JP2013020715A - Positive electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and manufacturing method of nonaqueous electrolyte secondary battery - Google Patents

Positive electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and manufacturing method of nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2013020715A
JP2013020715A JP2011150791A JP2011150791A JP2013020715A JP 2013020715 A JP2013020715 A JP 2013020715A JP 2011150791 A JP2011150791 A JP 2011150791A JP 2011150791 A JP2011150791 A JP 2011150791A JP 2013020715 A JP2013020715 A JP 2013020715A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
secondary battery
transition metal
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011150791A
Other languages
Japanese (ja)
Other versions
JP5686060B2 (en
Inventor
Tetsuya Murai
村井  哲也
Masashi Shibata
眞史 柴田
Daisuke Endo
大輔 遠藤
Yoshihiro Katayama
禎弘 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2011150791A priority Critical patent/JP5686060B2/en
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to KR1020137014919A priority patent/KR101956651B1/en
Priority to EP11852696.1A priority patent/EP2660907B1/en
Priority to CN201180063107.5A priority patent/CN103283066B/en
Priority to PCT/JP2011/080220 priority patent/WO2012091015A1/en
Priority to US13/997,783 priority patent/US9543055B2/en
Publication of JP2013020715A publication Critical patent/JP2013020715A/en
Application granted granted Critical
Publication of JP5686060B2 publication Critical patent/JP5686060B2/en
Priority to US15/362,103 priority patent/US10297822B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode active material in which oxygen gas is not generated even when a battery is charged up to a high voltage, and a large discharge capacity is ensured even when the discharge capacity is large, especially when the maximum potential of the positive electrode is lower than 4.4 (vs.Li/Li) during charge, and to provide a nonaqueous electrolyte secondary battery, and a manufacturing method therefor.SOLUTION: In the nonaqueous electrolyte secondary battery, the positive electrode active material is composed of a transition metal element including Li, and Co, Ni and Mn, the mole ratio Li/Me of Li to all transition metal elements Me is 1.25-1.40, and oxygen gas is not generated when the battery is charged up to a maximum arrival potential of the positive electrode in the range of 4.5-4.6 V (vs.Li/Li). In the manufacturing method of a nonaqueous electrolyte secondary battery, charging is performed in the initial charge/discharge up to a maximum arrival potential of the positive electrode in the range of 4.5 V (vs.Li/Li) or more and less than 4.6 V (vs.Li/Li), without generating oxygen gas from a lithium transition metal composite oxide.

Description

本発明は、非水電解質二次電池用正極活物質、その正極活物質を用いた非水電解質二次電池及び非水電解質二次電池の製造方法に関する。   The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery using the positive electrode active material, and a method for producing a non-aqueous electrolyte secondary battery.

従来、リチウム二次電池には、正極活物質として主にLiCoOが用いられている。しかし、LiCoOを正極活物質として用いたリチウム二次電池は、放電容量が120〜130mAh/g程度しかなく、充電状態における電池内での熱的安定性も劣るものであった。 Conventionally, LiCoO 2 is mainly used as a positive electrode active material in a lithium secondary battery. However, the lithium secondary battery using LiCoO 2 as the positive electrode active material has a discharge capacity of only about 120 to 130 mAh / g, and the thermal stability in the battery in a charged state is also inferior.

そこで、リチウム二次電池用活物質として、LiCoOを他の化合物と固溶体を形成させた材料が知られている。即ち、リチウム二次電池用活物質として、LiCoO、LiNiO及びLiMnOをそれぞれ3つの成分として配置した三元系状態図上に示されるα−NaFeO型結晶構造を有する固溶体であるLi[Co1−2xNiMn]O(0<x≦1/2)が2001年に発表された。前記固溶体の一例であるLiNi1/2Mn1/2やLiCo1/3Ni1/3Mn1/3を活物質として用いたリチウム二次電池は、放電容量が150〜180mAh/gとLiCoOよりも優れ、充電状態における電池内での熱的安定性の点でもLiCoOより優れている。 Therefore, a material obtained by forming a solid solution of LiCoO 2 with another compound is known as an active material for a lithium secondary battery. That is, as an active material for a lithium secondary battery, LiCoO 2 , LiNiO 2 and LiMnO 2 are each a solid solution having an α-NaFeO 2 type crystal structure shown on a ternary phase diagram in which three components are arranged. Co 1-2x Ni x Mn x ] O 2 (0 <x ≦ 1/2) was published in 2001. A lithium secondary battery using LiNi 1/2 Mn 1/2 O 2 or LiCo 1/3 Ni 1/3 Mn 1/3 O 2 as an example of the solid solution has a discharge capacity of 150 to 180 mAh / better than g and LiCoO 2, it is superior to LiCoO 2 in terms of thermal stability in the battery in a charged state.

しかし、放電容量がさらに大きいリチウム二次電池用活物質が求められていた。そこで、Li及び遷移金属元素(Co、Ni、Mnなど)で構成されたリチウム遷移金属複合酸化物について、リチウム過剰遷移金属複合酸化物とすることにより放電容量を大きくした活物質が開発された。ところが、このような活物質は、充電時に酸素ガスを発生するという問題があった(例えば、特許文献1、2、非特許文献1、2参照)。   However, an active material for a lithium secondary battery having a larger discharge capacity has been demanded. Therefore, an active material having a large discharge capacity has been developed by using a lithium transition metal composite oxide composed of Li and a transition metal element (Co, Ni, Mn, etc.) as a lithium excess transition metal composite oxide. However, such an active material has a problem of generating oxygen gas during charging (see, for example, Patent Documents 1 and 2 and Non-Patent Documents 1 and 2).

特許文献1には、「充電区間の中にガスが発生するプラトー電位を有する電極活物質を前記プラトー電位以上まで充電する段階と;及び、ガスを除去する段階を含むことを特徴とする、電気化学素子の製造方法。」(請求項1)、「前記電極活物質は、プラトー電位が4.4〜4.8Vであることを特徴とする、請求項1〜3の何れか一項に記載の製造方法。」(請求項4)、「前記ガスは、酸素(O)ガスであることを特徴とする、請求項1に記載の製造方法。」(請求項5)、「充電区間の中にガスが発生するプラトー電位を有する電極活物質を、前記プラトー電位以上まで充電した後、ガス除去を行うことを特徴とする、電気化学素子。」(請求項6)、「前記電極活物質は、プラトー電位が4.4〜4.8Vであることを特徴とする、請求項6に記載の電気化学素子。」(請求項7)、「前記プラトー電位以上まで充電し、ガスを除去した後、前記電極活物質の放電容量が3.0〜4.4Vの電圧範囲で100〜280mAh/g範囲になることを特徴とする、請求項8に記載の電気化学素子。」(請求項10)の発明が記載されている。
また、上記の電極活物質として、化学式1「XLi(Li1/32/3)O+YLiM'Oの固溶体 式中、M=4+の酸化数を有する金属から選択された1種以上の元素、M'=遷移金属から選択された1種以上の元素、0<X<1、0<Y<1、X+Y=1である。」(請求項2、請求項8、段落[0024])を使用した場合、「M'の酸化還元電位以上に充電される場合、Liが離脱されながら、酸化還元バランスを取るために酸素も離脱される。よって、電極活物質はプラトー電位を有することになる。」(段落[0025])、「上記の化学式1の化合物は、プラトー電位以上の充電電圧(4.4〜4.8V)に充電した後、ガス除去工程を行ってからも、充放電サイクルで電極活物質として安定的であるため、好ましい。」(段落[0026])、「好ましくは、MはMn、Sn、Ti金属から選択された1種以上の元素であり、M'はNi、Mn、Co、Cr金属から選択された1種以上の元素である。」(段落[0027])と記載されている。
Patent Document 1 includes a step of charging an electrode active material having a plateau potential in which a gas is generated in a charging section to a level equal to or higher than the plateau potential; and a step of removing the gas. The manufacturing method of a chemical element. (Claim 1), "The electrode active material has a plateau potential of 4.4 to 4.8 V, according to any one of claims 1 to 3." (Claim 4), "The gas is oxygen (O 2 ) gas," (Claim 5), (Charging section) An electrochemical element, wherein an electrode active material having a plateau potential in which gas is generated is charged to a level equal to or higher than the plateau potential, and then the gas is removed. (Claim 6), "The electrode active material" Has a plateau potential of 4.4 to 4.8V. The electrochemical device according to Item 6, ”(Claim 7),“ After charging to the plateau potential or higher and removing the gas, the discharge capacity of the electrode active material is within a voltage range of 3.0 to 4.4V. The invention according to claim 8, characterized in that it is in the range of 100 to 280 mAh / g.
Further, as the electrode active material, chemical formula 1 "XLi (Li 1/3 M 2/3) O 2 + YLiM'O 2 in solid solution type, M = 4 + 1 or more selected from a metal having an oxidation number of M ′ = one or more elements selected from transition metals, 0 <X <1, 0 <Y <1, X + Y = 1 ”(claims 2, 8, paragraph [0024] ), “When charged above the redox potential of M ′, Li is released and oxygen is also released in order to achieve a redox balance. Therefore, the electrode active material must have a plateau potential. (Paragraph [0025]), “The compound of Formula 1 above is charged even after the gas removal step after charging to a charging voltage (4.4 to 4.8 V) higher than the plateau potential. It is preferable because it is stable as an electrode active material in the discharge cycle. " [Preferably, M is one or more elements selected from Mn, Sn, and Ti metals, and M ′ is one or more elements selected from Ni, Mn, Co, and Cr metals. (Paragraph [0027]).

さらに、特許文献1には、「本発明によりプラトー電位以上に1回以上充電した後、ガス除去工程を行う方式により電池を構成すれば、継続的にプラトー電位以上に充電しても、高容量の電池を構成すると共に、ガス発生による電池の問題点も解決できる。すなわち、プラトー電位以上に充電した後、以後のサイクルの充電からはガスが発生せず、プラトー区間はなくなる(図4参照)」。」(段落[0022])と記載され、また、実施例4として、Li(Li0.2Ni0.2Mn0.6)O(3/5[Li(Li1/3Mn2/3)O]+2/5[LiNi1/2Mn1/2]O)を正極活物質として使用(段落[0048])して、「1番目サイクルでは4.8Vまで充電し、2番目サイクルでは4.4Vまで充電した」(段落[0060])場合には、高容量の電池が得られること(図5参照)が示されている。しかし、比較例5や比較例6のように、プラトー電位以下である4.25V、4.4Vまで充電した場合には、酸素ガスが発生しないことが示唆されているものの、放電容量が低い電池しか得られないものである (段落[0056]、図1、段落[0057]、図2)から、プラトー電位以上の高い電圧まで充電した場合でも酸素ガスが発生しないような正極活物質が示されているとはいえない。 Furthermore, Patent Document 1 states that “if a battery is configured by a method of performing a gas removal step after charging at least once a plateau potential according to the present invention, a high capacity can be obtained even if the battery is continuously charged above the plateau potential. In addition, the battery problem caused by gas generation can be solved, that is, after charging to a plateau potential or higher, no gas is generated from the subsequent cycle charging, and the plateau section is eliminated (see FIG. 4). " (Paragraph [0022]), and as Example 4, Li (Li 0.2 Ni 0.2 Mn 0.6 ) O 2 (3/5 [Li (Li 1/3 Mn 2/3 ) O 2 ] +2/5 [LiNi 1/2 Mn 1/2 ] O 2 ) as a positive electrode active material (paragraph [0048]), “charged to 4.8 V in the first cycle and second cycle Then, “charged to 4.4 V” (paragraph [0060]) indicates that a high-capacity battery can be obtained (see FIG. 5). However, as in Comparative Example 5 and Comparative Example 6, it is suggested that when charging to 4.25 V or 4.4 V, which is lower than the plateau potential, oxygen gas is not generated, but the battery has a low discharge capacity. (Paragraph [0056], FIG. 1, Paragraph [0057], FIG. 2) shows a positive electrode active material that does not generate oxygen gas even when charged to a voltage higher than the plateau potential. I cannot say that.

非特許文献1及び2には、Li[NiLi(1/3−2x/3)Mn(2/3−x/3)]Oを正極活物質として用いた場合、プラトー電位以上の充電電圧(4.5〜4.7V)において、酸素ガスの放出が起きることが示されている(非特許文献1のA818頁左欄4行〜右欄第2行、非特許文献2のA785左欄9行〜A788右欄4行)が、プラトー電位以上の高い電圧まで充電した場合に酸素ガスが発生しないことは示されていない。 In Non-Patent Documents 1 and 2, when Li [Ni x Li (1 / 3-2x / 3) Mn (2 / 3-x / 3) ] O 2 is used as a positive electrode active material, charging is more than a plateau potential. It is shown that the release of oxygen gas occurs at a voltage (4.5 to 4.7 V) (non-patent document 1, page A818, left column, line 4 to right column, second line, non-patent document 2, A785 left). Column 9 line to A788 right column 4 line) does not indicate that oxygen gas is not generated when charged to a voltage higher than the plateau potential.

特許文献2には、「集電体にリチウムイオンを吸蔵放出可能な活物質層を設けた正極板と負極板とをセパレータを介して巻回または積層して電極群を構成し非水電解質とともにケースに封入してなる非水系二次電池であって、前記正極板に、Li/Li+基準で4.3V以下で充電する活物質と過充電時に酸素ガスを発生する物質を存在させたリチウムイオン二次電池。」(請求項1)、「前記過充電時に酸素ガスを発生する物質として、Li[(Ni0.5Mn0.5xCoy(Li1/3Mn1/3z]O2(ただし、x+y+z=1 z>0 )またはLiαNiβMnγO2(αが1.1以上でβ:γ=1:1)で示される活物質を用いた請求項1記載のリチウムイオン二次電池。」(請求項2)の発明が記載され、また、リチウム過剰遷移金属複合酸化物(実施例1〜3及び7:Li1.2Ni0.4Mn0.42、実施例4〜6:Li[(Ni0.5Mn0.51/12Co1/4(Li1/3Mn2/3)1/3]O2(x=5/12、y=1/4、z=1/3のとき))は、リチウム過剰でないリチウム遷移金属複合酸化物(比較例1:LiCoO2、比較例2:LiNi0.5Mn0.52、比較例3:Li(N1/3Mn1/3Co1/3)O2)と比較して、過充電時に酸素ガスが発生し易いこと(段落[0064])が記載され、特許文献2に記載された発明おいては、逆に、リチウム過剰遷移金属複合酸化物の上記のような性質を利用して、「過充電時にガス発生により、正極活物質層と集電体間、または、正極極板とセパレータ間、または、正極層内が離れるため、充電を遮断し、電解液の分解、正極活物質の分解、また、負極側へのLi析出による短絡を防ぐことができる」こと(段落[0010])が記載されている。 Patent Document 2 states that “a positive electrode plate and a negative electrode plate provided with an active material layer capable of inserting and extracting lithium ions in a current collector are wound or laminated with a separator interposed therebetween to form an electrode group and a non-aqueous electrolyte. A non-aqueous secondary battery enclosed in a case, wherein the positive electrode plate has an active material charged at 4.3 V or less on the basis of Li / Li + and a material that generates oxygen gas when overcharged. Ion secondary battery. "(Claim 1)," Li [(Ni 0.5 Mn 0.5 ) x Co y (Li 1/3 Mn 1/3 ) z ] O 2 as a substance that generates oxygen gas during the overcharge. " The lithium ion secondary according to claim 1, wherein an active material represented by (where x + y + z = 1 z> 0) or LiαNiβMnγO 2 (α is 1.1 or more and β: γ = 1: 1) is used. A battery. "(Claim 2) and a lithium-excess transition metal complex acid. Things (Examples 1 to 3 and 7: Li 1.2 Ni 0.4 Mn 0.4 O 2, Example 4~6: Li [(Ni 0.5 Mn 0.5) 1/12 Co 1/4 (Li 1/3 Mn 2/3) 1/3 ] O 2 (when x = 5/12, y = 1/4, z = 1/3 )) is a lithium transition metal composite oxide that is not excessive in lithium (Comparative Example 1: LiCoO 2 , Comparative Example 2) : LiNi 0.5 Mn 0.5 O 2 , Comparative Example 3: Compared with Li (N 1/3 Mn 1/3 Co 1/3 ) O 2 ), oxygen gas is easily generated during overcharge (paragraph [0064] In the invention described in Patent Document 2, conversely, by utilizing the above-described properties of the lithium-excess transition metal composite oxide, “positive electrode active material layer due to gas generation during overcharge” Between the current collector and the current collector, or between the positive electrode plate and the separator, or in the positive electrode layer, so that charging is interrupted, decomposition of the electrolyte, decomposition of the positive electrode active material, In addition, it is possible to prevent a short circuit due to Li deposition on the negative electrode side (paragraph [0010]).

さらに、特許文献2には、「本発明のリチウムイオン二次電池では、過充電時に酸素ガスを発生する正極活物質として、リチウム過剰正極活物質Li[(Ni0.5Mn0.5xCoy(Li1/3Mn1/3z]O2(ただし、x+y+z=1 z>0 )またはLiαNiβMnγO2(αが1.1以上でβ:γ=1:1)で示される活物質を用いることが好ましい。上記活物質を用いれば、Li/Li+基準において4.5V程度で、酸素ガスの発生が起こることにより、正極と負極の極間を広げることが可能となる。」と記載されているから、4.5V以上まで充電したときに、酸素ガスが発生しない正極活物質は示されていない。 Further, Patent Document 2 states that “in the lithium ion secondary battery of the present invention, as a positive electrode active material that generates oxygen gas during overcharge, a lithium-excess positive electrode active material Li [(Ni 0.5 Mn 0.5 ) x Co y (Li 1/3 Mn 1/3 ) z ] O 2 (where x + y + z = 1 z> 0) or LiαNiβMnγO 2 (where α is 1.1 or more and β: γ = 1: 1) If the above active material is used, oxygen gas is generated at about 4.5 V on the basis of Li / Li + , thereby making it possible to widen the gap between the positive electrode and the negative electrode. Since it is described, a positive electrode active material that does not generate oxygen gas when charged to 4.5 V or higher is not shown.

特許文献3には、充電時の正極の最大到達電位が4.3V(vs.Li/Li+)以下である充電方法が採用されるリチウム二次電池を製造するための製造方法が示され、正極活物質としてリチウム過剰遷移金属複合酸化物を使用したリチウム二次電池について、4.3V(vs.Li/Li+)を超え4.8V(vs.Li/Li+)以下の正極電位範囲に充電電気量に対して出現する電位変化が比較的平坦な領域に少なくとも至る充電を行う工程を含む製造方法を採用することにより、放電容量が大きく、特に4.3V以下の電位領域における放電容量が大きいリチウム二次電池が得られることが示されている(請求項10、段落[0062]〜[0065]、図9)が、正極電位範囲に充電電気量に対して出現する電位変化が比較的平坦な領域(プラトー電位)以上の高い電圧まで充電した場合でも、正極活物質から酸素ガスが発生しないことは示されていない。
また、特許文献3の実施例においては、溶液中でCo、Ni及びMnを含有する化合物を共沈させて前駆体を製造する工程におけるpHが11.5であり、リチウム遷移金属複合酸化物の焼成温度が1000℃である。
Patent Document 3 discloses a manufacturing method for manufacturing a lithium secondary battery in which a charging method in which the maximum potential of the positive electrode during charging is 4.3 V (vs. Li / Li + ) or less is employed, lithium secondary battery using a lithium excess transition metal composite oxide as a positive electrode active material, 4.3V (vs.Li/Li +) beyond 4.8V (vs.Li/Li +) below the positive electrode potential range By adopting a manufacturing method that includes a process of charging at least a region where the potential change that appears with respect to the amount of charged electricity reaches a relatively flat region, the discharge capacity is large, particularly in a potential region of 4.3 V or less. It has been shown that a large lithium secondary battery can be obtained (claim 10, paragraphs [0062] to [0065], FIG. 9). High voltage above flat area (plateau potential) It is not shown that oxygen gas is not generated from the positive electrode active material even when charged up to.
Moreover, in the Example of patent document 3, pH in the process which manufactures a precursor by coprecipitating the compound containing Co, Ni, and Mn in a solution is 11.5, and lithium transition metal complex oxide The firing temperature is 1000 ° C.

一方、正極活物質から発生する酸素ガスは、非水電解質二次電池(リチウム二次電池)の電解質を構成する溶媒の酸化、電池の加熱等の不具合を生じるため、過充電時や高温時に酸素ガス発生が抑制された非水電解質二次電池用正極(正極活物質)も開発されている(例えば、特許文献4及び5参照)。   On the other hand, the oxygen gas generated from the positive electrode active material causes problems such as oxidation of the solvent constituting the electrolyte of the non-aqueous electrolyte secondary battery (lithium secondary battery) and battery heating. A positive electrode (positive electrode active material) for a non-aqueous electrolyte secondary battery in which gas generation is suppressed has also been developed (see, for example, Patent Documents 4 and 5).

特許文献4に記載された発明は、請求項1において、リチウム含有複合酸化物(リチウム遷移金属複合酸化物)の酸素ガスの発生のしにくさが「前記複合酸化物のガスクロマトグラフ質量分析測定における酸素発生ピークの極大値」で「330〜370℃の範囲」と規定され、「GC/MS測定において、正極合剤を室温から500℃まで10℃/分で昇温し、酸素発生挙動を観測した。ここで得られた酸素発生スペクトル(A)を図3に示す。図3から明らかなように、スペクトル(A)において、酸素発生ピークの極大値は、350℃より高温側に位置している。このことから、本発明の正極活物質は、電池電圧4.7Vの過充電領域において高温に暴露されても、酸素を発生しながら分解しにくい、極めて安定性に優れたものであることが判る。」(段落[0041])と記載されている。
しかし、特許文献4には、「一般式:LiCo1−x−yMgで表され、前記一般式に含まれる元素Mは、Al、Ti、Sr、Mn、NiおよびCaよりなる群から選択される少なくとも1種であり、前記一般式に含まれるx、yおよびzは、(イ)0≦z≦1.03、(ロ)0.005≦x≦0.1、および(ハ)0.001≦y≦0.03を満たす」正極活物質が具体的に記載されている(請求項2及び3)だけであり、過充電領域において酸素ガスを発生しないリチウム過剰遷移金属複合酸化物は示されていない。
The invention described in Patent Document 4 is that in claim 1, the difficulty in generating oxygen gas of the lithium-containing composite oxide (lithium transition metal composite oxide) is “in the gas chromatograph mass spectrometry measurement of the composite oxide. “Maximum value of oxygen generation peak” is defined as “range of 330 to 370 ° C.”, and in “GC / MS measurement”, the cathode mixture is heated from room temperature to 500 ° C. at 10 ° C./min, and the oxygen generation behavior is observed. The oxygen generation spectrum (A) obtained here is shown in Fig. 3. As is apparent from Fig. 3, in the spectrum (A), the maximum value of the oxygen generation peak is located on the higher temperature side than 350 ° C. Therefore, the positive electrode active material of the present invention is extremely stable because it generates oxygen and hardly decomposes even when exposed to a high temperature in an overcharged region with a battery voltage of 4.7 V. It is seen. "Is described as (paragraph [0041]).
However, Patent Document 4 discloses that “the element M represented by the general formula: Li z Co 1-xy Mg x M y O 2 and contained in the general formula includes Al, Ti, Sr, Mn, Ni, and X, y, and z included in the general formula are at least one selected from the group consisting of Ca, (a) 0 ≦ z ≦ 1.03, (b) 0.005 ≦ x ≦ 0.1. And (c) satisfying 0.001 ≦ y ≦ 0.03 ”is specifically described (claims 2 and 3), and an excess of lithium that does not generate oxygen gas in the overcharge region Transition metal complex oxides are not shown.

特許文献5には、正極活物質に酸素貯蔵材を混合したり付着させたりすることにより、正極からの高温時等における酸素の放出を抑制することが示され(請求項1、段落[0005]、[0056])、「酸素貯蔵材としてCe酸化物又はCe−Zr酸化物を有する正極(サンプル1〜4)の酸素脱離ピーク温度はいずれも300℃以上であり、酸素貯蔵材を有しないサンプル5に対してピーク温度が大幅に上昇した。このことは、サンプル1〜4では、サンプル5に比べて、正極から酸素が放出される現象がより良く(より高い温度域に至るまで)抑制されていることを示している。」(段落[0057])と記載されているが、高温時等に酸素ガスが発生しない正極活物質(リチウム遷移金属複合酸化物)は示されていない。   Patent Document 5 shows that oxygen is released from the positive electrode at a high temperature by mixing or adhering an oxygen storage material to the positive electrode active material (claim 1, paragraph [0005]). , [0056]), “The oxygen desorption peak temperature of the positive electrode (samples 1 to 4) having Ce oxide or Ce—Zr oxide as the oxygen storage material is 300 ° C. or higher, and does not have the oxygen storage material. The peak temperature rose significantly compared to sample 5. This means that in samples 1 to 4, the phenomenon in which oxygen is released from the positive electrode is better (up to a higher temperature range) than in sample 5. However, a positive electrode active material (lithium transition metal composite oxide) that does not generate oxygen gas at a high temperature or the like is not shown.

特開2009−505367号公報JP 2009-505367 A 特開2008−226693号公報JP 2008-226693 A 特開2010−86690号公報JP 2010-86690 A 特開2004−220952号公報JP 2004-220952 A 特開2006−114256号公報JP 2006-114256 A

Journal of The Electrochemical Society,149(7)A815−A822(2002)Journal of The Electrochemical Society, 149 (7) A815-A822 (2002) Journal of The Electrochemical Society,149(6)A778−A791(2002)Journal of The Electrochemical Society, 149 (6) A778-A791 (2002)

本発明は、上記問題点に鑑みなされたものであって、高い電圧まで充電した場合でも、リチウム遷移金属複合酸化物から酸素ガスを発生することがなく、かつ、放電容量が大きく、特に、充電時の正極の最大到達電位が4.4(vs.Li/Li)より低くなるような、例えば、4.3V(vs.Li/Li)以下となるような充電方法を採用した場合でも放電容量が大きくなる正極活物質を提供すること、また、その正極活物質を使用した非水電解質二次電池及び非水電解質二次電池の製造方法を提供することを課題とする。 The present invention has been made in view of the above problems, and does not generate oxygen gas from a lithium transition metal composite oxide even when charged to a high voltage, and has a large discharge capacity. Even when a charging method is adopted in which the maximum potential of the positive electrode at the time is lower than 4.4 (vs. Li / Li + ), for example, 4.3 V (vs. Li / Li + ) or less. It is an object of the present invention to provide a positive electrode active material having a large discharge capacity, and to provide a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery manufacturing method using the positive electrode active material.

