JP2013020152A - Electromagnetic wave element - Google Patents

Electromagnetic wave element Download PDF

Info

Publication number
JP2013020152A
JP2013020152A JP2011154254A JP2011154254A JP2013020152A JP 2013020152 A JP2013020152 A JP 2013020152A JP 2011154254 A JP2011154254 A JP 2011154254A JP 2011154254 A JP2011154254 A JP 2011154254A JP 2013020152 A JP2013020152 A JP 2013020152A
Authority
JP
Japan
Prior art keywords
wavelength
dielectric
electromagnetic wave
wave element
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011154254A
Other languages
Japanese (ja)
Other versions
JP6057271B2 (en
Inventor
Isao Shimoyama
下山  勲
Kiyoshi Matsumoto
松本  潔
Tomoyuki Takahata
智之 高畑
Tetsuro Suga
哲朗 菅
Yusuke Takei
裕介 竹井
Kentaro Noda
堅太郎 野田
Koichi Karaki
幸一 唐木
Yasuo Sasaki
靖夫 佐々木
Yoshiharu Ajiki
嘉晴 安食
Takuya Tsukagoshi
拓哉 塚越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
University of Tokyo NUC
Original Assignee
Olympus Corp
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp, University of Tokyo NUC filed Critical Olympus Corp
Priority to JP2011154254A priority Critical patent/JP6057271B2/en
Publication of JP2013020152A publication Critical patent/JP2013020152A/en
Application granted granted Critical
Publication of JP6057271B2 publication Critical patent/JP6057271B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an electromagnetic wave element that reduces an influence of aberration on electromagnetic waves of a plurality of bands having significantly different wavelengths, with a simple structure.SOLUTION: An electromagnetic wave element is configured by a composite dielectric in which a second dielectric 2 having a different dielectric constant from a first dielectric is dispersed in the first dielectric 1. The electromagnetic wave element has an effective dielectric constant almost equal to the electromagnetic wave of a predetermined first wavelength and that of a predetermined second wavelength longer than the first wavelength. The average particle size and average interspace of the second dielectric 2 is smaller than the first wavelength.

Description

本発明は、波長の大きく異なる2つの波長帯域で使用される電磁波素子に関する。   The present invention relates to an electromagnetic wave element used in two wavelength bands having greatly different wavelengths.

人が感じることのできる電磁波である可視光により、人は物の形状や色を認識している。また、人が感じることのできない電磁波のうち、赤外光からは温度由来の情報を、ミリ波を使えば物体までの距離情報を得ることができる。これらの電磁波を波長ごとに利用すると、温度由来の情報や、距離情報を得ることができる。   A person recognizes the shape and color of an object by visible light, which is an electromagnetic wave that can be felt by the person. Further, among electromagnetic waves that cannot be felt by humans, it is possible to obtain temperature-derived information from infrared light and distance information to an object using millimeter waves. When these electromagnetic waves are used for each wavelength, information derived from temperature and distance information can be obtained.

そこで、通常のカメラにより撮影した可視光画像と、赤外線やミリ波等により検出した画像とを重ねて表示させることで、様々な有用な情報を得ることができる。例えば、可視光画像と赤外線カメラとを用いて、食材や料理をオーブンで過熱する際に、色と温度の分布を同時に知ることができれば、こうした情報をフィードバックして、より効率的な加熱を行うことができる。また、車載カメラに温度分布の情報を加えることで、服装が背景に同化してしまっている人でも確実に認識することができ、自動車の安全性向上につながる。   Therefore, various useful information can be obtained by displaying a visible light image captured by a normal camera and an image detected by infrared rays, millimeter waves, or the like in an overlapping manner. For example, if you can know the color and temperature distribution at the same time when heating foods and dishes in an oven using a visible light image and an infrared camera, this information is fed back for more efficient heating. be able to. In addition, by adding temperature distribution information to the in-vehicle camera, even a person whose clothes have been assimilated in the background can be surely recognized, leading to an improvement in the safety of the automobile.

ここで、物体の任意の点の距離や温度等の情報を知るためには、一般に視差のある2つのカメラで物体から出る電磁波を計測した画像において、物体の同一の点がそれぞれの画像の画素にどう写るかという関係、すなわち「対応付け」を求めることが必要となる。例えば、2つの視差のある可視光カメラで物体を見て、それぞれの画像での物体の同一点を「対応付け」するには、物体の輪郭などの特徴点を用いて計算を行う。   Here, in order to know information such as the distance and temperature of an arbitrary point of an object, in an image obtained by measuring electromagnetic waves emitted from an object with two cameras having parallax, the same point of the object is a pixel of each image. It is necessary to obtain the relationship of how the image is reflected, that is, “association”. For example, when viewing an object with two visible light cameras having parallax and “corresponding” the same point of the object in each image, calculation is performed using feature points such as the contour of the object.

一方、物質には分散があり、電磁波に対する応答(屈折率、吸収率など)は電磁波の周波数に応じて異なる。とりわけ、周波数による屈折率のわずかな変化は収差をもたらし、レンズ等の電磁波素子の性能を制限する。このため、可視光の場合は、色収差を取り除くために、正負の屈折力をもつ複数のレンズを組み合わせた色消しレンズ系が用いられる(例えば、特許文献1参照)。また、曲率をもつレンズの表面に回折面を形成することにより、色収差を抑制することも行われている(例えば、特許文献2参照)。   On the other hand, the substance has dispersion, and the response (refractive index, absorptance, etc.) to the electromagnetic wave varies depending on the frequency of the electromagnetic wave. In particular, slight changes in the refractive index with frequency cause aberrations, which limit the performance of electromagnetic wave elements such as lenses. For this reason, in the case of visible light, an achromatic lens system in which a plurality of lenses having positive and negative refractive powers are combined is used to remove chromatic aberration (see, for example, Patent Document 1). In addition, chromatic aberration is also suppressed by forming a diffractive surface on the surface of a lens having a curvature (see, for example, Patent Document 2).

特許第4125179号公報Japanese Patent No. 4125179 特開平10−73760号公報Japanese Patent Laid-Open No. 10-73760

しかしながら、波長の大きく異なる多波長の電磁波を利用する場合は、可視光、赤外光、ミリ波などに対応して、それぞれ異なる撮像素子を用いることになり、同一点としての「対応付け」はより困難となる。また、単一の撮像素子により大きく異なる複数の波長帯の電磁波が検出できたとしても、対象物を撮像素子に結像させる電磁波素子は、通常、波長の大きく異なる複数の波長帯の電磁波に対して異なる屈折率を有するので、色収差の発生が可視光のみの場合と比べてもさらに問題となる。   However, when using multi-wavelength electromagnetic waves having greatly different wavelengths, different imaging elements are used corresponding to visible light, infrared light, millimeter wave, etc., and “correspondence” as the same point is It becomes more difficult. In addition, even when electromagnetic waves in a plurality of wavelength bands that are greatly different from each other can be detected by a single image sensor, an electromagnetic wave element that forms an image of an object on the image sensor is usually Therefore, the occurrence of chromatic aberration is even more problematic than when only visible light is used.

図5は、色収差を説明するための模式図である。結像レンズ101(電磁波素子)および撮像素子102からなる撮像システム100において、結像レンズ101は所定の波長λの電磁波を用いて良好な結像がなされるように設計されている。したがって、物体103上の1点から発した光は、結像レンズ101のそれぞれ異なる領域を通過した後に、撮像素子102の検出面上で像104の1点に収束する(図中の実線で示す光路)。しかし、λとは大きく異なる波長λの電磁波に対して、結像レンズ101を構成する媒質は異なる屈折率を示すので、同じ撮像システムにより良好な撮像を行うことができない(図中の点線で示す光路)。図5では、波長λにおける屈折率が、波長λにおける屈折率よりも大きい場合が図示されている。 FIG. 5 is a schematic diagram for explaining chromatic aberration. In the imaging lens 101 (electromagnetic device) and an imaging system 100 consisting of image sensor 102, imaging lens 101 is designed to better imaging is performed using an electromagnetic wave having a predetermined wavelength lambda 1. Therefore, light emitted from one point on the object 103 passes through different regions of the imaging lens 101 and then converges to one point on the image 104 on the detection surface of the image sensor 102 (shown by a solid line in the figure). Light path). However, since the medium constituting the imaging lens 101 exhibits a different refractive index with respect to an electromagnetic wave having a wavelength λ 2 that is significantly different from λ 1 , good imaging cannot be performed with the same imaging system (dotted line in the figure). Light path). FIG. 5 shows a case where the refractive index at the wavelength λ 2 is larger than the refractive index at the wavelength λ 1 .

この問題を解決するため、色収差を抑制する目的で結像レンズ101を色消し用の電磁波素子として構成すると、装置を大型化させてしまい、望ましくない。また、結像レンズ101の表面に回折面などを形成することも、ノイズの増大、製造工程の複雑化、などの問題をもたらす。また、こうした改良を行ったとしても、物質に分散がある以上、色収差をゼロにすることはできない。特に、可視光と赤外光、可視光とミリ波などのように、対象とする2つの電磁波の帯域が大きく異なる場合は、同じ物質の屈折率は大きく変化し、上記のような方法で色収差を抑制することがさらに難しくなる(E.D. Palik (ed.), "Handbook of Optical Constants of Solids," Academic Press, London, UK(1998)参照)。   In order to solve this problem, if the imaging lens 101 is configured as an achromatic electromagnetic wave element for the purpose of suppressing chromatic aberration, the apparatus becomes undesirably large. In addition, forming a diffractive surface or the like on the surface of the imaging lens 101 also causes problems such as an increase in noise and a complicated manufacturing process. Even with these improvements, chromatic aberration cannot be reduced to zero as long as the material is dispersed. In particular, when the bands of two target electromagnetic waves are greatly different, such as visible light and infrared light, visible light and millimeter wave, etc., the refractive index of the same substance changes greatly, and chromatic aberration is obtained by the above method. (See ED Palik (ed.), "Handbook of Optical Constants of Solids," Academic Press, London, UK (1998)).

したがって、これらの点に着目してなされた本発明の目的は、単純な構成で、波長の大きく異なる複数の帯域の電磁波に対して収差の影響を低減した電磁波素子を提供することにある。   Accordingly, an object of the present invention made by paying attention to these points is to provide an electromagnetic wave element which has a simple configuration and reduces the influence of aberration on electromagnetic waves in a plurality of bands having greatly different wavelengths.

上記目的を達成する電磁波素子の発明は、
第1の誘電体中に前記第1の誘電体とは誘電率の異なる第2の誘電体を分散させてなる複合誘電体で構成された電磁波素子であって、
前記電磁波素子は、所定の第1の波長の電磁波および前記第1の波長よりも長い所定の第2の波長の電磁波に対して略等しい有効誘電率を有し、
前記第2の誘電体の平均的な粒径および平均的な間隔は、前記第1の波長よりも小さいことを特徴とするものである。
The invention of the electromagnetic wave element that achieves the above object is
An electromagnetic wave element composed of a composite dielectric material in which a second dielectric material having a different dielectric constant from the first dielectric material is dispersed in a first dielectric material,
The electromagnetic wave element has an effective dielectric constant substantially equal to an electromagnetic wave having a predetermined first wavelength and an electromagnetic wave having a predetermined second wavelength longer than the first wavelength;
The average particle diameter and average interval of the second dielectric are smaller than the first wavelength.

好ましくは、前記第1の誘電体と前記第2の誘電体の少なくともいずれか一方は、前記第1の波長と前記第2の波長との間に、誘電率が大きく変化する共振波長を有する。   Preferably, at least one of the first dielectric and the second dielectric has a resonance wavelength at which a dielectric constant changes greatly between the first wavelength and the second wavelength.

さらに好ましくは、前記電磁波素子は、前記第1の波長と前記第2の波長とを予め定め、前記第1の波長の電磁波に対する前記複合誘電体の有効誘電率を、前記第2の波長の電磁波に対する前記複合誘電体の有効誘電率と略等しくなるように、前記第2の誘電体の平均的な粒径を決定して生成することができる。   More preferably, the electromagnetic wave element predetermines the first wavelength and the second wavelength, and sets the effective dielectric constant of the composite dielectric with respect to the electromagnetic wave of the first wavelength to the electromagnetic wave of the second wavelength. The average dielectric particle size of the second dielectric can be determined so as to be approximately equal to the effective dielectric constant of the composite dielectric with respect to

また、前記第1の波長および前記第2の波長の電磁波に対応する前記有効誘電率は、

Figure 2013020152
によって与えられ、b,θおよびF(θ)は、それぞれ
Figure 2013020152
により定義され、ここにおいて、aは、前記第2の誘電体の平均的な粒径であり、εおよびεは、それぞれ前記第1の誘電体と前記第2の誘電体との誘電率であり、fは前記複合誘電体の全体に占める前記第2の誘電体の体積占有率であり、λは電磁波の波長である。 The effective dielectric constant corresponding to the electromagnetic waves of the first wavelength and the second wavelength is
Figure 2013020152
And b, θ and F (θ) are respectively
Figure 2013020152
Where a is the average grain size of the second dielectric, and ε 1 and ε 2 are the dielectric constants of the first and second dielectrics, respectively. F is the volume occupancy of the second dielectric in the entire composite dielectric, and λ is the wavelength of the electromagnetic wave.

また、前記第2の波長は前記第1の波長の少なくとも10倍であることが望ましい。   The second wavelength is preferably at least 10 times the first wavelength.

好適には、前記電磁波素子は、前記第1の波長の電磁波および前記第2の波長の電磁波に対して、正の屈折力を有する電磁波素子として構成される。   Preferably, the electromagnetic wave element is configured as an electromagnetic wave element having a positive refractive power with respect to the electromagnetic wave having the first wavelength and the electromagnetic wave having the second wavelength.

本発明によれば、電磁波素子を、第1の誘電体中に前記第1の誘電体とは誘電率の異なる第2の誘電体を分散させてなる複合誘電体で構成し、第1の波長の電磁波および前記第1の波長よりも長い第2の波長の電磁波に対して略等しい有効誘電率を有するようにしたので、単純な構成で、波長の大きく異なる複数の帯域の電磁波に対して収差の影響を低減することができる。   According to the present invention, the electromagnetic wave element is composed of a composite dielectric material in which a second dielectric material having a dielectric constant different from that of the first dielectric material is dispersed in the first dielectric material, and the first wavelength The effective dielectric constant is substantially equal to the electromagnetic wave of the second wavelength and the electromagnetic wave of the second wavelength longer than the first wavelength. Can be reduced.

本発明の実施形態に係る電磁波素子を構成する複合誘電体の構成を示す模式図である。It is a schematic diagram which shows the structure of the composite dielectric material which comprises the electromagnetic wave element which concerns on embodiment of this invention. 図1の電磁波素子の有効誘電率を2πa/λの関数として表したグラフである。2 is a graph showing an effective dielectric constant of the electromagnetic wave element of FIG. 1 as a function of 2πa / λ. 本発明の電磁波素子を適用した撮像システムの結像性能を説明するための模式図である。It is a schematic diagram for demonstrating the imaging performance of the imaging system to which the electromagnetic wave element of this invention is applied. 誘電体の誘電率の波長依存性を模式的に示す図である。It is a figure which shows typically the wavelength dependence of the dielectric constant of a dielectric material. 色収差を説明するための模式図である。It is a schematic diagram for demonstrating chromatic aberration.

以下、本発明の実施の形態について、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施の形態)
図1は、本発明の実施形態に係る電磁波素子を構成する複合誘電体の構成を示す模式図である。この複合誘電体は、第1の誘電体1中に第1の誘電体1とは誘電率の異なる第2の誘電体2が分散されている。ここで、第1の誘電体1の誘電率をε、第2の誘電体2の誘電率をεとする。簡単のために、第2の誘電体2は全て半径aの球体であり、図には示されていないが、3次元的に配置されて周期p(>a)の正方格子を形成しているものと仮定する。この場合、全体に占める誘電体2の体積占有率は、(1)式で与えられる。
(Embodiment)
FIG. 1 is a schematic diagram showing a configuration of a composite dielectric constituting an electromagnetic wave element according to an embodiment of the present invention. In this composite dielectric, a second dielectric 2 having a dielectric constant different from that of the first dielectric 1 is dispersed in the first dielectric 1. Here, the dielectric constant of the first dielectric 1 is ε 1 , and the dielectric constant of the second dielectric 2 is ε 2 . For the sake of simplicity, the second dielectrics 2 are all spheres of radius a and are not shown in the figure, but are arranged three-dimensionally to form a square lattice with period p (> a). Assume that In this case, the volume occupation ratio of the dielectric 2 occupying the whole is given by the equation (1).

Figure 2013020152
Figure 2013020152

このfを、以後、単に体積占有率と呼ぶ。このような複合誘電体を、2つの異なる波長の電磁波に対して使用するものとし、使用するそれぞれの電磁波の真空中における波長をλおよびλとする。第2の誘電体2が配列された格子の周期pと第1および第2の電磁波の波長λ,λとの間には、(2)の関係が成立するものとする。 Hereinafter, this f is simply referred to as volume occupancy. Such a composite dielectric is used for electromagnetic waves having two different wavelengths, and the wavelengths of the respective electromagnetic waves to be used are λ 1 and λ 2 in vacuum. It is assumed that the relationship (2) is established between the period p of the grating in which the second dielectric 2 is arranged and the wavelengths λ 1 and λ 2 of the first and second electromagnetic waves.

Figure 2013020152
Figure 2013020152

この場合、複合誘電体に対して実効的な誘電率を定義することができる。これを有効誘電率と呼びεeffで表す。有効誘電率εeffは、(3)式で表されることが知られている(C. L. Holloway et al., IEEE Transactions on Antenna and Propagation, Vol. 51, p.2596-2603 (2003)参照)。 In this case, an effective dielectric constant can be defined for the composite dielectric. This is called the effective dielectric constant and expressed by ε eff . It is known that the effective dielectric constant ε eff is expressed by equation (3) (see CL Holloway et al., IEEE Transactions on Antenna and Propagation, Vol. 51, p.2596-2603 (2003)).

