JP2013021228A - Soft magnetic sintering material - Google Patents

Soft magnetic sintering material Download PDF

Info

Publication number
JP2013021228A
JP2013021228A JP2011154927A JP2011154927A JP2013021228A JP 2013021228 A JP2013021228 A JP 2013021228A JP 2011154927 A JP2011154927 A JP 2011154927A JP 2011154927 A JP2011154927 A JP 2011154927A JP 2013021228 A JP2013021228 A JP 2013021228A
Authority
JP
Japan
Prior art keywords
soft magnetic
sintered
mass
sintered material
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011154927A
Other languages
Japanese (ja)
Inventor
Yuji Higaki
有治 檜垣
Keisuke Fukumoto
圭佑 福本
Hirotake Hamamatsu
宏武 濱松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2011154927A priority Critical patent/JP2013021228A/en
Publication of JP2013021228A publication Critical patent/JP2013021228A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a soft magnetic sintering material, having high magnetic flux density and high sintering contraction amount, capable of obtaining high bonding strength of a sintered component as a result, and applicable to a small component.SOLUTION: The soft magnetic sintering material, in which Co powders or Co alloy powders of 30 μm or smaller in grain size are added to alloy powders containing Fe of 80 mass% or more as a main constituent, is characterized by that a Co content is less than 15 mass% (without including 0) of a total mass.

Description

本発明は、軟磁性焼結材料に関し、より具体的には、焼結部品の磁束密度及び接合強度を同時に高めた、コモンレールシステムのインジェクタ用アーマチャなどの電磁弁部品などに好適な軟磁性焼結材料に関する。   TECHNICAL FIELD The present invention relates to a soft magnetic sintered material, and more specifically, soft magnetic sintering suitable for electromagnetic valve parts such as an armature for an injector of a common rail system in which the magnetic flux density and joint strength of the sintered parts are simultaneously increased. Regarding materials.

軟磁性焼結材料は、その高い透磁性、高い磁束密度などを利用して、自動車や工作機械等においてエレクトロニクス制御などに用いられている。具体的には、例えばインジェクタ用アーマチャやモータのコアなどにこの軟磁性焼結材料が用いられている。   Soft magnetic sintered materials are used for electronics control and the like in automobiles, machine tools, and the like by utilizing their high magnetic permeability and high magnetic flux density. Specifically, this soft magnetic sintered material is used for, for example, an injector armature, a motor core, and the like.

一般に、焼結軟磁性材料は、高い磁束密度を得るため、主成分としての鉄(Fe)にケイ素(Si)、リン(P)等の焼結促進元素を添加することで焼結作用を促進し、結果として密度を向上させる手法を採用している。得られる焼結体は、例えば、Fe−P系合金、Fe−Si−P系合金などの焼結体である。   In general, in order to obtain a high magnetic flux density, a sintered soft magnetic material promotes a sintering action by adding a sintering promoting element such as silicon (Si) or phosphorus (P) to iron (Fe) as a main component. As a result, a technique for improving the density is adopted. The obtained sintered body is, for example, a sintered body such as an Fe—P alloy or an Fe—Si—P alloy.

このようにして焼結を促進した際の、結晶粒の粗大化やそれによる脆化の発生を防止することにより、高い磁束密度と高い強度の両立を実現可能な焼結軟磁性材料が特許文献1に開示されている。   Patent Document 1 discloses a sintered soft magnetic material capable of realizing both high magnetic flux density and high strength by preventing the coarsening of crystal grains and the occurrence of embrittlement due to the promotion of sintering in this way. 1 is disclosed.

特開2009−102711号公報JP 2009-102711 A

軟磁性焼結部品では、部品の小型化、高磁束密度化が求められている。しかしながら、部品を小型化すると、焼結材料の接合強度が低下し、従来の技術では、この接合強度の低下の問題は解決できていない。   Soft magnetic sintered parts are required to be smaller in size and higher in magnetic flux density. However, when the parts are downsized, the bonding strength of the sintered material is reduced, and the conventional technique cannot solve the problem of the reduction in the bonding strength.

本発明は、前記の事情にかんがみなされたものであって、従来の軟磁性焼結材料と比較して、高い磁束密度を有し、さらに、焼結収縮量が高く、その結果、焼結部品の製造時に高い接合強度が得られる、小型の部品にも適用が可能な軟磁性焼結材料の提供を課題とする。   The present invention has been considered in view of the above circumstances, and has a higher magnetic flux density and higher sintering shrinkage compared to conventional soft magnetic sintered materials, and as a result, sintered parts. It is an object of the present invention to provide a soft magnetic sintered material that can be applied to small parts and that can obtain a high bonding strength during manufacturing.