本発明においては、上記課題を解決するために、以下の手段を採用する。
(1)リチウム遷移金属複合酸化物を含む非水電解質二次電池用正極活物質において、前記リチウム遷移金属複合酸化物が、Li、並びにCo、Ni及びMnを含む遷移金属元素で構成され、その全遷移金属元素Meに対するLiのモル比Li/Meが1.25〜1.40であり、かつ、正極の最大到達電位が4.5〜4.6V(vs.Li/Li)の範囲にあるいずれかの電位までの充電を行ったときに、前記リチウム遷移金属複合酸化物から酸素ガスが発生しないことを特徴とする非水電解質二次電池用正極活物質。
(2)リチウム遷移金属複合酸化物を含む非水電解質二次電池用正極活物質において、前記リチウム遷移金属複合酸化物が、Li、並びにCo、Ni及びMnを含む遷移金属元素で構成され、その全遷移金属元素Meに対するLiのモル比Li/Meが1.25〜1.40であり、かつ、正極の最大到達電位が4.55〜4.6V(vs.Li/Li)の範囲にあるいずれかの電位までの充電を行ったときに、前記リチウム遷移金属複合酸化物から酸素ガスが発生しないことを特徴とする非水電解質二次電池用正極活物質。
(3)前記充電が、初期充放電における充電であることを特徴とする前記(1)又は(2)の非水電解質二次電池用正極活物質。
(4)前記正極活物質が、充電区間の中にプラトー電位を有し、前記4.5〜4.6V(vs.Li/Li)の範囲にあるいずれかの電位は、前記プラトー電位以上であることを特徴とする前記(1)〜(3)のいずれか1項の非水電解質二次電池用正極活物質。
(5)1000℃未満で焼成したことを特徴とする前記(1)〜(4)のいずれか1項の非水電解質二次電池用正極活物質。
(6)前記(1)〜(5)のいずれか1項の正極活物質を備えた非水電解質二次電池。
(7)使用時において、充電時の正極の最大到達電位が4.4V(vs.Li/Li)未満である充電方法が採用されることを特徴とする前記(6)の非水電解質二次電池。
(8)リチウム遷移金属複合酸化物を含む正極活物質を使用し、初期充放電を含む工程を行うリチウム二次電池の製造方法において、前記リチウム遷移金属複合酸化物として、Li、並びにCo、Ni及びMnを含む遷移金属元素で構成され、その全遷移金属元素Meに対するLiのモル比Li/Meが1.25〜1.40であるリチウム遷移金属複合酸化物を使用し、前記初期充放電における充電を、前記リチウム遷移金属複合酸化物から酸素ガスを発生させないで、かつ、正極の最大到達電位が4.5V(vs.Li/Li)以上4.6V(vs.Li/Li)未満の範囲にあるいずれかの電位まで行うことを特徴とする非水電解質二次電池の製造方法。
(9)前記正極活物質が、充電区間の中にプラトー電位を有し、前記正極の最大到達電位が4.5V(vs.Li/Li)以上4.6V(vs.Li/Li)未満の範囲にあるいずれかの電位は、前記プラトー電位以上であることを特徴とする前記(8)の非水電解質二次電池の製造方法。
In the present invention, in order to solve the above problems, the following means are adopted.
(1) In the positive electrode active material for a non-aqueous electrolyte secondary battery containing a lithium transition metal composite oxide, the lithium transition metal composite oxide is composed of Li and a transition metal element containing Co, Ni, and Mn, The molar ratio Li / Me of Li to all transition metal elements Me is 1.25 to 1.40, and the maximum ultimate potential of the positive electrode is in the range of 4.5 to 4.6 V (vs. Li / Li + ). A positive electrode active material for a non-aqueous electrolyte secondary battery, characterized in that oxygen gas is not generated from the lithium transition metal composite oxide when charged to any one potential.
(2) In the positive electrode active material for a non-aqueous electrolyte secondary battery containing a lithium transition metal composite oxide, the lithium transition metal composite oxide is composed of Li and transition metal elements containing Co, Ni, and Mn, The molar ratio Li / Me of Li to all transition metal elements Me is 1.25 to 1.40, and the maximum ultimate potential of the positive electrode is in the range of 4.55 to 4.6 V (vs. Li / Li + ). A positive electrode active material for a non-aqueous electrolyte secondary battery, characterized in that oxygen gas is not generated from the lithium transition metal composite oxide when charged to any one potential.
(3) The positive electrode active material for a nonaqueous electrolyte secondary battery according to (1) or (2), wherein the charge is charge in initial charge / discharge.
(4) The positive electrode active material has a plateau potential in a charging section, and any potential in the range of 4.5 to 4.6 V (vs. Li / Li + ) is equal to or higher than the plateau potential. The positive electrode active material for a non-aqueous electrolyte secondary battery according to any one of (1) to (3), wherein:
(5) The positive electrode active material for a non-aqueous electrolyte secondary battery according to any one of (1) to (4), wherein the positive electrode active material is fired at less than 1000 ° C.
(6) A nonaqueous electrolyte secondary battery comprising the positive electrode active material according to any one of (1) to (5).
(7) In use, the charging method in which the maximum potential of the positive electrode during charging is less than 4.4 V (vs. Li / Li + ) is adopted. Next battery.
(8) In a method for manufacturing a lithium secondary battery using a positive electrode active material including a lithium transition metal composite oxide and performing a process including initial charge and discharge, Li, Co, and Ni are used as the lithium transition metal composite oxide. And a transition metal element containing Mn, a lithium transition metal composite oxide having a Li / Me molar ratio Li / Me of 1.25 to 1.40 with respect to the total transition metal element Me, Charging is performed without generating oxygen gas from the lithium transition metal composite oxide, and the maximum potential of the positive electrode is 4.5 V (vs. Li / Li + ) or more and less than 4.6 V (vs. Li / Li + ) A method for producing a non-aqueous electrolyte secondary battery, wherein the method is carried out up to any potential in the range.
(9) The positive electrode active material has a plateau potential in a charging section, and the maximum potential of the positive electrode is 4.5 V (vs. Li / Li + ) or more and 4.6 V (vs. Li / Li + ) Any one of the potentials in the range of less than the plateau potential is equal to or higher than the plateau potential. (8) The method for producing a nonaqueous electrolyte secondary battery according to (8).

本発明によれば、高い電圧で充電した場合でも酸素ガスを発生することがないリチウム遷移金属複合酸化物を含む正極活物質を備えた放電容量が大きい非水電解質二次電池を提供することができる。   According to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery having a large discharge capacity provided with a positive electrode active material containing a lithium transition metal composite oxide that does not generate oxygen gas even when charged at a high voltage. it can.

本発明の一実施形態を示す図であって、角形リチウム二次電池の縦断面図である。It is a figure which shows one Embodiment of this invention, Comprising: It is a longitudinal cross-sectional view of a square lithium secondary battery. 実施例における電池1の初期充放電工程時の電位挙動を示す図である。It is a figure which shows the electric potential behavior at the time of the initial stage charging / discharging process of the battery 1 in an Example. 実施例における電池2の初期充放電工程時の電位挙動を示す図である。It is a figure which shows the electric potential behavior at the time of the initial stage charging / discharging process of the battery 2 in an Example. 実施例における電池3の初期充放電工程時の電位挙動を示す図である。It is a figure which shows the electric potential behavior at the time of the initial stage charging / discharging process of the battery 3 in an Example. 実施例における電池4の初期充放電工程時の電位挙動を示す図である。It is a figure which shows the electric potential behavior at the time of the initial stage charging / discharging process of the battery 4 in an Example.

本発明の非水電解質二次電池用正極活物質は、リチウム遷移金属複合酸化物を含むものであり、そのリチウム遷移金属複合酸化物は、Li、並びにCo、Ni及びMnを含む遷移金属元素で構成され、その全遷移金属元素Meに対するLiのモル比Li/Meが1.25〜1.40である。
なお、非水電解質二次電池としては、リチウム二次電池が典型的なものであるから、以下においては、リチウム二次電池について説明する。
The positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention contains a lithium transition metal composite oxide, and the lithium transition metal composite oxide is a transition metal element containing Li and Co, Ni, and Mn. The molar ratio Li / Me of Li to all transition metal elements Me is 1.25 to 1.40.
In addition, since a lithium secondary battery is typical as a nonaqueous electrolyte secondary battery, a lithium secondary battery is demonstrated below.

全遷移金属元素Meに対するLiのモル比Li/Meが1.25よりも小さい、又は1.40よりも大きいと、放電容量が小さくなるので、放電容量が大きいリチウム二次電池を得るために、Li/Meは1.25〜1.40とする。Li/Meは1.250〜1.350が好ましい。   When the molar ratio Li / Me of Li to all transition metal elements Me is smaller than 1.25 or larger than 1.40, the discharge capacity becomes small. Therefore, in order to obtain a lithium secondary battery having a large discharge capacity, Li / Me is set to 1.25 to 1.40. Li / Me is preferably 1.250 to 1.350.

本発明の正極活物質として使用するリチウム遷移金属複合酸化物は、一般式LiCoNiMn(a+x+y+z=2)で表され、全遷移金属元素Meに対するLiのモル比Li/Me、すなわち、a/(x+y+z)が1.25〜1.40である。 The lithium transition metal composite oxide used as the positive electrode active material of the present invention is represented by the general formula Li a Co x Ni y Mn z O 2 (a + x + y + z = 2), and the molar ratio of Li to the total transition metal element Me Li / Me, that is, a / (x + y + z) is 1.25 to 1.40.

また、全遷移金属元素Meに対するCoのモル比Co/Meが0.020よりも小さい、又は0.230よりも大きい場合、全遷移金属元素Meに対するMnのモル比Mn/Meが0.625よりも小さい、又は0.719よりも大きい場合には、放電容量が小さくなる傾向があるので、放電容量が大きいリチウム二次電池を得るためには、Co/Meを0.020〜0.230、すなわち、x/(x+y+z)を0.020〜0.230とすること、Mn/Me、すなわち、z/(x+y+z)を0.625〜0.719とすることが好ましい。   When the molar ratio Co / Me of Co to all transition metal elements Me is smaller than 0.020 or larger than 0.230, the molar ratio of Mn to all transition metal elements Me is Mn / Me from 0.625. Is smaller or larger than 0.719, the discharge capacity tends to be small. Therefore, in order to obtain a lithium secondary battery with a large discharge capacity, Co / Me is set to 0.020 to 0.230, That is, x / (x + y + z) is preferably 0.020 to 0.230, and Mn / Me, that is, z / (x + y + z) is preferably 0.625 to 0.719.

本発明の正極活物質は、正極の最大到達電位が4.5〜4.6V(vs.Li/Li)の範囲にあるいずれかの電位までの充電を行ったときに、上述したリチウム遷移金属複合酸化物から酸素ガスが発生しないことを特徴とする。従来の正極活物質は、特許文献1、2、非特許文献1、2に示されるように、リチウム遷移金属複合酸化物がリチウム過剰遷移金属複合酸化物の場合、正極の最大到達電位が4.5V(vs.Li/Li)程度で、この複合酸化物から酸素ガスが発生するものであるから、本発明の正極活物質は、従来の正極活物質とは全く異なるものであるといえる。本発明においては、後述する実施例のように、正極の最大到達電位が4.5V、4.55V、4.6V(vs.Li/Li)の各電位までの充電を行ったときに、前記リチウム遷移金属複合酸化物から酸素ガスが発生しないことを確認した。
本発明において、「酸素ガスが発生しない」とは、酸素ガスが実質的に発生しないことを意味し、具体的には、本発明の組成を有する正極活物質を含む密閉型電池を作製し、4.5〜4.6V(vs.Li/Li)の範囲にあるいずれかの電位までの充電を行い、2.0V(vs.Li/Li)までの放電を行った後、電池を解体し、電池内から放出されたガスをガスクロマトグラフィーを用いて分析した場合に、酸素と窒素の体積比率が大気成分(O/(N+O)=0.21)と変わらないこと(測定誤差:±5%)、すなわち、酸素ガスの発生量が、検出限界以下であることを意味する。なお、電池の充放電は、常温(25℃)で行い、極端に加熱された状態で行うものではない。
When the positive electrode active material of the present invention is charged to any potential in the range of 4.5 to 4.6 V (vs. Li / Li + ), the maximum potential of the positive electrode is the lithium transition described above. Oxygen gas is not generated from the metal composite oxide. As shown in Patent Documents 1 and 2 and Non-Patent Documents 1 and 2, the conventional positive electrode active material has a maximum positive electrode potential of 4.4 when the lithium transition metal composite oxide is a lithium-excess transition metal composite oxide. Since oxygen gas is generated from this composite oxide at about 5 V (vs. Li / Li + ), it can be said that the positive electrode active material of the present invention is completely different from the conventional positive electrode active material. In the present invention, as in the examples described later, when charging was performed up to the maximum potential of the positive electrode of 4.5 V, 4.55 V, 4.6 V (vs. Li / Li + ), It was confirmed that no oxygen gas was generated from the lithium transition metal composite oxide.
In the present invention, “oxygen gas is not generated” means that oxygen gas is not substantially generated. Specifically, a sealed battery including a positive electrode active material having the composition of the present invention is manufactured, was charged to one of the potential in the range of 4.5~4.6V (vs.Li/Li +), after discharging until 2.0V (vs.Li/Li +), a battery When the gas released from the battery is analyzed using gas chromatography, the volume ratio of oxygen and nitrogen should not be different from the atmospheric component (O 2 / (N 2 + O 2 ) = 0.21) (Measurement error: ± 5%), that is, it means that the amount of oxygen gas generated is below the detection limit. In addition, charging / discharging of a battery is performed at normal temperature (25 degreeC), and is not performed in the state heated extremely.

上記のように、正極の最大到達電位が4.5〜4.6V(vs.Li/Li)の範囲にあれば、いずれの電位まで充電を行っても酸素ガスを発生することはないが、この充電を、リチウム二次電池の製造工程において、初期化成(初期充放電)における充電として行う場合には、正極の最大到達電位が4.5V(vs.Li/Li)を超え4.6V(vs.Li/Li)未満の範囲にあるいずれかの電位まで行うことが好ましく、4.55V、又は、これに近い電位とすることがより好ましい。
正極の最大到達電位が4.5V(vs.Li/Li)以下では、4.3V(vs.Li/Li)以下の放電領域において放電可能な電気量が小さくなり、また、正極の最大到達電位を4.6V(vs.Li/Li)以上にすると、放電容量は大きくなるが、電解液の分解によるガスの発生する量が多くなり、電池の性能が低下するため好ましくない。
後述する実施例のように、初期充放電(初回充放電)における充電として、正極の最大到達電位が4.55V(vs.Li/Li)までの充電を行ったときに、酸素ガスを発生させることなく、リチウム二次電池を製造することができ、また、このようにして製造したリチウム二次電池は、使用時に、充電時の正極の最大到達電位が4.3V(vs.Li/Li)である充電方法を採用した場合に、大きな放電容量を得ることができる。
As described above, when the maximum potential of the positive electrode is in the range of 4.5 to 4.6 V (vs. Li / Li + ), oxygen gas is not generated even if charging is performed up to any potential. In the manufacturing process of the lithium secondary battery, when this charging is performed as charging in initialization (initial charging / discharging), the maximum potential of the positive electrode exceeds 4.5 V (vs. Li / Li + ). It is preferable to carry out to any potential in the range of less than 6 V (vs. Li / Li + ), more preferably 4.55 V or a potential close thereto.
When the maximum potential of the positive electrode is 4.5 V (vs. Li / Li + ) or less, the amount of electricity that can be discharged in a discharge region of 4.3 V (vs. Li / Li + ) or less is reduced. When the ultimate potential is 4.6 V (vs. Li / Li + ) or more, the discharge capacity increases, but the amount of gas generated due to the decomposition of the electrolytic solution increases, and the battery performance deteriorates.
Oxygen gas is generated when the maximum potential of the positive electrode is charged to 4.55 V (vs. Li / Li + ) as the charge in the initial charge / discharge (first charge / discharge) as in the examples described later. The lithium secondary battery manufactured in this way has a maximum potential of 4.3 V (vs. Li / Li) at the time of charging when used. When a charging method that is + ) is adopted, a large discharge capacity can be obtained.

また、本発明における正極活物質は、充電区間の中にプラトー電位を有するものであり、4.5〜4.6V(vs.Li/Li)の範囲にあるいずれかの電位は、プラトー電位以上である。ここで、プラトー電位とは、特許文献3の図9に示されているような「正極電位範囲に充電電気量に対して出現する電位変化が比較的平坦な領域」を意味し、特許文献1に記載されているプラトー電位と同様の意味である。
本発明は、全遷移金属元素Me(Co、Ni及びMn)に対するLiのモル比Li/Meが1.25〜1.40であるリチウム遷移金属複合酸化物を含み、充電区間の中にプラトー電位を有する正極活物質を使用したリチウム二次電池の初期充放電(初回充放電)における充電を、プラトー電位以上で行った場合でも、リチウム遷移金属複合酸化物から酸素ガスが実質的に発生しないことを特徴とする。
In addition, the positive electrode active material in the present invention has a plateau potential in the charging section, and any potential in the range of 4.5 to 4.6 V (vs. Li / Li + ) is a plateau potential. That's it. Here, the plateau potential means a “region in which the potential change appearing with respect to the amount of charge in the positive electrode potential range is relatively flat” as shown in FIG. It has the same meaning as the plateau potential described in.
The present invention includes a lithium transition metal composite oxide in which a molar ratio Li / Me of Li to all transition metal elements Me (Co, Ni, and Mn) is 1.25 to 1.40, and a plateau potential in a charging section. Even when the charge in the initial charge / discharge (first charge / discharge) of the lithium secondary battery using the positive electrode active material having the above is performed at a plateau potential or higher, oxygen gas is not substantially generated from the lithium transition metal composite oxide. It is characterized by.

本発明のリチウム遷移金属複合酸化物は、上記のような一般式で表されるものであり、本質的に、Li、Co、Ni及びMnからなる複合酸化物であるが、本発明の効果を損なわない範囲で、少量のNa,Ca等のアルカリ金属やアルカリ土類金属、Fe,Zn等の3d遷移金属に代表される遷移金属など他の金属を含有することを排除するものではない。   The lithium transition metal composite oxide of the present invention is represented by the above general formula, and is essentially a composite oxide composed of Li, Co, Ni and Mn. It does not exclude the inclusion of a small amount of other metals such as alkali metals such as Na and Ca, alkaline earth metals, and transition metals represented by 3d transition metals such as Fe and Zn, as long as they are not impaired.

また、本発明のリチウム遷移金属複合酸化物は、本質的に、結晶構造が六方晶に帰属される。空間群としてはP312又はR3−mに帰属可能である。ここで、P312は、R3−mにおける3a、3b、6cサイトの原子位置を細分化した結晶構造モデルであり、R3−mにおける原子配置に秩序性が認められるときに該P312モデルが採用される。なお、「R3−m」は本来「R3m」の「3」の上にバー「−」を施して表記すべきものである。 In addition, the lithium transition metal composite oxide of the present invention essentially has a crystal structure belonging to hexagonal crystals. The space group can be assigned to P3 1 12 or R3-m. Here, P3 1 12 is a crystal structure model in which the atomic positions of the 3a, 3b, and 6c sites in R3-m are subdivided, and when ordering is recognized in the atomic arrangement in R3-m, the P3 1 12 model Is adopted. Note that “R3-m” should be represented by adding a bar “-” on “3” of “R3m”.

次に、本発明のリチウム二次電池用活物質を製造する方法について説明する。
本発明のリチウム二次電池用活物質は、基本的に、活物質を構成する金属元素(Li,Mn,Co,Ni)を目的とする活物質(酸化物)の組成通りに含有する原料を調整し、これを焼成することによって得ることができる。但し、Li原料の量については、焼成中にLi原料の一部が消失することを見込んで、1〜5%程度過剰に仕込むことが好ましい。
目的とする組成の酸化物を作製するにあたり、Li,Co,Ni,Mnのそれぞれの塩を混合・焼成するいわゆる「固相法」や、あらかじめCo,Ni,Mnを一粒子中に存在させた共沈前駆体を作製しておき、これにLi塩を混合・焼成する「共沈法」が知られている。「固相法」による合成過程では、特にMnはCo,Niに対して均一に固溶しにくいため、各元素が一粒子中に均一に分布した試料を得ることは困難である。これまで文献などにおいては固相法によってNiやCoの一部にMnを固溶(LiNi1−xMnなど)しようという試みが多数なされているが、「共沈法」を選択する方が原子レベルで均一相を得ることが容易である。そこで、後述する実施例においては、「共沈法」を採用した。
Next, a method for producing the active material for a lithium secondary battery of the present invention will be described.
The active material for a lithium secondary battery of the present invention basically includes a raw material containing a metal element (Li, Mn, Co, Ni) constituting the active material according to the composition of the active material (oxide). It can be obtained by adjusting and baking this. However, with respect to the amount of the Li raw material, it is preferable to add an excess of about 1 to 5% in anticipation of a part of the Li raw material disappearing during firing.
In producing an oxide having a desired composition, a so-called “solid phase method” in which salts of Li, Co, Ni, and Mn are mixed and fired, or Co, Ni, and Mn were previously present in one particle. A “coprecipitation method” is known in which a coprecipitation precursor is prepared, and a Li salt is mixed and fired therein. In the synthesis process by the “solid phase method”, especially Mn is difficult to uniformly dissolve in Co and Ni, so it is difficult to obtain a sample in which each element is uniformly distributed in one particle. In literatures and the like, many attempts have been made to dissolve Mn in a part of Ni or Co (LiNi 1-x Mn x O 2 etc.) by solid phase method, but the “coprecipitation method” is selected. It is easier to obtain a homogeneous phase at the atomic level. Therefore, the “coprecipitation method” is employed in the examples described later.

共沈前駆体を作製するにあたって、Co,Ni,MnのうちMnは酸化されやすく、Co,Ni,Mnが2価の状態で均一に分布した共沈前駆体を作製することが容易ではないため、Co,Ni,Mnの原子レベルでの均一な混合は不十分なものとなりやすい。特に実施例の組成範囲においては、Mn比率がCo,Ni比率に比べて高いので、水溶液中の溶存酸素を除去することが特に重要である。溶存酸素を除去する方法としては、酸素を含まないガスをバブリングする方法が挙げられる。酸素を含まないガスとしては、限定されるものではないが、窒素ガス、アルゴンガス、二酸化炭素(CO)等を用いることができる。なかでも、後述する実施例のように、共沈炭酸塩前駆体を作製する場合には、酸素を含まないガスとして二酸化炭素を採用すると、炭酸塩がより生成しやすい環境が与えられるため、好ましい。 When preparing a coprecipitation precursor, Mn is easily oxidized among Co, Ni and Mn, and it is not easy to prepare a coprecipitation precursor in which Co, Ni and Mn are uniformly distributed in a divalent state. Uniform mixing at the atomic level of Co, Ni and Mn tends to be insufficient. Particularly in the composition range of the examples, since the Mn ratio is higher than the Co and Ni ratios, it is particularly important to remove dissolved oxygen in the aqueous solution. Examples of the method for removing dissolved oxygen include a method of bubbling a gas not containing oxygen. The gas not containing oxygen is not limited, but nitrogen gas, argon gas, carbon dioxide (CO 2 ), or the like can be used. Among these, when preparing a coprecipitated carbonate precursor as in the examples described later, it is preferable to employ carbon dioxide as a gas not containing oxygen because an environment in which carbonate is more easily generated is provided. .

また、溶液中でCo、Ni及びMnを含有する化合物を共沈させて前駆体を製造する工程におけるpHを制御することが好ましい。前記共沈前駆体を共沈炭酸塩前駆体として作製しようとする場合には、pHを9.4以下とすることにより、タップ密度を1.25g/cc以上とすることができ、高率放電特性を向上させることができる。pHは、8.5〜9.4であることが好ましい。   Moreover, it is preferable to control the pH in the step of producing a precursor by coprecipitation of a compound containing Co, Ni and Mn in a solution. When the coprecipitation precursor is prepared as a coprecipitation carbonate precursor, the tap density can be increased to 1.25 g / cc or more by adjusting the pH to 9.4 or less, and high-rate discharge is achieved. Characteristics can be improved. The pH is preferably 8.5 to 9.4.

前記共沈前駆体の作製は、MnとNiとCoとが均一に混合された化合物であることが好ましい。ただし前駆体は炭酸塩に限定されるものではなく、他にも水酸化物、クエン酸塩などの元素が原子レベルで均一に存在した難溶性塩であれば炭酸塩と同様に使用することができる。また、錯化剤を用いた晶析反応等を用いることによって、より嵩密度の大きな前駆体を作製することもできる。その際、Li源と混合・焼成することでより高密度の活物質を得ることができるので電極面積あたりのエネルギー密度を向上させることができる。   The coprecipitation precursor is preferably made of a compound in which Mn, Ni and Co are uniformly mixed. However, the precursor is not limited to carbonates, and other precursors such as hydroxides and citrates that are uniformly soluble at the atomic level may be used in the same manner as carbonates. it can. In addition, a precursor having a larger bulk density can be produced by using a crystallization reaction using a complexing agent. At that time, a higher density active material can be obtained by mixing and firing with a Li source, so that the energy density per electrode area can be improved.

前記共沈前駆体の原料は、Mn化合物としては酸化マンガン、炭酸マンガン、硫酸マンガン、硝酸マンガン、酢酸マンガン等を、Ni化合物としては、水酸化ニッケル、炭酸ニッケル、硫酸ニッケル、硝酸ニッケル、酢酸ニッケル等を、Co化合物としては、硫酸コバルト、硝酸コバルト、酢酸コバルト等を一例として挙げることができる。   The raw materials for the coprecipitation precursor include manganese oxide, manganese carbonate, manganese sulfate, manganese nitrate, manganese acetate, etc. as the Mn compound, and nickel hydroxide, nickel carbonate, nickel sulfate, nickel nitrate, nickel acetate as the Ni compound. As examples of the Co compound, cobalt sulfate, cobalt nitrate, cobalt acetate, and the like can be given as examples.

前記共沈前駆体の作製に用いる原料としては、アルカリ水溶液と沈殿反応を形成するものであればどのような形態のものでも使用することができるが、好ましくは溶解度の高い金属塩を用いるとよい。   As a raw material used for the preparation of the coprecipitation precursor, any form can be used as long as it forms a precipitation reaction with an alkaline aqueous solution, but a metal salt having high solubility is preferably used. .

本発明におけるリチウム二次電池用活物質は前記共沈前駆体とLi化合物とを混合した後、熱処理することで好適に作製することができる。Li化合物としては、水酸化リチウム、炭酸リチウム、硝酸リチウム、酢酸リチウム等を用いることで好適に製造することができる。   The active material for a lithium secondary battery in the present invention can be suitably prepared by mixing the coprecipitation precursor and the Li compound, followed by heat treatment. As a Li compound, it can manufacture suitably by using lithium hydroxide, lithium carbonate, lithium nitrate, lithium acetate, etc.

可逆容量の大きな活物質を得るにあたって、焼成温度の選択は極めて重要である。
焼成温度が高すぎると、得られた活物質が酸素放出反応を伴って崩壊すると共に、主相の六方晶に加えて単斜晶のLi[Li1/3Mn2/3]O型に規定される相が、固溶相としてではなく、分相して観察される傾向があり、このような材料は、活物質の可逆容量が大きく減少するので好ましくない。このような材料では、X線回折図上35°付近及び45°付近に不純物ピークが観察される。従って、焼成温度は、活物質の酸素放出反応の影響する温度未満とすることが重要である。活物質の酸素放出温度は、本発明に係る組成範囲においては、概ね1000℃以上であるが、活物質の組成によって酸素放出温度に若干の差があるので、あらかじめ活物質の酸素放出温度を確認しておくことが好ましい。特に試料に含まれるCo量が多いほど前駆体の酸素放出温度は低温側にシフトすることが確認されているので注意が必要である。活物質の酸素放出温度を確認する方法としては、焼成反応過程をシミュレートするために、共沈前駆体とLiCOを混合したものを熱重量分析(DTA−TG測定)に供してもよいが、この方法では測定機器の試料室に用いている白金が揮発したLi成分により腐食されて機器を痛めるおそれがあるので、あらかじめ500℃程度の焼成温度を採用してある程度結晶化を進行させた組成物を熱重量分析に供するのが良い。
In obtaining an active material having a large reversible capacity, the selection of the firing temperature is extremely important.
When the firing temperature is too high, the obtained active material collapses with an oxygen releasing reaction, and in addition to the hexagonal crystal of the main phase, the monoclinic Li [Li 1/3 Mn 2/3 ] O 2 type is obtained. The prescribed phase tends to be observed as a phase separation rather than as a solid solution phase, and such materials are not preferred because the reversible capacity of the active material is greatly reduced. In such materials, impurity peaks are observed around 35 ° and 45 ° on the X-ray diffraction pattern. Therefore, it is important that the firing temperature is lower than the temperature at which the oxygen release reaction of the active material affects. The oxygen release temperature of the active material is approximately 1000 ° C. or higher in the composition range according to the present invention. However, there is a slight difference in the oxygen release temperature depending on the composition of the active material. It is preferable to keep it. In particular, it is confirmed that the oxygen release temperature of the precursor shifts to the lower temperature side as the amount of Co contained in the sample increases. As a method for confirming the oxygen release temperature of the active material, a mixture of a coprecipitation precursor and Li 2 CO 3 may be subjected to thermogravimetric analysis (DTA-TG measurement) in order to simulate the firing reaction process. Although this method is good, there is a possibility that platinum used in the sample chamber of the measuring instrument is corroded by the Li component volatilized, and the instrument may be damaged. The obtained composition is preferably subjected to thermogravimetric analysis.

一方、焼成温度が低すぎると、結晶化が十分に進まず、電極特性も大きく低下するので好ましくない。焼成温度は少なくとも800℃以上とすることが必要である。十分に結晶化させることは結晶粒界の抵抗を軽減し、円滑なリチウムイオン輸送を促すために重要である。結晶化の度合いの見極め方として走査型電子顕微鏡を用いた視覚的な観察が挙げられる。本発明の正極活物質について走査型電子顕微鏡観察を行ったところ、試料合成温度が800℃以下ではナノオーダーの一次粒子から形成されているものであったが、さらに試料合成温度を上昇させることでサブミクロン程度まで結晶化するものであり、電極特性向上につながる大きな一次粒子を得られるものであった。
また、発明者らは、本発明活物質の回折ピークの半値幅を詳細に解析することで800℃までの温度で合成した試料においては格子内にひずみが残存しており、それ以上の温度で合成することでほとんどひずみを除去することができることを確認した。また、結晶子のサイズは合成温度が上昇するに比例して大きくなるものであった。よって、本発明活物質の組成においても、系内に格子のひずみがほとんどなく、かつ結晶子サイズが十分成長した粒子を志向することで良好な放電容量を得られるものであった。具体的には、格子定数に及ぼすひずみ量が2%以下、かつ結晶子サイズが100nm以上に成長しているような合成温度(焼成温度)を採用することが好ましいことがわかった。これらを電極として成型して充放電を行うことで膨張収縮による変化も見られるが、充放電過程においても結晶子サイズは50nm以上を保っていることが得られる効果として好ましい。即ち、焼成温度を上記した活物質の酸素放出温度にできるだけ近付けるように選択することにより、はじめて、可逆容量が顕著に大きい活物質を得ることができる。
On the other hand, if the firing temperature is too low, crystallization does not proceed sufficiently and the electrode characteristics are also greatly deteriorated. The firing temperature needs to be at least 800 ° C. or higher. Sufficient crystallization is important for reducing the resistance of the grain boundaries and promoting smooth lithium ion transport. Visual observation using a scanning electron microscope is mentioned as a method of determining the degree of crystallization. When the positive electrode active material of the present invention was observed with a scanning electron microscope, the sample synthesis temperature was 800 ° C. or less, and it was formed from nano-order primary particles. By further increasing the sample synthesis temperature, It was crystallized to a submicron level, and large primary particles that lead to improved electrode characteristics were obtained.
In addition, the inventors have analyzed the half width of the diffraction peak of the active material of the present invention in detail, and in the sample synthesized at a temperature up to 800 ° C., strain remains in the lattice, and at a temperature higher than that, It was confirmed that almost all strains could be removed by synthesis. The crystallite size was increased in proportion to the increase in the synthesis temperature. Therefore, even in the composition of the active material of the present invention, a favorable discharge capacity can be obtained by aiming at a particle having almost no lattice distortion in the system and having a sufficiently grown crystallite size. Specifically, it has been found that it is preferable to employ a synthesis temperature (firing temperature) such that the strain amount affecting the lattice constant is 2% or less and the crystallite size is grown to 100 nm or more. Although changes due to expansion and contraction can be seen by charging and discharging by molding these as electrodes, it is preferable as an effect that the crystallite size is maintained at 50 nm or more in the charging and discharging process. That is, an active material having a remarkably large reversible capacity can be obtained only by selecting the firing temperature as close as possible to the oxygen release temperature of the active material.

上記のように、好ましい焼成温度は、活物質の酸素放出温度により異なるから、一概に焼成温度の好ましい範囲を設定することは難しいが、本発明においては、焼成温度を1000℃未満とすることが好ましく、800〜940℃とすることがより好ましい。1000℃未満で焼成することにより、BET比表面積が大きくなり、初期充放電効率が向上する。   As described above, since the preferred firing temperature varies depending on the oxygen release temperature of the active material, it is generally difficult to set a preferred range for the firing temperature. However, in the present invention, the firing temperature may be less than 1000 ° C. Preferably, it is 800-940 degreeC. By baking at less than 1000 ° C., the BET specific surface area is increased, and the initial charge / discharge efficiency is improved.

本発明に係るリチウム二次電池に用いる非水電解質は、限定されるものではなく、一般にリチウム電池等への使用が提案されているものが使用可能である。非水電解質に用いる非水溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート等の環状炭酸エステル類;γ−ブチロラクトン、γ−バレロラクトン等の環状エステル類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、酪酸メチル等の鎖状エステル類;テトラヒドロフランまたはその誘導体;1,3−ジオキサン、1,4−ジオキサン、1,2−ジメトキシエタン、1,4−ジブトキシエタン、メチルジグライム等のエーテル類;アセトニトリル、ベンゾニトリル等のニトリル類;ジオキソランまたはその誘導体;エチレンスルフィド、スルホラン、スルトンまたはその誘導体等の単独またはそれら2種以上の混合物等を挙げることができるが、これらに限定されるものではない。   The nonaqueous electrolyte used for the lithium secondary battery according to the present invention is not limited, and those generally proposed for use in lithium batteries and the like can be used. Nonaqueous solvents used for the nonaqueous electrolyte include cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate and vinylene carbonate; cyclic esters such as γ-butyrolactone and γ-valerolactone; dimethyl carbonate, Chain carbonates such as diethyl carbonate and ethyl methyl carbonate; chain esters such as methyl formate, methyl acetate and methyl butyrate; tetrahydrofuran or derivatives thereof; 1,3-dioxane, 1,4-dioxane, 1,2-dimethoxy Ethers such as ethane, 1,4-dibutoxyethane and methyldiglyme; Nitriles such as acetonitrile and benzonitrile; Dioxolane or derivatives thereof; Ethylene sulfide, sulfolane, sultone or derivatives thereof Examples thereof include a conductor alone or a mixture of two or more thereof, but are not limited thereto.

非水電解質に用いる電解質塩としては、例えば、LiClO4,LiBF4,LiAsF6,LiPF6,LiSCN,LiBr,LiI,Li2SO4,Li210Cl10,NaClO4,NaI,NaSCN,NaBr,KClO4,KSCN等のリチウム(Li)、ナトリウム(Na)またはカリウム(K)の1種を含む無機イオン塩、LiCF3SO3,LiN(CF3SO22,LiN(C25SO22,LiN(CF3SO2)(C49SO2),LiC(CF3SO23,LiC(C25SO23,(CH34NBF4,(CH34NBr,(C254NClO4,(C254NI,(C374NBr,(n−C494NClO4,(n−C494NI,(C254N−maleate,(C254N−benzoate,(C254N−phtalate、ステアリルスルホン酸リチウム、オクチルスルホン酸リチウム、ドデシルベンゼンスルホン酸リチウム等の有機イオン塩等が挙げられ、これらのイオン性化合物を単独、あるいは2種類以上混合して用いることが可能である。 Examples of the electrolyte salt used for the nonaqueous electrolyte include LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiSCN, LiBr, LiI, Li 2 SO 4 , Li 2 B 10 Cl 10 , NaClO 4 , NaI, NaSCN, NaBr. , KClO 4 , KSCN, and other inorganic ion salts containing one of lithium (Li), sodium (Na), or potassium (K), LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , (CH 3 ) 4 NBF 4 , ( CH 3 ) 4 NBr, (C 2 H 5 ) 4 NClO 4 , (C 2 H 5 ) 4 NI, (C 3 H 7 ) 4 NBr, (n-C 4 H 9 ) 4 NClO 4 , (n-C 4 H 9) 4 NI, ( C 2 H 5) 4 N-mal ate, (C 2 H 5) 4 N-benzoate, (C 2 H 5) 4 N-phtalate, lithium stearyl sulfonate, lithium octyl sulfonate, organic ion salts of lithium dodecyl benzene sulfonate, and the like. These These ionic compounds can be used alone or in admixture of two or more.

さらに、LiBF4とLiN(C25SO22のようなパーフルオロアルキル基を有す
るリチウム塩とを混合して用いることにより、さらに電解質の粘度を下げることができるので、低温特性をさらに高めることができ、また、自己放電を抑制することができ、より望ましい。
Furthermore, by using a mixture of LiBF 4 and a lithium salt having a perfluoroalkyl group such as LiN (C 2 F 5 SO 2 ) 2 , the viscosity of the electrolyte can be further reduced, so that the low temperature characteristics are further improved. It can be increased and self-discharge can be suppressed, which is more desirable.

また、非水電解質として常温溶融塩やイオン液体を用いてもよい。   Moreover, you may use normal temperature molten salt and an ionic liquid as a nonaqueous electrolyte.

非水電解質における電解質塩の濃度としては、高い電池特性を有する非水電解質電池を確実に得るために、0.1mol/l〜5mol/lが好ましく、さらに好ましくは、0.5mol/l〜2.5mol/lである。   The concentration of the electrolyte salt in the non-aqueous electrolyte is preferably 0.1 mol / l to 5 mol / l, more preferably 0.5 mol / l to 2 in order to reliably obtain a non-aqueous electrolyte battery having high battery characteristics. .5 mol / l.

負極材料としては、限定されるものではなく、リチウムイオンを析出あるいは吸蔵することのできる形態のものであればどれを選択してもよい。例えば、Li[Li1/3Ti5/3]Oに代表されるスピネル型結晶構造を有するチタン酸リチウム等のチタン系材料、SiやSb,Sn系などの合金系材料リチウム金属、リチウム合金(リチウム−シリコン、リチウム−アルミニウム,リチウム−鉛,リチウム−スズ,リチウム−アルミニウム−スズ,リチウム−ガリウム,及びウッド合金等のリチウム金属含有合金)、リチウム複合酸化物(リチウム−チタン)、酸化珪素の他、リチウムを吸蔵・放出可能な合金、炭素材料(例えばグラファイト、ハードカーボン、低温焼成炭素、非晶質カーボン等)等が挙げられる。 The negative electrode material is not limited, and any negative electrode material that can deposit or occlude lithium ions may be selected. For example, titanium-based materials such as lithium titanate having a spinel crystal structure represented by Li [Li 1/3 Ti 5/3 ] O 4 , alloy-based materials such as Si, Sb, and Sn-based lithium metal, lithium alloys (Lithium metal-containing alloys such as lithium-silicon, lithium-aluminum, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and wood alloys), lithium composite oxide (lithium-titanium), silicon oxide In addition, an alloy capable of inserting and extracting lithium, a carbon material (for example, graphite, hard carbon, low-temperature fired carbon, amorphous carbon, etc.) can be used.

正極活物質の粉体および負極材料の粉体は、平均粒子サイズ100μm以下であることが望ましい。特に、正極活物質の粉体は、非水電解質電池の高出力特性を向上する目的で10μm以下であることが望ましい。粉体を所定の形状で得るためには粉砕機や分級機が用いられる。例えば乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェトミル、旋回気流型ジェットミルや篩等が用いられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、特に限定はなく、篩や風力分級機などが、乾式、湿式ともに必要に応じて用いられる。   It is desirable that the positive electrode active material powder and the negative electrode material powder have an average particle size of 100 μm or less. In particular, the positive electrode active material powder is desirably 10 μm or less for the purpose of improving the high output characteristics of the non-aqueous electrolyte battery. In order to obtain the powder in a predetermined shape, a pulverizer or a classifier is used. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling air flow type jet mill or a sieve is used. At the time of pulverization, wet pulverization in the presence of water or an organic solvent such as hexane may be used. There is no particular limitation on the classification method, and a sieve, an air classifier, or the like is used as needed for both dry and wet methods.

以上、正極及び負極の主要構成成分である正極活物質及び負極材料について詳述したが、前記正極及び負極には、前記主要構成成分の他に、導電剤、結着剤、増粘剤、フィラー等が、他の構成成分として含有されてもよい。   The positive electrode active material and the negative electrode material, which are the main components of the positive electrode and the negative electrode, have been described in detail above. In addition to the main components, the positive electrode and the negative electrode include a conductive agent, a binder, a thickener, and a filler. Etc. may be contained as other constituents.

導電剤としては、電池性能に悪影響を及ぼさない電子伝導性材料であれば限定されないが、通常、天然黒鉛(鱗状黒鉛,鱗片状黒鉛,土状黒鉛等)、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維、金属(銅,ニッケル,アルミニウム,銀,金等)粉、金属繊維、導電性セラミックス材料等の導電性材料を1種またはそれらの混合物として含ませることができる。   The conductive agent is not limited as long as it is an electron conductive material that does not adversely affect the battery performance. Usually, natural graphite (such as scaly graphite, scaly graphite, earthy graphite), artificial graphite, carbon black, acetylene black, Conductive materials such as ketjen black, carbon whisker, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.) powder, metal fiber, and conductive ceramic material can be included as one kind or a mixture thereof. .

これらの中で、導電剤としては、電子伝導性及び塗工性の観点よりアセチレンブラックが望ましい。導電剤の添加量は、正極または負極の総重量に対して0.1重量%〜50重量%が好ましく、特に0.5重量%〜30重量%が好ましい。特にアセチレンブラックを0.1〜0.5μmの超微粒子に粉砕して用いると必要炭素量を削減できるため望ましい。これらの混合方法は、物理的な混合であり、その理想とするところは均一混合である。そのため、V型混合機、S型混合機、擂かい機、ボールミル、遊星ボールミルといったような粉体混合機を乾式、あるいは湿式で混合することが可能である。   Among these, as the conductive agent, acetylene black is desirable from the viewpoints of electron conductivity and coatability. The addition amount of the conductive agent is preferably 0.1% by weight to 50% by weight, and particularly preferably 0.5% by weight to 30% by weight with respect to the total weight of the positive electrode or the negative electrode. In particular, it is desirable to use acetylene black by pulverizing into ultrafine particles of 0.1 to 0.5 μm because the required carbon amount can be reduced. These mixing methods are physical mixing, and the ideal is uniform mixing. Therefore, powder mixers such as V-type mixers, S-type mixers, crackers, ball mills, and planetary ball mills can be mixed dry or wet.

前記結着剤としては、通常、ポリテトラフルオロエチレン(PTFE),ポリフッ化ビニリデン(PVDF),ポリエチレン,ポリプロピレン等の熱可塑性樹脂、エチレン−プロピレン−ジエンターポリマー(EPDM),スルホン化EPDM,スチレンブタジエンゴム(SBR)、フッ素ゴム等のゴム弾性を有するポリマーを1種または2種以上の混合物として用いることができる。結着剤の添加量は、正極または負極の総重量に対して1〜50重量%が好ましく、特に2〜30重量%が好ましい。   The binder is usually a thermoplastic resin such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butadiene. Polymers having rubber elasticity such as rubber (SBR) and fluororubber can be used as one kind or a mixture of two or more kinds. The addition amount of the binder is preferably 1 to 50% by weight, particularly preferably 2 to 30% by weight, based on the total weight of the positive electrode or the negative electrode.

フィラーとしては、電池性能に悪影響を及ぼさない材料であれば何でも良い。通常、ポリプロピレン,ポリエチレン等のオレフィン系ポリマー、無定形シリカ、アルミナ、ゼオライト、ガラス、炭素等が用いられる。フィラーの添加量は、正極または負極の総重量に対して添加量は30重量%以下が好ましい。   As the filler, any material that does not adversely affect the battery performance may be used. Usually, olefin polymers such as polypropylene and polyethylene, amorphous silica, alumina, zeolite, glass, carbon and the like are used. The addition amount of the filler is preferably 30% by weight or less with respect to the total weight of the positive electrode or the negative electrode.

正極及び負極は、前記主要構成成分(正極においては正極活物質、負極においては負極材料)、およびその他の材料を混練し合剤とし、N−メチルピロリドン,トルエン等の有機溶媒に混合させた後、得られた混合液を下記に詳述する集電体の上に塗布し、または圧着して50℃〜250℃程度の温度で、2時間程度加熱処理することにより好適に作製される。前記塗布方法については、例えば、アプリケーターロールなどのローラーコーティング、スクリーンコーティング、ドクターブレード方式、スピンコーティング、バーコータ等の手段を用いて任意の厚さ及び任意の形状に塗布することが望ましいが、これらに限定されるものではない。   The positive electrode and the negative electrode are obtained by kneading the main components (positive electrode active material in the positive electrode, negative electrode material in the negative electrode) and other materials into a mixture and mixing them in an organic solvent such as N-methylpyrrolidone and toluene. The obtained mixed liquid is applied on a current collector described in detail below, or pressed and heat-treated at a temperature of about 50 ° C. to 250 ° C. for about 2 hours. About the application method, for example, it is desirable to apply to any thickness and any shape using means such as roller coating such as applicator roll, screen coating, doctor blade method, spin coating, bar coater, etc. It is not limited.

セパレータとしては、優れた高率放電性能を示す多孔膜や不織布等を、単独あるいは併用することが好ましい。非水電解質電池用セパレータを構成する材料としては、例えばポリエチレン,ポリプロピレン等に代表されるポリオレフィン系樹脂、ポリエチレンテレフタレート,ポリブチレンテレフタレート等に代表されるポリエステル系樹脂、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−パーフルオロビニルエーテル共重合体、フッ化ビニリデン−テトラフルオロエチレン共重合体、フッ化ビニリデン−トリフルオロエチレン共重合体、フッ化ビニリデン−フルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロアセトン共重合体、フッ化ビニリデン−エチレン共重合体、フッ化ビニリデン−プロピレン共重合体、フッ化ビニリデン−トリフルオロプロピレン共重合体、フッ化ビニリデン−テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−エチレン−テトラフルオロエチレン共重合体等を挙げることができる。   As the separator, it is preferable to use a porous film or a non-woven fabric exhibiting excellent high rate discharge performance alone or in combination. Examples of the material constituting the separator for a nonaqueous electrolyte battery include polyolefin resins typified by polyethylene and polypropylene, polyester resins typified by polyethylene terephthalate and polybutylene terephthalate, polyvinylidene fluoride, and vinylidene fluoride-hexa. Fluoropropylene copolymer, vinylidene fluoride-perfluorovinyl ether copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene copolymer, fluorine Vinylidene fluoride-hexafluoroacetone copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-propylene copolymer, vinylidene fluoride-trifluoropropylene copolymer, vinylidene fluoride - tetrafluoroethylene - hexafluoropropylene copolymer, vinylidene fluoride - ethylene - can be mentioned tetrafluoroethylene copolymer.

セパレータの空孔率は強度の観点から98体積%以下が好ましい。また、充放電特性の観点から空孔率は20体積%以上が好ましい。   The porosity of the separator is preferably 98% by volume or less from the viewpoint of strength. Further, the porosity is preferably 20% by volume or more from the viewpoint of charge / discharge characteristics.

また、セパレータは、例えばアクリロニトリル、エチレンオキシド、プロピレンオキシド、メチルメタアクリレート、ビニルアセテート、ビニルピロリドン、ポリフッ化ビニリデン等のポリマーと電解質とで構成されるポリマーゲルを用いてもよい。非水電解質を上記のようにゲル状態で用いると、漏液を防止する効果がある点で好ましい。   The separator may be a polymer gel composed of a polymer such as acrylonitrile, ethylene oxide, propylene oxide, methyl methacrylate, vinyl acetate, vinyl pyrrolidone, polyvinylidene fluoride, and an electrolyte. Use of the non-aqueous electrolyte in the gel state as described above is preferable in that it has an effect of preventing leakage.

さらに、セパレータは、上述したような多孔膜や不織布等とポリマーゲルを併用して用いると、電解質の保液性が向上するため望ましい。即ち、ポリエチレン微孔膜の表面及び微孔壁面に厚さ数μm以下の親溶媒性ポリマーを被覆したフィルムを形成し、前記フィルムの微孔内に電解質を保持させることで、前記親溶媒性ポリマーがゲル化する。   Furthermore, it is desirable that the separator be used in combination with the above-described porous film, non-woven fabric, or the like and a polymer gel because the liquid retention of the electrolyte is improved. That is, by forming a film in which the surface of the polyethylene microporous membrane and the microporous wall are coated with a solvophilic polymer having a thickness of several μm or less, and holding the electrolyte in the micropores of the film, Gels.

前記親溶媒性ポリマーとしては、ポリフッ化ビニリデンの他、エチレンオキシド基やエステル基等を有するアクリレートモノマー、エポキシモノマー、イソシアナート基を有するモノマー等が架橋したポリマー等が挙げられる。該モノマーは、ラジカル開始剤を併用して加熱や紫外線(UV)を用いたり、電子線(EB)等の活性光線等を用いて架橋反応を行わせることが可能である。   Examples of the solvophilic polymer include polyvinylidene fluoride, an acrylate monomer having an ethylene oxide group or an ester group, an epoxy monomer, a polymer having a monomer having an isocyanate group, and the like crosslinked. The monomer can be subjected to a crosslinking reaction using a radical initiator in combination with heating or ultraviolet rays (UV), or using an actinic ray such as an electron beam (EB).

リチウム二次電池の構成については特に限定されるものではなく、正極、負極及びロール状のセパレータを有する円筒型電池、角型電池、扁平型電池等が一例として挙げられる。   The configuration of the lithium secondary battery is not particularly limited, and examples thereof include a cylindrical battery having a positive electrode, a negative electrode, and a roll separator, a square battery, a flat battery, and the like.

従来のリチウム二次電池においては、正極の最大到達電位が4.5V(vs.Li/Li)以上に至る充電をして使用することが一般的に行われているが、本発明の活物質も、正極電位が4.5V(vs.Li/Li)付近に至って充放電が可能である。しかしながら、使用する非水電解質の種類によっては、充電時の正極電位が高すぎると、非水電解質が酸化分解され電池性能の低下を引き起こす虞がある。したがって、使用時において、充電時の正極の最大到達電位が4.3V(vs.Li/Li)以下となるような充電方法を採用しても、充分な放電容量が得られるリチウム二次電池が求められる場合がある。本発明の活物質を用いると、使用時において、充電時の正極の最大到達電位が4.4V(vs.Li/Li)より低くなるような、例えば、4.3V(vs.Li/Li)以下となるような充電方法を採用しても、197mAh/g以上という従来の正極活物質の容量を超える放電電気量を取り出すことが可能である。 In a conventional lithium secondary battery, it is generally used by charging so that the maximum potential of the positive electrode reaches 4.5 V (vs. Li / Li + ) or more. The substance can also be charged / discharged when the positive electrode potential reaches around 4.5 V (vs. Li / Li + ). However, depending on the type of nonaqueous electrolyte used, if the positive electrode potential during charging is too high, the nonaqueous electrolyte may be oxidized and decomposed, resulting in a decrease in battery performance. Therefore, in use, a lithium secondary battery capable of obtaining a sufficient discharge capacity even when a charging method is adopted in which the maximum potential of the positive electrode during charging is 4.3 V (vs. Li / Li + ) or less. May be required. When the active material of the present invention is used, for example, 4.3 V (vs. Li / Li) such that the maximum potential of the positive electrode during charging is lower than 4.4 V (vs. Li / Li + ) during use. + ) Even if a charging method such as the following is adopted, it is possible to take out the amount of discharge electricity exceeding the capacity of the conventional positive electrode active material of 197 mAh / g or more.

本発明に係る正極活物質が、高い放電容量を備えたものとするためには、リチウム遷移金属複合酸化物を構成する遷移金属元素が層状岩塩型結晶構造の遷移金属サイト以外の部分に存在する割合が小さいものであることが好ましい。これは、焼成工程に供する前駆体において、Co,Ni,Mnといった遷移金属元素が十分に均一に分布していること、及び、活物質試料の結晶化を促すための適切な焼成工程の条件を選択することによって達成できる。焼成工程に供する前駆体中の遷移金属の分布が均一でない場合、十分な放電容量が得られないものとなる。この理由については必ずしも明らかではないが、焼成工程に供する前駆体中の遷移金属の分布が均一でない場合、得られるリチウム遷移金属複合酸化物は、層状岩塩型結晶構造の遷移金属サイト以外の部分、即ちリチウムサイトに遷移金属元素の一部が存在するものとなる、いわゆるカチオンミキシングが起こることに由来するものと本発明者らは推察している。同様の推察は焼成工程における結晶化過程においても適用でき、活物質試料の結晶化が不十分であると層状岩塩型結晶構造におけるカチオンミキシングが起こりやすくなる。前記遷移金属元素の分布の均一性が高いものは、X線回折測定による(003)面と(104)面の回折ピークの強度比が大きいものとなる傾向がある。本発明において、X線回折測定による(003)面と(104)面の回折ピークの強度比は、I(003)/I(104)≧1.20であることが好ましく、I(003)/I(104)≧1.40であることがより好ましく、I(003)/I(104)≧1.50であることが特に好ましい。また、充放電を経た放電末の状態においてI(103)/I(104)>1であることが好ましい。前駆体の合成条件や合成手順が不適切である場合、前記ピーク強度比はより小さい値となり、しばしば1未満の値となる。
本願明細書に記載した合成条件及び合成手順を採用することにより、上記のような高性能の正極活物質を得ることができる。とりわけ、充電上限電位を4.4Vより低く設定した場合、例えば4.3Vといった充電上限電位を設定した場合でも高い放電容量を得ることができる非水電解質二次電池用正極活物質とすることができる。
In order for the positive electrode active material according to the present invention to have a high discharge capacity, the transition metal element constituting the lithium transition metal composite oxide is present in a portion other than the transition metal site of the layered rock salt type crystal structure. It is preferable that the ratio is small. This is because the transition metal elements such as Co, Ni, and Mn are sufficiently uniformly distributed in the precursor to be subjected to the firing process, and the conditions of an appropriate firing process for promoting the crystallization of the active material sample. You can achieve it by choosing. When the distribution of the transition metal in the precursor to be subjected to the firing step is not uniform, a sufficient discharge capacity cannot be obtained. Although it is not necessarily clear about this reason, when the distribution of the transition metal in the precursor subjected to the firing step is not uniform, the obtained lithium transition metal composite oxide is a portion other than the transition metal site of the layered rock salt type crystal structure, That is, the present inventors speculate that it is derived from the so-called cation mixing in which a part of the transition metal element is present at the lithium site. The same inference can be applied to the crystallization process in the firing step. If the crystallization of the active material sample is insufficient, cation mixing in the layered rock salt type crystal structure is likely to occur. When the distribution of the transition metal element is high, the intensity ratio of the diffraction peaks of the (003) plane and the (104) plane as measured by X-ray diffraction tends to be large. In the present invention, the intensity ratio of diffraction peaks of the (003) plane and the (104) plane measured by X-ray diffraction measurement is preferably I (003) / I (104) ≧ 1.20, and I (003) / It is more preferable that I (104) ≧ 1.40, and it is particularly preferable that I (003) / I (104) ≧ 1.50. Further, it is preferable that I (103) / I (104) > 1 in the state after discharge after charging and discharging. If the precursor synthesis conditions and procedure are inadequate, the peak intensity ratio will be smaller and often less than 1.
By adopting the synthesis conditions and synthesis procedures described in the present specification, a high-performance positive electrode active material as described above can be obtained. In particular, when the charge upper limit potential is set lower than 4.4 V, a positive electrode active material for a nonaqueous electrolyte secondary battery capable of obtaining a high discharge capacity even when a charge upper limit potential such as 4.3 V is set is obtained. it can.

(活物質の合成)
硫酸コバルト7水和物、硫酸ニッケル6水和物及び硫酸マンガン5水和物をCo、Ni及びMnのモル比が12.5:19.94:67.56となるよう秤量し、イオン交換水に溶解させることで2Mの硫酸塩水溶液を作製した。一方、15Lの反応槽を用意した。この反応層には、反応槽内部の液面が一定の高さを超えるとその排出口から溶液が排出されるように排出口が設けられている。また、反応槽内には、撹拌羽が備えられていると共に、攪拌時に上下方向の対流を生じさせるための円筒型の対流板が固定されている。前記反応槽に7Lのイオン交換水を入れ、COガスを30minバブリングさせることにより、前記イオン交換水中に前記COガスを十分溶解させた。なお、COガスバブリングは、硫酸塩水溶液を滴下し終わるまで継続した。次に、前記反応層を50℃に設定し、前記撹拌羽を1000rpmの回転速度で作動させた。前記反応槽中に2Lの硫酸塩水溶液を徐々に滴下した。滴下中、前記攪拌を継続した。また、反応槽中のpHを常時監視し、pHが8.6±0.2の範囲となるように、2Mの炭酸ナトリウム及び0.2Mのアンモニアが溶解している水溶液を加えた。前記硫酸塩水溶液を滴下している間、前記排出口から反応生成物を含む溶液一部が反応槽の外へ排出されるが、2Lの硫酸塩水溶液の全量を滴下し終わるまでの排出溶液は、反応槽内に戻さず、廃棄した。滴下終了後、反応生成物を含む溶液をから、吸引ろ過により共沈生成物を濾別し、付着したナトリウムイオンを除去するために、イオン交換水を用いて洗浄した。次に、大気雰囲気中、常圧下、オーブンで100℃にて乾燥させた。乾燥後、粒径を揃えるように、乳鉢で数分間粉砕した。このようにして、共沈炭酸塩前駆体の粉末を得た。
(Synthesis of active material)
Cobalt sulfate heptahydrate, nickel sulfate hexahydrate and manganese sulfate pentahydrate were weighed so that the molar ratio of Co, Ni and Mn was 12.5: 19.94: 67.56, and ion-exchanged water. A 2M aqueous solution of sulfate was prepared by dissolving in the solution. On the other hand, a 15 L reactor was prepared. The reaction layer is provided with a discharge port so that the solution is discharged from the discharge port when the liquid level inside the reaction tank exceeds a certain height. In addition, a stirring blade is provided in the reaction tank, and a cylindrical convection plate for fixing vertical convection during stirring is fixed. 7 L of ion exchange water was put into the reaction vessel, and CO 2 gas was bubbled for 30 minutes to sufficiently dissolve the CO 2 gas in the ion exchange water. The CO 2 gas bubbling was continued until the sulfate aqueous solution was dropped. Next, the reaction layer was set to 50 ° C., and the stirring blade was operated at a rotation speed of 1000 rpm. A 2 L aqueous sulfate solution was gradually added dropwise into the reaction vessel. The stirring was continued during the dropwise addition. Further, the pH in the reaction vessel was constantly monitored, and an aqueous solution in which 2 M sodium carbonate and 0.2 M ammonia were dissolved was added so that the pH was in the range of 8.6 ± 0.2. While dropping the sulfate aqueous solution, a part of the solution containing the reaction product is discharged from the discharge port to the outside of the reaction tank, but the discharged solution until the entire amount of 2 L sulfate aqueous solution has been dropped is It was discarded without returning to the reaction vessel. After completion of the dropwise addition, the coprecipitation product was separated from the solution containing the reaction product by suction filtration, and washed with ion-exchanged water in order to remove the attached sodium ions. Next, it was dried in an atmosphere at 100 ° C. in an oven under normal pressure. After drying, the mixture was pulverized for several minutes in a mortar so that the particle diameters were uniform. Thus, a coprecipitated carbonate precursor powder was obtained.

前記共沈炭酸塩前駆体に、炭酸リチウムを加え、Li:Me(Co,Ni,Mn)のモル比が1.3:1.0である混合粉体を調製した。ここで、炭酸リチウムは、Li量が化学量論比に対して3%過剰になるようにした。混合粉体を匣鉢に移し、焼成炉に設置した。焼成炉の温度を室温から900℃まで4hかけて昇温し、常圧下、900℃で10h焼成した。焼成炉の温度を常温に戻した後、焼成物を取り出し、粒径を揃える程度に乳鉢で粉砕した。上記のようにしてLi[Li1.13Co0.109Ni0.173Mn0.588]O(Li/Me比:1.30)を作製した。 Lithium carbonate was added to the coprecipitated carbonate precursor to prepare a mixed powder having a Li: Me (Co, Ni, Mn) molar ratio of 1.3: 1.0. Here, the lithium carbonate was made to have an excess of 3% with respect to the stoichiometric ratio. The mixed powder was transferred to a mortar and placed in a firing furnace. The temperature of the firing furnace was raised from room temperature to 900 ° C. over 4 hours, and was fired at 900 ° C. for 10 hours under normal pressure. After returning the temperature of the firing furnace to room temperature, the fired product was taken out and pulverized in a mortar to the same particle size. Li [Li 1.13 Co 0.109 Ni 0.173 Mn 0.588 ] O 2 (Li / Me ratio: 1.30) was produced as described above.

(角形リチウム二次電池の作製)
図1は、本実施例に用いた角形リチウム二次電池の概略断面図である。この角形リチウム二次電池1は、アルミ箔集電体に正極活物質を含有する正極合剤層を有する正極板3と、銅箔集電体に負極活物質を含有する負極合剤層を有する負極板4とがセパレータ5を介して巻回された扁平巻状電極群2と、電解質塩を含有した非水電解質とを備える発電要素を幅34mm高さ50mm厚み5.2mmの電池ケース6に収納してなるものである。
上記電池ケース6には、安全弁8を設けた電池蓋7がレーザー溶接によって取り付けられ、負極板4は負極リード11を介して負極端子9と接続され、正極板3は正極リード10を介して電池蓋と接続されている。
(Preparation of prismatic lithium secondary battery)
FIG. 1 is a schematic cross-sectional view of a prismatic lithium secondary battery used in this example. This square lithium secondary battery 1 has a positive electrode plate 3 having a positive electrode mixture layer containing a positive electrode active material in an aluminum foil current collector, and a negative electrode mixture layer containing a negative electrode active material in a copper foil current collector. A power generating element including a flat wound electrode group 2 in which a negative electrode plate 4 is wound via a separator 5 and a nonaqueous electrolyte containing an electrolyte salt is formed in a battery case 6 having a width of 34 mm, a height of 50 mm, and a thickness of 5.2 mm. It is something that is stored.
A battery lid 7 provided with a safety valve 8 is attached to the battery case 6 by laser welding, the negative electrode plate 4 is connected to a negative electrode terminal 9 via a negative electrode lead 11, and the positive electrode plate 3 is connected to a battery via a positive electrode lead 10. Connected to the lid.

(正極板)
上記のようにして作製したLi[Li1.13Co0.109Ni0.173Mn0.588]Oを正極活物質として用いて、以下の手順で、角形リチウム二次電池を作製した。
N−メチルピロリドンを分散媒とし、前記正極活物質、アセチレンブラック(AB)及びポリフッ化ビニリデン(PVdF)が質量比90:5:5の割合で混練分散されている正極ペーストを作製した。該正極ペーストを厚さ15μmのアルミニウム箔集電体の両方の面に塗布、乾燥した。次に、合剤充填密度が2.6g/ccとなるようにロールプレスすることによって正極板を作製した。
(Positive electrode plate)
Using Li [Li 1.13 Co 0.109 Ni 0.173 Mn 0.588 ] O 2 produced as described above as a positive electrode active material, a square lithium secondary battery was produced according to the following procedure.
Using N-methylpyrrolidone as a dispersion medium, a positive electrode paste in which the positive electrode active material, acetylene black (AB) and polyvinylidene fluoride (PVdF) were kneaded and dispersed at a mass ratio of 90: 5: 5 was prepared. The positive electrode paste was applied to both sides of a 15 μm thick aluminum foil current collector and dried. Next, the positive electrode plate was produced by roll-pressing so that a mixture filling density might be 2.6 g / cc.

(負極板)
一方、イオン交換水を分散媒とし、負極活物質としてのグラファイト、カルボキシメチルセルロース(CMC)及びスチレンブタジエンゴム(SBR)が質量比97:2:1の割合で混練分散されている負極ペーストを作製した。該負極ペーストを厚さ10μmの銅箔集電体の両方の面に塗布、乾燥した。次に、合剤充填密度が1.4g/ccとなるようにロールプレスすることによって負極板を作製した。
(Negative electrode plate)
On the other hand, negative electrode paste in which graphite, carboxymethyl cellulose (CMC) and styrene butadiene rubber (SBR) as negative electrode active materials were kneaded and dispersed at a mass ratio of 97: 2: 1 using ion-exchanged water as a dispersion medium was prepared. . The negative electrode paste was applied to both sides of a 10 μm thick copper foil current collector and dried. Next, the negative electrode plate was produced by roll-pressing so that a mixture filling density might be 1.4 g / cc.

(電解液)
電解液として、エチレンカーボネート(EC)及びエチルメチルカーボネート(EMC)を体積比3:7で混合した混合溶媒に、濃度が1mol/lとなるようにLiPFを溶解させた溶液を用いた。
(Electrolyte)
As an electrolytic solution, a solution in which LiPF 6 was dissolved in a mixed solvent obtained by mixing ethylene carbonate (EC) and ethyl methyl carbonate (EMC) at a volume ratio of 3: 7 so as to have a concentration of 1 mol / l was used.

(セパレータ)
セパレータには、厚さ20μmのポリエチレン微多孔膜(旭化成製H6022)を用いた。
(Separator)
As the separator, a polyethylene microporous membrane (H6022 manufactured by Asahi Kasei) having a thickness of 20 μm was used.

以上の手順にて作製された角形リチウム二次電池(電池1)を、以下の試験に供した。   The square lithium secondary battery (battery 1) produced by the above procedure was subjected to the following test.

(電池厚み測定)
作製後の角形リチウム二次電池の長側面の中心部を、長側面に対して垂直方向から(短側面側から水平方向に)ノギスで挟み込むようにして電池厚みを測定した。このときの測定値を「試験前の電池厚み(mm)」として記録した。
また、電池厚み測定については、下記放電容量試験後においても、上記と同じ要領で電池厚みを測定した。このときの測定値を「試験後の電池厚み(mm)」として記録した。
(Battery thickness measurement)
The thickness of the battery was measured so that the center of the long side surface of the prismatic lithium secondary battery after fabrication was sandwiched with calipers from the vertical direction (from the short side surface to the horizontal direction) with respect to the long side surface. The measured value at this time was recorded as “battery thickness (mm) before the test”.
Regarding the battery thickness measurement, the battery thickness was measured in the same manner as described above even after the following discharge capacity test. The measured value at this time was recorded as “battery thickness after test (mm)”.

(放電容量試験)
まず、25℃にて、1サイクルの初期充放電(初回充放電)を実施した。ここで、充電は、電流0.2CA、電圧4.5Vの定電流定電圧充電とし、充電時間は8時間とし、放電は電流0.2CA、終止電圧2.0Vの定電流放電とした。続いて、放電容量試験を行った。放電容量試験の条件は、充電電圧を4.2Vに変更したことを除いては前記初回充放電と同じ条件による1サイクルの充放電からなる。このときの放電電気量を「放電容量(mAh)」として記録した。
(Discharge capacity test)
First, one cycle of initial charge / discharge (initial charge / discharge) was performed at 25 ° C. Here, charging was constant current constant voltage charging with a current of 0.2 CA and a voltage of 4.5 V, charging time was 8 hours, and discharging was a constant current discharge with a current of 0.2 CA and a final voltage of 2.0 V. Subsequently, a discharge capacity test was performed. The conditions for the discharge capacity test consisted of one cycle of charge / discharge under the same conditions as the initial charge / discharge except that the charge voltage was changed to 4.2V. The amount of electricity discharged at this time was recorded as “discharge capacity (mAh)”.

(ガス分析)
放電後の電池を流動パラフィン内において解体し、電池内から放出されたガスの全てを水上置換の要領で採取した。このガスを、カラムにMolecularSieve13XとPorapak Q(いずれもSPELCO製)を備えたガスクロマトグラフィー(HEWLETT PACKARD社製 HP5890シリーズII ガスクロマトグラフ)を用いてガス成分の分析を行った。
(Gas analysis)
The discharged battery was disassembled in liquid paraffin, and all the gas released from the battery was collected in the manner of water replacement. This gas was analyzed for gas components using a gas chromatography (HP5890 series II gas chromatograph manufactured by HEWLETT PACKARD) equipped with MolecularSieve13X and Porapak Q (both manufactured by SPELCO) in the column.

(電池2)
電池1と同じ手順で作製されたリチウム二次電池(電池2)を用いて、初回充放電における充電電圧を4.45Vにしたこと以外は電池1と同じように放電容量試験及びガス分析を実施した。
(Battery 2)
Using the lithium secondary battery (battery 2) produced in the same procedure as battery 1, the discharge capacity test and gas analysis were performed in the same way as battery 1 except that the charge voltage in the initial charge / discharge was 4.45V. did.

(電池3)
電池1と同じ手順で作製されたリチウム二次電池(電池3)を用いて、初回充放電における充電電圧を4.40Vにしたこと以外は電池1と同じように放電容量試験及びガス分析を実施した。
(Battery 3)
Using a lithium secondary battery (battery 3) produced in the same procedure as battery 1, the discharge capacity test and gas analysis were performed in the same manner as battery 1 except that the charge voltage in the initial charge / discharge was set to 4.40V. did.

(電池4)
電池1と同じ手順で作製されたリチウム二次電池(電池4)を用いて、初回充放電における充電電圧を4.20Vにしたこと以外は電池1と同じように放電容量試験を実施した。
(Battery 4)
Using a lithium secondary battery (battery 4) produced in the same procedure as battery 1, a discharge capacity test was performed in the same manner as battery 1 except that the charge voltage in the initial charge / discharge was set to 4.20V.

電池1、電池2、電池3及び電池4について、電池厚み測定の結果、放電容量試験の結果を表1に示す。   Table 1 shows the results of the battery thickness measurement and the discharge capacity test for battery 1, battery 2, battery 3, and battery 4.

電池1、電池2及び電池3について、電池内のガス成分の分析結果を表2に示す。   Table 2 shows the analysis results of the gas components in the battery 1, the battery 2, and the battery 3.

表1及び表2から、以下のようなことが分かる。
電池1は、放電容量試験後に電池が膨れており、電池2及び電池3と比較してガス採取量(電池内のガス量に相当)が多いものの、酸素と窒素の体積比率(O/(N+O))は通常の大気成分と変化はなく、酸素が発生したとは考えられない。電池1では、COガス体積比率(CO/採取量)が増加していることから、電池膨れの原因は電解液の正極場酸化分解によるものと考えられる。
すなわち、電池電圧で4.50V〔正極電位で4.60V(vs.Li/Li)〕まで初期充放電(初回充放電)における充電を行っても、試験前と比較して酸素の体積比率に変化はなく、酸素ガスは発生していない。
From Tables 1 and 2, the following can be seen.
The battery 1 swells after the discharge capacity test and has a larger amount of collected gas (corresponding to the amount of gas in the battery) than the batteries 2 and 3, but the volume ratio of oxygen and nitrogen (O 2 / ( N 2 + O 2 )) is not changed from normal atmospheric components, and it is not considered that oxygen was generated. In the battery 1, since the CO gas volume ratio (CO / collected amount) is increased, the cause of the battery swelling is considered to be due to the oxidative decomposition of the electrolyte in the positive electrode field.
That is, even when the battery voltage is 4.50 V [positive electrode potential is 4.60 V (vs. Li / Li + )] in the initial charge / discharge (first charge / discharge), the oxygen volume ratio is compared with that before the test. There is no change in oxygen gas.

電池の初回充放電における充電電圧を4.45V、4.40V〔正極電位で4.55V(vs.Li/Li)、4.50V(vs.Li/Li)〕にして試験を行った電池2、電池3では、4.50Vで充電した電池1よりも電池の膨れがなくなり、ガス採取量(電池内のガス量に相当)も減少した。また、酸素と窒素の比率(O/(N+O))に変化はなく、採取ガス中のCOガスの比率(CO/採取量)は正極電位の低下と連動するように減少している。 The charge voltage at the initial charge and discharge of the battery 4.45 V, [4.55V at the positive electrode potential (vs.Li/Li +), 4.50V (vs.Li/Li +) ] 4.40V The test was carried out in the In Battery 2 and Battery 3, the battery swelled less than Battery 1 charged at 4.50 V, and the amount of gas collected (corresponding to the amount of gas in the battery) decreased. In addition, there is no change in the ratio of oxygen to nitrogen (O 2 / (N 2 + O 2 )), and the ratio of CO gas in the collected gas (CO / collected amount) is decreased in conjunction with the decrease in the positive electrode potential. Yes.

電池電圧で4.2V〔正極電位で4.3V(vs.Li/Li)〕充電時の放電容量については、正極の最大到達電位が4.60V(vs.Li/Li)、4.55V(vs.Li/Li)で初回充放電における充電を行った電池1、電池2では、同程度に大きいが、初回充放電における充電を4.50V(vs.Li/Li)で行った電池3ではやや小さくなり、さらに、4.30V(vs.Li/Li)で初回充放電における充電を行うと極めて小さくなる。したがって、本発明の正極活物質を使用し、初期充放電(初期化成)を含む工程を行ってリチウム二次電池を製造する場合、初期充放電における充電の正極の最大到達電位は4.5V以上とすることが好ましい。 Battery voltage: 4.2 V [positive electrode potential: 4.3 V (vs. Li / Li + )] With regard to the discharge capacity during charging, the maximum potential of the positive electrode is 4.60 V (vs. Li / Li + ). 55V battery 1 was charged in the first charging and discharging (vs.Li/Li +), in the battery 2, but as large as, to charge in initial charge and discharge at 4.50V (vs.Li/Li +) In addition, the battery 3 is slightly smaller, and is extremely small when charged in the initial charge / discharge at 4.30 V (vs. Li / Li + ). Therefore, when the positive electrode active material of the present invention is used and a lithium secondary battery is manufactured by performing a process including initial charge / discharge (initialization), the maximum potential of the positive electrode for charging in the initial charge / discharge is 4.5 V or more. It is preferable that

電池1、電池2及び電池3の初期充放電工程時の電位挙動を示す図2〜図4からみて、本発明の正極活物質のプラトー電位は4.5V付近にあることが分かり、本発明の活物質は、充電区間の中にプラトー電位を有し、プラトー電位以上で酸素ガスが発生しないことが確認された。
しかし、充電時に酸素ガスが発生しない活物質を用いても、正極の最大到達電位が4.6V(vs.Li/Li)以上で初期充電を行うと、電解液の分解によるガスが発生する。
また、プラトー電位を経ない正極の最大到達電位が4.5V(vs.Li/Li)未満で初期充電を行った場合には、電池電圧で4.2V〔正極電位で4.3V(vs.Li/Li)充電時の放電容量が小さいという問題がある。
したがって、充電時に酸素ガスが発生しない正極活物質を用いた場合であっても、正極の最大到達電位は4.5V(vs.Li/Li)以上4.6V(vs.Li/Li)未満とすることが好ましく、特に、4.55V(vs.Li/Li)程度とすることが最適な初期化成(初期充放電)条件であると考えられる。
From FIG. 2 to FIG. 4 showing the potential behavior during the initial charge / discharge process of the battery 1, the battery 2 and the battery 3, it can be seen that the plateau potential of the positive electrode active material of the present invention is around 4.5V. It was confirmed that the active material had a plateau potential in the charging section, and oxygen gas was not generated above the plateau potential.
However, even when an active material that does not generate oxygen gas during charging is used, if the initial charge is performed at a maximum potential of 4.6 V (vs. Li / Li + ) or higher, gas is generated due to decomposition of the electrolyte. .
In addition, when the initial charge is performed with the maximum reached potential of the positive electrode not passing through the plateau potential being less than 4.5 V (vs. Li / Li + ), the battery voltage is 4.2 V [the positive electrode potential is 4.3 V (vs. .Li / Li + ) There is a problem that the discharge capacity during charging is small.
Therefore, even when a positive electrode active material that does not generate oxygen gas during charging is used, the maximum potential of the positive electrode is 4.5 V (vs. Li / Li + ) or more and 4.6 V (vs. Li / Li + ). In particular, it is considered that the optimum initial formation (initial charge / discharge) condition is about 4.55 V (vs. Li / Li + ).

1 リチウム二次電池 2 電極群 3 正極 4 負極
5 セパレータ 6 電池ケース 7 蓋 8 安全弁
9 負極端子 10 正極リード−11 負極リード
DESCRIPTION OF SYMBOLS 1 Lithium secondary battery 2 Electrode group 3 Positive electrode 4 Negative electrode 5 Separator 6 Battery case 7 Lid 8 Safety valve 9 Negative electrode terminal 10 Positive electrode lead-11 Negative electrode lead

本発明の新規なリチウム遷移金属複合酸化物を含む正極活物質を用いることにより、充電時に酸素ガスが発生しない、放電容量の大きい非水電解質二次電池を提供することができるので、この非水電解質二次電池は、ハイブリッド自動車用、電気自動車用のリチウム二次電池として有用である。   By using the positive electrode active material containing the novel lithium transition metal composite oxide of the present invention, it is possible to provide a nonaqueous electrolyte secondary battery having a large discharge capacity that does not generate oxygen gas during charging. The electrolyte secondary battery is useful as a lithium secondary battery for hybrid vehicles and electric vehicles.

Claims (9)

リチウム遷移金属複合酸化物を含む非水電解質二次電池用正極活物質において、前記リチウム遷移金属複合酸化物が、Li、並びにCo、Ni及びMnを含む遷移金属元素で構成され、その全遷移金属元素Meに対するLiのモル比Li/Meが1.25〜1.40であり、かつ、正極の最大到達電位が4.5〜4.6V(vs.Li/Li)の範囲にあるいずれかの電位までの充電を行ったときに、前記リチウム遷移金属複合酸化物から酸素ガスが発生しないことを特徴とする非水電解質二次電池用正極活物質。 In a positive electrode active material for a non-aqueous electrolyte secondary battery including a lithium transition metal composite oxide, the lithium transition metal composite oxide is composed of Li and transition metal elements including Co, Ni, and Mn, and all transition metals thereof Either the molar ratio Li / Me of the element Me is 1.25 to 1.40, and the maximum potential of the positive electrode is in the range of 4.5 to 4.6 V (vs. Li / Li + ). A positive electrode active material for a nonaqueous electrolyte secondary battery, characterized in that oxygen gas is not generated from the lithium transition metal composite oxide when charged to a potential of リチウム遷移金属複合酸化物を含む非水電解質二次電池用正極活物質において、前記リチウム遷移金属複合酸化物が、Li、並びにCo、Ni及びMnを含む遷移金属元素で構成され、その全遷移金属元素Meに対するLiのモル比Li/Meが1.25〜1.40であり、かつ、正極の最大到達電位が4.55〜4.6V(vs.Li/Li)の範囲にあるいずれかの電位までの充電を行ったときに、前記リチウム遷移金属複合酸化物から酸素ガスが発生しないことを特徴とする非水電解質二次電池用正極活物質。 In a positive electrode active material for a non-aqueous electrolyte secondary battery including a lithium transition metal composite oxide, the lithium transition metal composite oxide is composed of Li and transition metal elements including Co, Ni, and Mn, and all transition metals thereof Either the molar ratio Li / Me of the element Me is 1.25 to 1.40, and the maximum potential of the positive electrode is in the range of 4.55 to 4.6 V (vs. Li / Li + ). A positive electrode active material for a nonaqueous electrolyte secondary battery, characterized in that oxygen gas is not generated from the lithium transition metal composite oxide when charged to a potential of 前記充電が、初期充放電における充電であることを特徴とする請求項1又は2に記載の非水電解質二次電池用正極活物質。   The positive electrode active material for a nonaqueous electrolyte secondary battery according to claim 1, wherein the charge is charge in initial charge / discharge. 前記正極活物質が、充電区間の中にプラトー電位を有し、前記4.5〜4.6V(vs.Li/Li)の範囲にあるいずれかの電位は、前記プラトー電位以上であることを特徴とする請求項1〜3のいずれか1項に記載の非水電解質二次電池用正極活物質。 The positive electrode active material has a plateau potential in a charging section, and any potential in the range of 4.5 to 4.6 V (vs. Li / Li + ) is equal to or higher than the plateau potential. The positive electrode active material for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 3. 1000℃未満で焼成したことを特徴とする請求項1〜4のいずれか1項に記載の非水電解質二次電池用正極活物質。   The positive electrode active material for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein the positive electrode active material is fired at a temperature lower than 1000 ° C. 請求項1〜5のいずれか1項に記載の正極活物質を備えた非水電解質二次電池。   The nonaqueous electrolyte secondary battery provided with the positive electrode active material of any one of Claims 1-5. 使用時において、充電時の正極の最大到達電位が4.4V(vs.Li/Li)未満である充電方法が採用されることを特徴とする請求項6に記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to claim 6, wherein a charging method in which the maximum potential of the positive electrode during charging is less than 4.4 V (vs. Li / Li + ) in use is employed. . リチウム遷移金属複合酸化物を含む正極活物質を使用し、初期充放電を含む工程を行うリチウム二次電池の製造方法において、前記リチウム遷移金属複合酸化物として、Li、並びにCo、Ni及びMnを含む遷移金属元素で構成され、その全遷移金属元素Meに対するLiのモル比Li/Meが1.25〜1.40であるリチウム遷移金属複合酸化物を使用し、前記初期充放電における充電を、前記リチウム遷移金属複合酸化物から酸素ガスを発生させないで、かつ、正極の最大到達電位が4.5V(vs.Li/Li)以上4.6V(vs.Li/Li)未満の範囲にあるいずれかの電位まで行うことを特徴とする非水電解質二次電池の製造方法。 In the method for manufacturing a lithium secondary battery using a positive electrode active material containing a lithium transition metal composite oxide and performing a process including initial charge and discharge, Li, Co, Ni and Mn are used as the lithium transition metal composite oxide. Using a lithium transition metal composite oxide that is composed of transition metal elements including, and whose molar ratio Li / Me of Li to all transition metal elements Me is 1.25 to 1.40, and charging in the initial charge and discharge, Oxygen gas is not generated from the lithium transition metal composite oxide, and the maximum potential of the positive electrode is in the range of 4.5 V (vs. Li / Li + ) or more and less than 4.6 V (vs. Li / Li + ). A method for producing a non-aqueous electrolyte secondary battery, wherein the method is performed up to a certain potential. 前記正極活物質が、充電区間の中にプラトー電位を有し、前記正極の最大到達電位が4.5V(vs.Li/Li)以上4.6V(vs.Li/Li)未満の範囲にあるいずれかの電位は、前記プラトー電位以上であることを特徴とする請求項8に記載の非水電解質二次電池の製造方法。 The positive electrode active material has a plateau potential in a charging interval, and the maximum ultimate potential of the positive electrode is in a range of 4.5 V (vs. Li / Li + ) or more and less than 4.6 V (vs. Li / Li + ) The method for producing a non-aqueous electrolyte secondary battery according to claim 8, wherein any one of the potentials is at least the plateau potential.
JP2011150791A 2010-12-27 2011-07-07 Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing non-aqueous electrolyte secondary battery Active JP5686060B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2011150791A JP5686060B2 (en) 2011-07-07 2011-07-07 Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing non-aqueous electrolyte secondary battery
EP11852696.1A EP2660907B1 (en) 2010-12-27 2011-12-27 Positive electrode material for nonaqueous electrolyte rechargeable batteries, method for producing positive electrode material, electrode for nonaqueous electrolyte rechargeable batteries, nonaqueous electrolyte rechargeable batteries and method of production therefor
CN201180063107.5A CN103283066B (en) 2010-12-27 2011-12-27 The manufacture method of positive electrode active material for nonaqueous electrolyte secondary battery, its manufacture method, electrode for nonaqueous electrolyte secondary battery, rechargeable nonaqueous electrolytic battery and this secondary cell
PCT/JP2011/080220 WO2012091015A1 (en) 2010-12-27 2011-12-27 Positive electrode material for nonaqueous electrolyte rechargeable batteries, method for producing positive electrode material, electrode for nonaqueous electrolyte rechargeable batteries, nonaqueous electrolyte rechargeable batteries and method of production therefor
KR1020137014919A KR101956651B1 (en) 2010-12-27 2011-12-27 Positive electrode material for nonaqueous electrolyte rechargeable batteries, method for producing positive electrode material, electrode for nonaqueous electrolyte rechargeable batteries, nonaqueous electrolyte rechargeable batteries and method of production therefor
US13/997,783 US9543055B2 (en) 2010-12-27 2011-12-27 Positive active material for nonaqueous electrolyte secondary battery, method of manufacturing the positive active material, electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and method of manufacturing the secondary battery
US15/362,103 US10297822B2 (en) 2010-12-27 2016-11-28 Positive active material for nonaqueous electrolyte secondary battery, method of manufacturing the positive active material, electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and method of manufacturing the secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011150791A JP5686060B2 (en) 2011-07-07 2011-07-07 Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2013020715A true JP2013020715A (en) 2013-01-31
JP5686060B2 JP5686060B2 (en) 2015-03-18

Family

ID=47691996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011150791A Active JP5686060B2 (en) 2010-12-27 2011-07-07 Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5686060B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014211962A (en) * 2013-04-17 2014-11-13 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP2016072129A (en) * 2014-09-30 2016-05-09 株式会社Gsユアサ Nonaqueous electrolyte secondary battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004285A (en) * 2007-06-25 2009-01-08 Sanyo Electric Co Ltd Cathode active material, manufacturing method of cathode active material, and nonaqueous electrolyte secondary battery
WO2012057289A1 (en) * 2010-10-29 2012-05-03 旭硝子株式会社 Positive electrode active material, positive electrode, battery, and production method for lithium ion secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004285A (en) * 2007-06-25 2009-01-08 Sanyo Electric Co Ltd Cathode active material, manufacturing method of cathode active material, and nonaqueous electrolyte secondary battery
WO2012057289A1 (en) * 2010-10-29 2012-05-03 旭硝子株式会社 Positive electrode active material, positive electrode, battery, and production method for lithium ion secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014211962A (en) * 2013-04-17 2014-11-13 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP2016072129A (en) * 2014-09-30 2016-05-09 株式会社Gsユアサ Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP5686060B2 (en) 2015-03-18

Similar Documents

Publication Publication Date Title
JP6428996B2 (en) Mixed active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
WO2012091015A1 (en) Positive electrode material for nonaqueous electrolyte rechargeable batteries, method for producing positive electrode material, electrode for nonaqueous electrolyte rechargeable batteries, nonaqueous electrolyte rechargeable batteries and method of production therefor
JP6600944B2 (en) Lithium secondary battery
JP5757138B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, lithium transition metal composite oxide, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2014044928A (en) Positive electrode active material for lithium secondary battery, method of producing the same, electrode for lithium secondary battery, and lithium secondary battery
JP2010086690A (en) Active material for lithium secondary battery, lithium secondary battery, and manufacturing method of thereof
JP5946011B2 (en) Non-aqueous electrolyte secondary battery active material, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
JP2015213080A (en) Active material for nonaqueous electrolyte secondary batteries, electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP5757139B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, lithium transition metal composite oxide, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2014026959A (en) Positive electrode active material for lithium secondary battery, precursor of the positive electrode active material, electrode for lithium secondary battery and lithium secondary battery
JP6069632B2 (en) Positive electrode paste, positive electrode for non-aqueous electrolyte battery using the same, and method for producing non-aqueous electrolyte battery
JP5700274B2 (en) Active material for lithium secondary battery, electrode for lithium secondary battery, lithium secondary battery and method for producing the same
JP4706991B2 (en) Method for manufacturing lithium secondary battery
JP6274536B2 (en) Method for producing mixed active material for lithium secondary battery, method for producing electrode for lithium secondary battery, and method for producing lithium secondary battery
JP5272870B2 (en) Active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
JP6036168B2 (en) Nonaqueous electrolyte secondary battery
JP5757140B2 (en) Non-aqueous electrolyte secondary battery positive electrode active material, lithium transition metal composite oxide, method for producing the positive electrode active material, etc., and non-aqueous electrolyte secondary battery
JP2016126935A (en) Positive electrode active material for lithium secondary batteries, lithium secondary battery electrode, and lithium secondary battery
JP2015115244A (en) Positive electrode for lithium secondary battery, lithium secondary battery, battery module, and automobile mounting battery module
JP6354964B2 (en) Nonaqueous electrolyte secondary battery
JP6195010B2 (en) Positive electrode paste, positive electrode for non-aqueous electrolyte battery using the same, and method for producing non-aqueous electrolyte battery
JP5686060B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing non-aqueous electrolyte secondary battery
JP6394956B2 (en) Nonaqueous electrolyte secondary battery
JP5787079B2 (en) Non-aqueous electrolyte secondary battery active material, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
JP6387054B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150106

R150 Certificate of patent or registration of utility model

Ref document number: 5686060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150