JP2013019782A - Nano indentation tester and method of correcting data of the same - Google Patents

Nano indentation tester and method of correcting data of the same Download PDF

Info

Publication number
JP2013019782A
JP2013019782A JP2011153697A JP2011153697A JP2013019782A JP 2013019782 A JP2013019782 A JP 2013019782A JP 2011153697 A JP2011153697 A JP 2011153697A JP 2011153697 A JP2011153697 A JP 2011153697A JP 2013019782 A JP2013019782 A JP 2013019782A
Authority
JP
Japan
Prior art keywords
support member
sample
displacement
load
indenter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011153697A
Other languages
Japanese (ja)
Inventor
Hidenari Baba
秀成 馬場
Shinya Miyazaki
信弥 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2011153697A priority Critical patent/JP2013019782A/en
Publication of JP2013019782A publication Critical patent/JP2013019782A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nano indentation tester and a method of correcting the data in which a correction value to a result of nano-indentation test is easily obtained and physical properties of a sample itself being an evaluation object can be calculated highly accurately by the correction value.SOLUTION: A sample 1 is embedded into a support member being an elastic body, a surface of the sample 1 and a rear surface of the support member 2 are parallelly polished, compressive load is applied between the surface and the rear surface of the support member 2, and support member displacement characteristics which indicates load-displacement characteristics of the single support member 2 is obtained. An indenter 3 is pressed into the surface of the sample, and composite displacement characteristics which indicates load-displacement characteristics of the support member 2 and the sample 1 is obtained. The support member displacement characteristics is subtracted from the composite displacement characteristics to obtain pure displacement characteristics which indicates load-displacement characteristics of the single sample, and physical properties of the sample 1 is obtained from the displacement characteristics.

Description

本発明は、ナノインデンテーション試験装置とナノインデンテーション試験におけるデータ補正方法に関する。   The present invention relates to a nanoindentation test apparatus and a data correction method in a nanoindentation test.

種々の材料の微小領域や極表面、半導体やマイクロマシンといった微小材料等の各種材料を対象とした微小硬さ試験として、ナノインデンテーション試験が知られている。
このナノインデンテーション試験は、通常の硬さ試験とは異なり、例えばすい形形状の圧子を試料の表面に押し込んで、その際の圧子の侵入深さと押込み荷重を同時に測定し記録する、いわゆる計装化硬さ試験である。ここで、ナノインデンテーション試験における材料の表面に形成されるくぼみの大きさは、1μm以下と非常に浅いことから、微小な部分を対象に力学特性を評価する際に有効な手段である。
A nanoindentation test is known as a microhardness test for various materials such as microregions and pole surfaces of various materials, and micromaterials such as semiconductors and micromachines.
This nano-indentation test is different from the normal hardness test. This is a chemical hardness test. Here, since the size of the dent formed on the surface of the material in the nanoindentation test is as shallow as 1 μm or less, it is an effective means for evaluating the mechanical characteristics of a minute portion.

ナノインデンテーション試験においては、対象が微小材料等であるため、使用する圧子先端の摩耗等の状況によっては、試験結果の精度に影響を与えやすいという問題がある。
そのため、ナノインデンテーション試験においては、試験結果に対して上記摩耗等による影響を排除するための補正手段が必要になる。
かかる補正手段として、例えば特許文献1が既に知られている。
In the nanoindentation test, since the object is a minute material or the like, there is a problem that the accuracy of the test result is likely to be affected depending on the situation such as wear of the tip of the indenter used.
Therefore, in the nanoindentation test, a correction means for eliminating the influence of the above-described wear or the like on the test result is necessary.
As such a correction means, for example, Patent Document 1 is already known.