本発明者らは、高い磁束密度、及び高い焼結収縮量を併せ持つ軟磁性焼結材料を得るべく、鋭意検討した。その結果、Fe−Si−P系などの焼結材料に、強磁性を有するCoを添加することで高い磁束密度が得られることを知見した。さらに、微細なCoを添加することで高い焼結収縮量が得られ、その結果として、焼結部品に用いた際に、高い接合強度が得られることを知見した。   The present inventors diligently studied to obtain a soft magnetic sintered material having both high magnetic flux density and high sintering shrinkage. As a result, it has been found that a high magnetic flux density can be obtained by adding Co having ferromagnetism to a sintered material such as Fe-Si-P. Furthermore, it has been found that by adding fine Co, a high amount of sintering shrinkage can be obtained, and as a result, high bonding strength can be obtained when used for sintered parts.

本発明は、上記の知見に基づきなされた軟磁性焼結材料であって、主たる成分としてのFeを80質量%以上含有する合金粉末に、粒径30μm以下のCo粉又はCo合金粉を添加した軟磁性焼結材料であって、Coの含有量が全質量に対して15質量%未満(0を含まない)であることを特徴とする。   The present invention is a soft magnetic sintered material made on the basis of the above knowledge, and Co powder or Co alloy powder having a particle size of 30 μm or less is added to an alloy powder containing 80 mass% or more of Fe as a main component. A soft magnetic sintered material, characterized in that the Co content is less than 15% by mass (excluding 0) with respect to the total mass.

高磁束密度を有する、微細なCo粉又はCo合金粉を添加することにより、高い磁束密度を有し、かつ、高い焼結収縮量を有する軟磁性焼結材料を得ることができる。その結果、小型の焼結部品に適用した場合であっても高い接合強度が得られ、コモンレールシステムのインジェクタ用アーマチャなどの電磁弁部品などに適用できる。   By adding fine Co powder or Co alloy powder having a high magnetic flux density, a soft magnetic sintered material having a high magnetic flux density and a high sintering shrinkage can be obtained. As a result, even when applied to small sintered parts, high joint strength can be obtained, and it can be applied to electromagnetic valve parts such as injector armatures for common rail systems.

本発明は、さらに、全質量に対して、P:1.0質量%未満(0を含まない)、Si:1.5〜3.5質量%の1種又は2種を含有する軟磁性焼結材料を提供する。   The present invention further provides a soft magnetic ceramic containing one or two of P: less than 1.0% by mass (excluding 0) and Si: 1.5-3.5% by mass with respect to the total mass. Provide ligation material.

Pを添加することにより、焼結が促進するようになる。また、軟磁性焼結体を緻密化して、飽和磁束密度が向上する。Siを添加することにより、鉄損を減少させ、さらに、透磁率を向上させることができる。   By adding P, sintering is promoted. Further, the soft magnetic sintered body is densified to improve the saturation magnetic flux density. By adding Si, iron loss can be reduced and magnetic permeability can be improved.

本発明は、さらに、全質量に対して、V:0.6質量%未満(0を含まない)を含有する軟磁性焼結材料を提供する。Vを添加することにより、焼結の促進による結晶粒の粗大化を抑制できる。   The present invention further provides a soft magnetic sintered material containing V: less than 0.6% by mass (excluding 0) with respect to the total mass. By adding V, coarsening of crystal grains due to the promotion of sintering can be suppressed.

本発明は、さらに、Fe、Co、V、P、Si以外の元素の含有量が、全質量に対して、0.65質量%未満であることを特徴とする軟磁性焼結材料を提供する。   The present invention further provides a soft magnetic sintered material characterized in that the content of elements other than Fe, Co, V, P, and Si is less than 0.65 mass% with respect to the total mass. .

本発明は、さらに、Coの含有量が5質量%以上である軟磁性焼結材料を提供する。   The present invention further provides a soft magnetic sintered material having a Co content of 5% by mass or more.

本発明は、さらに、上記の軟磁性焼結材料を加圧成形し、次いで、所定の形状を有する圧粉体を形成し、その後、圧粉体を焼結して得られることを特徴とする軟磁性焼結体を提供する。   The present invention is further characterized in that it is obtained by pressure-molding the soft magnetic sintered material, forming a green compact having a predetermined shape, and then sintering the green compact. A soft magnetic sintered body is provided.

本発明は、さらに、上記の軟磁性焼結体と鋼材を拡散接合して得られることを特徴とする軟磁性焼結部品を提供する。   The present invention further provides a soft magnetic sintered part obtained by diffusion bonding the above soft magnetic sintered body and a steel material.

焼結材を用いた焼結部品の製造方法の概略を説明する図である。It is a figure explaining the outline of the manufacturing method of the sintered component using a sintered material. 本発明の実施例における試験片の概略を示す図であり、(a)は、結晶粒粗大化率、接合強度測定用試験片、(b)は収縮量測定用試験片である。It is a figure which shows the outline of the test piece in the Example of this invention, (a) is a test piece for a crystal grain coarsening rate and a joint strength measurement, (b) is a test piece for shrinkage | contraction amount measurement. 接合強度測定装置の概略を示す図である。It is a figure which shows the outline of a joining strength measuring apparatus. 本発明の軟磁性焼結材料の、Co合金粉添加量と磁束密度の関係を示す図である。It is a figure which shows the relationship between Co alloy powder addition amount and magnetic flux density of the soft magnetic sintering material of this invention. 本発明の軟磁性焼結材料の、Co合金粉添加量と結晶粒粗大化率の関係を示す図である。It is a figure which shows the relationship between the amount of Co alloy powder addition, and the coarsening rate of a crystal grain of the soft-magnetic sintered material of this invention. 本発明の軟磁性焼結材料の、Co合金粉添加量と収縮量、及び接合強度の関係を示す図であり、(a)はCo合金粉にFe−49Co−2Vを用いたもの、(b)はCo合金粉にFe−50Coを用いたものである。It is a figure which shows the relationship of Co alloy powder addition amount, shrinkage | contraction amount, and joining strength of the soft magnetic sintering material of this invention, (a) is what used Fe-49Co-2V for Co alloy powder, (b ) Uses Fe-50Co as Co alloy powder.

軟磁性焼結部品では、部品の小型化、高磁束密度化が求められている。高磁束密度化は、焼結体の成型密度を上げることや、焼結温度を高くすることで実現可能である。しかしながら、この手法では、結晶粒が粗大化し、焼結体の静的強度が低下する。また、小型化に伴い高い接合強度が必要な部品では、焼結部品の収縮量が低くなり、接合強度が低下する。   Soft magnetic sintered parts are required to be smaller in size and higher in magnetic flux density. High magnetic flux density can be realized by increasing the molding density of the sintered body or by increasing the sintering temperature. However, with this method, the crystal grains become coarse and the static strength of the sintered body decreases. In addition, in a part that requires high joint strength with downsizing, the shrinkage amount of the sintered part is reduced, and joint strength is lowered.

本発明は、軟磁性焼結材料の高磁束密度化、及び高収縮量化を図り、微細なCo粉又はCo合金粉を添加し、上記の問題を解決したものである。以下、本発明の実施の形態を説明する。本発明は、以下に例示される形態に限定されるものではない。以下の説明において、「%」は、「質量%」を示すものとする。   The present invention solves the above problems by increasing the magnetic flux density and the amount of shrinkage of a soft magnetic sintered material and adding fine Co powder or Co alloy powder. Embodiments of the present invention will be described below. The present invention is not limited to the forms exemplified below. In the following description, “%” represents “mass%”.

本発明の軟磁性焼結材料は、Feを主たる成分とする合金に、粒径30μm以下の微細なCo粉又はCo合金粉を添加し製造することにより、高磁束密度、及び高収縮を併せ持つことを特長としている。ベースとなる焼結材料はFe系の材料であれば、特に限定されないが、Fe−Si−P系や、Fe−P系の合金などが好適である。以下、本発明の軟磁性焼結材料に含まれる元素と添加量について説明する。   The soft magnetic sintered material of the present invention has both high magnetic flux density and high shrinkage by adding fine Co powder or Co alloy powder having a particle size of 30 μm or less to an alloy containing Fe as a main component. It features. The base sintered material is not particularly limited as long as it is an Fe-based material, but an Fe-Si-P-based alloy, an Fe-P-based alloy, or the like is preferable. Hereinafter, the elements and addition amounts contained in the soft magnetic sintered material of the present invention will be described.

Co粉及びCo合金粉は、飽和磁束密度が高い材料であるので、添加することにより、軟磁性焼結材料の磁束密度が向上する。また、微細なCo粉又はCo合金粉を添加することで、焼結が促進されるようになり、焼結体の収縮量が高くなる。その結果、焼結部品の製造時に、溶製材と焼結体の接触面積が大きくなり、溶製材、焼結体間の相互拡散が促進され、接合強度が向上する。   Since Co powder and Co alloy powder are materials having a high saturation magnetic flux density, the magnetic flux density of the soft magnetic sintered material is improved by adding them. Further, by adding fine Co powder or Co alloy powder, sintering is promoted, and the shrinkage of the sintered body is increased. As a result, when the sintered part is manufactured, the contact area between the molten material and the sintered body is increased, the mutual diffusion between the molten material and the sintered body is promoted, and the bonding strength is improved.

図1に、焼結部品の製造の概略を示す。焼結部品の製造においては、焼結材1の成型体に、溶製材2を所定の嵌合い代dで組み付け、焼結材1を焼結すると同時に、焼結材1と溶製材2を拡散接合により一体化する。   FIG. 1 shows an outline of manufacturing a sintered part. In the production of sintered parts, the molten material 2 is assembled to the molded body of the sintered material 1 with a predetermined fitting allowance d, the sintered material 1 is sintered, and at the same time, the sintered material 1 and the molten material 2 are diffused. Integrate by joining.

Coの添加は少量であっても、結晶粒の粗大化を抑制する効果は得られるが、より高い効果、すなわち、焼結部品における高い接合強度を得るためには、Coの添加量は2.5%以上が好ましく、さらに、高い磁束密度を得るためには、5%以上とすることが好ましい。   Even if a small amount of Co is added, an effect of suppressing the coarsening of crystal grains can be obtained. However, in order to obtain a higher effect, that is, a high bonding strength in a sintered part, the amount of Co added is 2. 5% or more is preferable, and in order to obtain a high magnetic flux density, 5% or more is preferable.