Figure 2013020152
Figure 2013020152

ここで、F(θ)は(4)式で定義される。   Here, F (θ) is defined by equation (4).

Figure 2013020152
Figure 2013020152

図2は、第1の波長であるλを500nmとしたときの(3)式で表される有効誘電率を、2πa/λを横軸にとって表したグラフである。第1の誘電体1としてSiO(ε(λ)=2.14)を、第2の誘電体2としてZnS(ε(λ)=5.86)をそれぞれ用い、体積占有率をf=0.268とした。第1の誘電体1および第2の誘電体2の誘電率ε(λ)およびε(λ)は、波長λ=500nmに対する値である。このグラフの左端(2πa/λ=0)での有効誘電率はε eff(λ)=2.84である。グラフの左端から2πa/λが増大するにつれて有効誘電率は増大し、2πa/λ=1.39の近傍で、急峻に増大し発散する。これは、第2の誘電体2により構成される誘電率εの誘電体球が共振器として作用することに起因しており、この領域では、複合誘電体の構造周期を調整することによって、2.84以上の任意の有効誘電率を実現することができる。 FIG. 2 is a graph showing the effective dielectric constant expressed by the equation (3) when λ 1 as the first wavelength is 500 nm, with 2πa / λ 1 as the horizontal axis. SiO 211 ) = 2.14) is used as the first dielectric 1 and ZnS (ε 21 ) = 5.86) is used as the second dielectric 2, respectively. Was set to f = 0.268. The dielectric constants ε 11 ) and ε 21 ) of the first dielectric 1 and the second dielectric 2 are values for the wavelength λ 1 = 500 nm. The effective dielectric constant at the left end (2πa / λ 1 = 0) of this graph is ε 0 eff1 ) = 2.84. As 2πa / λ 1 increases from the left end of the graph, the effective dielectric constant increases and rapidly increases and diverges in the vicinity of 2πa / λ 1 = 1.39. This is because the dielectric sphere having a dielectric constant ε 2 constituted by the second dielectric 2 acts as a resonator, and in this region, by adjusting the structural period of the composite dielectric, Any effective dielectric constant of 2.84 or higher can be realized.

一方、第2の波長λを100μmとしたとき、第1の誘電体1および第2の誘電体2の誘電率は、それぞれ、ε(λ)=3.88、ε(λ)=9.36である。この場合も、第2の波長λに対する有効誘電率のグラフは図2と同様に、所定の2πa/λで発散する曲線となる。ここで、λはλの、200倍であることを考慮すれば、第2の波長λの電磁波に対して、有効誘電率が発散する第2の誘電体2の半径aの値は、第1の波長λの電磁波に対して、有効誘電率が発散する半径aの値よりもかなり(2桁程度)大きくなる。したがって、0<2πa/λ<1.39を満たすaの範囲では、第2の波長λに対する発散は発生せず、有効誘電率は、εeff(λ)=4.97でほぼ一定値となる。 On the other hand, when the second wavelength λ 2 is 100 μm, the dielectric constants of the first dielectric 1 and the second dielectric 2 are ε 12 ) = 3.88 and ε 22 , respectively). ) = 9.36. Also in this case, the graph of the effective dielectric constant with respect to the second wavelength λ 2 is a curve that diverges at a predetermined 2πa / λ 2 as in FIG. Here, considering that λ 2 is 200 times λ 1 , the value of the radius a 2 of the second dielectric 2 where the effective dielectric constant diverges with respect to the electromagnetic wave having the second wavelength λ 2. Is considerably larger (about two digits) than the value of the radius a 1 at which the effective permittivity diverges with respect to the electromagnetic wave having the first wavelength λ 1 . Therefore, in the range of a satisfying 0 <2πa / λ 1 <1.39, no divergence occurs with respect to the second wavelength λ 2 , and the effective dielectric constant is substantially constant at ε eff2 ) = 4.97. Value.

したがって、半径aを適切な値に設定することによって、第1の波長λの電磁波の有効誘電率εeffを、第2の電磁波の有効誘電率εeffと略一致させることが可能である。具体的には、図2において2πa/λ=1.18 のとき、εeff=4.98となるので、波長λ=500nmに対しても、波長λ=100μmに対しても、ほぼ同じ値の有効誘電率が得られることになる。誘電体は磁気的応答を示さないため、複合誘電体の実効的な屈折率(有効屈折率)は有効誘電率の平方根に等しい。したがって、上記の例では、複合誘電体は波長λおよびλのいずれに対してもほぼ同じ値の有効屈折率を示す。 Therefore, by setting the radius a to an appropriate value, it is possible to make the effective dielectric constant ε eff of the electromagnetic wave having the first wavelength λ 1 substantially coincide with the effective dielectric constant ε eff of the second electromagnetic wave. Specifically, in FIG. 2, when 2πa / λ 1 = 1.18, ε eff = 4.98. Therefore, both the wavelength λ 1 = 500 nm and the wavelength λ 2 = 100 μm are almost equal. The same effective dielectric constant will be obtained. Since the dielectric does not exhibit a magnetic response, the effective refractive index (effective refractive index) of the composite dielectric is equal to the square root of the effective dielectric constant. Therefore, in the above example, the composite dielectric exhibits an effective refractive index having substantially the same value for both wavelengths λ 1 and λ 2 .

図3は、本願の電磁波素子を適用した撮像システムの結像性能を説明するための模式図である。この撮像システム10は結像レンズ11と、撮像素子12とを含む。結像レンズ11は、正のパワーを有する本実施の形態の電磁波素子であり、物体13の像14を撮像素子12上に結像させる。撮像素子12は、第1の波長λおよび第2の波長λの双方の電磁波を検出することができる素子である。例えば、第1の波長λと第2の波長λとのそれぞれに感受性を有する素子を受光面上に交互に2次元アレー状に配置すること等により構成される。図3において、実線は第1の波長λ(=500nm)の電磁波を示し、破線は第2の波長λ(=100μm)の電磁波を示す。物体から出射した第1の波長λの電磁波と、第2の波長λの電磁波とは、ほぼ同じ有効屈折率を有するので、同一の撮像素子12の受光面上に結像させることが可能となり、図5に示したような色収差は発生しない。 FIG. 3 is a schematic diagram for explaining the imaging performance of the imaging system to which the electromagnetic wave element of the present application is applied. The imaging system 10 includes an imaging lens 11 and an imaging element 12. The imaging lens 11 is an electromagnetic wave element according to the present embodiment having a positive power, and forms an image 14 of the object 13 on the imaging element 12. The imaging element 12 is an element that can detect electromagnetic waves of both the first wavelength λ 1 and the second wavelength λ 2 . For example, an element having sensitivity to each of the first wavelength λ 1 and the second wavelength λ 2 is alternately arranged on the light receiving surface in a two-dimensional array. In FIG. 3, a solid line indicates an electromagnetic wave having a first wavelength λ 1 (= 500 nm), and a broken line indicates an electromagnetic wave having a second wavelength λ 2 (= 100 μm). Since the electromagnetic wave having the first wavelength λ 1 and the electromagnetic wave having the second wavelength λ 2 emitted from the object have substantially the same effective refractive index, it is possible to form an image on the light receiving surface of the same image sensor 12. Thus, the chromatic aberration as shown in FIG. 5 does not occur.

なお、上記の説明では、2πa/λ=1.39の近傍で、第2の誘電体2を構成する球体の半径aを調整し、第1の波長λの電磁波に対する有効誘電率εeffを、第2の波長λの有効誘電率εeffと同じ値となるようにした。一方、同じく2πa/λ=1.39の近傍で、第1の波長λを調整することによっても、有効誘電率εeffを変化させることが可能である。 In the above description, the radius a of the sphere constituting the second dielectric 2 is adjusted in the vicinity of 2πa / λ 1 = 1.39, and the effective dielectric constant ε eff for the electromagnetic wave having the first wavelength λ 1 is adjusted. Is set to the same value as the effective dielectric constant ε eff of the second wavelength λ 2 . On the other hand, the effective dielectric constant ε eff can also be changed by adjusting the first wavelength λ 1 in the vicinity of 2πa / λ 1 = 1.39.

本発明の電磁波素子では、複合誘電体の第2の誘電体2を構成する誘電体球と電磁波との共振が起こる波長では、有効誘電率が無限大に発散することを利用する。すなわち、第1の波長λを共振波長の近傍とし、複合誘電体の構造、具体的には第2の誘電体2の粒径、または第1の波長λを調整することによって、第1の波長λの電磁波に対する有効誘電率を第2の波長λの電磁波に対する有効誘電率に一致させる。このような設計を可能とするためには、共振の発生しない領域で、第2の波長λに対する有効誘電率が、第1の波長λに対する有効誘電率よりも高くならなければならない。λ<λの条件において、一般的に、この条件が満たされることを、誘電体の電気的性質に基づいて以下に説明する。 The electromagnetic wave element of the present invention utilizes the fact that the effective permittivity diverges infinitely at a wavelength at which resonance occurs between the dielectric sphere constituting the second dielectric 2 of the composite dielectric and the electromagnetic wave. That is, the first wavelength λ 1 is set in the vicinity of the resonance wavelength, and the structure of the composite dielectric, specifically, the particle diameter of the second dielectric 2 or the first wavelength λ 1 is adjusted to adjust the first wavelength λ 1 . The effective dielectric constant for the electromagnetic wave having the wavelength λ 1 is made to coincide with the effective dielectric constant for the electromagnetic wave having the second wavelength λ 2 . In order to enable such a design, the effective dielectric constant for the second wavelength λ 2 must be higher than the effective dielectric constant for the first wavelength λ 1 in a region where resonance does not occur. The fact that this condition is generally satisfied under the condition of λ 12 will be described below based on the electrical properties of the dielectric.

図4は、誘電体の誘電率の波長依存性を模式的に示した図である(D. Palik (ed.), "Handbook of Optical Constants of Solids," Academic Press, London, UK(1998)参照)。図4には、誘電率の実数部(実線)と虚数部(破線)が示されているが、両者の間にはクラマース・クローニッヒの関係と呼ばれる相関がある。すなわち、実数部があまり変化しない領域では虚数部が小さな値をとり、誘電体は透明(波長領域A、C、E)となる。一方、実数部が変化する領域では虚数部が大きな値をとり、誘電体は不透明(波長領域B、D)となる。誘電体中には電子やフォノンの運動に起因する共鳴準位が複数あり、それぞれが固有の波長の光に共鳴して、入射した光を吸収する。こうした共鳴準位のない波長領域では、誘電率の実数部は概ね一定値をとるが、その値は波長が長いほど大きくなり、図4の例ではεとなる。これは、入射する光の波長(周波数)より短波長側(高周波側)にある共鳴準位は全て、電磁波の電場に対して即座に分極する(したがって誘電率の値を増大させる方向に作用する)ためである。つまり、少なくとも1つの共鳴準位を挟んだ2つの透明領域を比較すると、誘電体の種類によらず一般的に次の(5)式が成り立つ。 FIG. 4 is a diagram schematically showing the wavelength dependence of the dielectric constant of a dielectric (see D. Palik (ed.), “Handbook of Optical Constants of Solids,” Academic Press, London, UK (1998)). ). FIG. 4 shows the real part (solid line) and imaginary part (broken line) of the dielectric constant, and there is a correlation called the Kramers-Kronig relationship between them. That is, in the region where the real part does not change much, the imaginary part takes a small value, and the dielectric is transparent (wavelength regions A, C, E). On the other hand, in the region where the real part changes, the imaginary part takes a large value, and the dielectric becomes opaque (wavelength regions B and D). There are a plurality of resonance levels in the dielectric due to the movement of electrons and phonons, each resonating with light of a specific wavelength and absorbing incident light. In the wavelength region where there is no resonance level, the real part of the dielectric constant takes a substantially constant value, but the value increases as the wavelength increases, and in the example of FIG. 4, ε ACE. This is because all the resonance levels on the shorter wavelength side (high frequency side) than the wavelength (frequency) of the incident light are immediately polarized with respect to the electric field of the electromagnetic wave (and thus increase the value of the dielectric constant). For). That is, when two transparent regions sandwiching at least one resonance level are compared, the following equation (5) is generally satisfied regardless of the type of dielectric.

Figure 2013020152
Figure 2013020152

本実施の形態の複合誘電体は、第1の誘電体1および第2の誘電体2から構成されるが、少なくとも第1の誘電体1または第2の誘電体2のいずれかが、前記第1の波長と前記第2の波長との間に、誘電率が大きく変化する共振波長を有することによって、複合誘電体全体としても(5)式を満たすことができる。また、SiOの屈折率によれば、通常電磁波の波長帯域が10倍程度異なれば、(5)式の関係が成り立つことが知られている(例えば、D. Palik (ed.), "Handbook of Optical Constants of Solids," Academic Press, London, UK (1998)参照)。 The composite dielectric according to the present embodiment includes a first dielectric 1 and a second dielectric 2, and at least one of the first dielectric 1 and the second dielectric 2 is the first dielectric By having a resonance wavelength between which the dielectric constant changes greatly between the wavelength of 1 and the second wavelength, the composite dielectric as a whole can satisfy the equation (5). Further, according to the refractive index of SiO 2 , it is known that the relationship of the formula (5) is established if the wavelength band of the normal electromagnetic wave is different by about 10 times (for example, D. Palik (ed.), “Handbook of Optical Constants of Solids, "Academic Press, London, UK (1998)).

上記の実施の形態では、相対的に短い第1の波長のλ(=500nm)に対して複合誘電体の有効誘電率が図2で与えられることを計算したが、このグラフの左端(2πa/λ=0)での有効誘電率はε eff(λ)=2.84である。一方、相対的に長い波長λ(=100μ)で同様の計算を行うと、2πa/λ=0における有効誘電率はε eff(λ)=4.97である。したがって、ε eff(λ)<ε eff(λ)となることから、0<2πa/λ<1.39の範囲で、双方の波長の電磁波に対して有効誘電率を一致させることができる。 In the above embodiment, it is calculated that the effective dielectric constant of the composite dielectric is given in FIG. 2 for λ 1 (= 500 nm) of the relatively short first wavelength, but the left end (2πa of this graph) The effective dielectric constant at / λ 1 = 0) is ε 0 eff1 ) = 2.84. On the other hand, when the same calculation is performed at a relatively long wavelength λ 2 (= 100 μ), the effective dielectric constant at 2πa / λ 2 = 0 is ε 0 eff2 ) = 4.97. Therefore, since ε 0 eff1 ) <ε 0 eff2 ), the effective permittivity is made to coincide with electromagnetic waves of both wavelengths in the range of 0 <2πa / λ 1 <1.39. be able to.

このように、複合誘電体においても、(5)式で示したλ<λならばε eff(λ)<ε eff(λ)なる関係が、必然的に成立するので、本発明の複合誘電体は、誘電体1と誘電体2の種類によらず、多く種類の誘電体を用いて構成することが可能である。 Thus, even in the composite dielectric, the relationship of ε 0 eff1 ) <ε 0 eff2 ) inevitably holds if λ 12 shown in equation (5). The composite dielectric of the present invention can be configured using many types of dielectrics regardless of the types of the dielectrics 1 and 2.

以上説明したように、本実施の形態によれば、電磁波素子を、第1の誘電体1中に前記第1の誘電体1とは誘電率の異なる第2の誘電体2を分散させてなる複合誘電体で構成し、第1の波長λの電磁波および前記第1の波長λよりも長い第2の波長λの電磁波に対して略等しい有効誘電率を有するようにしたので、単純な構成で、波長の大きく異なる複数の帯域の電磁波に対して収差の影響を低減し、双方の電磁波に対して、優れた結像性能を有することができる。したがって、本発明の電磁波素子を撮像装置に適用した場合、異なる複数の波長の電磁波に対して、画像の同位置にある画素が、観察対象の物体の同一点であるので、「対応付け」が不要になり、装置全体を単純に構成することもできる。 As described above, according to the present embodiment, the electromagnetic wave element is formed by dispersing the second dielectric 2 having a dielectric constant different from that of the first dielectric 1 in the first dielectric 1. Since it is composed of a composite dielectric and has an effective dielectric constant substantially equal to the electromagnetic wave of the first wavelength λ 1 and the electromagnetic wave of the second wavelength λ 2 longer than the first wavelength λ 1 , With such a configuration, it is possible to reduce the influence of aberration on electromagnetic waves in a plurality of bands having greatly different wavelengths, and to have excellent imaging performance with respect to both electromagnetic waves. Therefore, when the electromagnetic wave element of the present invention is applied to the imaging apparatus, the pixels in the same position of the image are the same point of the object to be observed with respect to the electromagnetic waves having different wavelengths, so It becomes unnecessary, and the whole apparatus can also be comprised simply.

また、本実施の形態に係る電磁波素子を用いて構成した図3の撮像システムでは、電磁波系の製造時に動作波長λおよびλを設定して、双方に対して良好な結像性能が得られるように設計および製造を行うが、製造誤差や環境変化によって結像性能が劣化したとしても、例えば物体を照明する第1の波長λをわずかに変化させることで、容易に補正することができるという効果も有している。これは、2πa/λ=1.39の近傍で有効誘電率が大きく変化するという特性に基づいており、誘電率が波長に対してゆるやかにしか変化しない通常の誘電体レンズでは得られない効果である。 Further, in the imaging system of FIG. 3 configured using the electromagnetic wave element according to the present embodiment, the operating wavelengths λ 1 and λ 2 are set at the time of manufacturing the electromagnetic wave system, and good imaging performance is obtained for both. However, even if the imaging performance is deteriorated due to a manufacturing error or an environmental change, it can be easily corrected by slightly changing the first wavelength λ 1 for illuminating the object, for example. It also has the effect of being able to. This is based on the characteristic that the effective permittivity changes greatly in the vicinity of 2πa / λ 1 = 1.39, and is an effect that cannot be obtained with a normal dielectric lens in which the permittivity changes only slowly with respect to the wavelength. It is.

複合誘電体を結像レンズとして用いるこのような撮像システムは、例えば、イメージングに単色光を用いる蛍光顕微鏡やレーザー走査型顕微鏡、走査型近接場光学顕微鏡、光記録システムにおいて、特に効果的に機能する。あるいは、本発明の電磁波素子は、CD、DVD およびBlue-ray といった異なる規格の記録メディアを単一のシステムで読み書きする必要がある光記録システムに適用することも可能である。さらに、今後、ホログラフィックメモリーや2光子記録といった新たなシステムが組み込まれたときに、より広い波長帯域で記録メディアを読み書きする光学系の収差を補正する技術として適用することができる。   Such an imaging system using a composite dielectric as an imaging lens functions particularly effectively in, for example, a fluorescence microscope, a laser scanning microscope, a scanning near-field optical microscope, and an optical recording system that use monochromatic light for imaging. . Alternatively, the electromagnetic wave element of the present invention can also be applied to an optical recording system that needs to read and write recording media of different standards such as CD, DVD and Blue-ray with a single system. Furthermore, when a new system such as holographic memory or two-photon recording is incorporated in the future, it can be applied as a technique for correcting aberrations of an optical system that reads and writes recording media in a wider wavelength band.

なお、本発明は、上記実施の形態にのみ限定されるものではなく、幾多の変形または変更が可能である。例えば、上記の実施例では、第1の誘電体に、第2の誘電体の誘電体球を正方格子状に配置することで複合誘電体を構成しているが、本発明に関わる複合誘電体およびそれを用いた電磁波素子の効果は、第1の誘電体および第2の誘電体の形状、配置に関わりなく得られる。その理由は、波長に比べて小さな誘電体球を分散させた構造体では、有効誘電率はそれを構成する誘電体の誘電率(上記の実施例ではεおよびε)と体積占有率f によって決まり、誘電体球の寸法や配置にはよらないからである(例えば、F. Capolino (ed.), "Metamaterials Handbook - Theory and Phenomena of Metamaterials,"CRC Press, NW (2009), Chapter 9参照)。したがって、複合誘電体内の第2の誘電体は球形に限られず、正方格子のように規則正しく配置される必要もない。 In addition, this invention is not limited only to the said embodiment, Many deformation | transformation or a change is possible. For example, in the above-described embodiment, the composite dielectric is configured by arranging the dielectric balls of the second dielectric in a square lattice pattern on the first dielectric, but the composite dielectric according to the present invention is used. The effect of the electromagnetic wave element using the same can be obtained regardless of the shape and arrangement of the first dielectric and the second dielectric. The reason is that, in a structure in which dielectric spheres smaller than the wavelength are dispersed, the effective dielectric constant is the dielectric constant of the dielectric constituting the dielectric sphere (ε 1 and ε 2 in the above embodiment) and the volume occupation ratio f. This is because it depends on the size and arrangement of the dielectric sphere (see, for example, F. Capolino (ed.), "Metamaterials Handbook-Theory and Phenomena of Metamaterials," CRC Press, NW (2009), Chapter 9). ). Therefore, the second dielectric in the composite dielectric is not limited to a spherical shape, and does not need to be regularly arranged like a square lattice.

また、上記の実施の形態では、電磁波素子を正のパワーを有する結像レンズとしたが、電磁波素子は負のパワーを有していても良く、あるいは、複数の電磁波素子を組み合わせて使用しても良い。また、第1の波長と第2の波長の帯域は、可視光および赤外光に限られず、テラヘルツ波やミリ波、マイクロ波等を含む種々の組合せとすることが可能である。また、本発明による電磁波素子は、撮像システムや記録メディアへのデータの書き込み、読み出しの他、電磁波の検出、または、電磁波を用いた加工等の用途など、種々の用途に適用することが可能である。   In the above embodiment, the electromagnetic wave element is an imaging lens having a positive power. However, the electromagnetic wave element may have a negative power, or a plurality of electromagnetic wave elements may be used in combination. Also good. The bands of the first wavelength and the second wavelength are not limited to visible light and infrared light, and can be various combinations including terahertz waves, millimeter waves, microwaves, and the like. Further, the electromagnetic wave element according to the present invention can be applied to various uses such as data writing to and reading from an imaging system or a recording medium, electromagnetic wave detection, or processing using electromagnetic waves. is there.

1 第1の誘電体
2 第2の誘電体
10 撮像システム
11 結像レンズ
12 撮像素子
13 物体
14 撮像素子
100 撮像システム
101 結像レンズ
102 撮像素子
103 物体
104 像
DESCRIPTION OF SYMBOLS 1 1st dielectric material 2 2nd dielectric material 10 Imaging system 11 Imaging lens 12 Imaging device 13 Object 14 Imaging device 100 Imaging system 101 Imaging lens 102 Imaging device 103 Object 104 Image

Claims (6)

第1の誘電体中に前記第1の誘電体とは誘電率の異なる第2の誘電体を分散させてなる複合誘電体で構成された電磁波素子であって、
前記電磁波素子は、所定の第1の波長の電磁波および前記第1の波長よりも長い所定の第2の波長の電磁波に対して略等しい有効誘電率を有し、
前記第2の誘電体の平均的な粒径および平均的な間隔は、前記第1の波長よりも小さいことを特徴とする電磁波素子。
An electromagnetic wave element composed of a composite dielectric material in which a second dielectric material having a different dielectric constant from the first dielectric material is dispersed in a first dielectric material,
The electromagnetic wave element has an effective dielectric constant substantially equal to an electromagnetic wave having a predetermined first wavelength and an electromagnetic wave having a predetermined second wavelength longer than the first wavelength;
The electromagnetic wave element, wherein an average particle diameter and an average interval of the second dielectric are smaller than the first wavelength.
前記第1の誘電体と前記第2の誘電体の少なくともいずれか一方は、前記第1の波長と前記第2の波長との間に、誘電率が大きく変化する共振波長を有することを特徴とする請求項1に記載の電磁波素子。   At least one of the first dielectric and the second dielectric has a resonance wavelength in which a dielectric constant changes greatly between the first wavelength and the second wavelength. The electromagnetic wave element according to claim 1. 前記第1の波長と前記第2の波長とを予め定め、前記第1の波長の電磁波に対する前記複合誘電体の有効誘電率を、前記第2の波長の電磁波に対する前記複合誘電体の有効誘電率と略等しくなるように、前記第2の誘電体の平均的な粒径を決定して生成したことを特徴とする請求項1または2に記載の電磁波素子。   The first wavelength and the second wavelength are determined in advance, and the effective dielectric constant of the composite dielectric with respect to the electromagnetic wave of the first wavelength is defined as the effective dielectric constant of the composite dielectric with respect to the electromagnetic wave of the second wavelength. The electromagnetic wave element according to claim 1 or 2, wherein the electromagnetic wave element is generated by determining an average particle size of the second dielectric so as to be substantially equal to the first dielectric material. 前記第1の波長および前記第2の波長の電磁波に対応する前記有効誘電率は、
Figure 2013020152
によって与えられ、b,θおよびF(θ)は、それぞれ
Figure 2013020152
により定義され、ここにおいて、aは、前記第2の誘電体の平均的な粒径であり、εおよびεは、それぞれ前記第1の誘電体と前記第2の誘電体との誘電率であり、fは前記複合誘電体の全体に占める前記第2の誘電体の体積占有率であり、λは電磁波の波長であることを特徴とする請求項1〜3のいずれか一項に記載の電磁波素子。
The effective dielectric constant corresponding to the electromagnetic waves of the first wavelength and the second wavelength is
Figure 2013020152
And b, θ and F (θ) are respectively
Figure 2013020152
Where a is the average grain size of the second dielectric, and ε 1 and ε 2 are the dielectric constants of the first and second dielectrics, respectively. 4 is a volume occupancy ratio of the second dielectric material occupying the entire composite dielectric material, and λ is a wavelength of the electromagnetic wave. Electromagnetic wave element.
前記第2の波長は前記第1の波長の少なくとも10倍であることを特徴とする請求項1〜4のいずれか一項に記載の電磁波素子。   The electromagnetic wave element according to any one of claims 1 to 4, wherein the second wavelength is at least 10 times the first wavelength. 前記第1の波長の電磁波および前記第2の波長の電磁波に対して、正の屈折力を有する請求項1〜5の何れか一項に記載の電磁波素子。
The electromagnetic wave element according to any one of claims 1 to 5, which has a positive refractive power with respect to the electromagnetic wave having the first wavelength and the electromagnetic wave having the second wavelength.
JP2011154254A 2011-07-12 2011-07-12 Method for manufacturing electromagnetic wave element Expired - Fee Related JP6057271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011154254A JP6057271B2 (en) 2011-07-12 2011-07-12 Method for manufacturing electromagnetic wave element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011154254A JP6057271B2 (en) 2011-07-12 2011-07-12 Method for manufacturing electromagnetic wave element

Publications (2)

Publication Number Publication Date
JP2013020152A true JP2013020152A (en) 2013-01-31
JP6057271B2 JP6057271B2 (en) 2017-01-11

Family

ID=47691624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011154254A Expired - Fee Related JP6057271B2 (en) 2011-07-12 2011-07-12 Method for manufacturing electromagnetic wave element

Country Status (1)

Country Link
JP (1) JP6057271B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070171534A1 (en) * 2006-01-13 2007-07-26 Hon Hai Precision Industry Co., Ltd. Lens with ir-cut function
JP2009102219A (en) * 2007-10-02 2009-05-14 Hitachi Ltd Optical glass
JP2009145542A (en) * 2007-12-13 2009-07-02 Panasonic Corp Camera device
JP2009544805A (en) * 2006-07-24 2009-12-17 ナノシス・インク. Nanocrystalline doped matrix

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070171534A1 (en) * 2006-01-13 2007-07-26 Hon Hai Precision Industry Co., Ltd. Lens with ir-cut function
JP2009544805A (en) * 2006-07-24 2009-12-17 ナノシス・インク. Nanocrystalline doped matrix
JP2009102219A (en) * 2007-10-02 2009-05-14 Hitachi Ltd Optical glass
JP2009145542A (en) * 2007-12-13 2009-07-02 Panasonic Corp Camera device

Also Published As

Publication number Publication date
JP6057271B2 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
Zang et al. Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings
US7411736B2 (en) Image detection method and image detecting apparatus
US8681428B1 (en) High refractive index, polarization insensitive nano-rod based plasmonic metamaterials for lenses
Jang et al. Experimental demonstration of adaptive infrared multispectral imaging using plasmonic filter array
Wang et al. A graphene-based Fabry-Pérot spectrometer in mid-infrared region
Mirzaei et al. All-dielectric multilayer cylindrical structures for invisibility cloaking
US10215970B2 (en) Image-pickup optical system and image pickup apparatus to correct aberration
Park et al. Subwavelength silicon through-hole arrays as an all-dielectric broadband terahertz gradient index metamaterial
TW200920113A (en) Multi-region imaging systems
CN110914992A (en) Infrared multispectral imaging device and method
JP6945195B2 (en) Optical filters, photodetectors, and photodetectors
JP2020053910A (en) Optical device and imaging device
Li et al. Meta‐imaging: From non‐computational to computational
JP2011128538A (en) Infrared imaging lens and imaging apparatus
Akın et al. Mid-wave infrared metasurface microlensed focal plane array for optical crosstalk suppression
Legaria et al. Highly efficient focusing of terahertz waves with an ultrathin superoscillatory metalens: Experimental demonstration
US20240118452A1 (en) Metasurface, metalens, and metalens array with controllable angular field-of-view
JPWO2020149055A1 (en) Photodetectors, photodetectors, and filter arrays
Li et al. Far‐Field Synthetic Aperture Imaging via Fourier Ptychography with Quasi‐Plane Wave Illumination
JP6057271B2 (en) Method for manufacturing electromagnetic wave element
Sun et al. Imaging properties of dielectric photonic crystal slabs for large object distances
Mendis et al. Artificial dielectrics: ordinary metallic waveguides mimic extraordinary dielectric media
JP5863094B2 (en) Image pickup device and image pickup apparatus using the same
KR102497712B1 (en) Multispectral stealth device
Zhou et al. The Computed Tomographic Imaging Spectrometer based on metamaterial surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161129

R150 Certificate of patent or registration of utility model

Ref document number: 6057271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees