイル5の部分25B,25A部分の窓の幅(開口間口)を、開口間口25B’からそれより大きい開口間口25A’へと変化させることができる。   This is because the current density of the primary-side vertical winding coil 3 and the secondary-side vertical winding coils 4 and 5 is equalized from the relationship of the formula (2) and the winding ratio of 1: n (n is a real number of 1 or more). If the conductor cross-sectional area of the secondary-side vertical winding coils 4 and 5 is compared with the primary-side vertical winding coil 3, the conductor width can be reduced (if the conductor thickness is constant). If the conductor area of the secondary-side vertical winding coils 4 and 5 is reduced as compared with the primary-side vertical winding coil 3, the secondary-side vertical winding coils 4 and 5 have an empty space in the winding space in the iron core 1 as described above. . Using this empty space, for example, in the secondary side longitudinally wound coil 5, when winding from the portion 25B to the portion 25A, the folding interval of the belt-like conductor plate 21 is made variable, for example, as shown in FIG. When the bending intervals are, in order, the interval 25B2, the interval 25B3, the interval 25B4, the interval 25A1, the interval 25A2,... If it winds up, the width | variety (opening front opening) of the part 25B and 25A part of the secondary side vertical winding coil 5 in which the iron core center leg 1a penetrates will change from the opening front opening 25B 'to the larger opening front opening 25A'. Can be changed.

逆に、折り曲げ間隔を、順に、間隔25B2、間隔25B3、間隔25B4、間隔25A1、間隔25A2、・・・としたときに、間隔25B2=間隔25B3>間隔25B4>間隔25A1=間隔25A2の関係になるように巻き上げれば、内部を鉄心中央脚1aが貫通する二次側縦巻コイル5の部分25B,25A部分の窓の幅(開口間口)を、開口間口25B’よりも開口間口25A’の方を小さくでき、開口間口25B’からそれよりも小さい開口間口25A’へと変化させることができる。   On the other hand, when the folding interval is set to the interval 25B2, the interval 25B3, the interval 25B4, the interval 25A1, the interval 25A2,... If it winds up like this, the width of the window (opening front) of the part 25B, 25A part of the secondary side vertical winding coil 5 through which the iron core central leg 1a penetrates the opening front 25A 'rather than the front opening 25B' Can be reduced, and the opening opening 25B ′ can be changed to a smaller opening opening 25A ′.

これにより、一次側リーケージインダクタの微調整が可能となる。図6に、コイル各辺の折り曲げ長さを変え、内部を鉄心中央脚1aが貫通する二次側縦巻コイル4,5の窓面積を変えた場合の、リーケージインダクタンスの変化を解析した結果を示す。図6(a)の例では、一次側縦巻コイル3と二次側縦巻コイル4,5の窓面積は同じである(いずれのコイル3〜5もコイルボビン2に接している。)。従って、二次側縦巻コイル4,5とE型コア1bの部分1c(図示省略)との間には隙間(空き空間)がある。一方、図6(b)の例では、二次側縦巻コイル4,5がそれぞれ二次側縦巻コイル4A,4Bと二次側縦巻コイル5A,5Bとに分かれている。二次側縦巻コイル4Aから4Bへの移行(またはその逆)、および、二次側縦巻コイル5Aから5Bへの移行(またはその逆)は、図5で説明した通りの方法で折り曲げ間隔を変更して行うものとする。このとき、図6(b)に示すように、二次側縦巻コイル4B,5B部分の帯状導体板の折り曲げ間隔は一次側縦巻コイル3と同じで、従って、一次側縦巻コイル3と二次側縦巻コイル4B,5Bの窓面積は同じである(いずれのコイルもコイルボビン2に接している。)。但し、二次側縦巻コイル4B,5Bを構成する帯状導体板の幅が、一次側縦巻コイル3を構成する帯状導体板の幅よりも細いので、二次側縦巻コイル4B,5BとE型コア1bの部分1c(図示省略)との間には隙間(空き空間)がある。それに対し、二次側縦巻コイル4A,5Aの折り曲げ間隔は一次側縦巻コイル3よりも大きいので、二次側縦巻コイル4A,5Aの窓面積が一次側縦巻コイル3よりも大きく、従って、二次側縦巻コイル4A,5Aとコイルボビン2との間には隙間(空き空間)がある。図6(c)の例では、二次側縦巻コイル4,5がそれぞれ二次側縦巻コイル4A,4Bと二次側縦巻コイル5A,5Bとに分かれておらず、図6(b)の二次側縦巻コイル4B,5Bの部分も二次側縦巻コイル4A,5Aとなっている例である。すなわち、二次側縦巻コイル4A,5Aの折り曲げ間隔が一次側縦巻コイル3よりも大きく、それにより、二次側縦巻コイル4A,5Aの窓面積が一次側縦巻コイル3よりも大きくなっており、二次側縦巻コイル4A,5Aとコイルボビン2との間には隙間(空き空間)がある。但し、二次側縦巻コイル4A,5Aを構成する帯状導体板の幅が一次側縦巻コイル3を構成する帯状導体板の幅よりも細いので、二次側縦巻コイル4A,5AがE型コア1bの部分1c(図示省略)にちょうど接触する程度のちょうどよいサイズになっている(E型コア1bの部分1cにぶつかって収まらないというような支障はきたさない)。このとき、図6(a),(b),(c)を比較すると、二次側縦巻コイル4,5の一部の窓面積を大きくした図6(b)では、窓面積が一定の図6(a)に対し、一次側リーケージインダクタンスを0.6%大きくすることができる。また、二次側縦巻コイル4,5部分すべての窓面積を大きくした図6(c)では、窓面積が一定の図6(a)に対し、一次側リーケージインダクタンスを3.6%大きくすることができる。このように、図6の例に示されるように、二次側縦巻コイル4,5の窓面積を変えることで、最大3.6%の範囲でリーケージインダクタを微調整できる。   As a result, the primary side leakage inductor can be finely adjusted. FIG. 6 shows the result of analyzing the change in leakage inductance when the bending length of each side of the coil is changed and the window area of the secondary side vertical winding coils 4 and 5 through which the iron core central leg 1a passes is changed. Show. In the example of FIG. 6A, the window areas of the primary-side vertical winding coil 3 and the secondary-side vertical winding coils 4 and 5 are the same (all the coils 3 to 5 are in contact with the coil bobbin 2). Therefore, there is a gap (vacant space) between the secondary side longitudinally wound coils 4 and 5 and the portion 1c (not shown) of the E-type core 1b. On the other hand, in the example of FIG. 6B, the secondary-side vertical coils 4 and 5 are divided into secondary-side vertical coils 4A and 4B and secondary-side vertical coils 5A and 5B, respectively. The transition from the secondary-side vertical coil 4A to 4B (or vice versa) and the transition from the secondary-side vertical coil 5A to 5B (or vice versa) are performed by the method described with reference to FIG. Shall be changed. At this time, as shown in FIG. 6B, the folding interval of the strip-like conductor plates in the secondary side vertical winding coils 4B and 5B is the same as that of the primary side vertical winding coil 3, and therefore the primary side vertical winding coil 3 and The window areas of the secondary side longitudinally wound coils 4B and 5B are the same (both coils are in contact with the coil bobbin 2). However, since the width of the strip-shaped conductor plate constituting the secondary-side vertical coil 4B, 5B is narrower than the width of the strip-shaped conductor plate constituting the primary-side vertical coil 3, the secondary-side vertical coil 4B, 5B There is a gap (vacant space) between the portion 1c (not shown) of the E-type core 1b. On the other hand, since the folding interval of the secondary side vertical winding coils 4A and 5A is larger than that of the primary side vertical winding coil 3, the window area of the secondary side vertical winding coils 4A and 5A is larger than that of the primary side vertical winding coil 3. Therefore, there is a gap (vacant space) between the secondary side longitudinally wound coils 4A and 5A and the coil bobbin 2. In the example of FIG. 6C, the secondary-side vertical winding coils 4 and 5 are not divided into secondary-side vertical winding coils 4A and 4B and secondary-side vertical winding coils 5A and 5B, respectively. ) Secondary side vertical winding coils 4B and 5B are also secondary side vertical winding coils 4A and 5A. That is, the folding interval between the secondary side vertical winding coils 4A and 5A is larger than that of the primary side vertical winding coil 3, so that the window area of the secondary side vertical winding coils 4A and 5A is larger than that of the primary side vertical winding coil 3. Thus, there is a gap (vacant space) between the secondary side longitudinally wound coils 4A and 5A and the coil bobbin 2. However, since the width of the strip-shaped conductor plate constituting the secondary-side vertical coil 4A, 5A is narrower than the width of the strip-shaped conductor plate constituting the primary-side vertical coil 3, the secondary-side vertical coil 4A, 5A is E The size is just enough to contact the portion 1c (not shown) of the mold core 1b (does not interfere with the portion 1c of the E-type core 1b). At this time, when FIGS. 6A, 6B, and 6C are compared, the window area is constant in FIG. 6B in which the window area of a part of the secondary side longitudinally wound coils 4 and 5 is increased. Compared to FIG. 6A, the primary side leakage inductance can be increased by 0.6%. Further, in FIG. 6C in which the window area of all the secondary side longitudinally wound coils 4 and 5 is increased, the primary side leakage inductance is increased by 3.6% compared to FIG. 6A in which the window area is constant. be able to. Thus, as shown in the example of FIG. 6, the leakage inductor can be finely adjusted within a maximum range of 3.6% by changing the window area of the secondary side longitudinally wound coils 4 and 5.

以上のように、本実施の形態3においても、上述の実施の形態2と同様の効果が得られるとともに、さらに、本実施の形態3においては、帯状導体板の折り曲げ間の長さを可変とし、内部を鉄心中央脚1aが貫通するコイル1ターン毎の窓面積(筒状のコイルの内部空間の断面積)をコイル巻き上げ方向で適宜変化させるようにしたので、コイルと鉄心中央脚との間の間隔(空き空間)をコイル巻き上げ方向に適宜可変とすることができ、一次側縦巻コイル3と二次側縦巻コイル4,5との間の結合係数を変化させることで、一次側リーケージインダクタンス(インダクタ値)の部調整が可能となる。   As described above, also in the third embodiment, the same effect as in the second embodiment described above can be obtained. Further, in the third embodiment, the length between the bendings of the strip-shaped conductor plate can be made variable. Since the window area for each turn of the coil through which the iron core central leg 1a penetrates (the cross-sectional area of the inner space of the cylindrical coil) is appropriately changed in the coil winding direction, between the coil and the iron core central leg. Can be appropriately changed in the coil winding direction, and the primary side leakage can be achieved by changing the coupling coefficient between the primary side vertical winding coil 3 and the secondary side vertical winding coils 4 and 5. Inductance (inductor value) can be adjusted.

なお、一次側縦巻コイル3のリーケージインダクタンスの調整には、実施の形態1から実施の形態3までのそれぞれを単独に用いてもよいが、より良くはこれらを複合的に用いることでより微細な調整が可能となることはいうまでもない。   It should be noted that each of the first to third embodiments may be used independently for adjusting the leakage inductance of the primary-side longitudinally wound coil 3, but better, more finely using these in combination. Needless to say, it is possible to make an adjustment.

また、上記の実施の形態1〜3においては、本発明の鉄心中央脚1aの断面形状が4辺形のものについて記載したが、三角形でも、多角形でも、円であっても、同様な効果を得ることができる。ただし、コイル1ターン毎の折り曲げ数が多いとコイル間隔が開き鉄心サイズも大きくなるため、最良なケースは鉄心断面が4辺形でかつコイルも4辺コイルにて構成することである。   Moreover, in said Embodiment 1-3, although the cross-sectional shape of the iron core center leg 1a of this invention was described about the thing with a quadrilateral shape, even if it is a triangle, a polygon, or a circle, the same effect Can be obtained. However, if the number of bends per one turn of the coil is large, the coil interval is increased and the iron core size is also increased. Therefore, the best case is that the iron core has a quadrilateral cross section and the coil is also constituted by a four-sided coil.

1 鉄心、1a 鉄心中央脚、2 コイルボビン、3 一次側縦巻コイル、4 二次側縦巻No.1コイル、5 二次側縦巻No.2コイル、6 鉄心対称軸、8 電流通電方向、10 巻き線成形治具、11 送り方向、12 帯状導体、12a,12b,12c,12d,12e,12f 部分(帯状導体12のコイル辺)、13a,13b,13c,13d,13e 折り目(帯状導体の折り曲げ部)、14 帯状導体板、16 折り目、21 帯状導体板。   1 Iron core, 1a Iron core center leg, 2 Coil bobbin, 3 Primary side vertical winding coil, 4 Secondary side vertical winding No. 1 coil, 5 secondary side vertical winding No. 2 coils, 6 iron core symmetry axis, 8 current conduction direction, 10 winding forming jig, 11 feed direction, 12 strip conductors, 12a, 12b, 12c, 12d, 12e, 12f portions (coil sides of the strip conductor 12), 13a , 13b, 13c, 13d, 13e Fold (folded portion of the strip-shaped conductor), 14 Strip-shaped conductor plate, 16-fold fold, 21 Strip-shaped conductor plate.

Claims (3)

中央部分に鉄心中央脚が設けられ、主磁束経路となる鉄心と、
前記鉄心中央脚を中心にして螺旋状に巻回された筒状の縦巻構造のコイルと
を備えた高周波トランスであって、
前記コイルは、電磁結合した一次側コイルと二次側コイルとを構成しており、
前記一次側コイルと前記二次側コイルは、それぞれ略矩形の断面を有する連続した帯状導体板から形成されていて、
前記帯状導体板は、電流通電方向に対し平行以外かつ垂直以外の角度にて裏側または表側に複数回折り曲げられた螺旋状の筒状の縦巻コイル構造を有しており、前記コイルの1ターンの中で、電流通電方向に対する表側または裏側への前記帯状導体板の折り曲げが、少なくとも一回は連続して表側または裏側の同じ側へ折り曲げられる
ことを特徴とする高周波トランス。
An iron core central leg is provided in the central part, and the iron core that becomes the main magnetic flux path,
A high-frequency transformer comprising a cylindrical longitudinally wound coil wound spirally around the iron core central leg,
The coil constitutes an electromagnetically coupled primary coil and secondary coil,
The primary side coil and the secondary side coil are each formed of a continuous strip-shaped conductor plate having a substantially rectangular cross section,
The strip-shaped conductor plate has a spiral cylindrical longitudinally wound coil structure that is bent a plurality of times on the back side or the front side at an angle other than parallel and perpendicular to the current-carrying direction. Among these, the strip-like conductor plate is bent at the front side or the back side with respect to the direction of current flow at least once continuously, and is bent at the same side of the front side or the back side.
前記一次側コイルと前記二次側コイルは巻き数比が1:n(nは1以上の実数)の関係を有し、前記二次側コイルでの電流密度が巻き数比に合わせ最大前記一次側コイルの電流密度と同一となるまで、前記一次側コイルのコイル幅ないしコイル厚みの少なくとも一方の値を、前記二次側コイルのそれの値以上となるように構成したことを特徴とする請求項1に記載の高周波トランス。   The primary side coil and the secondary side coil have a turn ratio of 1: n (n is a real number equal to or greater than 1), and the current density in the secondary side coil is the maximum in accordance with the turn ratio. The configuration is such that at least one value of the coil width or coil thickness of the primary side coil is equal to or greater than that of the secondary side coil until it becomes equal to the current density of the side coil. Item 2. The high frequency transformer according to Item 1. 前記帯状導体板の折り曲げされる折り目間の長さを可変とし、前記コイルの筒状の内部空間の断面積を1ターン毎に可変としたことを特徴とする請求項2に記載の高周波トランス。   3. The high-frequency transformer according to claim 2, wherein a length between folds of the belt-shaped conductor plate is variable, and a cross-sectional area of a cylindrical inner space of the coil is variable for each turn.
JP2012133934A 2011-06-15 2012-06-13 High frequency transformer Expired - Fee Related JP5950706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012133934A JP5950706B2 (en) 2011-06-15 2012-06-13 High frequency transformer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011133223 2011-06-15
JP2011133223 2011-06-15
JP2012133934A JP5950706B2 (en) 2011-06-15 2012-06-13 High frequency transformer

Publications (2)

Publication Number Publication Date
JP2013021307A true JP2013021307A (en) 2013-01-31
JP5950706B2 JP5950706B2 (en) 2016-07-13

Family

ID=47692393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012133934A Expired - Fee Related JP5950706B2 (en) 2011-06-15 2012-06-13 High frequency transformer

Country Status (1)

Country Link
JP (1) JP5950706B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014120762A (en) * 2012-12-14 2014-06-30 Ghing-Hsin Dien Coil and method of manufacturing the same
CN104143418A (en) * 2014-07-04 2014-11-12 苏州腾冉电气设备有限公司 Coil winding for iron-silicon reactor
US9852841B2 (en) 2014-01-27 2017-12-26 Panasonic Intellectual Property Management Co., Ltd. Coil structure, transformer, and power converter
CN113539637A (en) * 2020-04-20 2021-10-22 株式会社村田制作所 Winding body, method for manufacturing winding body, and coil component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000082625A (en) * 1998-06-29 2000-03-21 Hitachi Ltd Amorphous iron core transformer
JP2000331850A (en) * 1999-05-17 2000-11-30 Sumida Corporation High-voltage generating coil
JP2002289444A (en) * 2001-03-23 2002-10-04 Fdk Corp High frequency power inductance element
JP2011009433A (en) * 2009-06-25 2011-01-13 Fuji Electric Systems Co Ltd Edgewise winding magnetic component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000082625A (en) * 1998-06-29 2000-03-21 Hitachi Ltd Amorphous iron core transformer
JP2000331850A (en) * 1999-05-17 2000-11-30 Sumida Corporation High-voltage generating coil
JP2002289444A (en) * 2001-03-23 2002-10-04 Fdk Corp High frequency power inductance element
JP2011009433A (en) * 2009-06-25 2011-01-13 Fuji Electric Systems Co Ltd Edgewise winding magnetic component

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014120762A (en) * 2012-12-14 2014-06-30 Ghing-Hsin Dien Coil and method of manufacturing the same
US9852841B2 (en) 2014-01-27 2017-12-26 Panasonic Intellectual Property Management Co., Ltd. Coil structure, transformer, and power converter
CN104143418A (en) * 2014-07-04 2014-11-12 苏州腾冉电气设备有限公司 Coil winding for iron-silicon reactor
CN113539637A (en) * 2020-04-20 2021-10-22 株式会社村田制作所 Winding body, method for manufacturing winding body, and coil component
JP2021174792A (en) * 2020-04-20 2021-11-01 株式会社村田製作所 Winding body, manufacturing method thereof winding body, and coil component
JP7253149B2 (en) 2020-04-20 2023-04-06 株式会社村田製作所 Winding body, winding body manufacturing method, and coil component
CN113539637B (en) * 2020-04-20 2024-04-02 株式会社村田制作所 Winding body, method for manufacturing winding body, and coil component

Also Published As

Publication number Publication date
JP5950706B2 (en) 2016-07-13

Similar Documents

Publication Publication Date Title
JP4800451B1 (en) High frequency transformer
JP4504426B2 (en) Planar high voltage transformer device
JP6352858B2 (en) Transformer
JP5950706B2 (en) High frequency transformer
CN104937681A (en) Winding arrangement for inductive components and method for manufacturing a winding arrangement for inductive components
JP4287495B1 (en) Three-phase high frequency transformer
JP5929289B2 (en) Method for manufacturing rectangular coil
JP5726034B2 (en) Leakage transformer
US3633273A (en) Method of constructing electrical windings
JP2007035804A (en) Power conversion transformer
JP2011009433A (en) Edgewise winding magnetic component
JP4738545B1 (en) High frequency transformer
JP2002353045A (en) Power transformer and power converter comprising it
JP2004207700A (en) Electronic component and method for manufacturing the same
US20150279549A1 (en) Systems and methods for promoting low loss in parallel conductors at high frequencies
JP2010245456A (en) Reactor assembly
JP2010245183A (en) Coupling coil and arc welder provided with the same
JP4892883B2 (en) Power conversion transformer
CN107430928A (en) Reactor
JPWO2019131883A1 (en) Welding transformer
CN112216481A (en) Magnetic induction coil
WO2013054473A1 (en) Wound element coil and wound element
WO2008111093A2 (en) Transformers
JP7169181B2 (en) Reactor
CN215988364U (en) Ultra-wideband compact transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160607

R150 Certificate of patent or registration of utility model

Ref document number: 5950706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees