JP2013021180A - Vibration measurement method and vibration measurement device of reactor device - Google Patents

Vibration measurement method and vibration measurement device of reactor device Download PDF

Info

Publication number
JP2013021180A
JP2013021180A JP2011154040A JP2011154040A JP2013021180A JP 2013021180 A JP2013021180 A JP 2013021180A JP 2011154040 A JP2011154040 A JP 2011154040A JP 2011154040 A JP2011154040 A JP 2011154040A JP 2013021180 A JP2013021180 A JP 2013021180A
Authority
JP
Japan
Prior art keywords
vibration
frequency
temperature
coil
reactor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011154040A
Other languages
Japanese (ja)
Other versions
JP5815179B2 (en
Inventor
Naoki Hirasawa
直樹 平澤
ryuta Tanabe
龍太 田辺
Soichi Yoshinaga
聡一 吉永
Masahiko Yamashita
政彦 山下
Seigo Sato
政吾 佐藤
Hirofumi Sato
浩文 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Tokin Corp
Original Assignee
Denso Corp
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, NEC Tokin Corp filed Critical Denso Corp
Priority to JP2011154040A priority Critical patent/JP5815179B2/en
Publication of JP2013021180A publication Critical patent/JP2013021180A/en
Application granted granted Critical
Publication of JP5815179B2 publication Critical patent/JP5815179B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vibration measurement method and a vibration measurement device of a reactor device, which can measure a vibration value of vibration occurring by electrification of the reactor device in time shorter than a conventional case.SOLUTION: The vibration measurement method for measuring the vibration value of the reactor device 10 includes: a characteristic that a Youg's modulus changes with a temperature change of a dust core; a frequency range determining step for determining a frequency range (prescribed range) where a current frequency f (frequency) of AC current Iac which is made to flow to a coil 13 is changed in accordance with a temperature range for changing a temperature of the reactor device 10; and a vibration value measuring step for changing the current frequency f of the AC current Iac which is made to flow to the coil 13 within the frequency range and measuring the vibration value of the vibration occurring in the reactor device 10. Since the current frequency f of the AC current Iac which is made to flow to the coil 13 is changed only in the frequency range with such structure, the vibration value can be measured in short time.

Description

本発明は、通電時にリアクトル装置で発生する振動の振動値を測定するリアクトル装置の振動測定方法と、その振動測定方法を実現する振動測定装置に関する。   The present invention relates to a reactor vibration measurement method for measuring a vibration value of vibration generated in a reactor device when energized, and a vibration measurement device that realizes the vibration measurement method.

従来では、放熱性に優れ、かつ、簡易にリアクトルの組付けができるリアクトル装置に関する技術の一例が開示されている(例えば特許文献1を参照)。このリアクトル装置は、成形ケースとリアクトルケースとを備え、成形ケースの外表面に突起を備える。   Conventionally, an example of a technique related to a reactor device that is excellent in heat dissipation and allows easy assembly of the reactor has been disclosed (see, for example, Patent Document 1). The reactor device includes a molded case and a reactor case, and includes a protrusion on the outer surface of the molded case.

上記リアクトル装置を含めて、一般的にリアクトル装置に対して所定の温度範囲における振動値を測定しようとすれば、測定対象となるリアクトル装置の温度を変化させる必要がある。この場合には、測定点となる温度に達するごと(例えば5度ごと等)に、リアクトル装置に通電して生じる振動の振動値を測定器で測定する。   In general, in order to measure a vibration value in a predetermined temperature range with respect to the reactor device including the reactor device, it is necessary to change the temperature of the reactor device to be measured. In this case, every time the temperature that becomes the measurement point is reached (for example, every 5 degrees), the vibration value of vibration generated by energizing the reactor device is measured by a measuring instrument.

特開2010−003838号公報JP 2010-003838 A

設置環境に多少の影響を受けるものの、コイルへの通電に伴ってリアクトル装置の温度が変化する。しかし、目的とする範囲の温度を変化させるには、通電し続けなければならないので時間を要する。リアクトル装置の温度を速く変化させるには、コイルに通電する電流を大きくすればよい。ところが、コイルの損傷を防止するために定格電流を超える電流を流すことはできないので、温度を速く変化させるには限界があった。   Although it is somewhat affected by the installation environment, the temperature of the reactor device changes as the coil is energized. However, in order to change the temperature in the target range, it is necessary to continue energization, so it takes time. In order to change the temperature of the reactor device quickly, the current supplied to the coil may be increased. However, in order to prevent damage to the coil, current exceeding the rated current cannot be passed, so there is a limit to changing the temperature quickly.

本発明はこのような点に鑑みてなしたものであり、測定対象(「検査対象」とも呼ぶ。以下同じである。)となるリアクトル装置に対して通電し、測定範囲の温度(測定点となる複数の温度)において生じる振動の振動値を従来よりも短時間で測定することができるリアクトル装置の振動測定方法および振動測定装置を提供することを目的とする。   The present invention has been made in view of such a point, and energizes a reactor device to be a measurement object (also referred to as “inspection object”, hereinafter the same), and measures the temperature (measurement point and measurement point) of the measurement range. It is an object of the present invention to provide a reactor vibration measurement method and a vibration measurement apparatus capable of measuring vibration values of vibrations occurring at a plurality of temperatures) in a shorter time than conventional.

上記課題を解決するためになされた請求項1に記載の発明は、通電に伴って磁束を発生するコイルと、前記コイルが発生した磁束の磁路となるコアと、前記コイルと前記コアとを収容するケースとを有するリアクトル装置の振動値を測定するリアクトル装置の振動測定方法において、前記コアは、前記コアの温度変化とともにヤング率が変化する特性を備え、前記リアクトル装置の温度を変化させる目的の温度範囲に対応し、前記コイルに流す電流の周波数を変化させる所定範囲を決定する周波数範囲決定工程と、前記コイルに流す電流の周波数を前記所定範囲内で変化させ、前記リアクトル装置に生じる振動の振動値を測定する振動値測定工程とを有することを特徴とする。   The invention according to claim 1, which has been made in order to solve the above problems, includes a coil that generates a magnetic flux when energized, a core that is a magnetic path of the magnetic flux generated by the coil, the coil and the core. In a reactor apparatus vibration measurement method for measuring a vibration value of a reactor apparatus having a case for housing, the core has a characteristic that Young's modulus changes with a temperature change of the core, and the object is to change the temperature of the reactor apparatus. A frequency range determining step for determining a predetermined range for changing the frequency of the current flowing through the coil corresponding to the temperature range, and vibration generated in the reactor device by changing the frequency of the current flowing through the coil within the predetermined range. And a vibration value measuring step for measuring the vibration value.

温度変化とともにヤング率が変化する特性を備えるコアは、例えば「ダストコア」に代表されるように、少なくとも磁性体(主に磁性粉末)や樹脂を用いて形成される。ヤング率は、樹脂のような弾性的性質を有する物質では温度によって変化することが知られている。そのため、温度変化に伴ってヤング率が変化すると、コア(ひいてはリアクトル装置)の共振周波数(「固有振動数」とも呼ぶ。)も変化する。   The core having the characteristic that the Young's modulus changes with temperature change is formed using at least a magnetic material (mainly magnetic powder) or resin, as represented by “dust core”, for example. It is known that the Young's modulus varies depending on the temperature of a material having an elastic property such as a resin. Therefore, when the Young's modulus changes with a change in temperature, the resonance frequency (also referred to as “natural frequency”) of the core (and hence the reactor device) also changes.

一方、コアの温度を一定に維持しながら、コイルに電流(交流電流)の周波数を変化させると、コア(ひいてはリアクトル装置)の振動値も変化する。コアの温度を様々に変えて一定に維持しながら同様に電流の周波数を変化させると、上述したヤング率の変化に伴う共振周波数の変化と同等の変化をすることを発見した。言い換えると、電流の周波数をある一定の周波数を基準にすれば、コアの温度に対するコアの振動値の変化として捉えることができる。そこで、コアの温度に対応するヤング率を媒介として、電流の周波数に対応するコアの振動値を測定する、というのが本発明の原理である。   On the other hand, if the frequency of the current (alternating current) is changed in the coil while keeping the temperature of the core constant, the vibration value of the core (and hence the reactor device) also changes. It was discovered that changing the frequency of the current while changing the temperature of the core in various ways in the same manner changes the same as the change in the resonance frequency accompanying the change in Young's modulus described above. In other words, if the current frequency is based on a certain frequency, it can be understood as a change in the vibration value of the core with respect to the core temperature. Therefore, the principle of the present invention is to measure the vibration value of the core corresponding to the frequency of the current through the Young's modulus corresponding to the temperature of the core.

この構成によれば、コイルに流す電流の周波数を所定範囲(すなわち測定目的の温度範囲に相当する周波数範囲)で変化させるだけで、リアクトル装置に生じる振動の大きさ(本明細書では単に「振動値」と呼ぶ。)を測定することができる。したがって、リアクトル装置の温度管理を行うことなく、短時間で振動値を測定することができる。   According to this configuration, by simply changing the frequency of the current flowing through the coil within a predetermined range (that is, a frequency range corresponding to the temperature range for measurement), the magnitude of vibration generated in the reactor device (in this specification, simply “vibration”). Called "value"). Therefore, the vibration value can be measured in a short time without performing temperature management of the reactor device.

請求項2に記載の発明は、前記振動値測定工程は、前記所定範囲で電流の周波数を変化させて測定される振動のピーク値を、前記目的の温度範囲における振動のピーク値とすることを特徴とする。この構成によれば、所定範囲でコイルに流す電流の周波数を変化させて測定される振動値をピーク値とする。上述したようにヤング率を媒介として電流の周波数に対応する振動値を測定できるので、電流の周波数を所定範囲で変化させたときの振動値の最高値がそのままピーク値となる。したがって、振動のピーク値を簡単に特定できるので、規格品としての良否判定を容易に行える。   According to a second aspect of the present invention, in the vibration value measuring step, a vibration peak value measured by changing a current frequency in the predetermined range is set as a vibration peak value in the target temperature range. Features. According to this configuration, the vibration value measured by changing the frequency of the current flowing through the coil in a predetermined range is set as the peak value. As described above, since the vibration value corresponding to the frequency of the current can be measured through the Young's modulus as a medium, the maximum value of the vibration value when the current frequency is changed within a predetermined range becomes the peak value as it is. Therefore, since the vibration peak value can be easily specified, it is possible to easily determine whether the product is a standard product.

請求項3に記載の発明は、前記振動値測定工程は、前記リアクトル装置の温度を所定温度で維持する環境下で、前記所定範囲内で前記コイルに流す電流の周波数を変化させることを特徴とする。この構成によれば、リアクトル装置の温度管理が行われるので、振動値をより正確に測定することができる。   The invention according to claim 3 is characterized in that the vibration value measuring step changes a frequency of a current flowing through the coil within the predetermined range in an environment in which the temperature of the reactor device is maintained at a predetermined temperature. To do. According to this configuration, since the temperature management of the reactor device is performed, the vibration value can be measured more accurately.

請求項4に記載の発明は、前記周波数範囲決定工程は、前記リアクトル装置の温度を変化させる目的の温度範囲に対応して、前記コイルに流す電流の周波数を変化させる範囲を特定するための係数値を、前記リアクトル装置の状態に基づいて決定することを特徴とする。この構成によれば、リアクトル装置の状態に基づいて係数値を決定するので、コイルに流す電流の周波数にかかる所定範囲をより正確に特定することができる。したがって、振動値をより正確に測定することができる。なお「リアクトル装置の状態」には、例えばリアクトル装置(コイルやコア等)の形態(すなわち形状,材質,磁性体の含有率等)、リアクトル装置(具体的にはコア)の現在温度、コアのヤング率などのうちで一以上を含む。   According to a fourth aspect of the present invention, in the frequency range determination step, the range for changing the frequency of the current flowing through the coil corresponding to the target temperature range for changing the temperature of the reactor device is specified. A numerical value is determined based on the state of the reactor device. According to this configuration, since the coefficient value is determined based on the state of the reactor device, the predetermined range relating to the frequency of the current flowing through the coil can be specified more accurately. Therefore, the vibration value can be measured more accurately. The “reactor device state” includes, for example, the form of the reactor device (coil, core, etc.) (ie, shape, material, content of magnetic substance, etc.), current temperature of the reactor device (specifically, core), core Including one or more of Young's modulus.

請求項5に記載の発明は、前記周波数範囲決定工程は、特定された前記係数値と、前記リアクトル装置の現在温度とに基づいて、前記コイルに流す電流の周波数を変化させる範囲を特定することを特徴とする。この構成によれば、リアクトル装置の現在温度を考慮するので、コイルに流す電流の周波数を変化させる所定範囲をより正確に特定することができる。   According to a fifth aspect of the present invention, the frequency range determination step specifies a range in which a frequency of a current flowing through the coil is changed based on the specified coefficient value and a current temperature of the reactor device. It is characterized by. According to this configuration, since the current temperature of the reactor device is taken into consideration, the predetermined range in which the frequency of the current flowing through the coil can be specified more accurately.

請求項6に記載の発明は、通電に伴って磁束を発生するコイルと、前記コイルが発生した磁束の磁路となるコアと、前記コイルと前記コアとを収容するケースとを有するリアクトル装置の振動値を測定するリアクトル装置の振動測定装置において、前記コアは、前記コアの温度変化とともにヤング率が変化する特性を備え、前記リアクトル装置の温度を変化させる目的の温度範囲に対応し、前記コイルに流す電流の周波数を変化させる所定範囲を決定する周波数範囲決定手段と、前記周波数範囲決定手段によって決定された前記所定範囲内で、前記周波数を変化させながら電流を前記コイルに流す交流電源と、前記電流が前記コイルに流れる際に、前記リアクトル装置に生じる振動の振動値を測定する振動値測定手段とを有することを特徴とする。この構成によれば、請求項1に記載の発明と同様に、リアクトル装置の温度管理を行うことなく、短時間で振動値を測定することができる。   The invention according to claim 6 is a reactor device having a coil that generates magnetic flux when energized, a core that is a magnetic path of the magnetic flux generated by the coil, and a case that accommodates the coil and the core. In the vibration measuring device of a reactor device that measures a vibration value, the core has a characteristic that Young's modulus changes with a temperature change of the core, and corresponds to a target temperature range in which the temperature of the reactor device is changed, and the coil A frequency range determining means for determining a predetermined range for changing a frequency of a current to be passed through, an AC power source for supplying a current to the coil while changing the frequency within the predetermined range determined by the frequency range determining means, Vibration value measuring means for measuring a vibration value of vibration generated in the reactor device when the current flows through the coil. That. According to this configuration, similarly to the first aspect of the invention, the vibration value can be measured in a short time without performing the temperature management of the reactor device.

請求項7に記載の発明は、前記リアクトル装置の温度を変化させる目的の温度範囲に対応させて前記コイルに流す電流の周波数を所定範囲で変化させ、測定される振動のピーク値を前記目的の温度範囲における振動のピーク値とすることを特徴とする。この構成によれば、請求項2に記載の発明と同様に、振動のピーク値を簡単に特定できるので、規格品としての良否判定を容易に行える。   According to a seventh aspect of the present invention, the frequency of the current flowing through the coil is changed in a predetermined range in correspondence with a target temperature range in which the temperature of the reactor device is changed, and a peak value of vibration to be measured is set as the target temperature range. The peak value of vibration in the temperature range is used. According to this configuration, as in the second aspect of the invention, the peak value of vibration can be easily specified, so that the quality determination as a standard product can be easily performed.

リアクトル装置の構成例を模式的に示す平面図である。It is a top view which shows typically the structural example of a reactor apparatus. 図1に示すII−II線矢視における縦断面図である。It is a longitudinal cross-sectional view in the II-II line arrow shown in FIG. 振動測定装置の構成例を示す模式図である。It is a schematic diagram which shows the structural example of a vibration measuring apparatus. コア温度とヤング率との関係を説明するグラフ図である。It is a graph explaining the relationship between core temperature and Young's modulus. コア温度と共振周波数(固有振動数)との関係を説明するグラフ図である。It is a graph explaining the relationship between core temperature and resonant frequency (natural frequency). コア温度と電流の周波数との関係を説明するグラフ図である。It is a graph explaining the relationship between core temperature and the frequency of an electric current. 電流の周波数および温度に対する振動数の関係を説明するグラフ図である。It is a graph explaining the relationship of the frequency with respect to the frequency and temperature of an electric current. 振動測定(検査)処理の手続き例を示すフローチャートである。It is a flowchart which shows the example of a procedure of a vibration measurement (inspection) process. 電流の周波数と振動数との関係を説明するグラフ図である。It is a graph explaining the relationship between the frequency of an electric current, and a frequency. リアクトル装置の使用例を示す回路図である。It is a circuit diagram which shows the usage example of a reactor apparatus.

以下、本発明を実施するための形態について、図面に基づいて説明する。なお、特に明示しない限り、「電流」という場合には交流電流を意味し、「接続する」という場合には電気的な接続を意味する。各図は、本発明を説明するために必要な要素を図示し、実際の全要素を図示してはいない。上下左右等の方向は、図面の記載を基準とする。周波数について混乱を回避するため、交流電流の周波数は「電流周波数」と呼び、振動の周波数(振動数)は「振動周波数」と呼ぶことにする。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. Unless otherwise specified, “current” means alternating current, and “connect” means electrical connection. Each figure shows elements necessary for explaining the present invention, and does not show all actual elements. The directions such as up, down, left and right are based on the description in the drawings. In order to avoid confusion about the frequency, the frequency of the alternating current is called “current frequency”, and the frequency of vibration (frequency) is called “vibration frequency”.

まず、振動値の測定対象であるリアクトル装置の構成例について、図1と図2を参照しながら説明する。図1にはリアクトル装置の構成例を模式的に平面図で示す。図2には図1に示すII−II線で切断した縦断面図で示す。   First, a configuration example of a reactor device that is a measurement target of a vibration value will be described with reference to FIGS. 1 and 2. FIG. 1 schematically shows a configuration example of a reactor device in a plan view. FIG. 2 is a longitudinal sectional view taken along line II-II shown in FIG.

図1および図2に示すリアクトル装置10は、ケース11,ダストコア12,コイル13,端子部14,中芯(なかしん)15などを有する。ケース11の形状は、ダストコア12,コイル13,中芯15等を収容可能であれば任意の形状を適用できる。本形態のケース11では、一例として上方が開口する箱状の筐体(直方体形状の側面角部が丸められている)に形成する。またケース11の材質は、ダストコア12が硬化する硬化温度(例えば120〜170℃等)の耐熱性を有する任意の材質を適用できる。本形態のケース11には、一例として金型鋳造法によって製作されたアルミダイカストを用いる。   A reactor device 10 shown in FIGS. 1 and 2 includes a case 11, a dust core 12, a coil 13, a terminal portion 14, an inner core 15. As long as the shape of the case 11 can accommodate the dust core 12, the coil 13, the core 15 and the like, any shape can be applied. In the case 11 of the present embodiment, as an example, the case 11 is formed in a box-shaped housing whose upper side is open (rectangular-shaped side corners are rounded). Moreover, the material of case 11 can apply the arbitrary materials which have heat resistance of the curing temperature (for example, 120-170 degreeC etc.) which the dust core 12 hardens | cures. As an example, the case 11 of the present embodiment uses an aluminum die cast manufactured by a die casting method.

ケース11は、収容部11a,締結穴11b,中芯15などを有する。収容部11aは内壁面と底面とで囲まれた空間であり、コイル13やダストコア12などを収容する。ケース11の底面には、締結部材19を用いて中芯15を固定するための締結穴11dが形成されている。締結穴11dは、締結部材19の頭頂面を底面とほぼ同じ位置にして段差を無くすための座ぐり(ザグリ)を有する。なお図示しないが、ケース11と中芯15とを一体形成してもよく(例えば鋳造法など)、この場合は締結部材19が不要になる。   The case 11 has an accommodating portion 11a, a fastening hole 11b, a core 15 and the like. The accommodating portion 11a is a space surrounded by the inner wall surface and the bottom surface, and accommodates the coil 13, the dust core 12, and the like. A fastening hole 11 d for fixing the core 15 using the fastening member 19 is formed on the bottom surface of the case 11. The fastening hole 11d has counterbore (counterbore) for making the top surface of the fastening member 19 substantially the same position as the bottom surface and eliminating the step. Although not shown, the case 11 and the core 15 may be integrally formed (for example, a casting method). In this case, the fastening member 19 is unnecessary.

リアクトル装置10の振動値を測定するにあたって、温度センサ16,加振器17,振動センサ18などを所定位置(例えばケース11の外側面など)に取り付ける。温度センサ16は、リアクトル装置10の温度(主にダストコア12の温度)を測定する際に用いられ、例えばサーミスタや測温抵抗体などが該当する。加振器17は、リアクトル装置10に固有の振動数(すなわち共振周波数)を測定する際に用いられ、例えば打撃装置やバイブレータなどが該当する。打撃装置の一例は、ハンマー,モータ,制御部等を備え、後述する振動制御信号vcに従ってハンマーでケース11を打撃する機能を有する。「振動値測定手段」に相当する振動センサ18は、交流電流Iacを流すに伴って生じるリアクトル装置10の振動の大きさ(以下では「振動値」)を測定可能なセンサであれば任意である。例えば、加速度センサやレーザドップラー振動計などが該当する。   In measuring the vibration value of the reactor device 10, the temperature sensor 16, the vibrator 17, the vibration sensor 18, and the like are attached to predetermined positions (for example, the outer surface of the case 11). The temperature sensor 16 is used when measuring the temperature of the reactor device 10 (mainly the temperature of the dust core 12), and corresponds to, for example, a thermistor or a resistance temperature detector. The vibrator 17 is used when measuring a frequency (that is, a resonance frequency) unique to the reactor device 10, and corresponds to, for example, a striking device or a vibrator. An example of the hitting device includes a hammer, a motor, a control unit, and the like, and has a function of hitting the case 11 with a hammer according to a vibration control signal vc described later. The vibration sensor 18 corresponding to the “vibration value measuring means” is optional as long as it can measure the magnitude of the vibration of the reactor device 10 (hereinafter referred to as “vibration value”) that occurs as the alternating current Iac flows. . For example, an acceleration sensor or a laser Doppler vibrometer is applicable.

ダストコア12は「コア」に相当する。このダストコア12は、ダストコア12自体の温度変化とともにヤング率が変化する特性を備えていれば材質(成分)を問わない。本形態のダストコア12には、磁性粉末と樹脂とを混合させて硬化(「固化」とも呼ぶ。)させた磁性粉末混合樹脂を用いる。磁性粉末は「磁性体」に相当し、磁性を有すれば材質を問わない。本形態では、例えばFe−Si系粉末を用いる。樹脂は、磁性粉末を混合して硬化可能であれば材質を問わない。本形態では、例えば熱硬化性樹脂の一種であるエポキシ樹脂(EP)を用いる。樹脂に磁性粉末を混合するのは、コイル13が発生した磁束の磁路となり、ケース11の外部に磁束が漏れてノイズ等となるのを防止するためである。   The dust core 12 corresponds to a “core”. The dust core 12 may be made of any material (component) as long as it has a characteristic that the Young's modulus changes with the temperature change of the dust core 12 itself. For the dust core 12 of this embodiment, a magnetic powder mixed resin obtained by mixing magnetic powder and resin and curing (also referred to as “solidification”) is used. The magnetic powder corresponds to a “magnetic material”, and any material can be used as long as it has magnetism. In this embodiment, for example, Fe—Si based powder is used. The resin may be made of any material as long as the magnetic powder can be mixed and cured. In this embodiment, for example, an epoxy resin (EP) which is a kind of thermosetting resin is used. The reason why the magnetic powder is mixed with the resin is to prevent a magnetic path of the magnetic flux generated by the coil 13 from leaking out of the case 11 and causing noise or the like.

コイル13は、端子部14(端子台を含む)に接続され、端子部14を通じて通電されると磁束を発生する。本形態のコイル13は、一例として多数回で捲回されたドーナツ状に形成されている。なお図2に示すように、端子部14はダストコア12の上面側に接続し易い位置に配置する。   The coil 13 is connected to the terminal portion 14 (including the terminal block), and generates a magnetic flux when energized through the terminal portion 14. The coil 13 of this form is formed in the donut shape wound by many times as an example. As shown in FIG. 2, the terminal portion 14 is arranged at a position where it can be easily connected to the upper surface side of the dust core 12.

中芯15は、収容部11aの所定位置に配置され、その形状は任意に形成できる。所定位置は、中心位置、重心位置、偏心位置などいずれの位置を採用してもよい。本形態の中芯15は、ケース11の中心位置(中央部)に配置され、締結用穴15aを備えた円筒形を基本とし、側面が湾曲面(具体的には中心側に凹む一葉双曲面)をなす。このような形状で中芯15を形成することによって、加熱に伴ってダストコア12が硬化した後、当該ダストコア12がケース11から抜けるのを防止したり、ダストコア12が中芯15の軸方向(上下方向)に動くのを防止したりする機能などを担う。したがって、これらの機能を担う形状であれば、図2に示す形状には限られない。   The middle core 15 is disposed at a predetermined position of the accommodating portion 11a, and its shape can be arbitrarily formed. As the predetermined position, any position such as a center position, a gravity center position, and an eccentric position may be adopted. The core 15 of this embodiment is arranged at the center position (center portion) of the case 11 and is basically a cylindrical shape having a fastening hole 15a, and the side surface is a curved surface (specifically, a one-leaf hyperboloid surface recessed toward the center side). ). By forming the core 15 in such a shape, the dust core 12 is prevented from being removed from the case 11 after the dust core 12 is cured with heating, or the dust core 12 is moved in the axial direction of the core 15 (up and down). The function to prevent movement in the direction). Therefore, the shape shown in FIG. 2 is not limited as long as it has these functions.

次に、上述したリアクトル装置10の振動値を測定する振動測定装置20の構成例について、図3を参照しながら説明する。図3に示す振動測定装置20は、交流電源21,振動制御手段22,係数決定手段23,記録媒体24,良否判別手段25,電源制御手段26,範囲決定手段27などを有する。これらの要素のうちで、二点鎖線で図示する振動制御手段22,係数決定手段23などの要素は必要に応じて備えればよい。以下では、各要素の機能や作用等について説明する。   Next, a configuration example of the vibration measuring device 20 that measures the vibration value of the reactor device 10 described above will be described with reference to FIG. 3 includes an AC power supply 21, vibration control means 22, coefficient determination means 23, recording medium 24, pass / fail judgment means 25, power supply control means 26, range determination means 27, and the like. Among these elements, elements such as the vibration control means 22 and the coefficient determination means 23 illustrated by a two-dot chain line may be provided as necessary. Below, the function and action of each element will be described.

交流電源21は、リアクトル装置10の端子部14と接続され、コイル13に測定用信号を出力する電力源である。本形態では、測定用信号として交流電流Iacを用いる。この交流電流Iacの電流周波数fは、後述する電源制御手段26から伝達される周波数制御信号Icに従う。なお図1では、過電流保護用の回路素子(本形態では抵抗器R)を直列接続している。また測定用信号には、交流電流Iacに代えて交流電圧を用いてもよい。   The AC power source 21 is a power source that is connected to the terminal unit 14 of the reactor device 10 and outputs a measurement signal to the coil 13. In this embodiment, an alternating current Iac is used as a measurement signal. The current frequency f of the alternating current Iac follows a frequency control signal Ic transmitted from the power supply control means 26 described later. In FIG. 1, circuit elements for overcurrent protection (resistor R in this embodiment) are connected in series. An AC voltage may be used for the measurement signal instead of the AC current Iac.

振動制御手段22は、各温度におけるリアクトル装置10の共振周波数fc(固有振動数)を特定するために用いられる。この振動制御手段22はケース11の外側面に取り付けられる加振器17に対して振動制御信号vcを伝達する。二点鎖線で図示する加振器17は、必要に応じてケース11の外側面に取り付ける。振動制御信号vcを受けた加振器17は、振動制御信号vcに含まれる振動用周波数に従ってリアクトル装置10(具体的にはケース11)を振動させる。   The vibration control means 22 is used to specify the resonance frequency fc (natural frequency) of the reactor device 10 at each temperature. The vibration control means 22 transmits a vibration control signal vc to the vibrator 17 attached to the outer surface of the case 11. The vibrator 17 illustrated with a two-dot chain line is attached to the outer surface of the case 11 as necessary. Upon receiving the vibration control signal vc, the vibrator 17 vibrates the reactor device 10 (specifically, the case 11) according to the vibration frequency included in the vibration control signal vc.

上述したように本発明の原理は、ダストコア12の温度に対応するヤング率Eを媒介として、交流電流Iacの電流周波数fに対応する振動値を測定することである。これを実現するためには、まずダストコア12の温度を変化させたときにヤング率Eがどのように変化するのかをデータ収集して把握する必要がある。   As described above, the principle of the present invention is to measure the vibration value corresponding to the current frequency f of the alternating current Iac through the Young's modulus E corresponding to the temperature of the dust core 12 as a medium. In order to realize this, it is first necessary to collect and grasp how the Young's modulus E changes when the temperature of the dust core 12 is changed.

一般的には図4に示す特性線PL1のように、ダストコア12の温度(本明細書では「コア温度」と呼ぶ。)Tcが高くなるにつれて、ヤング率Eが低くなってゆく。下限温度TL(例えば−40[℃])から上限温度TU(例えば140[℃])までの温度範囲では、ヤング率Eの変化が線形性を示す。下限温度TLではヤング率ELになり、上限温度TUではヤング率EUになる。一方、上限温度TUよりも高いガラス転移温度Tg(例えば180[℃])を前後に、ヤング率Eが大きく変化(低下)する。これは、固体であったダストコア12が溶融してゴム状になることを意味する。したがって、下限温度TLから上限温度TUまでの温度範囲でデータ収集を行う。 In general, as the characteristic line PL1 shown in FIG. 4 shows, the Young's modulus E decreases as the temperature of the dust core 12 (referred to as “core temperature” in this specification) Tc increases. In the temperature range from the lower limit temperature T L (for example, −40 [° C.]) to the upper limit temperature T U (for example, 140 [° C.]), the change in Young's modulus E exhibits linearity. At the lower limit temperature T L , the Young's modulus E L is obtained, and at the upper limit temperature T U , the Young's modulus E U is obtained. On the other hand, the Young's modulus E greatly changes (decreases) around a glass transition temperature Tg (for example, 180 [° C.]) higher than the upper limit temperature T U. This means that the dust core 12 that has been solid melts and becomes rubbery. Therefore, data collection is performed in the temperature range from the lower limit temperature T L to the upper limit temperature T U.

リアクトル装置10の温度T(すなわちコア温度Tc)を一定に維持可能な温度管理下(例えば恒温槽の中)において、ヤング率Eが異なる複数のリアクトル装置10を用いて、上記のデータ収集を行う。当該複数のリアクトル装置10は、製造品の中でもヤング率Eが高いグループと、同じくヤング率Eが低いグループとを用いるのが望ましい。このように大きく異なるヤング率Eにかかる変化に共通性があれば、どのようなヤング率Eのダストコア12でも適用可能であることになる。実際に上述した2つのグループに含まれる各リアクトル装置10について、複数のコア温度Tcごとに、当該コア温度Tcを維持しながら振動用周波数を変化させて加振器17を振動させ、コア温度Tcにおける共振周波数fcを求めた。共振周波数fcは、「α」を振動対象(本形態ではダストコア12)によって異なる係数値とし、「M」を振動対象の重量とすると、理論的には次に示す関数式(1)に従う。   The above-described data collection is performed using a plurality of reactor devices 10 having different Young's modulus E under temperature control (for example, in a thermostatic bath) capable of maintaining the temperature T (that is, the core temperature Tc) of the reactor device 10 constant. . It is desirable that the plurality of reactor devices 10 use a group having a high Young's modulus E and a group having a low Young's modulus E among manufactured products. As long as there is a common change in Young's modulus E, which is greatly different, dust cores 12 having any Young's modulus E can be applied. For each of the reactor devices 10 actually included in the two groups described above, the vibrator 17 is vibrated by changing the vibration frequency while maintaining the core temperature Tc for each of the plurality of core temperatures Tc. The resonance frequency fc was obtained. The resonance frequency fc theoretically follows the following function equation (1), where “α” is a different coefficient value depending on the vibration target (in this embodiment, the dust core 12) and “M” is the weight of the vibration target.

上述のように共振周波数fcを求めた結果の一例をグラフで示すと、図5のようになる。以下では、コア温度Tcと共振周波数fcとを一組とするデータを単に「関連データ」と呼ぶ。図5に実線で示す特性線PL2は、ヤング率Eが高いグループにかかる各リアクトル装置10を対象とした関連データ(記号「●」でプロット)に基づいて、最小二乗法によって得られる近似直線(一次関数)である。同じく一点鎖線で示す特性線PL3は、ヤング率Eが低いグループにかかる各リアクトル装置10を対象とした関連データ(記号「■」でプロット)に基づいて、最小二乗法によって得られる近似直線である。特性線PL2,PL3を精査してみると、ともにコア温度Tcが高くなるにつれて、共振周波数fcが低くなる。図示しないが、他のヤング率Eのグループについても同様の結果が得られた。図5に示す特性線PL2,PL3等によれば、その変化率はヤング率Eに依存せず、ほぼ一定値の係数K(=Δf/ΔT)であった。この係数Kは「係数値」に相当する。   An example of the result of obtaining the resonance frequency fc as described above is shown as a graph in FIG. Hereinafter, data in which the core temperature Tc and the resonance frequency fc are set as one set is simply referred to as “related data”. A characteristic line PL2 indicated by a solid line in FIG. 5 is an approximate straight line obtained by the least square method based on the related data (plotted by the symbol “●”) for each reactor device 10 related to the group having a high Young's modulus E. A linear function). Similarly, a characteristic line PL3 indicated by a one-dot chain line is an approximate straight line obtained by the least square method based on related data (plotted by the symbol “■”) for each reactor device 10 relating to a group having a low Young's modulus E. . When the characteristic lines PL2 and PL3 are examined closely, the resonance frequency fc decreases as the core temperature Tc increases. Although not shown, similar results were obtained for other Young's modulus E groups. According to the characteristic lines PL2, PL3, etc. shown in FIG. 5, the change rate does not depend on the Young's modulus E, and is a substantially constant coefficient K (= Δf / ΔT). This coefficient K corresponds to a “coefficient value”.

図3に戻り、係数決定手段23は、複数のリアクトル装置10について得られる関連データに基づいて、最小二乗法によって得られる近似直線の傾きから係数Kを決定する。リアクトル装置10の形態(すなわち形状,材質,磁性体の含有率等)が変わるごとに決定するのが望ましい。また、関連データの数が多いほど、係数Kの精度も向上する。こうして決定された係数Kは、交流電源21の周波数制御に用いるので、記録媒体24に係数情報24bとして記録しておく。なお自動化する場合には、複数のリアクトル装置10について、複数のコア温度Tcごとに当該コア温度Tcを維持しながら振動用周波数を変化させて加振器17を振動させ、コア温度Tcにおける共振周波数fcを求めて記録媒体24に一時的に関連データとして記録しておく処理を、上記係数Kの決定前に行うように制御すればよい。   Returning to FIG. 3, the coefficient determining means 23 determines the coefficient K from the slope of the approximate straight line obtained by the least square method based on the related data obtained for the plurality of reactor devices 10. It is desirable to determine each time the form of the reactor device 10 (that is, the shape, material, content of magnetic substance, etc.) changes. In addition, as the number of related data increases, the accuracy of the coefficient K improves. Since the coefficient K determined in this way is used for frequency control of the AC power supply 21, it is recorded in the recording medium 24 as coefficient information 24b. In the case of automation, for each of the plurality of reactor devices 10, the vibration frequency is changed while maintaining the core temperature Tc for each of the plurality of core temperatures Tc to vibrate the vibrator 17, and the resonance frequency at the core temperature Tc. The process of obtaining fc and temporarily recording it as related data on the recording medium 24 may be controlled so as to be performed before the coefficient K is determined.

記録媒体24は、複数の関連データ(すなわちコア温度Tcと共振周波数fcとを一組とするデータ)や、係数情報24b(すなわち係数K)、後述する振動情報24aなどの各情報を記録可能な任意の媒体を用いることができる。例えば、フラッシュメモリ(SSDを含む)や、ハードディスク、光ディスク(光磁気ディスク等を含む)、フレキシブルディスク、RAMなどのうちで一以上が該当する。なお、電源遮断後も情報を保持可能な不揮発性メモリを用いるのが望ましい。   The recording medium 24 can record a plurality of pieces of information such as a plurality of related data (that is, data in which the core temperature Tc and the resonance frequency fc are set as one set), coefficient information 24b (that is, coefficient K), and vibration information 24a described later. Any medium can be used. For example, one or more of flash memory (including SSD), a hard disk, an optical disk (including a magneto-optical disk, etc.), a flexible disk, and a RAM are applicable. Note that it is desirable to use a non-volatile memory that can retain information even after the power is turned off.

良否判別手段25は、測定対象のリアクトル装置10が「正常品(合格品)」または「不良品(不合格品)」のいずれかを判別して報知する機能を担う。具体的には、温度センサ16によって測定された振動値viが振動規格値(振動許容値)vLを超えているか否かに従って判別を行う。報知方法は任意であり、例えばランプや表示器等で表示したり、スピーカやブザー等で鳴らすなどが該当する。   The pass / fail determination means 25 has a function of determining and notifying whether the reactor device 10 to be measured is “normal product (accepted product)” or “defective product (failed product)”. Specifically, the determination is made according to whether or not the vibration value vi measured by the temperature sensor 16 exceeds the vibration standard value (vibration allowable value) vL. The notification method is arbitrary, for example, displaying with a lamp, a display, or the like, or sounding with a speaker, a buzzer, or the like.

電源制御手段26は、後述する範囲決定手段27から伝達される信号等に含まれる周波数範囲Fs(具体的には下限電流周波数fLから上限電流周波数fUまでの範囲;図6を参照)内において、コイル13に流す交流電流Iacの電流周波数fを制御する。周波数範囲Fsは「所定範囲」に相当する。電流周波数fの制御は、周波数範囲Fs内で連続的に変化させるのが望ましい。現実的には、短時間で良否判定を行う要請や、ダストコア12の温度上昇を抑えるためにコイル13に交流電流Iacを流す時間を短くする要請などの諸条件を満たす必要がある。そのため、周波数範囲Fs内の電流周波数fであって、離散的に選定した複数(例えば5点や10点等)の電流周波数fごとに変化させる。 The power supply control means 26 is within a frequency range Fs (specifically, a range from the lower limit current frequency f L to the upper limit current frequency f U ; see FIG. 6) included in a signal transmitted from the range determination means 27 described later. , The current frequency f of the alternating current Iac flowing through the coil 13 is controlled. The frequency range Fs corresponds to a “predetermined range”. The current frequency f is desirably controlled continuously within the frequency range Fs. Actually, it is necessary to satisfy various conditions such as a request for determining pass / fail in a short time and a request to shorten the time for which the alternating current Iac is passed through the coil 13 in order to suppress the temperature rise of the dust core 12. Therefore, the current frequency f is within the frequency range Fs and is changed for each of a plurality of discretely selected current frequencies f (for example, 5 points, 10 points, etc.).

リアクトル装置10(特にコイル13)に交流電流Iacを流すと、コイル13を起因としてリアクトル装置10が振動することが知られている。振動がピークになる電流周波数fは、上述した共振周波数fcとほぼ同じである。このような性質と、上述した係数Kとを用いて、コア温度が「Tc」の時に、目的の温度「T」の振動値を得るために印加する電流周波数を「fm」として関係を表すと、図6に示すような近似直線(一次関数)になる。図6には、縦軸を電流周波数fとし、横軸をコア温度Tcとしている。電流周波数fは、振動周波数に相当する「相当周波数」である。図6に示す特性線PL4は、次に示す関数式(2)に従う近似直線である。式中「fm(T)」は測定範囲の電流周波数fを示す関数式表現であり、「fc」は基準となる動作周波数(以下では単に「基準周波数」と呼ぶ。例えば10[kHz])であり、「T」はリアクトル装置10(特にダストコア12)の温度(一定温度)である。 It is known that when an alternating current Iac is passed through the reactor device 10 (particularly the coil 13), the reactor device 10 vibrates due to the coil 13. The current frequency f at which the vibration reaches a peak is substantially the same as the resonance frequency fc described above. Using such a property and the above-described coefficient K, when the core temperature is “Tc”, the relationship is expressed as “fm” as the current frequency applied to obtain the vibration value of the target temperature “T”. The approximate straight line (linear function) as shown in FIG. In FIG. 6, the vertical axis is the current frequency f, and the horizontal axis is the core temperature Tc. The current frequency f is an “equivalent frequency” corresponding to the vibration frequency. A characteristic line PL4 shown in FIG. 6 is an approximate line according to the following functional expression (2). Where "f m (T)" is a function expression representation of the current frequency f of the measurement range is referred to as "f c" is simply "reference frequency" in the operating frequency (hereinafter as a reference. For example 10 [kHz] "T" is the temperature (constant temperature) of the reactor device 10 (particularly the dust core 12).

範囲決定手段27は、測定したい温度範囲に対応する電流周波数fの範囲を求め、周波数範囲Fsとして電源制御手段26に伝達する。すなわち、下限電流周波数fLおよび上限電流周波数fUを周波数範囲Fsとして電源制御手段26に伝達する。下限温度TLに対応する下限電流周波数fLは、上記関数式(3)に従って求める。上限温度TUに対応する上限電流周波数fUは、上記関数式(4)に従って求める。 The range determination unit 27 obtains a range of the current frequency f corresponding to the temperature range to be measured, and transmits it to the power supply control unit 26 as the frequency range Fs. That is, the lower limit current frequency f L and the upper limit current frequency f U are transmitted to the power supply control means 26 as the frequency range Fs. The lower limit current frequency f L corresponding to the lower limit temperature T L is obtained according to the above function equation (3). The upper limit current frequency f U corresponding to the upper limit temperature T U is obtained according to the above function equation (4).

一方、周波数範囲Fs(下限電流周波数fLから上限電流周波数fUまで)が分かっても、その間に振動値viがどのように変化するかが不明である。そこで、リアクトル装置10に対して複数のコア温度Tcごとに、当該コア温度Tcを維持しながら電流周波数fを変化させる試験を行い、電流周波数fの変化に伴う振動値viの変化を測定した。その測定結果の一例を図7に示す。 On the other hand, even if the frequency range Fs (from the lower limit current frequency f L to the upper limit current frequency f U ) is known, it is unclear how the vibration value vi changes during that time. Therefore, for each of the plurality of core temperatures Tc, the reactor apparatus 10 was tested to change the current frequency f while maintaining the core temperature Tc, and the change in the vibration value vi accompanying the change in the current frequency f was measured. An example of the measurement result is shown in FIG.

図7(A)には、縦軸を振動値viとし、横軸を電流周波数fとする振動値viの変化を示す。図7(A)の例では、リアクトル装置10の温度(すなわちコア温度Tc)を、8点の温度Ta,Tb,Td,Te,Tf,Th,Ti,Tjについて、それぞれの温度管理下で電流周波数fを変化させている。温度の高低関係は、Ta>Tb>TU>Td>Te>Tf>Th>Ti>TL>Tjである。各温度のグラフの頂点(最大値,ピーク値)に対応する振動値viは、当該温度にかかるリアクトル装置10の固有振動数(共振周波数)である。 FIG. 7A shows changes in the vibration value vi with the vertical axis representing the vibration value vi and the horizontal axis representing the current frequency f. In the example of FIG. 7A, the temperature of the reactor device 10 (that is, the core temperature Tc) is set at eight temperatures Ta, Tb, Td, Te, Tf, Th, Ti, and Tj under current temperature control. The frequency f is changed. The temperature relationship is Ta>Tb> T U >Td>Te>Tf>Th>Ti> T L > Tj. The vibration value vi corresponding to the vertex (maximum value, peak value) of the graph of each temperature is the natural frequency (resonance frequency) of the reactor device 10 related to the temperature.

図7(B)には、縦軸を振動値viとし、横軸をコア温度Tcとする特性線PL5cの変化を示す。図7(B)の例に示す特性線PL5cは、図7(A)に示す基準周波数fcにおける各温度の振動値viと、その振動値viが生じたコア温度Tcとの関係を示す。図4に示す特性線PL1で明らかなように、コア温度Tcが高くなるにつれてヤング率Eが低くなる。振動値viは、コア温度Tcに追従するように高くなってゆき、ある温度を境に逆に低くなってゆく。この境界を示す温度はガラス転移温度Tgであると考えられる。図7(A)において基準周波数fcよりも高い周波数fbに移行して同様に試験してみると、図7(B)の一点鎖線で示す特性線PL5bのように変化する。同様にして、基準周波数fcよりも高い周波数fdに移行して同様に試験してみると、図7(B)の二点鎖線で示す特性線PL5dのように変化する。特性線PL5b,PL5c,PL5dを比較してみると、変化性状はほとんど同じであるが、コア温度Tcが変化している。 FIG. 7B shows a change in the characteristic line PL5c in which the vertical axis represents the vibration value vi and the horizontal axis represents the core temperature Tc. Characteristic line PL5c shown in the example of FIG. 7 (B) shows the vibration value vi of the temperature at the reference frequency f c shown in FIG. 7 (A), the relationship between the core temperature Tc the vibration value vi has occurred. As is apparent from the characteristic line PL1 shown in FIG. 4, the Young's modulus E decreases as the core temperature Tc increases. The vibration value vi increases so as to follow the core temperature Tc, and conversely decreases at a certain temperature. The temperature showing this boundary is considered to be the glass transition temperature Tg. When FIG. 7 (A) Try tested similarly shifted to a higher frequency f b than the reference frequency f c in changes as the characteristic line PL5b indicated by a chain line in FIG. 7 (B). Similarly, when a similar test is performed after shifting to a frequency f d higher than the reference frequency f c , the characteristic changes as indicated by a two-dot chain line in FIG. 7B. When the characteristic lines PL5b, PL5c, and PL5d are compared, the change properties are almost the same, but the core temperature Tc is changed.

振動測定装置20でリアクトル装置10の振動値viを測定する手続きについて、図8を参照しながら説明する。図8には、一のリアクトル装置10について振動測定(検査)処理の手続き例をフローチャートで示す。この手続き例は、CPUを中心とするソフトウェアで実現してもよく、回路素子によるハードウェアロジックで実現してもよい。図中に二点鎖線で示すステップは、必要に応じて実行すればよい。なお、複数のリアクトル装置10について振動測定(検査)を行う場合には、図8の振動測定(検査)処理を対象数だけ繰り返し実行すればよい。また、リアクトル装置10(特にダストコア12)は、恒温槽等で設定される温度(例えば25[℃])を一定に維持するように温度管理がなされる。また、ステップS10〜S12は「周波数範囲決定工程」や「周波数範囲決定手段」に相当し、ステップS13〜S15,S17〜S19は「振動値測定工程」や「振動値測定手段」に相当し、ステップS16は良否判別手段25に相当し、ステップS16,S20〜S22は「検査手段」に相当する。   A procedure for measuring the vibration value vi of the reactor device 10 by the vibration measuring device 20 will be described with reference to FIG. FIG. 8 is a flowchart showing a procedure example of vibration measurement (inspection) processing for one reactor device 10. This procedure example may be realized by software centered on the CPU, or may be realized by hardware logic using circuit elements. What is necessary is just to perform the step shown with a dashed-two dotted line in a figure as needed. When vibration measurement (inspection) is performed for a plurality of reactor devices 10, the vibration measurement (inspection) processing of FIG. Further, the reactor device 10 (particularly the dust core 12) is temperature-controlled so as to maintain a constant temperature (for example, 25 [° C.]) set in a thermostatic chamber or the like. Steps S10 to S12 correspond to “frequency range determination step” and “frequency range determination means”, and steps S13 to S15 and S17 to S19 correspond to “vibration value measurement step” and “vibration value measurement means”. Step S16 corresponds to pass / fail judgment means 25, and steps S16 and S20 to S22 correspond to “inspection means”.

図8の振動測定(検査)処理において、まずリアクトル装置10の温度T(コア温度Tcに相当する)を温度センサ16によって測定し〔ステップS10〕、図5に示すようにリアクトル装置10が共振する共振周波数fcとコア温度Tcとを一組とする関連データを取得し、当該取得できた複数の関連データに基づいて特性線PL2,PL3等の係数Kを求める〔ステップS11〕。求めた係数Kにかかる特性線PL4などに基づいて周波数範囲Fs(すなわち下限電流周波数fLと上限電流周波数fU)を決定する〔ステップS12〕。なお、ステップS12,S13は恒温槽等でリアクトル装置10が一定温度に維持されない場合など、必要に応じて実行すればよい。 In the vibration measurement (inspection) process of FIG. 8, first, the temperature T of the reactor device 10 (corresponding to the core temperature Tc) is measured by the temperature sensor 16 [step S10], and the reactor device 10 resonates as shown in FIG. Relevant data having a set of the resonance frequency fc and the core temperature Tc is acquired, and the coefficients K of the characteristic lines PL2, PL3, etc. are obtained based on the plurality of acquired related data [step S11]. The frequency range Fs (that is, the lower limit current frequency f L and the upper limit current frequency f U ) is determined based on the characteristic line PL4 relating to the obtained coefficient K [step S12]. In addition, what is necessary is just to perform step S12, S13 as needed, such as when the reactor apparatus 10 is not maintained at fixed temperature by a thermostat etc.

始めにリアクトル装置10のコイル13に流す交流電流Iacの周波数を下限電流周波数fLに設定する〔ステップS13〕。現在設定されている電流周波数fの交流電流Iacをコイル13に流す〔ステップS14〕、現在の電流周波数fで生じる振動の振動値viを振動センサ18によって測定した振動値viを取得(必要に応じて記録媒体24に振動情報24aとして記録)する〔ステップS15〕。取得した振動値viに基づいて測定対象のリアクトル装置10にかかる良否判別を行う〔ステップS16〕。すなわちステップS15で取得した振動値viが振動規格値vLを超えると(ステップS16でYES)、測定対象のリアクトル装置10を「不良品」とし〔ステップS22〕、後述するステップS21に進む。 First, the frequency of the alternating current Iac flowing through the coil 13 of the reactor device 10 is set to the lower limit current frequency f L [step S13]. An alternating current Iac having a current frequency f that is currently set is passed through the coil 13 [step S14], and a vibration value vi obtained by measuring the vibration value vi of the vibration generated at the current current frequency f by the vibration sensor 18 is acquired (if necessary) And recorded as vibration information 24a on the recording medium 24 (step S15). Based on the acquired vibration value vi, it is determined whether or not the reactor device 10 to be measured is acceptable [step S16]. That is, when the vibration value vi acquired in step S15 exceeds the vibration standard value vL (YES in step S16), the reactor device 10 to be measured is set as “defective product” [step S22], and the process proceeds to step S21 described later.

一方、ステップS15で取得した振動値viが振動規格値vL以下ならば(ステップS16でYES)、周波数範囲Fs内で電流周波数fを変化させて(例えば周波数Δfずつ高くして)、次に測定すべき電流周波数fを設定する〔ステップS17〕。周波数Δfは任意に設定可能であり、例えば0.2[kHz]などが該当する。交流電流Iacの電流周波数fが上限電流周波数fUに達するまで、上述したステップS14〜S17を繰り返し行い(ステップS19でYES)、ステップS17で設定した電流周波数fごとの振動値viをそれぞれ測定する。そして、交流電流Iacの電流周波数fが上限電流周波数fUを超えると(ステップS19でNO)、測定対象のリアクトル装置10を「正常品」として〔ステップS20〕、次に示すステップS21に進む。 On the other hand, if the vibration value vi acquired in step S15 is equal to or less than the vibration standard value vL (YES in step S16), the current frequency f is changed within the frequency range Fs (for example, increased by a frequency Δf), and then measured. The current frequency f to be set is set [step S17]. The frequency Δf can be arbitrarily set, and corresponds to 0.2 [kHz], for example. Until the current frequency f of the alternating current Iac reaches the upper limit current frequency f U, it repeats the steps S14~S17 described above (YES in step S19), and measuring the vibration values vi for each current frequency f set in step S17, respectively . When the current frequency f of the alternating current Iac exceeds the upper limit current frequency f U (NO in step S19), the reactor device 10 to be measured is set as “normal product” [step S20], and the process proceeds to step S21 shown below.

ステップS21では、他に測定や検査すべきリアクトル装置10があるか否かに基づいて分岐する。他に測定や検査すべきリアクトル装置10があれば(ステップS21でYES)、上述したステップS10〜ステップS20,S22を繰り返し実行する。一方、他に測定や検査すべきリアクトル装置10がなければ(ステップS21でNO)、振動測定(検査)処理をリターンする。   In step S21, the process branches based on whether there is another reactor device 10 to be measured or inspected. If there is another reactor device 10 to be measured or inspected (YES in step S21), steps S10 to S20 and S22 described above are repeatedly executed. On the other hand, if there is no other reactor device 10 to be measured or inspected (NO in step S21), the vibration measurement (inspection) process is returned.

上述した振動測定(検査)処理を実行すると、例えば図9に示すような結果を得ることができる。図9には、図7(B)と同様に縦軸を振動値viとし、横軸をコア温度Tcとし、周波数範囲Fs内で電流周波数fを変化させた際に得られた振動値viの変化を示す。図9の例では、3つのリアクトル装置10を測定(検査)した結果を、測定線ML1,ML2,ML3として示す。これらの測定線ML1,ML2,ML3の判別例について以下に説明する。なお二点鎖線で示す部分(線分)は測定していないが、実際に測定する場合に想定される振動値viの変化を示す。   When the vibration measurement (inspection) process described above is executed, for example, a result as shown in FIG. 9 can be obtained. In FIG. 9, as in FIG. 7B, the vertical axis represents the vibration value vi, the horizontal axis represents the core temperature Tc, and the vibration value vi obtained when the current frequency f is changed within the frequency range Fs. Showing change. In the example of FIG. 9, the results of measuring (inspecting) the three reactor devices 10 are shown as measurement lines ML1, ML2, and ML3. A discrimination example of these measurement lines ML1, ML2, and ML3 will be described below. In addition, although the part (line segment) shown with a dashed-two dotted line is not measured, the change of the vibration value vi assumed when actually measuring is shown.

測定線ML1のリアクトル装置10は、電流周波数fm1のときに振動規格値vLに達するとともに、当該振動規格値vLを超える振動値viがあるので(ステップS16でYES)、「不良品」とされる〔ステップS22〕。測定線ML2のリアクトル装置10は、電流周波数fm2のときに最大値(ピーク値)となる振動値vm2を示すが、周波数範囲Fs内で振動値viが振動規格値vLを超えないので(ステップS16でNO)、「正常品」とされる〔ステップS20〕。測定線ML3のリアクトル装置10は、周波数範囲Fsの上限である上限電流周波数fUのときに最大値(ピーク値)となる振動値vm3を示すが、周波数範囲Fs内で振動値viが振動規格値vLを超えないので(ステップS16でNO)、「正常品」とされる〔ステップS20〕。なお測定線ML3は、二点鎖線で示す電流周波数fm3のときに振動規格値vLに達するとともに、当該振動規格値vLを超える振動値viがあるが、周波数範囲Fs外であるので「正常品」とされる。このように、測定対象のリアクトル装置10を振動センサ18によって測定する振動値viが周波数範囲Fs内で振動規格値vLを超えるか否かで、正常品であるか否かの検査を行う。 Reactor device 10 of measurement line ML1 reaches vibration standard value vL at current frequency f m1 and has vibration value vi exceeding vibration standard value vL (YES in step S16). [Step S22]. The reactor device 10 of the measurement line ML2 shows a vibration value v m2 that is the maximum value (peak value) at the current frequency f m2 , but the vibration value vi does not exceed the vibration standard value vL within the frequency range Fs ( NO at step S16), “normal product” is set [step S20]. The reactor device 10 of the measurement line ML3 shows a vibration value v m3 that becomes a maximum value (peak value) at the upper limit current frequency f U that is the upper limit of the frequency range Fs, and the vibration value vi vibrates within the frequency range Fs. Since it does not exceed the standard value vL (NO in step S16), it is determined as “normal product” [step S20]. The measurement line ML3 reaches the vibration standard value vL at the current frequency f m3 indicated by the two-dot chain line, and has a vibration value vi exceeding the vibration standard value vL. " As described above, whether or not the reactor device 10 to be measured is a normal product is determined by whether or not the vibration value vi measured by the vibration sensor 18 exceeds the vibration standard value vL within the frequency range Fs.

正常品と判別されたリアクトル装置10は、例えば図10に示すコンバータ30の部品(すなわちリアクトルL30)として用いられる。コンバータ30は、いわゆるDC−DCコンバータであって、直流電源EdcからコンデンサC1を通じて供給される電力(電圧Ve)を昇圧して出力する昇圧機能を担う。このコンバータ30は、駆動回路Mu,Md、スイッチング素子Qu,Qd、ダイオードDu,Ddのほかに、上述したリアクトル装置10であるリアクトルL30などを有する。このリアクトルL30はスイッチング素子Qu,Qdのオンオフ制御によって逆起電力を発生させ、コンデンサC2で電圧Vdcが平滑されて出力される。   Reactor device 10 determined to be a normal product is used, for example, as a component of converter 30 shown in FIG. 10 (that is, reactor L30). The converter 30 is a so-called DC-DC converter, and has a boosting function of boosting and outputting power (voltage Ve) supplied from the DC power source Edc through the capacitor C1. The converter 30 includes a reactor L30, which is the reactor device 10 described above, in addition to the drive circuits Mu and Md, the switching elements Qu and Qd, and the diodes Du and Dd. Reactor L30 generates a back electromotive force by on / off control of switching elements Qu and Qd, and voltage Vdc is smoothed and output by capacitor C2.

上述した実施の形態によれば、以下に示す各効果を得ることができる。まず請求項1に対応し、リアクトル装置10の振動値viを測定する振動測定方法において、ダストコア12はそれ自体の温度変化とともにヤング率Eが変化する特性を備え、リアクトル装置10の温度を変化させる目的の温度範囲に対応してコイル13に流す交流電流Iacの電流周波数f(周波数)を変化させる周波数範囲Fs(所定範囲)を決定する周波数範囲決定工程(図8のステップS10〜S12を参照)と、コイル13に流す交流電流Iacの電流周波数fを周波数範囲Fs内で変化させてリアクトル装置10に生じる振動の振動値viを測定する振動値測定工程(図8のステップS14〜S19を参照)とを有する構成とした(図1,図8,図9等を参照)。この構成によれば、コイル13に流す交流電流Iacの電流周波数fを周波数範囲Fs(下限電流周波数fLから上限電流周波数fUまでの範囲)で変化させるだけで、リアクトル装置10に生じる振動の振動値viを測定することができる。したがって、リアクトル装置10の温度管理を行うことなく、短時間で振動値viを測定することができる。 According to the embodiment described above, the following effects can be obtained. First, according to claim 1, in the vibration measuring method for measuring the vibration value vi of the reactor device 10, the dust core 12 has a characteristic that the Young's modulus E changes with the temperature change of itself, and changes the temperature of the reactor device 10. A frequency range determining step for determining a frequency range Fs (predetermined range) for changing the current frequency f (frequency) of the alternating current Iac flowing through the coil 13 corresponding to the target temperature range (see steps S10 to S12 in FIG. 8). And a vibration value measurement step of measuring the vibration value vi of the vibration generated in the reactor device 10 by changing the current frequency f of the alternating current Iac flowing through the coil 13 within the frequency range Fs (see steps S14 to S19 in FIG. 8). (See FIGS. 1, 8, 9, etc.). According to this configuration, the vibration generated in the reactor device 10 can be simply changed by changing the current frequency f of the alternating current Iac flowing through the coil 13 in the frequency range Fs (the range from the lower limit current frequency f L to the upper limit current frequency f U ). The vibration value vi can be measured. Therefore, the vibration value vi can be measured in a short time without managing the temperature of the reactor device 10.

請求項2に対応し、振動値測定工程は、周波数範囲Fsで交流電流Iacの電流周波数fを変化させて測定される振動値viのピーク値を、目的の温度範囲における振動のピーク値とする構成とした(図8のステップS19,図9を参照)。この構成によれば、周波数範囲Fs内でコイル13に流す交流電流Iacの電流周波数fを変化させて測定される振動値viの最大値をピーク値とする。したがって、振動のピーク値を簡単に特定できるので、規格品としての良否判定を容易に行える。   Corresponding to claim 2, the vibration value measuring step uses the peak value of the vibration value vi measured by changing the current frequency f of the alternating current Iac in the frequency range Fs as the peak value of vibration in the target temperature range. The configuration is adopted (see step S19 in FIG. 8 and FIG. 9). According to this configuration, the maximum value of the vibration value vi measured by changing the current frequency f of the alternating current Iac flowing through the coil 13 within the frequency range Fs is set as the peak value. Therefore, since the vibration peak value can be easily specified, it is possible to easily determine whether the product is a standard product.

請求項3に対応し、振動値測定工程は、リアクトル装置10の温度を所定温度(恒温槽に設定される温度、例えば25[℃])で維持する環境下で、周波数範囲Fs内でコイル13に流す電流の周波数を変化させる構成とした(図8,図9を参照)。この構成によれば、リアクトル装置10の温度管理が行われるので、振動値viをより正確に測定することができる。   Corresponding to claim 3, in the vibration value measuring step, the coil 13 is operated within the frequency range Fs in an environment in which the temperature of the reactor device 10 is maintained at a predetermined temperature (a temperature set in the thermostat, for example, 25 [° C.]). The frequency of the current flowing through the circuit is changed (see FIGS. 8 and 9). According to this configuration, since the temperature management of the reactor device 10 is performed, the vibration value vi can be measured more accurately.

請求項4に対応し、周波数範囲決定工程は、リアクトル装置10の温度を変化させる目的の温度範囲に対応して、コイル13に流す交流電流Iacの電流周波数fを変化させる範囲を特定するための係数K(係数値)を、リアクトル装置10の状態(本形態ではダストコア12の温度を25[℃]で維持する形態)に基づいて決定する構成とした(図3を参照)。この構成によれば、リアクトル装置10の状態に基づいて係数Kを決定するので、コイル13に流す交流電流Iacの電流周波数fを周波数範囲Fsをより正確に特定することができる。したがって、振動値viをより正確に測定することができる。   Corresponding to claim 4, the frequency range determining step is for specifying a range in which the current frequency f of the alternating current Iac flowing through the coil 13 is changed corresponding to the target temperature range in which the temperature of the reactor device 10 is changed. The coefficient K (coefficient value) is determined based on the state of the reactor device 10 (in this embodiment, a mode in which the temperature of the dust core 12 is maintained at 25 [° C.]) (see FIG. 3). According to this configuration, since the coefficient K is determined based on the state of the reactor device 10, the current frequency f of the alternating current Iac flowing through the coil 13 can be more accurately specified in the frequency range Fs. Therefore, the vibration value vi can be measured more accurately.

請求項5に対応し、周波数範囲決定工程は、特定された係数Kとリアクトル装置10の現在温度(恒温槽の設定温度)とに基づいて、コイル13に流す交流電流Iacの周波数を変化させる範囲(すなわち周波数範囲Fs)を特定する構成とした(図8,図6,図9を参照)。この構成によれば、リアクトル装置10の現在温度を考慮するので、コイル13に流す交流電流Iacの電流周波数fを変化させる周波数範囲Fsをより正確に特定することができる。   Corresponding to claim 5, the frequency range determining step is a range in which the frequency of the alternating current Iac flowing through the coil 13 is changed based on the identified coefficient K and the current temperature of the reactor device 10 (set temperature of the thermostat). (That is, the frequency range Fs) is specified (see FIGS. 8, 6, and 9). According to this configuration, since the current temperature of the reactor device 10 is taken into account, the frequency range Fs in which the current frequency f of the alternating current Iac flowing through the coil 13 is changed can be specified more accurately.

請求項6に対応し、振動測定装置20において、温度変化とともにヤング率Eが変化する特性を備えたダストコア12の温度に基づいて交流電流Iacの電流周波数fを変化させる周波数範囲Fsを決定する範囲決定手段27と、範囲決定手段27によって決定された周波数範囲Fs内で電流周波数fを変化させながら交流電流Iacをコイル13に流す交流電源21と、交流電流Iacがコイル13に流れる際にリアクトル装置10に生じる振動の振動値viを測定する振動センサ18(振動値測定手段)とを有する構成とした(図1,図3,図8,図9を参照)。この構成によれば、リアクトル装置10の温度管理を行うことなく、短時間で振動値viを測定することができる。   Corresponding to claim 6, in the vibration measuring device 20, a range for determining a frequency range Fs for changing the current frequency f of the alternating current Iac based on the temperature of the dust core 12 having the characteristic that the Young's modulus E changes with temperature change. A determination means 27; an AC power supply 21 for supplying an alternating current Iac to the coil 13 while changing the current frequency f within the frequency range Fs determined by the range determination means 27; and a reactor device when the alternating current Iac flows to the coil 13. 10 is provided with a vibration sensor 18 (vibration value measuring means) for measuring the vibration value vi of the vibration generated in 10 (see FIGS. 1, 3, 8, and 9). According to this configuration, the vibration value vi can be measured in a short time without performing temperature management of the reactor device 10.

請求項7に対応し、リアクトル装置10の温度を変化させる目的の温度範囲に対応させてコイル13に流す交流電流Iacの電流周波数fを周波数範囲Fs内で変化させ、測定される振動のピーク値を目的の温度範囲における振動のピーク値とする構成とした(図8のステップS19,図9を参照)。この構成によれば、振動のピーク値を簡単に特定できるので、規格品としての良否判定を容易に行える。   Corresponding to claim 7, the peak value of vibration measured by changing the current frequency f of the alternating current Iac flowing through the coil 13 within the frequency range Fs in correspondence with the target temperature range for changing the temperature of the reactor device 10. Is set as a peak value of vibration in the target temperature range (see step S19 in FIG. 8, FIG. 9). According to this configuration, since the peak value of vibration can be easily specified, it is possible to easily determine whether the product is a standard product.

〔他の実施の形態〕
以上では本発明を実施するための形態について説明したが、本発明は当該形態に何ら限定されるものではない。言い換えれば、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施することもできる。例えば、次に示す各形態を実現してもよい。
[Other Embodiments]
Although the form for implementing this invention was demonstrated above, this invention is not limited to the said form at all. In other words, various forms can be implemented without departing from the scope of the present invention. For example, the following forms may be realized.

上述した実施の形態では、コアには、磁性粉末(Fe−Si系粉末)と樹脂(エポキシ樹脂)とを混合させて硬化させた磁性粉末混合樹脂であるダストコア12を適用した(図1,図2等を参照)。この形態に代えて、温度変化とともにヤング率Eが変化する特性を備える他のコアを適用してもよい。具体的には、他の磁性粉末や他の樹脂を任意に組み合わせたダストコアを適用してもよい。他の磁性粉末は、例えば酸化鉄,酸化クロム,コバルト,フェライトなどが該当する。他の樹脂には、例えばフェノール樹脂 (PF),メラミン樹脂(MF),尿素樹脂(ユリア樹脂、UF),不飽和ポリエステル樹脂 (UP),アルキド樹脂,ポリウレタン(PUR),熱硬化性ポリイミド(PI)などが該当する。いずれにせよ、コアの温度変化に伴ってヤング率Eが変化するので、上述した実施の形態と同様の作用効果を得ることができる。   In the above-described embodiment, the dust core 12, which is a magnetic powder mixed resin obtained by mixing and curing magnetic powder (Fe—Si based powder) and resin (epoxy resin), is applied to the core (FIG. 1, FIG. 1). See 2). Instead of this form, another core having the characteristic that the Young's modulus E changes with temperature change may be applied. Specifically, a dust core in which other magnetic powders or other resins are arbitrarily combined may be applied. Examples of other magnetic powders include iron oxide, chromium oxide, cobalt, and ferrite. Other resins include, for example, phenol resin (PF), melamine resin (MF), urea resin (urea resin, UF), unsaturated polyester resin (UP), alkyd resin, polyurethane (PUR), thermosetting polyimide (PI). ). In any case, since the Young's modulus E changes with the temperature change of the core, it is possible to obtain the same effect as the above-described embodiment.

上述した実施の形態では、複数の温度Tについて各温度Tを維持しながらリアクトル装置10に生じる振動の共振周波数fcを求め、最小二乗法によって得られる近似直線にかかる係数K(係数値)を求めた(図5,図8のステップS11を参照)。この形態に代えて、他の近似法に基づいて近似(直線近似や曲線近似等)を行い、該当する近似線を特定する係数値を求めてもよい。係数値は一つの場合もあれば、二以上(例えば二次曲線や三次曲線等)の場合もある。例えば、一次関数以外の関数(例えば双曲線関数,逆双曲線関数,対数曲線等)を用いて近似線を求める。他には、分散分析に基づく近似、回帰分析に基づく近似、重回帰分析に基づく近似、ロジスティック回帰に基づく近似などのうちで一以上の近似法を用いて近似線を求める。いずれにせよ、ダストコア12のヤング率Eにかかわらず、コア温度Tcと共振周波数fcとの関係を示す近似線を規定することができればよい。よって、リアクトル装置10(特にダストコア12)の性質に適した近似線を求めることで、上述した実施の形態と同様の作用効果を得ることができる。   In the embodiment described above, the resonance frequency fc of the vibration generated in the reactor device 10 is obtained while maintaining each temperature T for a plurality of temperatures T, and the coefficient K (coefficient value) applied to the approximate straight line obtained by the least square method is obtained. (See step S11 in FIGS. 5 and 8). Instead of this form, approximation (straight line approximation, curve approximation, etc.) may be performed based on another approximation method, and a coefficient value specifying the corresponding approximate line may be obtained. There may be one coefficient value, or there may be two or more (for example, a quadratic curve or a cubic curve). For example, an approximate line is obtained using a function other than a linear function (for example, a hyperbolic function, an inverse hyperbolic function, a logarithmic curve, etc.). In addition, an approximation line is obtained by using one or more approximation methods among approximation based on analysis of variance, approximation based on regression analysis, approximation based on multiple regression analysis, approximation based on logistic regression, and the like. In any case, it is sufficient that an approximate line indicating the relationship between the core temperature Tc and the resonance frequency fc can be defined regardless of the Young's modulus E of the dust core 12. Therefore, by obtaining an approximate line suitable for the properties of the reactor device 10 (particularly the dust core 12), it is possible to obtain the same effects as those of the above-described embodiment.

上述した実施の形態では、リアクトル装置10を恒温槽等でダストコア12の温度が一定に維持するように温度管理される条件下で、コイル13に交流電流Iacを周波数範囲Fs内で変化させて振動値viを測定する構成とした(図8のステップS13〜S19を参照)。この形態に代えて、リアクトル装置10を大気中(例えば机上)に置き、交流電流Iacや気温等の影響を受けて測定(検査)対象となるリアクトル装置10にかかるダストコア12のコア温度Tcが変化する場合には、その変化を補正する補正係数を用いて振動値viを測定する構成としてもよい。ダストコア12の温度変化に対応する補正係数を「Km」とすれば、上述した関数式(2)〜(4)を変形して、次に示す関数式(5)〜(7)のように表すことができる。補正係数の代わりに、コア温度Tcの変化を補正する補正関数(上述した近似法などで規定すればよい)を適用してもよい。   In the above-described embodiment, the coil device 13 is vibrated by changing the alternating current Iac within the frequency range Fs under the condition that the temperature of the dust core 12 is maintained at a constant temperature in a thermostat or the like. The value vi is measured (see steps S13 to S19 in FIG. 8). Instead of this form, the reactor device 10 is placed in the atmosphere (for example, on a desk), and the core temperature Tc of the dust core 12 applied to the reactor device 10 to be measured (inspected) changes due to the influence of the alternating current Iac, temperature, etc. In this case, the vibration value vi may be measured using a correction coefficient for correcting the change. If the correction coefficient corresponding to the temperature change of the dust core 12 is “Km”, the above-described functional equations (2) to (4) are modified and expressed as the following functional equations (5) to (7). be able to. Instead of the correction coefficient, a correction function (which may be defined by the above-described approximation method or the like) for correcting the change in the core temperature Tc may be applied.

この場合は、まず図1に例示するように温度センサ16をリアクトル装置10に取り付ける。図8に示すフローチャートでは、二点鎖線で示すステップS18において現在のリアクトル装置10(具体的にはダストコア12)のコア温度Tcを取得し、ステップS16では上記関数式(5)で求めた周波数「fm(Tc)」の交流電流Iacをコイル13に流して振動センサ18による振動値viを測定すればよい。周波数範囲Fsもまた上記関数式(6)によって下限電流周波数fLが求められ、上記関数式(7)によって上限電流周波数fUが求められる。こうすれば、リアクトル装置10の温度管理を行うことなく、交流電流Iacの電流周波数fを周波数範囲Fs内で変化させて、目的の温度範囲に対応する振動値viを測定することができる。したがって、上述した実施の形態と同様の作用効果を得ることができる。 In this case, first, the temperature sensor 16 is attached to the reactor device 10 as illustrated in FIG. In the flowchart shown in FIG. 8, the current core temperature Tc of the reactor device 10 (specifically, the dust core 12) is acquired in step S18 indicated by a two-dot chain line, and in step S16, the frequency “ The vibration value vi by the vibration sensor 18 may be measured by passing an alternating current Iac of “f m (Tc)” through the coil 13. In the frequency range Fs, the lower limit current frequency f L is obtained by the function equation (6), and the upper limit current frequency f U is obtained by the function equation (7). In this way, the vibration value vi corresponding to the target temperature range can be measured by changing the current frequency f of the alternating current Iac within the frequency range Fs without performing temperature management of the reactor device 10. Therefore, it is possible to obtain the same operational effects as those of the above-described embodiment.

〔他の発明の態様〕
以上では発明の実施の形態について説明したが、当該実施の形態には特許請求の範囲に記載した発明の態様のみならず他の発明の態様を含む。この発明の態様を以下に列挙するとともに、必要に応じて関連説明を行う。
[Other Aspects of Invention]
Although the embodiments of the invention have been described above, the embodiments include not only the embodiments of the invention described in the claims but also other embodiments of the invention. Aspects of the present invention are listed below, and related explanations are given as necessary.

〔態様1〕通電に伴って磁束を発生するコイルと、前記コイルが発生した磁束の磁路となるコアと、前記コイルと前記コアとを収容するケースと、を有するリアクトル装置の振動値に基づいてリアクトル装置の検査を行うリアクトル装置の振動検査装置において、
前記コアは、前記コアの温度変化とともにヤング率が変化する特性を備え、
前記リアクトル装置の温度を変化させる目的の温度範囲に対応し、前記コイルに流す電流の周波数を変化させる所定範囲を決定する周波数範囲決定手段と、
前記周波数範囲決定手段によって決定された前記所定範囲内で、前記周波数を変化させながら電流を前記コイルに流す交流電源と、
前記電流が前記コイルに流れる際に、前記リアクトル装置に生じる振動の振動値を測定する振動値測定手段と、
前記振動値測定手段によって測定された前記振動値に基づいて、前記リアクトル装置が規格品(正常品)であるか否かを検査する検査手段と、
を有することを特徴とするリアクトル装置の振動検査装置。
[Aspect 1] Based on a vibration value of a reactor device including a coil that generates a magnetic flux when energized, a core that is a magnetic path of the magnetic flux generated by the coil, and a case that houses the coil and the core. In the reactor vibration inspection device that inspects the reactor device,
The core has a characteristic that Young's modulus changes with temperature change of the core,
Corresponding to a target temperature range for changing the temperature of the reactor device, a frequency range determining means for determining a predetermined range for changing the frequency of the current flowing through the coil;
An alternating current power source for passing a current through the coil while changing the frequency within the predetermined range determined by the frequency range determining means;
Vibration value measuring means for measuring a vibration value of vibration generated in the reactor device when the current flows through the coil;
Based on the vibration value measured by the vibration value measuring means, an inspection means for inspecting whether or not the reactor device is a standard product (normal product),
A reactor apparatus vibration inspection apparatus comprising:

〔態様1の関連説明〕
態様1の構成によれば、周波数範囲決定手段(図8のステップ12)で決定された所定範囲内で周波数を変化させながら電流をコイルに流して生じる振動値に基づいて(図8のステップS13〜S15,S17〜S19)、リアクトル装置10が規格品(正常品)であるか否かを検査することができる(図8のステップS16,S20〜S22)。したがって、温度管理を行うことなく検査対象のリアクトル装置10の検査ができる。
[Related description of aspect 1]
According to the configuration of the first aspect, based on the vibration value generated by flowing the current through the coil while changing the frequency within the predetermined range determined by the frequency range determining means (step 12 in FIG. 8) (step S13 in FIG. 8). To S15, S17 to S19), whether or not the reactor device 10 is a standard product (normal product) can be inspected (steps S16 and S20 to S22 in FIG. 8). Therefore, the reactor device 10 to be inspected can be inspected without performing temperature management.

10 リアクトル装置
12 ダストコア(コア,磁性粉末混合樹脂)
13 コイル
16 温度センサ
17 加振器
18 振動センサ(加速度センサ)
20 振動測定装置
21 交流電源
22 振動制御手段
23 係数決定手段
24 記録媒体
24a 振動情報
24b 係数情報
25 良否判別手段
26 電源制御手段
27 範囲決定手段
Iac 交流電流
K 係数(係数値)
vi 振動値
T 温度
Tc コア温度(リアクトル装置の温度)
10 Reactor device 12 Dust core (core, magnetic powder mixed resin)
13 Coil 16 Temperature sensor 17 Exciter 18 Vibration sensor (acceleration sensor)
DESCRIPTION OF SYMBOLS 20 Vibration measuring device 21 AC power supply 22 Vibration control means 23 Coefficient determination means 24 Recording medium 24a Vibration information 24b Coefficient information 25 Pass / fail judgment means 26 Power supply control means 27 Range determination means Iac AC current K coefficient (coefficient value)
vi Vibration value T temperature Tc Core temperature (reactor device temperature)

Claims (7)

通電に伴って磁束を発生するコイルと、前記コイルが発生した磁束の磁路となるコアと、前記コイルと前記コアとを収容するケースと、を有するリアクトル装置の振動値を測定するリアクトル装置の振動測定方法において、
前記コアは、前記コアの温度変化とともにヤング率が変化する特性を備え、
前記リアクトル装置の温度を変化させる目的の温度範囲に対応し、前記コイルに流す電流の周波数を変化させる所定範囲を決定する周波数範囲決定工程と、
前記コイルに流す電流の周波数を前記所定範囲内で変化させ、前記リアクトル装置に生じる振動の振動値を測定する振動値測定工程と、
を有することを特徴とするリアクトル装置の振動測定方法。
A reactor device that measures a vibration value of a reactor device that includes a coil that generates magnetic flux when energized, a core that is a magnetic path of the magnetic flux generated by the coil, and a case that houses the coil and the core. In the vibration measurement method,
The core has a characteristic that Young's modulus changes with temperature change of the core,
Corresponding to the target temperature range for changing the temperature of the reactor device, a frequency range determining step for determining a predetermined range for changing the frequency of the current flowing through the coil;
A vibration value measuring step of changing a frequency of a current flowing through the coil within the predetermined range and measuring a vibration value of vibration generated in the reactor device;
A reactor apparatus vibration measurement method comprising:
前記振動値測定工程は、前記所定範囲で電流の周波数を変化させて測定される振動のピーク値を、前記目的の温度範囲における振動のピーク値とすることを特徴とする請求項1に記載のリアクトル装置の振動測定方法。   2. The vibration value measuring step according to claim 1, wherein a vibration peak value measured by changing a current frequency in the predetermined range is set as a vibration peak value in the target temperature range. Reactor device vibration measurement method. 前記振動値測定工程は、前記リアクトル装置の温度を所定温度で維持する環境下で、前記所定範囲内で前記コイルに流す電流の周波数を変化させることを特徴とする請求項1または2に記載のリアクトル装置の振動測定方法。   The said vibration value measurement process changes the frequency of the electric current sent through the said coil within the said predetermined range in the environment which maintains the temperature of the said reactor apparatus with a predetermined temperature, The Claim 1 or 2 characterized by the above-mentioned. Reactor device vibration measurement method. 前記周波数範囲決定工程は、前記リアクトル装置の温度を変化させる目的の温度範囲に対応して、前記コイルに流す電流の周波数を変化させる範囲を特定するための係数値を、前記リアクトル装置の状態に基づいて決定することを特徴とする請求項1から3のいずれか一項に記載のリアクトル装置の振動測定方法。   In the frequency range determination step, a coefficient value for specifying a range in which the frequency of the current flowing in the coil is changed corresponding to a target temperature range in which the temperature of the reactor device is changed is set in the state of the reactor device. It determines based on, The vibration measuring method of the reactor apparatus as described in any one of Claim 1 to 3 characterized by the above-mentioned. 前記周波数範囲決定工程は、特定された前記係数値と、前記リアクトル装置の現在温度とに基づいて、前記コイルに流す電流の周波数を変化させる範囲を特定することを特徴とする請求項4に記載のリアクトル装置の振動測定方法。   The frequency range determination step specifies a range in which a frequency of a current flowing through the coil is changed based on the identified coefficient value and a current temperature of the reactor device. Method for measuring the vibration of the reactor device of the present invention. 通電に伴って磁束を発生するコイルと、前記コイルが発生した磁束の磁路となるコアと、前記コイルと前記コアとを収容するケースと、を有するリアクトル装置の振動値を測定するリアクトル装置の振動測定装置において、
前記コアは、前記コアの温度変化とともにヤング率が変化する特性を備え、
前記リアクトル装置の温度を変化させる目的の温度範囲に対応し、前記コイルに流す電流の周波数を変化させる所定範囲を決定する周波数範囲決定手段と、
前記周波数範囲決定手段によって決定された前記所定範囲内で、前記周波数を変化させながら電流を前記コイルに流す交流電源と、
前記電流が前記コイルに流れる際に、前記リアクトル装置に生じる振動の振動値を測定する振動値測定手段と、
を有することを特徴とするリアクトル装置の振動測定装置。
A reactor device that measures a vibration value of a reactor device that includes a coil that generates magnetic flux when energized, a core that is a magnetic path of the magnetic flux generated by the coil, and a case that houses the coil and the core. In the vibration measuring device,
The core has a characteristic that Young's modulus changes with temperature change of the core,
Corresponding to a target temperature range for changing the temperature of the reactor device, a frequency range determining means for determining a predetermined range for changing the frequency of the current flowing through the coil;
An alternating current power source for passing a current through the coil while changing the frequency within the predetermined range determined by the frequency range determining means;
Vibration value measuring means for measuring a vibration value of vibration generated in the reactor device when the current flows through the coil;
A reactor apparatus vibration measurement device comprising:
前記リアクトル装置の温度を変化させる目的の温度範囲に対応させて前記コイルに流す電流の周波数を所定範囲で変化させ、測定される振動のピーク値を前記目的の温度範囲における振動のピーク値とすることを特徴とする請求項6に記載のリアクトル装置の振動測定装置。   Corresponding to the target temperature range in which the temperature of the reactor device is changed, the frequency of the current flowing through the coil is changed in a predetermined range, and the measured vibration peak value is set as the vibration peak value in the target temperature range. The reactor vibration measurement device according to claim 6.
JP2011154040A 2011-07-12 2011-07-12 Reactor device vibration measurement method and vibration measurement device Active JP5815179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011154040A JP5815179B2 (en) 2011-07-12 2011-07-12 Reactor device vibration measurement method and vibration measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011154040A JP5815179B2 (en) 2011-07-12 2011-07-12 Reactor device vibration measurement method and vibration measurement device

Publications (2)

Publication Number Publication Date
JP2013021180A true JP2013021180A (en) 2013-01-31
JP5815179B2 JP5815179B2 (en) 2015-11-17

Family

ID=47692318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011154040A Active JP5815179B2 (en) 2011-07-12 2011-07-12 Reactor device vibration measurement method and vibration measurement device

Country Status (1)

Country Link
JP (1) JP5815179B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103956259A (en) * 2014-04-18 2014-07-30 江苏南瑞帕威尔电气有限公司 Reactor design method based on visualization algorithm
CN110441632A (en) * 2019-08-01 2019-11-12 河海大学 Portable high-pressure shunt reactor fault detection means and method
CN110622265A (en) * 2017-05-22 2019-12-27 株式会社自动网络技术研究所 Electric reactor
CN112345855A (en) * 2020-10-30 2021-02-09 浙江大学 System and method for detecting running state of shunt reactor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103956259A (en) * 2014-04-18 2014-07-30 江苏南瑞帕威尔电气有限公司 Reactor design method based on visualization algorithm
CN110622265A (en) * 2017-05-22 2019-12-27 株式会社自动网络技术研究所 Electric reactor
CN110622265B (en) * 2017-05-22 2021-05-18 株式会社自动网络技术研究所 Electric reactor
CN110441632A (en) * 2019-08-01 2019-11-12 河海大学 Portable high-pressure shunt reactor fault detection means and method
CN110441632B (en) * 2019-08-01 2021-06-25 河海大学 Portable high-voltage shunt reactor fault detection device and method
CN112345855A (en) * 2020-10-30 2021-02-09 浙江大学 System and method for detecting running state of shunt reactor

Also Published As

Publication number Publication date
JP5815179B2 (en) 2015-11-17

Similar Documents

Publication Publication Date Title
JP5815179B2 (en) Reactor device vibration measurement method and vibration measurement device
RU2666176C2 (en) Device and method of checking surface property
JP5394918B2 (en) Nondestructive inspection system for parts by analyzing the distribution of leakage magnetic field
CN105806432B (en) Method for running Coriolis mass and flow measuring instrument
Demtröder et al. Influence of microstructure on macroscopic elastic properties and thermal expansion of nickel‐base superalloys ERBO/1 and LEK94: Zum Einfluss der Mikrostruktur auf die elastischen Eigenschaften und auf die thermische Ausdehnung der einkristallinen Superlegierungen ERBO/1 und LEK94
Wang et al. A frequency-shift based CMOS magnetic biosensor with spatially uniform sensor transducer gain
JP7490288B2 (en) System for predicting and evaluating vibration capability in vibration testing, method for predicting and evaluating vibration capability, and program for predicting and evaluating vibration capability
EP2522994A1 (en) Magnetic inspection systems for inspection of target objects
US20130193963A1 (en) Surface scanning radio frequency antenna for magnetic resonance force microscopy
Heimfarth et al. Miniature planar fluxgate magnetic sensors using a single layer of coils
Tellini et al. New method to characterize magnetic hysteresis in soft ferrites up to high frequencies
Zurek Two-dimensional magnetisation problems in electrical steels
CN110441401A (en) Increasing material manufacturing material structure damped coefficient test method and device
JP6167265B2 (en) Apparatus for evaluating magnetic properties of magnetic fine particles and method for evaluating magnetic properties
JP2012033208A (en) Method and apparatus for inspecting magnetic disk
CN113932939A (en) Ferromagnetic resonance temperature measurement method based on field sweeping method
Urban et al. Development and validation of a method for linear-viscoelastic characterization of the dynamic complex modulus of short-fiber reinforced plastics using flexural resonances
Gottwald et al. Extrusion monitoring of polymer melts using a high‐temperature surface‐NMR probe
JP6544562B2 (en) Apparatus and method for measuring magnetic properties of magnetic substance
Li et al. Analytical model and analysis of spiral-coil EMAT above a ferromagnetic plate
Kouzoudis et al. A 2826 MB Metglas ribbon as a strain sensor for remote and dynamic mechanical measurements
Lyu et al. Electromagnetic interaction between a permanent magnet and a sphere moving in liquid metal
US20220357257A1 (en) Method for calculating a quality of a measuring tube of a coriolis measuring device and such a measuring device
Heinisch et al. A study on tunable resonators for rheological measurements
JPWO2014157661A1 (en) Magnetic field value measuring apparatus and magnetic field value measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150922

R150 Certificate of patent or registration of utility model

Ref document number: 5815179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531