JP2013021098A - Organic thin-film solar cell - Google Patents

Organic thin-film solar cell Download PDF

Info

Publication number
JP2013021098A
JP2013021098A JP2011152633A JP2011152633A JP2013021098A JP 2013021098 A JP2013021098 A JP 2013021098A JP 2011152633 A JP2011152633 A JP 2011152633A JP 2011152633 A JP2011152633 A JP 2011152633A JP 2013021098 A JP2013021098 A JP 2013021098A
Authority
JP
Japan
Prior art keywords
solar cell
organic thin
film solar
type semiconductor
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011152633A
Other languages
Japanese (ja)
Other versions
JP5888691B2 (en
Inventor
Xiao Feng Wang
暁峰 王
Shinichi Sasaki
真一 佐々木
Junji Kido
淳二 城戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamagata University NUC
Original Assignee
Yamagata University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamagata University NUC filed Critical Yamagata University NUC
Priority to JP2011152633A priority Critical patent/JP5888691B2/en
Publication of JP2013021098A publication Critical patent/JP2013021098A/en
Application granted granted Critical
Publication of JP5888691B2 publication Critical patent/JP5888691B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

PROBLEM TO BE SOLVED: To provide an organic thin-film solar cell where the photoelectric conversion efficiency is improved using a chlorophyll derivative for practical use of the organic thin-film solar cell.SOLUTION: For an organic thin-film solar cell containing a p-type semiconductor and an n-type semiconductor between a pair of electrodes, a chlorophyll derivative represented by the general formula (1) is used as the p-type semiconductor. (In the formula (1), M is one of 2H, Ni, Zn and Cu, and R is one of CHCH, CHO and CHOH.)

Description

本発明は、有機半導体薄膜を用いたpn接合型の有機薄膜太陽電池に関する。   The present invention relates to a pn junction type organic thin film solar cell using an organic semiconductor thin film.

有機太陽電池は、光電変換層に有機化合物を用いた太陽電池であり、現在普及しているシリコン系や化合物半導体系の太陽電池に比べて、軽量で、フレキシブルであり、また、着色性に優れ、製造コストが低い等の利点を有している。このため、ウェアラブルやユビキタスのバッテリー源や、カラフルウィンドウ等への応用が考えられ、身近なエネルギー源としての利用が期待されている。   Organic solar cells are solar cells that use organic compounds in the photoelectric conversion layer, and are lighter, more flexible, and have better colorability than silicon-based and compound semiconductor-based solar cells that are currently in widespread use. The manufacturing cost is low. For this reason, it can be applied to wearable and ubiquitous battery sources, colorful windows, etc., and is expected to be used as a familiar energy source.

有機太陽電池は、色素増感太陽電池と有機薄膜太陽電池とに分別される。前者は、通常、二酸化チタンに吸着させた有機色素を用いて光起電力を得るタイプであり、後者は、p型半導体(電子供与性材料)とn型半導体(電子受容性材料)である2種の有機半導体が組み合わされた薄膜が塗布されたタイプである。
色素増感太陽電池における有機色素には、様々な色素が適用されているが、その作用が光合成に似ていることから、光合成色素であるクロロフィルやその誘導体を用いたものも多く提案されている(例えば、特許文献1参照)。
また、有機薄膜太陽電池においても、天然クロロフィルであるバクテリオクロロフィルcを用いたバルクヘテロ接合型の太陽電池が報告されている(例えば、非特許文献1参照。)
Organic solar cells are classified into dye-sensitized solar cells and organic thin-film solar cells. The former is a type in which a photovoltaic force is usually obtained using an organic dye adsorbed on titanium dioxide, and the latter is a p-type semiconductor (electron-donating material) and an n-type semiconductor (electron-accepting material). This is a type in which a thin film in which various organic semiconductors are combined is applied.
Various dyes have been applied to organic dyes in dye-sensitized solar cells, but their action is similar to that of photosynthesis, so many have been proposed using photosynthesis dyes such as chlorophyll and its derivatives. (For example, refer to Patent Document 1).
In addition, as for organic thin film solar cells, bulk heterojunction type solar cells using bacteriochlorophyll c, which is natural chlorophyll, have been reported (for example, see Non-Patent Document 1).

特許4529686号公報Japanese Patent No. 4529686

J. Mater.Res., Vol.26, No.2, 2011年1月28日, pp.306-310J. Mater.Res., Vol.26, No.2, January 28, 2011, pp.306-310

しかしながら、天然クロロフィルは、Mgが配位し、また、C17位に長鎖アルコールがエステル結合したものもあり、化学的に不安定な構造を有している。このため、このような天然有機物を固体型の有機薄膜太陽電池に安定的に適用することは困難であり、色素増感太陽電池ほどの高い光電変換効率は得られず、また、耐久性の点においても問題があった。   However, natural chlorophyll has a structure in which Mg is coordinated and a long-chain alcohol is ester-bonded at the C17 position and has a chemically unstable structure. For this reason, it is difficult to stably apply such a natural organic material to a solid organic thin film solar cell, and a photoelectric conversion efficiency as high as that of a dye-sensitized solar cell cannot be obtained. There was also a problem.

そこで、本発明者らは、有機薄膜太陽電池において、光合成色素であるクロロフィルを利用して、光電変換効率の向上を図るべく研究を重ねた結果、安定で好適なクロロフィル誘導体を見出した。
すなわち、本発明は、有機薄膜太陽電池の実用化を図るべく、クロロフィル誘導体を用いて光電変換効率を向上させた有機薄膜太陽電池を提供することを目的とするものである。
Therefore, the present inventors have conducted research to improve the photoelectric conversion efficiency by using chlorophyll, which is a photosynthetic pigment, in organic thin film solar cells, and as a result, have found a stable and suitable chlorophyll derivative.
That is, an object of the present invention is to provide an organic thin film solar cell in which the photoelectric conversion efficiency is improved by using a chlorophyll derivative in order to put the organic thin film solar cell into practical use.

本発明に係る有機薄膜太陽電池は、一対の電極間にp型半導体とn型半導体とが含まれた有機薄膜太陽電池において、前記p型半導体として下記一般式(1)で表されるクロロフィル誘導体が用いられていることを特徴とする。   The organic thin film solar cell according to the present invention is an organic thin film solar cell in which a p-type semiconductor and an n-type semiconductor are included between a pair of electrodes, and the chlorophyll derivative represented by the following general formula (1) as the p-type semiconductor: Is used.

Figure 2013021098
(式(1)中、Mは、2H、Ni、Zn及びCuのうちのいずれかである。Rは、CHCH2、CHO及びCH2OHのいずれかである。)
Figure 2013021098
(In the formula (1), M is any one of 2H, Ni, Zn and Cu. R is any one of CHCH 2 , CHO and CH 2 OH.)

上記のようなクロロフィル誘導体をp型半導体として用いることにより、有機薄膜太陽電池のエネルギー変換効率の向上を図ることができる。   By using the chlorophyll derivative as described above as a p-type semiconductor, the energy conversion efficiency of the organic thin film solar cell can be improved.

前記有機薄膜太陽電池は、前記p型有機半導体と前記n型有機半導体との混合層を含むバルクヘテロ接合構造であることが好ましい。
また、前記p型有機半導体からなる層と前記n型有機半導体からなる層とが積層された平面ヘテロ接合構造であってもよい。
前記クロロフィル誘導体は、バルクヘテロ接合及び平面ヘテロ接合のいずれの構造の有機薄膜太陽電池においても、p型半導体として好適に機能し得る。
The organic thin film solar cell preferably has a bulk heterojunction structure including a mixed layer of the p-type organic semiconductor and the n-type organic semiconductor.
Moreover, the planar heterojunction structure where the layer which consists of the said p-type organic semiconductor, and the layer which consists of the said n-type organic semiconductor was laminated | stacked may be sufficient.
The chlorophyll derivative can suitably function as a p-type semiconductor in an organic thin film solar cell having any structure of a bulk heterojunction and a planar heterojunction.

本発明によれば、有機薄膜太陽電池において、p型半導体として用いるクロロフィル誘導体の最適化により、光電変換効率を向上させた有機薄膜太陽電池を提供することができる。
したがって、本発明に係る有機薄膜太陽電池によれば、実用レベルの光電変換効率を実現することが可能となり、軽量で、フレキシブルであり、また、着色性に優れ、製造コストが低い等の利点を活かした身近なエネルギー源としての利用が期待される。
ADVANTAGE OF THE INVENTION According to this invention, the organic thin film solar cell which improved the photoelectric conversion efficiency can be provided by optimizing the chlorophyll derivative used as a p-type semiconductor in an organic thin film solar cell.
Therefore, according to the organic thin film solar cell according to the present invention, it is possible to achieve a practical level of photoelectric conversion efficiency, light weight, flexibility, excellent colorability, and low manufacturing cost. It is expected to be used as a familiar energy source.

本発明に係る有機薄膜太陽電池の層構成の一例を模式的に示した概略断面図である。It is the schematic sectional drawing which showed typically an example of the layer structure of the organic thin-film solar cell concerning this invention. 本発明に係る有機薄膜太陽電池の層構成の他の例模式的に示した概略断面図である。It is the schematic sectional drawing which showed typically the other example of the layer structure of the organic thin-film solar cell concerning this invention.

以下、本発明について、図面を参照して、より詳細に説明する。
本発明に係る有機薄膜太陽電池は、一対の電極間にp型半導体とn型半導体とが含まれており、前記p型半導体として上記一般式(1)で表されるクロロフィル誘導体が用いられているものである。
上記一般式(1)において、Mは、2H、Ni、Zn及びCuのうちのいずれかである。すなわち、金属は配位していないか、あるいはまた、配位金属はNi、Zn又はCuである。
このように、本発明に係るクロロフィル誘導体は、天然クロロフィルと同様に、テトラピロール環を基本構造としているが、テトラピロール環中心にMgは配位しておらず、また、クロロフィルaのような長鎖アルコールは結合していない。
したがって、天然クロロフィルに比べて、安定であり、有機薄膜太陽電池の光電変換効率を図る上で好適な電子供与性(ドナー)材料である。
Hereinafter, the present invention will be described in more detail with reference to the drawings.
The organic thin film solar cell according to the present invention includes a p-type semiconductor and an n-type semiconductor between a pair of electrodes, and the chlorophyll derivative represented by the general formula (1) is used as the p-type semiconductor. It is what.
In the general formula (1), M is any one of 2H, Ni, Zn, and Cu. That is, the metal is not coordinated, or the coordinated metal is Ni, Zn or Cu.
Thus, like the natural chlorophyll, the chlorophyll derivative according to the present invention has a tetrapyrrole ring as a basic structure. However, Mg is not coordinated to the center of the tetrapyrrole ring, and is not as long as chlorophyll a. Chain alcohols are not bound.
Therefore, it is an electron donating (donor) material that is more stable than natural chlorophyll and is suitable for increasing the photoelectric conversion efficiency of the organic thin film solar cell.

また、上記一般式(1)において、Rは、CHCH2、CHO及びCH2OHのいずれかである。 In the general formula (1), R is any one of CHCH 2 , CHO and CH 2 OH.

図1に、前記クロロフィル誘導体をp型半導体として用いた有機薄膜太陽電池の好ましい層構成の一例を示す。図1においては、一対の電極(正極1、負極2)間に前記クロロフィル誘導体とn型半導体との混合層である光電変換層3を備えており、前記光電変換層3と正極1との間にホール輸送層4が形成されている。
このように、前記クロロフィル誘導体をp型半導体とし、n型半導体との混合層を形成させることにより、バルクヘテロ接合構造の有機薄膜太陽電池を好適に構成することができる。
FIG. 1 shows an example of a preferable layer structure of an organic thin film solar cell using the chlorophyll derivative as a p-type semiconductor. In FIG. 1, a photoelectric conversion layer 3 that is a mixed layer of the chlorophyll derivative and an n-type semiconductor is provided between a pair of electrodes (positive electrode 1 and negative electrode 2), and between the photoelectric conversion layer 3 and the positive electrode 1. A hole transport layer 4 is formed on the surface.
Thus, the organic thin-film solar cell of a bulk heterojunction structure can be comprised suitably by making the said chlorophyll derivative into a p-type semiconductor and forming a mixed layer with an n-type semiconductor.

前記n型半導体には、電子受容性(アクセプタ)材料により構成され、電子輸送性があり、HOMOのエネルギー準位が低い化合物を用いることが好ましい。本発明においては、特に限定されるものではなく、公知のものを適宜選択して用いることができる。具体的には、C60、C70、PC60BM、PC70BM、Bis−PCBM、ICBA、SIMEF等のフラーレン系誘導体(化2)を用いることができ、あるいはまた、PTCBI等のペリレン系誘導体(化3)等の他のn型有機半導体やZnO、TiO2等のn型無機半導体も用いることができる。 As the n-type semiconductor, it is preferable to use a compound that is made of an electron-accepting (acceptor) material, has an electron transporting property, and has a low HOMO energy level. In the present invention, it is not particularly limited, and known ones can be appropriately selected and used. Specifically, fullerene derivatives (Chemical Formula 2) such as C60, C70, PC60BM, PC70BM, Bis-PCBM, ICBA, and SIMEF can be used, or perylene derivatives (Chemical Formula 3) such as PTCBI. Other n-type organic semiconductors and n-type inorganic semiconductors such as ZnO and TiO 2 can also be used.

Figure 2013021098
Figure 2013021098

Figure 2013021098
Figure 2013021098

前記クロロフィル誘導体とn型半導体との混合層である光電変換層3は、クロロホルム、クロロベンゼン、ジクロロベンゼン等の有機溶媒中に各材料を溶解又は分散させて、スピンコート法により薄膜を形成させることが好ましい。
この光電変換層3の膜厚は、光透過性や光電変換能、膜抵抗等を考慮し、10〜300nmであることが好ましい。
The photoelectric conversion layer 3 that is a mixed layer of the chlorophyll derivative and the n-type semiconductor may be formed by forming a thin film by spin-coating by dissolving or dispersing each material in an organic solvent such as chloroform, chlorobenzene, or dichlorobenzene. preferable.
The film thickness of the photoelectric conversion layer 3 is preferably 10 to 300 nm in consideration of light transmittance, photoelectric conversion ability, film resistance, and the like.

本発明に係る有機薄膜太陽電池の電極は、透明基板上に透明導電性薄膜が形成されたものであることが好ましい。
前記基板は、有機薄膜太陽電池の支持体となるものであり、基板側が受光面となる場合、太陽光の透光性を有する透明基板を用いることが好ましい。光透過率は80%以上であることが好ましく、85%以上であることが好ましい。より好ましくは、90%以上である。
前記透明基板としては、一般に、BK7、BaK1、F2等の光学ガラス、石英ガラス、無アルカリガラス、ホウケイ酸ガラス、アルミノケイ酸ガラス等のガラス基板、PMMA等のアクリル樹脂、ポリカーボネート、ポリエーテルスルフォネート、ポリスチレン、ポリオレフィン、エポキシ樹脂、ポリエチレンテレフタレート等のポリエステル等のポリマー基板が用いられる。
前記基板の厚さは、通常、0.1〜10mm程度のものが用いられるが、機械的強度、重量等を考慮して、0.3〜5mmであることが好ましく、0.5〜2mmであることがより好ましい。
The electrode of the organic thin film solar cell according to the present invention is preferably one in which a transparent conductive thin film is formed on a transparent substrate.
The said board | substrate becomes a support body of an organic thin film solar cell, and when the board | substrate side turns into a light-receiving surface, it is preferable to use the transparent substrate which has the translucency of sunlight. The light transmittance is preferably 80% or more, and preferably 85% or more. More preferably, it is 90% or more.
As the transparent substrate, generally, glass substrates such as optical glass such as BK7, BaK1, and F2, quartz glass, alkali-free glass, borosilicate glass, and aluminosilicate glass, acrylic resin such as PMMA, polycarbonate, polyether sulfonate Polymer substrates such as polystyrene, polyolefin, epoxy resin, polyester such as polyethylene terephthalate are used.
The thickness of the substrate is usually about 0.1 to 10 mm, but preferably 0.3 to 5 mm in view of mechanical strength, weight, etc., and 0.5 to 2 mm. More preferably.

前記基板上に、通常、正極が形成される。この正極は、仕事関数の大きい(4eV以上)金属、合金、導電性化合物等により構成されるが、前記透明基板上に透明電極として形成されることが好ましい。
この透明電極には、酸化インジウム錫(ITO)、酸化インジウム亜鉛、酸化亜鉛等の金属酸化物が一般的に用いられ、特に、透明性や導電性等の観点から、ITOが好適に用いられる。
この透明電極の膜厚は、透明性及び導電性の確保のため、50〜250nmであることが好ましく、100〜200nmであることがより好ましい。
正極の形成は、通常、スパッタリング法、真空蒸着法等により行われ、透明導電性薄膜として形成されることが好ましい。
A positive electrode is usually formed on the substrate. The positive electrode is made of a metal, alloy, conductive compound or the like having a high work function (4 eV or more), and is preferably formed as a transparent electrode on the transparent substrate.
For the transparent electrode, metal oxides such as indium tin oxide (ITO), indium zinc oxide, and zinc oxide are generally used. In particular, ITO is preferably used from the viewpoint of transparency and conductivity.
The film thickness of the transparent electrode is preferably 50 to 250 nm, and more preferably 100 to 200 nm, in order to ensure transparency and conductivity.
The positive electrode is usually formed by a sputtering method, a vacuum vapor deposition method or the like, and is preferably formed as a transparent conductive thin film.

図1に示すように、正極1と光電変換層3との間には、ホール輸送層4を形成しておくことが好ましい。使用されるホール輸送性材料は、特に限定されるものではなく、公知のものから適宜選択して用いることができる。例えば、三酸化モリブデン等の金属酸化物層、又は、3,4−ポリエチレンジオキシチオフェン:ポリエチレンスルフォネート(以下、PEDOT:PSSと略称する)等の高導電性高分子層等により形成することができる。これにより、リーク電流の抑制を図ることができる。
前記ホール輸送層は、具体的には、三酸化モリブデンの場合には、真空蒸着法により、膜厚2〜20nmで形成し、また、PEDOT:PSSの場合には、スピンコート法により、膜厚20〜150nmで形成することが好ましい。
As shown in FIG. 1, a hole transport layer 4 is preferably formed between the positive electrode 1 and the photoelectric conversion layer 3. The hole transport material used is not particularly limited, and can be appropriately selected from known materials. For example, a metal oxide layer such as molybdenum trioxide or a highly conductive polymer layer such as 3,4-polyethylenedioxythiophene: polyethylenesulfonate (hereinafter abbreviated as PEDOT: PSS) is used. Can do. As a result, leakage current can be suppressed.
Specifically, in the case of molybdenum trioxide, the hole transport layer is formed with a film thickness of 2 to 20 nm by a vacuum evaporation method. In the case of PEDOT: PSS, the film thickness is formed by a spin coating method. It is preferable to form at 20 to 150 nm.

前記正極に対向する負極は、仕事関数の小さい(4eV以下)金属、合金、導電性化合物により構成される。例えば、アルミニウム、カルシウム、銀、アルミニウム−リチウム合金、マグネシウム−銀合金、フッ化リチウム等が挙げられ、単層であっても、あるいはまた、仕事関数の異なる材料を組み合わせた複層としてもよい。
前記負極の膜厚は、導電性の確保のため、10〜500nmであることが好ましく、50〜200nmであることがより好ましい。
The negative electrode facing the positive electrode is made of a metal, alloy, or conductive compound having a small work function (4 eV or less). For example, aluminum, calcium, silver, an aluminum-lithium alloy, a magnesium-silver alloy, lithium fluoride, and the like can be given, which may be a single layer or a combination of materials having different work functions.
The film thickness of the negative electrode is preferably 10 to 500 nm and more preferably 50 to 200 nm in order to ensure conductivity.

図2に、前記クロロフィル誘導体をp型半導体として用いた有機薄膜太陽電池の好ましい層構成の他の一例を示す。図2においては、一対の電極(正極1、負極2)間に前記クロロフィル誘導体を用いたp型半導体層31とn型半導体層32とが積層され、p型半導体層31と正極1との間にホール輸送層4が形成され、n型半導体層32と負極2との間に電子輸送層5が形成されている。
このように、前記クロロフィル誘導体をp型半導体とし、n型半導体とを別個の層として積層させた、平面ヘテロ接合構造の有機薄膜太陽電池も好適に構成することができる。
FIG. 2 shows another example of a preferable layer configuration of an organic thin film solar cell using the chlorophyll derivative as a p-type semiconductor. In FIG. 2, a p-type semiconductor layer 31 and an n-type semiconductor layer 32 using the chlorophyll derivative are stacked between a pair of electrodes (positive electrode 1 and negative electrode 2), and between the p-type semiconductor layer 31 and the positive electrode 1. A hole transport layer 4 is formed on the surface, and an electron transport layer 5 is formed between the n-type semiconductor layer 32 and the negative electrode 2.
As described above, an organic thin-film solar cell having a planar heterojunction structure in which the chlorophyll derivative is a p-type semiconductor and an n-type semiconductor is stacked as a separate layer can be suitably configured.

この平面ヘテロ接合構造の有機薄膜太陽電池においても、電極1,2、ホール輸送層4は、前記バルクヘテロ接合構造の場合と同様の構成でよい。
また、図2に示すように、n型半導体層32と負極2との間には、電子輸送層5を形成しておくことが好ましい。なお、図1に示すようなバルクヘテロ接合構造の場合にも、同様に、光電変換層3と負極2との間に、電子輸送層を形成してもよい。
使用される電子輸送性材料は、特に限定されるものではなく、公知のものから適宜選択して用いることができる。例えば、Ca、バソクプロイン(BCP)、LiF等を真空蒸着法やスピンコート法等により形成することができる。膜厚は5〜400nmであることが好ましい。
In this organic thin film solar cell having a planar heterojunction structure, the electrodes 1 and 2 and the hole transport layer 4 may have the same configuration as that of the bulk heterojunction structure.
As shown in FIG. 2, it is preferable to form an electron transport layer 5 between the n-type semiconductor layer 32 and the negative electrode 2. In the case of a bulk heterojunction structure as shown in FIG. 1, an electron transport layer may be formed between the photoelectric conversion layer 3 and the negative electrode 2 in the same manner.
The electron transporting material used is not particularly limited, and can be appropriately selected from known materials. For example, Ca, bathocuproine (BCP), LiF, or the like can be formed by a vacuum deposition method, a spin coating method, or the like. The film thickness is preferably 5 to 400 nm.

前記p型半導体層31は、クロロホルム、ジクロロメタン、クロロベンゼン、ジクロロベンゼン、THF等の有機溶媒中に前記クロロフィル誘導体を溶解させた濃度0.1〜3wt%の溶液を用いて、スピンコート法により薄膜として形成することが好ましい。
このp型半導体層31の膜厚は、光透過性や光電変換能、膜抵抗等を考慮して、5〜100nmであることが好ましい。
The p-type semiconductor layer 31 is formed as a thin film by spin coating using a solution having a concentration of 0.1 to 3 wt% obtained by dissolving the chlorophyll derivative in an organic solvent such as chloroform, dichloromethane, chlorobenzene, dichlorobenzene, and THF. It is preferable to form.
The film thickness of the p-type semiconductor layer 31 is preferably 5 to 100 nm in consideration of light transmittance, photoelectric conversion ability, film resistance, and the like.

また、前記n型半導体層32は、前記バルクヘテロ接合構造の光電変換層3に用いられるのと同様のn型有機半導体やn型無機半導体により形成することができる。
この場合は、クロロフィル誘導体によるp型半導体層31とは別個の層であるため、スピンコート法に限らず、真空蒸着法によっても好適な薄膜を形成することができる。
このn型半導体層32の膜厚は、光透過性や光電変換能、膜抵抗等を考慮し、10〜300nmであることが好ましい。
The n-type semiconductor layer 32 can be formed of the same n-type organic semiconductor or n-type inorganic semiconductor as that used for the photoelectric conversion layer 3 having the bulk heterojunction structure.
In this case, since it is a layer separate from the p-type semiconductor layer 31 made of a chlorophyll derivative, a suitable thin film can be formed not only by spin coating but also by vacuum deposition.
The film thickness of the n-type semiconductor layer 32 is preferably 10 to 300 nm in consideration of light transmittance, photoelectric conversion ability, film resistance, and the like.

以下、本発明を実施例に基づきさらに具体的に説明するが、本発明は下記の実施例により制限されるものではない。
[実施例1]
図1に示すようなバルクヘテロ接合構造の有機薄膜太陽電池セルを、以下のようにして作製した。
まず、正極1としてITO電極が膜厚140nmで形成されたガラス基板を用い、この表面に、ホール輸送層2としてMoO3を膜厚5nmで真空蒸着法により成膜した。
その上に、光電変換層3として(化1)に示すクロロフィル誘導体(Chl-1;M=2H,R=CHCH2)と、n型半導体としてフラーレン化合物であるPC70BMとが重量比1:4で混合された膜厚100nmの薄膜を形成した。この成膜は、クロロベンゼン溶液としてスピンコート法により行った。
そして、負極2としてCa層及びAl層からなる2層電極を、真空蒸着法により膜厚120nmで成膜した。
EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not restrict | limited by the following Example.
[Example 1]
An organic thin-film solar cell having a bulk heterojunction structure as shown in FIG. 1 was produced as follows.
First, a glass substrate on which an ITO electrode was formed with a film thickness of 140 nm was used as the positive electrode 1, and MoO 3 was formed as a hole transport layer 2 with a film thickness of 5 nm on this surface by a vacuum evaporation method.
In addition, a chlorophyll derivative (Chl-1; M = 2H, R = CHCH 2 ) shown in (Chemical Formula 1) as the photoelectric conversion layer 3 and PC70BM which is a fullerene compound as an n-type semiconductor are in a weight ratio of 1: 4. A mixed thin film having a thickness of 100 nm was formed. This film formation was performed by spin coating as a chlorobenzene solution.
And the two-layer electrode which consists of Ca layer and Al layer as the negative electrode 2 was formed into a film with a film thickness of 120 nm by the vacuum evaporation method.

上記により作製したセルの層構成は、ITO/MoO3(5nm)/Chl-1(20nm)+PC70BM(80nm)/Ca(20nm)/Al(100nm)である。 The layer structure of the cell produced as described above is ITO / MoO 3 (5 nm) / Chl-1 (20 nm) + PC70BM (80 nm) / Ca (20 nm) / Al (100 nm).

[実施例2]
図2に示すような平面ヘテロ接合構造の有機薄膜太陽電池セルを、以下のようにして作製した。
まず、正極1としてITO電極が膜厚140nmで形成されたガラス基板を用い、この表面に、ホール輸送層2としてMoO3を膜厚5nmで真空蒸着法により成膜した。
その上に、p型半導体層31として(化1)に示すクロロフィル誘導体(Chl-1;M=2H,R=CHCH2)を膜厚20nmで成膜した。この成膜は、ジクロロメタン溶液としてスピンコート法により行った。さらに、n型半導体層32としてフラーレン化合物であるC60を膜厚40nmで真空蒸着法により成膜した。
その上に、電子輸送層5として、BCPを膜厚6nmでスピンコート法により成膜した。
そして、負極2としてAlを、真空蒸着法により膜厚100nmで成膜した。
[Example 2]
An organic thin-film solar cell having a planar heterojunction structure as shown in FIG. 2 was produced as follows.
First, a glass substrate on which an ITO electrode was formed with a film thickness of 140 nm was used as the positive electrode 1, and MoO 3 was formed as a hole transport layer 2 with a film thickness of 5 nm on this surface by a vacuum evaporation method.
A chlorophyll derivative (Chl-1; M = 2H, R = CHCH 2 ) shown in (Chemical Formula 1) as a p-type semiconductor layer 31 was formed thereon with a thickness of 20 nm. This film formation was performed by a spin coat method as a dichloromethane solution. Furthermore, C60 which is a fullerene compound was formed into a film thickness of 40 nm as the n-type semiconductor layer 32 by a vacuum evaporation method.
A BCP film having a thickness of 6 nm was formed thereon as the electron transport layer 5 by a spin coating method.
And Al was formed into a film with a film thickness of 100 nm by the vacuum evaporation method as the negative electrode 2.

上記により作製したセルの層構成は、ITO/MoO3(5nm)/Chl-1(20nm)/C60(40nm)/BCP(6nm)/Al(100nm)である。 The layer structure of the cell produced as described above is ITO / MoO 3 (5 nm) / Chl-1 (20 nm) / C60 (40 nm) / BCP (6 nm) / Al (100 nm).

[実施例3]
実施例1において、光電変換層3として(化1)に示すクロロフィル誘導体(Chl-2;M=2H,R=CHO)を用い、それ以外については実施例1と同様にして、バルクヘテロ接合構造の有機薄膜太陽電池セルを作製した。
[Example 3]
In Example 1, the chlorophyll derivative (Chl-2; M = 2H, R = CHO) shown in (Chemical Formula 1) is used as the photoelectric conversion layer 3, and the others are the same as in Example 1 and have a bulk heterojunction structure. Organic thin-film solar cells were produced.

上記により作製したセルの層構成は、ITO/MoO3(5nm)/Chl-2(20nm)+PC70BM(80nm)/Ca(20nm)/Al(100nm)である。 The layer structure of the cell produced as described above is ITO / MoO 3 (5 nm) / Chl-2 (20 nm) + PC70BM (80 nm) / Ca (20 nm) / Al (100 nm).

[実施例4]
実施例1において、光電変換層3として(化1)に示すクロロフィル誘導体(Chl-3;M=Zn、R=CH2OH)を用い、それ以外については実施例1と同様にして、バルクヘテロ接合構造の有機薄膜太陽電池セルを作製した。
[Example 4]
In Example 1, the chlorophyll derivative (Chl-3; M = Zn, R = CH 2 OH) shown in (Chemical Formula 1) is used as the photoelectric conversion layer 3, and otherwise, the bulk heterojunction is performed in the same manner as in Example 1. An organic thin film solar cell having a structure was prepared.

上記により作製したセルの層構成は、ITO/MoO3(5nm)/Chl-3(20nm)+PC70BM(80nm)/Ca(20nm)/Al(100nm)である。
The layer structure of the cell produced as described above is ITO / MoO 3 (5 nm) / Chl-3 (20 nm) + PC70BM (80 nm) / Ca (20 nm) / Al (100 nm).

[実施例5]
実施例1において、光電変換層3として(化1)に示すクロロフィル誘導体(Chl-4;M=Cu,R=CHCH2)を用い、それ以外については実施例1と同様にして、バルクヘテロ接合構造の有機薄膜太陽電池セルを作製した。
[Example 5]
In Example 1, the chlorophyll derivative (Chl-4; M = Cu, R = CHCH 2 ) shown in (Chemical Formula 1) is used as the photoelectric conversion layer 3, and the bulk heterojunction structure is otherwise obtained in the same manner as in Example 1. The organic thin-film solar cell of this was produced.

上記により作製したセルの層構成は、ITO/MoO3(5nm)/Chl-4(20nm)+PC70BM(80nm)/Ca(20nm)/Al(100nm)である。 The layer structure of the cell produced as described above is ITO / MoO 3 (5 nm) / Chl-4 (20 nm) + PC70BM (80 nm) / Ca (20 nm) / Al (100 nm).

[実施例6]
実施例1において、光電変換層3として(化1)に示すクロロフィル誘導体(Chl-5;M=Zn,R=CHCH2)を用い、それ以外については実施例1と同様にして、バルクヘテロ接合構造の有機薄膜太陽電池セルを作製した。
[Example 6]
In Example 1, the chlorophyll derivative (Chl-5; M = Zn, R = CHCH 2 ) shown in (Chemical Formula 1) was used as the photoelectric conversion layer 3, and the bulk heterojunction structure was otherwise obtained in the same manner as in Example 1. The organic thin-film solar cell of this was produced.

上記により作製したセルの層構成は、ITO/MoO3(5nm)/Chl-5(20nm)+PC70BM(80nm)/Ca(20nm)/Al(100nm)である。 The layer structure of the cell produced as described above is ITO / MoO 3 (5 nm) / Chl-5 (20 nm) + PC70BM (80 nm) / Ca (20 nm) / Al (100 nm).

[実施例7]
実施例1において、光電変換層3として(化1)に示すクロロフィル誘導体(Chl-6;M=Ni,R=CHCH2)を用い、それ以外については実施例1と同様にして、バルクヘテロ接合構造の有機薄膜太陽電池セルを作製した。
[Example 7]
In Example 1, the chlorophyll derivative (Chl-6; M = Ni, R = CHCH 2 ) shown in (Chemical Formula 1) is used as the photoelectric conversion layer 3, and the bulk heterojunction structure is otherwise obtained in the same manner as in Example 1. The organic thin-film solar cell of this was produced.

上記により作製したセルの層構成は、ITO/MoO3(5nm)/Chl-6(20nm)+PC70BM(80nm)/Ca(20nm)/Al(100nm)である。 The layer structure of the cell produced as described above is ITO / MoO 3 (5 nm) / Chl-6 (20 nm) + PC70BM (80 nm) / Ca (20 nm) / Al (100 nm).

[実施例8]
実施例2において、p型半導体層31として(化1)に示すクロロフィル誘導体(Chl-4;M=Cu,R=CHCH2)及びPC60BMの混合層を用い、それ以外については実施例2と同様にして、平面ヘテロ接合構造の有機薄膜太陽電池セルを作製した。
[Example 8]
In Example 2, a mixed layer of the chlorophyll derivative (Chl-4; M = Cu, R = CHCH 2 ) and PC60BM shown in (Chemical Formula 1) is used as the p-type semiconductor layer 31. Otherwise, the same as in Example 2 Thus, an organic thin film solar cell having a planar heterojunction structure was produced.

上記により作製したセルの層構成は、ITO/MoO3(5nm)/Chl-4+PC60BM(40nm)/C60(4nm)/BCP(6nm)/Al(100nm)である。 The layer structure of the cell produced as described above is ITO / MoO 3 (5 nm) / Chl-4 + PC60BM (40 nm) / C60 (4 nm) / BCP (6 nm) / Al (100 nm).

[比較例1]
実施例1において、ホール輸送層2としてPEDOT:PSSを膜厚40nmでスピンコート法により成膜し、また、光電変換層3として(化4)に示すクロロフィル誘導体(Chl-7)を用い、それ以外については実施例1と同様にして、バルクヘテロ接合構造の有機薄膜太陽電池セルを作製した。
[Comparative Example 1]
In Example 1, PEDOT: PSS was formed into a film thickness of 40 nm by a spin coat method as the hole transport layer 2, and a chlorophyll derivative (Chl-7) shown in (Chemical Formula 4) was used as the photoelectric conversion layer 3, Except for the above, an organic thin-film solar cell having a bulk heterojunction structure was produced in the same manner as in Example 1.

Figure 2013021098
Figure 2013021098

上記により作製したセルの層構成は、ITO/PEDOT:PSS(40nm)/Chl-7(20nm)+PC70BM(80nm)/Ca(20nm)/Al(100nm)である。   The layer structure of the cell produced as described above is ITO / PEDOT: PSS (40 nm) / Chl-7 (20 nm) + PC70BM (80 nm) / Ca (20 nm) / Al (100 nm).

上記実施例および比較例において作製した各セルについて、AM1.5G、100mW/cm2の疑似太陽光を照射して、太陽電池特性を測定した。
短絡電流密度JSC、開放電圧VOC、曲線因子FF、エネルギー変換効率PCEの評価結果を表1にまとめて示す。
なお、比較例1においては、測定下限未満であり、太陽電池特性の評価は困難であった。
About each cell produced in the said Example and comparative example, AM1.5G, 100 mW / cm < 2 > pseudo-sunlight was irradiated, and the solar cell characteristic was measured.
Table 1 summarizes the evaluation results of the short-circuit current density J SC , the open circuit voltage V OC , the fill factor FF, and the energy conversion efficiency PCE.
In Comparative Example 1, it was less than the measurement lower limit, and it was difficult to evaluate the solar cell characteristics.

Figure 2013021098
Figure 2013021098

本発明に係るクロロフィル誘導体によれば、天然クロロフィルよりも光電変換効率の向上を図ることができることが認められた。   According to the chlorophyll derivative according to the present invention, it was recognized that the photoelectric conversion efficiency can be improved as compared with natural chlorophyll.

1 正極
2 負極
3 光電変換層
31 p型有機半導体層
32 n型有機半導体層
4 ホール輸送層
5 電子輸送層
1 positive electrode 2 negative electrode 3 photoelectric conversion layer 31 p-type organic semiconductor layer 32 n-type organic semiconductor layer 4 hole transport layer 5 electron transport layer

Claims (3)

一対の電極間にp型半導体とn型半導体とが含まれた有機薄膜太陽電池において、前記p型半導体として下記一般式(1)で表されるクロロフィル誘導体が用いられていることを特徴とする有機薄膜太陽電池。
Figure 2013021098

(式(1)中、Mは、2H、Ni、Zn及びCuのうちのいずれかである。Rは、CHCH2、CHO及びCH2OHのいずれかである。)
In an organic thin film solar cell in which a p-type semiconductor and an n-type semiconductor are included between a pair of electrodes, a chlorophyll derivative represented by the following general formula (1) is used as the p-type semiconductor. Organic thin film solar cell.
Figure 2013021098

(In the formula (1), M is any one of 2H, Ni, Zn and Cu. R is any one of CHCH 2 , CHO and CH 2 OH.)
前記p型半導体と前記n型半導体との混合層を含むバルクヘテロ接合構造であることを特徴とする請求項1記載の有機薄膜太陽電池。   2. The organic thin-film solar cell according to claim 1, wherein the organic thin-film solar cell has a bulk heterojunction structure including a mixed layer of the p-type semiconductor and the n-type semiconductor. 前記p型半導体からなる層と前記n型半導体からなる層とが積層された平面ヘテロ接合構造であることを特徴とする請求項1記載の有機薄膜太陽電池。   2. The organic thin film solar cell according to claim 1, wherein the organic thin film solar cell has a planar heterojunction structure in which a layer made of the p-type semiconductor and a layer made of the n-type semiconductor are laminated.
JP2011152633A 2011-07-11 2011-07-11 Organic thin film solar cell Active JP5888691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011152633A JP5888691B2 (en) 2011-07-11 2011-07-11 Organic thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011152633A JP5888691B2 (en) 2011-07-11 2011-07-11 Organic thin film solar cell

Publications (2)

Publication Number Publication Date
JP2013021098A true JP2013021098A (en) 2013-01-31
JP5888691B2 JP5888691B2 (en) 2016-03-22

Family

ID=47692261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011152633A Active JP5888691B2 (en) 2011-07-11 2011-07-11 Organic thin film solar cell

Country Status (1)

Country Link
JP (1) JP5888691B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109830379A (en) * 2019-01-28 2019-05-31 储天新能源科技(长春)有限公司 A kind of supercapacitor and preparation method thereof
JPWO2018186397A1 (en) * 2017-04-07 2020-02-27 富士フイルム株式会社 Photoelectric conversion device, optical sensor, imaging device, and compound
CN110993797A (en) * 2019-12-20 2020-04-10 储天新能源科技(长春)有限公司 Non-lead double perovskite solar cell and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112769398B (en) * 2020-12-28 2021-12-24 北京华电恩典科技创新有限公司 Flexible microorganism photovoltaic paster

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158734A (en) * 2007-12-27 2009-07-16 Hitachi Ltd Photoelectric conversion element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158734A (en) * 2007-12-27 2009-07-16 Hitachi Ltd Photoelectric conversion element

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6015028834; Katterle, Martin; Holzwarth, Alfred R.; Jesorka, Aldo: 'A Heck-type coupling for the synthesis of novel bridged metallochlorin-fullerene C60 dyads' European Journal of Organic Chemistry 第2巻, 2006, p414-422, Wiley-VCH Verlag GmbH & Co. KGaA *
JPN6015028835; Wang, Xiao-Feng; Tamiaki, Hitoshi; Wang, Li; Tamai, Naoto; Kitao, Osamu; Zhou, Haoshen; Sasaki, Shin: 'Chlorophyll-a derivatives with various hydrocarbon ester groups for efficient dye-sensitized sol' Langmuir 26(9), 20100325, p6320-6327, American Chemical Society *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018186397A1 (en) * 2017-04-07 2020-02-27 富士フイルム株式会社 Photoelectric conversion device, optical sensor, imaging device, and compound
CN109830379A (en) * 2019-01-28 2019-05-31 储天新能源科技(长春)有限公司 A kind of supercapacitor and preparation method thereof
CN110993797A (en) * 2019-12-20 2020-04-10 储天新能源科技(长春)有限公司 Non-lead double perovskite solar cell and preparation method thereof
CN110993797B (en) * 2019-12-20 2022-06-21 储天新能源科技(长春)有限公司 Non-lead double perovskite solar cell and preparation method thereof

Also Published As

Publication number Publication date
JP5888691B2 (en) 2016-03-22

Similar Documents

Publication Publication Date Title
Ehrler et al. Photovoltaics reaching for the Shockley–Queisser limit
Yan et al. Hole‐transporting materials in inverted planar perovskite solar cells
Hu et al. Two‐terminal perovskites tandem solar cells: recent advances and perspectives
Li et al. Graphdiyne-doped P3CT-K as an efficient hole-transport layer for MAPbI3 perovskite solar cells
TWI553887B (en) Organic photovoltaic cell incorporating electron conducting exciton blocking layers
KR101464798B1 (en) Mixtures for producing photoactive layers for organic solar cells and organic photodetectors
Lee et al. Toward visibly transparent organic photovoltaic cells based on a near-infrared harvesting bulk heterojunction blend
US20140230901A1 (en) Organic Solar Cell Comprising an Intermediate Layer with Asymmetrical Transport Properties
JP5580976B2 (en) Organic thin film solar cell
Zhang et al. Efficient interconnecting layers in monolithic all-perovskite tandem solar cells
Khandelwal et al. Semitransparent organic solar cells: from molecular design to structure–performance relationships
JP2015515749A (en) Metal oxide charge transport materials doped with organic molecules
JP2011082396A (en) Tandem organic solar cell
CN112018100A (en) Silicon/perovskite laminated solar cell
KR20180007867A (en) Organic-inorganic complex solar cell
CN102522506A (en) Organic solar cell of suede light trapping electrode and manufacturing method thereof
Wang et al. Recent advances of organic solar cells with optical microcavities
JP5888691B2 (en) Organic thin film solar cell
CN108346742A (en) Perovskite battery and its preparation of photovoltaic performance are improved based on polystyrene boundary layer
Li et al. Vacuum‐Deposited Transparent Organic Photovoltaics for Efficiently Harvesting Selective Ultraviolet and Near‐Infrared Solar Energy
Bui et al. Recent advances in small molecular, non-polymeric organic hole transporting materials for solid-state DSSC
KR20150120330A (en) Polymer photovoltaics employing a squaraine donor additive
KR101415168B1 (en) Preparation method of fibrous solar cells having metal grid electrode, and the fibrous solar cells thereby
US20210050539A1 (en) Para-phenylenes as buffer and color tuning layers for solar cells
WO2013102985A1 (en) Organic photoelectric conversion element and organic thin-film solar battery module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140707

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140707

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20141201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160209

R150 Certificate of patent or registration of utility model

Ref document number: 5888691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250