Coの添加量が大きくなりすぎると、軟磁性焼結材料の成形性が劣化し、成型時に割れが発生することがある。よって、Coの添加量は、15%以下とする。   If the amount of Co added is too large, the moldability of the soft magnetic sintered material is deteriorated, and cracks may occur during molding. Therefore, the addition amount of Co is set to 15% or less.

Siは、鉄損が減少させ、さらに、透磁率を向上させる元素である。その結果、電磁弁などの応答性を改善することができ、必要に応じて添加する。また、焼結を促進させ、焼結軟磁性体を緻密化して飽和磁束密度を向上させる。これらの効果を得るためには、添加量は、焼結材料の全質量の1.5%以上とする。   Si is an element that reduces iron loss and further improves magnetic permeability. As a result, the responsiveness of a solenoid valve or the like can be improved and added as necessary. Further, the sintering is promoted and the sintered soft magnetic material is densified to improve the saturation magnetic flux density. In order to obtain these effects, the addition amount is 1.5% or more of the total mass of the sintered material.

Si量が増加すると、軟磁性焼結材料中のFeの占有率が低下し、その結果、飽和磁束密度が低下する。また、焼結が促進すると、結晶粒が粗大化し、その結果、焼結体強度が低下する。よって、添加量は3.5%以下、好ましくは2.5%以下とする。   As the amount of Si increases, the occupation ratio of Fe in the soft magnetic sintered material decreases, and as a result, the saturation magnetic flux density decreases. Further, when the sintering is promoted, the crystal grains become coarse, and as a result, the strength of the sintered body decreases. Therefore, the addition amount is 3.5% or less, preferably 2.5% or less.

Pは、焼結を促進させ、焼結軟磁性体を緻密化して飽和磁束密度を向上させる元素であり、必要に応じて添加する。ただし、焼結が促進しすぎると、結晶粒が粗大化し、その結果、焼結体強度が低下するので、添加量は1.0%以下とする。好ましいPの添加量は、0.2〜0.6%である。   P is an element that promotes sintering and densifies the sintered soft magnetic material to improve the saturation magnetic flux density, and is added as necessary. However, if the sintering is promoted too much, the crystal grains are coarsened, and as a result, the strength of the sintered body is lowered. A preferable addition amount of P is 0.2 to 0.6%.

Vは、ピン止め効果により、焼結の促進による結晶粒の粗大化を抑制する元素であり、必要に応じて添加する。この効果を得るためには、Vの添加量を0.1%以上とする。Vの添加量が増加すると、Feの占有率が下がり、その結果、飽和磁束密度が低下するので、添加量は0.6%以下とする。   V is an element that suppresses the coarsening of crystal grains due to the promotion of sintering due to the pinning effect, and is added as necessary. In order to obtain this effect, the amount of V is 0.1% or more. As the amount of added V increases, the occupation ratio of Fe decreases, and as a result, the saturation magnetic flux density decreases. Therefore, the added amount is set to 0.6% or less.

その他、例えば、Ti、Nb、Mn、S、C、Nなどの、Fe、Si、P、Co、V以外の元素を、軟磁性焼結材料の特性改善を目的に添加してもかまわない。ただし、他の元素の添加量が増加すると、Feの占有率が下がるので、その結果、飽和磁束密度は低下する。そのため、Fe、Si、P、Co、V以外の元素の添加量は、不可避的不純物も含めて、軟磁性焼結材料の全質量に対して0.65%未満とする。   In addition, for example, elements other than Fe, Si, P, Co, and V such as Ti, Nb, Mn, S, C, and N may be added for the purpose of improving the characteristics of the soft magnetic sintered material. However, when the addition amount of other elements increases, the occupation ratio of Fe decreases, and as a result, the saturation magnetic flux density decreases. Therefore, the addition amount of elements other than Fe, Si, P, Co, and V, including inevitable impurities, is less than 0.65% with respect to the total mass of the soft magnetic sintered material.

本発明の軟磁性焼結材料は、例えばアトマイズ鉄粉(Fe)に微量のSi粉末及びP粉末を混合した合金粉末に、粒子径が30μm以下のCo粉末、又は、Fe−50Co、Fe−49Co−2VなどのCo合金粉末を含む混合金属粉末を、Coの添加量が全質量に対して15%未満となるように添加して得られる。   The soft magnetic sintered material of the present invention is, for example, an alloy powder obtained by mixing a small amount of Si powder and P powder with atomized iron powder (Fe), Co powder having a particle size of 30 μm or less, or Fe-50Co, Fe-49Co. It is obtained by adding a mixed metal powder containing a Co alloy powder such as −2 V so that the amount of Co added is less than 15% with respect to the total mass.

さらに、本発明の軟磁性焼結材料の特性に悪影響を与えない範囲で、結晶粒微細化元素の粉末、例えば、Mn粉末やS粉末を混合してもよい。   Furthermore, a powder of a crystal grain refining element, for example, Mn powder or S powder may be mixed within a range that does not adversely affect the characteristics of the soft magnetic sintered material of the present invention.

この軟磁性焼結材料を、通常、約500〜850MPaで加圧成形して、次いで、所定の形状を有する圧粉体を形成し、その後、圧粉体を高められた温度で焼結すれば、軟磁性焼結体が得られる。   If this soft magnetic sintered material is usually pressure-molded at about 500 to 850 MPa, then a green compact having a predetermined shape is formed, and then the green compact is sintered at an elevated temperature. A soft magnetic sintered body is obtained.

焼結処理は、成形体の組成などに応じて、様々な処理条件の下で施すことができる。例えば、真空条件下、アルゴンガス等の非酸化性ガスの雰囲気中で、約1100〜1300℃の温度で約1〜2時間にわたって成形体を加熱することにより、焼結処理を施すことができる。   The sintering treatment can be performed under various processing conditions depending on the composition of the molded body. For example, the sintering process can be performed by heating the molded body for about 1 to 2 hours at a temperature of about 1100 to 1300 ° C. in an atmosphere of a non-oxidizing gas such as argon gas under vacuum conditions.

加圧成形の前に、混合金属粉末に成形用潤滑剤を混合し、加圧成形の後に、真空条件下水素ガス、アルゴンガス等の還元性ガス、非酸化性ガスなどの雰囲気下、約600〜700℃の温度で約1〜2時間にわたって圧粉体を脱脂処理して潤滑剤を除去する工程を含んでもよい。   Before pressing, a mixed lubricant is mixed with the mixed metal powder, and after pressing, about 600 under an atmosphere of reducing gas such as hydrogen gas, argon gas, non-oxidizing gas, etc. under vacuum conditions. A step of degreasing the green compact at a temperature of ˜700 ° C. for about 1 to 2 hours to remove the lubricant may be included.

焼結の後に、強度を高めることを目的として、得られた焼結体を熱処理する工程をさらに含んでもよい。熱処理は、焼入れ及びその後の焼戻し(いわゆるQT処理)が好ましい。焼入れは、例えば、約1100〜1200℃の温度で施すことができ、焼戻しは、例えば、約500〜600℃の温度で施すことができる。QT処理の後、必要に応じて、焼結体をさらに熱処理してもよい。   A step of heat-treating the obtained sintered body may be further included after the sintering in order to increase the strength. The heat treatment is preferably quenching and subsequent tempering (so-called QT treatment). Quenching can be performed at a temperature of about 1100 to 1200 ° C, for example, and tempering can be performed at a temperature of about 500 to 600 ° C, for example. After the QT treatment, the sintered body may be further heat-treated as necessary.

以上の方法で製造された本発明の軟磁性焼結材料は、高い磁束密度を有し、さらに、高い焼結収縮量を有するので、小型の焼結部品に用いた場合においても高い接合強度を発揮する。よって、コモンレールシステムのインジェクタ用アーマチャなどの電磁弁部品などに適用できる。   The soft magnetic sintered material of the present invention manufactured by the above method has a high magnetic flux density and a high amount of sintering shrinkage. Therefore, even when used for a small sintered part, it has a high bonding strength. Demonstrate. Therefore, it can be applied to electromagnetic valve parts such as injector armatures for common rail systems.

もちろん、本発明の軟磁性焼結材料の適用対象が電磁弁部品に限定されるものではないことは、いうまでもない。また、本発明は、上記発明の実施の形態の説明に限定されるものでもない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様も、本発明に含まれる。   Of course, needless to say, the application object of the soft magnetic sintered material of the present invention is not limited to the solenoid valve component. Further, the present invention is not limited to the description of the embodiment of the above invention. Various modifications are also included in the present invention as long as those skilled in the art can easily conceive without departing from the scope of the claims.

アトマイズ鉄粉(Fe)に、Si粉末、及びP粉末を混合し、さらに粒径30μm以下のCo合金粉(Fe−49Co−2V、又はFe−50Co)を混合して軟磁性焼結材料を作製した。   A soft magnetic sintered material is prepared by mixing Si powder and P powder with atomized iron powder (Fe) and further mixing Co alloy powder (Fe-49Co-2V or Fe-50Co) with a particle size of 30 μm or less. did.

Co合金粉の添加量は適宜変え、異なるCo添加量の軟磁性焼結材料を複数作製した。Si粉末の添加量は2.0%、P粉末の添加量は0.35%となるように、調製した。Fe−Si−P混合粉の平均粒径は、約80μmであった。   The addition amount of Co alloy powder was changed as appropriate, and a plurality of soft magnetic sintered materials having different Co addition amounts were produced. The addition amount of Si powder was 2.0%, and the addition amount of P powder was 0.35%. The average particle diameter of the Fe—Si—P mixed powder was about 80 μm.

作製した軟磁性焼結材料に、成形用潤滑剤を添加した後、混合粉末を成形型に充填し、加圧成形により、試験片を作製した。試験片は、磁束密度測定用として、外径19mm内径13mm高さ3.5mmの円環状試験片、結晶粒粗大化率及び接合強度測定用として、円環状試験片にシャフトを取り付けた図2(a)に示す試験片、収縮量測定用としてシャフトのない図2(b)に示す試験片を、それぞれ作製した。   A molding lubricant was added to the produced soft magnetic sintered material, and then the mixed powder was filled in a mold and a test piece was produced by pressure molding. The test piece is an annular test piece having an outer diameter of 19 mm, an inner diameter of 13 mm, and a height of 3.5 mm for measuring the magnetic flux density, and a shaft attached to the annular test piece for measuring the crystal grain coarsening rate and bonding strength. A test piece shown in FIG. 2B without a shaft was prepared for measuring the shrinkage and the test piece shown in a).

加圧成形は、約500〜700MPaの圧力を印加して実施し、成形密度が6.7〜6.8g/cmの成形体を得た。次いで、得られた成形体を真空の雰囲気下、約650℃の温度で約1時間にわたって加熱し、潤滑剤を揮散させ、脱脂した。 The pressure molding was performed by applying a pressure of about 500 to 700 MPa to obtain a molded body having a molding density of 6.7 to 6.8 g / cm 3 . Next, the obtained molded body was heated in a vacuum atmosphere at a temperature of about 650 ° C. for about 1 hour to volatilize the lubricant and degrease.

脱脂処理の完了後、成形体を、真空下で約1200℃の温度で約1時間にわたって加熱することによって焼結処理し、焼結体(本発明品)を得た。得られた試験片について、下記の項目に関して試験を行った。   After completion of the degreasing treatment, the compact was sintered by heating at a temperature of about 1200 ° C. for about 1 hour under vacuum to obtain a sintered body (product of the present invention). About the obtained test piece, it tested about the following item.

[磁束密度]
作製した試験片の磁束密度を、市販の直流磁化特性装置(理研電子社製)を使用して測定した。図4に、Co合金粉としてFe−49Co−2V、Fe−50Coを用いた軟磁性焼結体の、磁束密度とCo合金粉添加量の関係、及び、比較例として、Coを添加しないFe−Si−P系焼結材料で、成型密度、焼結温度を高くして製造した焼結体での磁束密度を示す。
[Magnetic flux density]
The magnetic flux density of the produced test piece was measured using a commercially available DC magnetization characteristic device (manufactured by Riken Denshi Co., Ltd.). FIG. 4 shows the relationship between the magnetic flux density and the amount of added Co alloy powder in a soft magnetic sintered body using Fe-49Co-2V and Fe-50Co as Co alloy powder, and as a comparative example, Fe- without adding Co. The magnetic flux density in the sintered compact manufactured by making a molding density and sintering temperature high with Si-P type sintered material is shown.

なお、図4の横軸は、Co合金粉(Fe−49Co−2V又はFe−50Co)の添加割合であり、軟磁性焼結材料のCo含有割合は、横軸の値に、合金粉中のCo含有割合を乗じた値となる(以下、図5、図6において同じ)。   In addition, the horizontal axis of FIG. 4 is the addition ratio of Co alloy powder (Fe-49Co-2V or Fe-50Co), and the Co content ratio of the soft magnetic sintered material is the value of the horizontal axis in the alloy powder. This is a value obtained by multiplying the Co content ratio (hereinafter the same in FIGS. 5 and 6).

図4の結果より、本発明の軟磁性焼結材料では、Co添加量が増加するにつれて磁束密度が高くなり、特にCo合金粉が10%を超えると、Coを添加しないFe−Si−P系の焼結材料の磁束密度よりも高くなることが確認できた。   From the results shown in FIG. 4, in the soft magnetic sintered material of the present invention, the magnetic flux density increases as the amount of Co increases, and particularly when the Co alloy powder exceeds 10%, the Fe—Si—P system in which Co is not added. It was confirmed that the magnetic flux density was higher than that of the sintered material.

[結晶粒粗大化率]
焼結後のアーマチャ焼結体(図1の焼結体1)の断面組織を、金属顕微鏡で観察し、観察した領域内の粗大化した結晶粒の面積を測定し、観察した領域の面積に対する割合を結晶粒粗大化率とした。ここで、粗大化した結晶粒とは、結晶粒の円相当径が200μm以上であるものを指すものとする。
[Grain coarsening rate]
The cross-sectional structure of the sintered armature sintered body (sintered body 1 in FIG. 1) is observed with a metal microscope, the area of coarsened crystal grains in the observed region is measured, and the area of the observed region is measured. The ratio was defined as the crystal grain coarsening rate. Here, the coarsened crystal grains refer to those having an equivalent circle diameter of 200 μm or more.

図5に、Co合金粉としてFe−49Co−2V、Fe−50Coを用いた軟磁性焼結体の、結晶化粗大化率とCo合金粉添加量の関係、及び、比較例として、Coを添加しないFe−Si−P系焼結材料で、成型密度、焼結温度を高くして製造した焼結体での結晶粒粗大化率を示す。   FIG. 5 shows the relationship between the crystallization coarsening rate and the amount of added Co alloy powder of a soft magnetic sintered body using Fe-49Co-2V and Fe-50Co as Co alloy powder, and Co is added as a comparative example. The crystal grain coarsening rate in the sintered compact manufactured by making a molding density and sintering temperature high with the Fe-Si-P type sintered material which does not do is shown.

図5の結果より、本発明の軟磁性焼結体は、Fe−Si−P系の焼結体と比べ、結晶粒の粗大化を大幅に抑制できることが確認できた。   From the results of FIG. 5, it was confirmed that the soft magnetic sintered body of the present invention can greatly suppress the coarsening of crystal grains as compared with the Fe—Si—P based sintered body.

[収縮量、接合強度]
収縮量は、図2(b)に示す収縮量測定用の試験片の内径を、焼結前後で測定し、その差を焼結による収縮量とした。接合強度は、図2(a)に示す接合強度測定用の試験片を用いて、図3に示す装置のピン21でシャフト12に荷重を加え、シャフトが動いた時の荷重の値を接合強度とした。
[Shrinkage, bonding strength]
The amount of shrinkage was determined by measuring the inner diameter of the test piece for measuring the amount of shrinkage shown in FIG. The bonding strength is determined by applying a load to the shaft 12 with the pin 21 of the apparatus shown in FIG. 3 using the test piece for measuring the bonding strength shown in FIG. It was.

図6(a)に、Co合金粉としてFe−49Co−2Vを用いた軟磁性焼結体の、収縮量及び接合強度とCo合金粉添加量の関係、図6(b)にCo合金粉としてFe−50Coを用いた軟磁性焼結体の、収縮量及び接合強度とCo合金粉添加量の関係を示す。図6(a)には、Fe−Si−P系で、成型密度、焼結温度を高くして製造した焼結体での収縮量及び接合強度を、併せて示す。   FIG. 6 (a) shows the relationship between the shrinkage and bonding strength of the soft magnetic sintered body using Fe-49Co-2V as the Co alloy powder and the amount of Co alloy powder added, and FIG. 6 (b) shows the Co alloy powder. The relationship between the shrinkage amount and bonding strength of the soft magnetic sintered body using Fe-50Co and the addition amount of Co alloy powder is shown. FIG. 6 (a) also shows the amount of shrinkage and the bonding strength of a sintered body produced with an Fe-Si-P system and with a higher molding density and sintering temperature.

図6の結果より、本発明の軟磁性焼結体は、Fe−Si−P系の焼結材料と比べ、良好な収縮量及び接合強度が得られることが確認できた。   From the results of FIG. 6, it was confirmed that the soft magnetic sintered body of the present invention can obtain a good shrinkage and bonding strength as compared with the Fe—Si—P-based sintered material.

以上、本発明を実施例を参照して、より具体的に説明したが、本発明は、これらの実施例によって限定されるものでないことはいうまでもない。   As mentioned above, although this invention was demonstrated more concretely with reference to the Example, it cannot be overemphasized that this invention is not limited by these Examples.

1 焼結体
2 溶製材
11 焼結体
12 シャフト
21 ピン(QT処理したSKH51)
d 嵌合い代
DESCRIPTION OF SYMBOLS 1 Sintered body 2 Melted material 11 Sintered body 12 Shaft 21 Pin (SKT51 which processed QT)
d Mating allowance

Claims (7)

主たる成分としてのFeを80質量%以上含有する合金粉末に、粒径30μm以下のCo粉又はCo合金粉を添加した軟磁性焼結材料であって、Coの含有量が全質量に対して15質量%未満(0を含まない)であることを特徴とする軟磁性焼結材料。   A soft magnetic sintered material obtained by adding Co powder or Co alloy powder having a particle size of 30 μm or less to alloy powder containing Fe of 80% by mass or more as a main component, the Co content being 15% of the total mass A soft magnetic sintered material characterized by being less than mass% (not including 0). 全質量に対して、
P :1.0質量%未満(0を含まない)
Si:1.5〜3.5質量%
の1種又は2種を含有することを特徴とする請求項1に記載の軟磁性焼結材料。
For the total mass,
P: Less than 1.0% by mass (excluding 0)
Si: 1.5 to 3.5% by mass
The soft magnetic sintered material according to claim 1, comprising one or two of the following.
全質量に対して、
V :0.6質量%以下(0を含まない)
含有することを特徴とする請求項1又は2に記載の軟磁性焼結材料。
For the total mass,
V: 0.6 mass% or less (excluding 0)
The soft magnetic sintered material according to claim 1, wherein the soft magnetic sintered material is contained.
Fe、Co、V、P、Si以外の元素の含有量が、全質量に対して、0.65質量%未満であることを特徴とする請求項1〜3のいずれか1項に記載の軟磁性焼結材料。   The soft element according to any one of claims 1 to 3, wherein the content of elements other than Fe, Co, V, P, and Si is less than 0.65 mass% with respect to the total mass. Magnetic sintered material. Coの含有量が、5質量%以上であることを特徴とする請求項1〜4のいずれか1項に記載の軟磁性焼結材料。   Co soft content is 5 mass% or more, The soft-magnetic-sintering material of any one of Claims 1-4 characterized by the above-mentioned. 請求項1〜5のいずれか1項に記載の軟磁性焼結材料を加圧成形し、次いで、
所定の形状を有する圧粉体を形成し、その後、
圧粉体を焼結して得られることを特徴とする軟磁性焼結体。
Press-molding the soft magnetic sintered material according to any one of claims 1 to 5,
Forming a green compact with a predetermined shape, then
A soft magnetic sintered body obtained by sintering a green compact.
請求項6に記載の軟磁性焼結体と鋼材を拡散接合して得られることを特徴とする軟磁性焼結部品。   A soft magnetic sintered part obtained by diffusion-bonding the soft magnetic sintered body according to claim 6 and a steel material.
JP2011154927A 2011-07-13 2011-07-13 Soft magnetic sintering material Pending JP2013021228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011154927A JP2013021228A (en) 2011-07-13 2011-07-13 Soft magnetic sintering material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011154927A JP2013021228A (en) 2011-07-13 2011-07-13 Soft magnetic sintering material

Publications (1)

Publication Number Publication Date
JP2013021228A true JP2013021228A (en) 2013-01-31

Family

ID=47692352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011154927A Pending JP2013021228A (en) 2011-07-13 2011-07-13 Soft magnetic sintering material

Country Status (1)

Country Link
JP (1) JP2013021228A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH108170A (en) * 1996-06-25 1998-01-13 Injietsukusu:Kk Production of sintered body and produced sintered body
JP2002110413A (en) * 1999-10-04 2002-04-12 Daido Steel Co Ltd Magnetic mixture
JP2009021490A (en) * 2007-07-13 2009-01-29 Hitachi Powdered Metals Co Ltd Sintered soft magnetic substance and sintered movable iron core using the same, and manufacturing method of them

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH108170A (en) * 1996-06-25 1998-01-13 Injietsukusu:Kk Production of sintered body and produced sintered body
JP2002110413A (en) * 1999-10-04 2002-04-12 Daido Steel Co Ltd Magnetic mixture
JP2009021490A (en) * 2007-07-13 2009-01-29 Hitachi Powdered Metals Co Ltd Sintered soft magnetic substance and sintered movable iron core using the same, and manufacturing method of them

Similar Documents

Publication Publication Date Title
JP5892356B2 (en) Dust core manufacturing method and dust core
JP4971886B2 (en) Soft magnetic powder, soft magnetic molded body, and production method thereof
JP5682723B1 (en) Soft magnetic metal powder and soft magnetic metal powder core
US20060027950A1 (en) Method for manufacturing soft magnetic material
JP2008028162A (en) Soft magnetic material, manufacturing method therefor, and dust core
JP2007012994A (en) Method for manufacturing insulating soft magnetic metal powder molding
JP3861288B2 (en) Method for producing soft magnetic material
JP4702945B2 (en) Sintered movable iron core and manufacturing method thereof
JP4863628B2 (en) Method for producing Mg-containing oxide film-coated soft magnetic metal powder and method for producing composite soft magnetic material using this powder
JP2008172257A (en) Method for manufacturing insulating soft magnetic metal powder molding
JP2012142388A (en) Method for producing rare earth magnet
KR101813427B1 (en) Method of manufacturing rare earth magnet
JP2007027320A (en) Soft magnetic material, method of manufacturing the same and dust core
JP2006241583A (en) METHOD FOR PRODUCING SOFT MAGNETIC METAL POWDER COATED WITH Mg-CONTAINING OXIDE FILM, AND METHOD FOR PRODUCING COMPOSITE SOFT MAGNETIC MATERIAL FROM THE POWDER
JP2011003662A (en) Permanent magnet and method of manufacturing the same
JP2016213306A (en) Powder-compact magnetic core, and method for manufacturing powder-compact magnetic core
JP5682724B1 (en) Soft magnetic metal powder and soft magnetic metal powder core
JP4721457B2 (en) Sintered soft magnetic body, sintered movable iron core using the same, and manufacturing method thereof
JP4562483B2 (en) Method for producing soft magnetic material
JP2013021228A (en) Soft magnetic sintering material
JP5682725B1 (en) Soft magnetic metal powder and soft magnetic metal powder core
JP2009102711A (en) Soft magnetic sintering material, method for producing the same, and electromagnetic structure
JP5382424B2 (en) Method for producing magnetic core powder
JP5644844B2 (en) Method for producing soft magnetic sintered material
JP4070426B2 (en) Method for producing high-density sintered body and sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141028