特許文献1は、ナノデンテーション試験における圧子先端の曲率半径等の変化を検出する検出方法であって、圧子の先端を基準片の表面に対して荷重をかけて押し込んでその最大押し込み深さを測定すると共に、圧子の先端による押し込み深さとポップイン発生直前の押し込み深さ又はこれらの差のうち、少なくとも二つ以上の値を監視して、これらの値の変化に基づいて圧子の先端の変化を検出するものである。   Patent Document 1 is a detection method for detecting a change in the radius of curvature or the like of an indenter tip in a nanodentation test. The tip of the indenter is pushed against the surface of a reference piece while applying a load, and the maximum indentation depth is determined. While measuring, monitor at least two values of the indentation depth by the indenter tip and the indentation depth just before the pop-in occurrence or the difference between them, and change the indenter tip based on the change of these values Is detected.

また、非特許文献1には、ナノデンテーション試験における補正値の算出において、算出の精度を上げるために、できるだけ押し込みの大きい部分のデータを用いる方が望ましいため、タングステン等の硬度に対するヤング率の値が大きい試料を用いる点について記載されている。   Further, in Non-Patent Document 1, it is desirable to use the data of the portion with the largest indentation as much as possible in order to increase the calculation accuracy in the calculation of the correction value in the nanodentation test. It is described that a sample having a large value is used.

特開2008−139220号公報、「ナノデンテーション試験の検証方法」JP 2008-139220 A, “Verification method of nanodentation test”

「ナノインデンテーション試験に関する技術基準の確立」文部科学省科学研究費補助金研究成果報告書、研究種目:基板研究(B)、科研費課題番号:10555245、個人著者標目:田中紘一“Establishing technical standards for nanoindentation testing” MEXT Grant-in-Aid for Scientific Research Results, Research Category: Substrate Research (B), Grants-in-Aid for Scientific Research Project Number: 10555245

ここで、ナノインデンテーション試験を行う前において、試料の表面を鏡面程度に仕上げる必要があり、柔らかい樹脂台等(以下、支持部材)に埋め込んで研磨をせざるをえない場合が多い。また、ナノインデンテーション試験では、試料の表面と裏面との平行度をあるレベル以上に保つ必要がある。
その為には、研磨した後で樹脂台から試料を外し、新たに平行度を出すための研磨等をするのではなく、樹脂台に埋め込まれた状態で所定の平行度を出す方が作業効率は良い。
Here, before performing the nanoindentation test, it is necessary to finish the surface of the sample to a mirror surface, and in many cases, it is necessary to embed it in a soft resin stand or the like (hereinafter referred to as a support member) and polish it. In the nanoindentation test, it is necessary to maintain the parallelism between the front surface and the back surface of the sample at a certain level or higher.
For this purpose, it is better to remove the sample from the resin table after polishing and perform a predetermined degree of parallelism when it is embedded in the resin table, rather than polishing to obtain new parallelism. is good.

したがって、ナノインデンテーション試験を用いて硬度、ヤング率、および降伏応力等を評価するための試料は、ヤング率の比較的小さい埋め込み樹脂等による支持部材で支持される場合が多い。
かかる場合、計測される荷重−変位線図に、支持部材や圧子固定マウント自体の変形も重なってしまい、評価対象としている試料そのものの荷重−変位線図の応答が得られないことがあった。
この結果、例えば、圧子固定マウントの状況が変わった場合や、試料及び圧子固定マウント条件が複数ある場合には、それぞれの状況に対応した参照試料を作製して補正値を算出する必要があった。
Therefore, a sample for evaluating hardness, Young's modulus, yield stress, and the like using a nanoindentation test is often supported by a support member made of an embedded resin having a relatively small Young's modulus.
In this case, deformation of the support member and the indenter fixing mount itself overlaps the measured load-displacement diagram, and the response of the load-displacement diagram of the sample itself to be evaluated may not be obtained.
As a result, for example, when the situation of the indenter fixing mount has changed, or when there are a plurality of specimens and indenter fixing mount conditions, it is necessary to prepare a reference sample corresponding to each situation and calculate a correction value. .

また、実験的に補正値を求める際に、算出の精度を上げるために押し込み荷重を大きくする必要がある。しかし、荷重が小さい側の補正値は、荷重が大きい側のデータからの外挿によって算出することとなり、十分な精度が得られないことがあるという問題点があった。   In addition, when obtaining the correction value experimentally, it is necessary to increase the indentation load in order to increase the calculation accuracy. However, the correction value on the side with a smaller load is calculated by extrapolation from data on the side with a larger load, and there is a problem that sufficient accuracy may not be obtained.

そこで、本発明の目的は、ナノインデンテーション試験の結果に対する補正値を容易に求め、この補正値によって評価対象としている試料そのものの物性を高い精度で算出することができるナノインデンテーション試験装置とそのデータ補正方法を提供することにある。   Accordingly, an object of the present invention is to easily obtain a correction value for the result of the nanoindentation test, and to calculate the physical property of the sample itself to be evaluated with this correction value with high accuracy, and its It is to provide a data correction method.

本発明によれば、弾性体である支持部材内に試料を埋め込み、試料の表面と支持部材の裏面とを平行に研磨し、支持部材の表面と裏面間に圧縮荷重を負荷して、支持部材単独の荷重−変位特性を示す支持部材変位特性を求め、
次いで、試料の表面に圧子を押込んで、支持部材及び試料の荷重−変位特性を示す複合変位特性を求め、
複合変位特性から支持部材変位特性を差し引いて、試料単独の荷重−変位特性を示す純変位特性を求め、
純変位特性から試料の物性を求める、ことを特徴とするナノインデンテーション試験のデータ補正方法が提供される。
According to the present invention, a sample is embedded in a support member that is an elastic body, the front surface of the sample and the back surface of the support member are polished in parallel, and a compressive load is applied between the front surface and the back surface of the support member. Obtain the support member displacement characteristics indicating a single load-displacement characteristic,
Next, an indenter is pushed into the surface of the sample to obtain a composite displacement characteristic indicating the load-displacement characteristic of the support member and the sample,
Subtract the support member displacement characteristics from the composite displacement characteristics to obtain the pure displacement characteristics indicating the load-displacement characteristics of the sample alone,
There is provided a data correction method for a nanoindentation test characterized in that a physical property of a sample is obtained from a pure displacement characteristic.

また、本発明によれば、ナノインデンテーション試験の対象である試料を固定するとともに試料の表面と平行になるように研磨された裏面を有する支持部材と、試料又は支持部材の表面に押し込まれる圧子と、圧子に作用する圧縮荷重と圧子の変位を検知する検知部と、圧子を試料又は支持部材に向けて駆動する駆動部と、検知部の出力を処理する処理部と、を備え、
処理部は、試料がない状態で支持部材の表面に圧子を押込んで検知部から出力された圧縮荷重及び変位により、支持部材単独の荷重−変位特性を示す支持部材変位特性を求める支持部材変位特性算出部と、
支持部材に固定された試料の表面に圧子を押込んで検知部から出力された圧縮荷重及び変位により、支持部材及び試料の荷重−変位特性を示す複合変位特性を求める複合変位特性算出部と、
複合変位特性から支持部材変位特性を差し引いて、試料単独の荷重−変位特性を示す純変位特性を求める純変位特性算出部と、を有することを特徴とするナノインデンテーション試験装置が提供される。
Further, according to the present invention, a support member having a back surface polished to be parallel to the surface of the sample while fixing the sample to be subjected to the nanoindentation test, and an indenter to be pushed into the surface of the sample or the support member A detection unit that detects the compression load acting on the indenter and the displacement of the indenter, a drive unit that drives the indenter toward the sample or the support member, and a processing unit that processes the output of the detection unit,
The processing unit pushes an indenter into the surface of the support member in the absence of a sample, and obtains a support member displacement characteristic indicating a load-displacement characteristic of the support member alone by a compressive load and displacement output from the detection unit. A calculation unit;
A composite displacement characteristic calculation unit that obtains a composite displacement characteristic indicating a load-displacement characteristic of the support member and the sample by a compressive load and displacement output from the detection unit by pressing an indenter into the surface of the sample fixed to the support member;
There is provided a nano-indentation test apparatus comprising: a pure displacement characteristic calculation unit for subtracting a support member displacement characteristic from a composite displacement characteristic to obtain a pure displacement characteristic indicating a load-displacement characteristic of a sample alone.

上記本発明の方法及び装置によれば、支持部材単独の荷重−変位特性を示す支持部材変位特性を予め取得しておき、ナノインデンテーション試験で得られる支持部材及び試料の荷重−変位特性を示す複合変位特性から支持部材変位特性を差し引くことで、対象材料の本来の物性を算出することができる。
According to the method and apparatus of the present invention, the support member displacement characteristic indicating the load-displacement characteristic of the support member alone is acquired in advance, and the load-displacement characteristic of the support member and the sample obtained by the nanoindentation test is shown. By subtracting the support member displacement characteristic from the composite displacement characteristic, the original physical properties of the target material can be calculated.

本発明によるナノインデンテーション試験装置の構成図である。It is a block diagram of the nano indentation test apparatus by this invention. 本発明による補正方法を用いた場合の荷重−変位線図の例である。It is an example of the load-displacement diagram at the time of using the correction method by this invention. 本発明による補正方法の計算に必要な値を表記した荷重−変位線図の例である。It is an example of the load-displacement diagram which described the value required for calculation of the correction method by this invention. 本発明について試験を行った際の試験結果の荷重−変位線図である。It is a load-displacement diagram of the test result at the time of testing about this invention.

本発明の好ましい実施形態を図面に基づいて説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。   A preferred embodiment of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the overlapping description is abbreviate | omitted.

図1は、本発明によるナノインデンテーション試験装置の構成図である。
図1(A)はナノインデンテーション試験装置全体の断面図であり、図1(B)は試料及び支持部材の斜視図である。
この図において、1は試料、2は支持部材、6はフレーム、7はステージである。
FIG. 1 is a configuration diagram of a nanoindentation test apparatus according to the present invention.
FIG. 1A is a cross-sectional view of the entire nanoindentation test apparatus, and FIG. 1B is a perspective view of a sample and a support member.
In this figure, 1 is a sample, 2 is a support member, 6 is a frame, and 7 is a stage.

ナノインデンテーション試験は、試料1の硬度、ヤング率、および降伏応力等を評価することを目的として行われる。
試料1は、セラミックスや金属を主成分とする物質を対象としており、試験時には厚さが2mm〜15mm、表面積が100mm程度のものを使用する。
The nanoindentation test is performed for the purpose of evaluating the hardness, Young's modulus, yield stress, and the like of the sample 1.
Sample 1 is intended for a substance mainly composed of ceramics or metal, and has a thickness of 2 mm to 15 mm and a surface area of about 100 mm 2 during the test.

ナノインデンテーション試験を行う際には、表面を鏡面程度に研磨する必要がある。この際に、試料1が非常に薄い場合等には試料自体の重量が軽いことから非常に不安定になることがあるため、試料1よりも剛性の低い支持部材2に試料1を埋め込む形で作業を行う必要がある。
また、ナノインデンテーション試験では、試料1の表面と裏面の平行度をあるレベル以上に保つ必要があるが、支持部材2に埋め込んだままの状態で所定の平行度を出すほうが作業効率がよい。
したがって、ナノインデンテーション試験で用いられる支持部材2は、ヤング率の比較的小さいフェノール樹脂、エポキシ樹脂等を主成分としていることが好ましい。
また、この例においては、支持部材2は直径が30mm、厚さが30mm程度の円柱形のものを使用することを想定している。
When performing a nanoindentation test, it is necessary to polish the surface to a mirror level. At this time, when the sample 1 is very thin, the sample itself is light in weight and may become very unstable. Therefore, the sample 1 is embedded in the support member 2 having a lower rigidity than the sample 1. Need to do work.
In the nanoindentation test, the parallelism between the front surface and the back surface of the sample 1 needs to be maintained at a certain level or more. However, it is more efficient to obtain a predetermined parallelism while being embedded in the support member 2.
Therefore, it is preferable that the support member 2 used in the nanoindentation test is mainly composed of a phenol resin, an epoxy resin, or the like having a relatively low Young's modulus.
In this example, it is assumed that the support member 2 is a cylindrical member having a diameter of 30 mm and a thickness of about 30 mm.

試料1は、支持部材2が柔らかい状態のうちに支持部材2に埋め込まれ、支持部材2が固形化した後に、支持部材2の上下が平行で、かつ、試料1が表面に出るように研磨を行うことで一体化させる。
試験は、埋め込みが完了した支持部材2をステージ7の上に設置することで実施する。
The sample 1 is embedded in the support member 2 while the support member 2 is soft, and after the support member 2 is solidified, polishing is performed so that the upper and lower sides of the support member 2 are parallel and the sample 1 comes out on the surface. Integrate by doing.
The test is performed by placing the support member 2 that has been embedded on the stage 7.

圧子3は、この例においては、三角錐の形状を取っており、対頂角が115°のもの(いわゆるBerkovich圧子形状)を想定している。   In this example, the indenter 3 has a triangular pyramid shape, and a vertical angle of 115 ° (so-called Berkovich indenter shape) is assumed.

図1において本発明によるナノインデンテーション試験装置は、支持部材2、圧子3、検知部5、駆動部4、及び処理部8を備える。   In FIG. 1, the nanoindentation test apparatus according to the present invention includes a support member 2, an indenter 3, a detection unit 5, a drive unit 4, and a processing unit 8.

駆動部4は、圧子3に接続されており、フレーム6によって支えられる状態で圧子3を試料1又は支持部材2に向けて駆動する。
また、駆動部4は、例えば試験者が実験についての指示を入力する操作部(図示しない)からの指示に従って、試料1に対して荷重の増減を行うことが可能である。
The drive unit 4 is connected to the indenter 3 and drives the indenter 3 toward the sample 1 or the support member 2 while being supported by the frame 6.
In addition, the drive unit 4 can increase or decrease the load on the sample 1 in accordance with an instruction from an operation unit (not shown) through which an examiner inputs an instruction for an experiment, for example.

検知部5は、駆動部4の荷重の増減に伴って、圧子3に作用する圧縮荷重と圧子3の変位を検知する。
各変位を検知部5において検知した後は、処理部8に情報を伝達する。
The detection unit 5 detects the compression load acting on the indenter 3 and the displacement of the indenter 3 as the load of the drive unit 4 increases or decreases.
After each displacement is detected by the detection unit 5, information is transmitted to the processing unit 8.

処理部8は、例えばコンピュータ(PC)であり、支持部材変位特性算出部8a、複合変位特性算出部8b、及び純変位特性算出部8cを有する。   The processing unit 8 is, for example, a computer (PC), and includes a support member displacement characteristic calculation unit 8a, a composite displacement characteristic calculation unit 8b, and a pure displacement characteristic calculation unit 8c.

支持部材変位特性算出部8aは、試料1がない状態で支持部材2に圧子3を押込んで検知部5から出力された圧縮荷重と変位から、支持部材2単独の荷重−変位特性を示す支持部材変位特性を求める。   The support member displacement characteristic calculation unit 8a shows the load-displacement characteristic of the support member 2 alone from the compressive load and displacement output from the detection unit 5 when the indenter 3 is pushed into the support member 2 without the sample 1. Obtain the displacement characteristics.

複合変位特性算出部8bは、支持部材2に固定された試料1の表面に圧子3を押込んで検知部5から出力された圧縮荷重と変位から、支持部材2及び試料1の荷重−変位特性を示す複合変位特性を求める。   The composite displacement characteristic calculation unit 8b calculates the load-displacement characteristics of the support member 2 and the sample 1 from the compression load and displacement output from the detection unit 5 by pushing the indenter 3 into the surface of the sample 1 fixed to the support member 2. Obtain the composite displacement characteristics shown.

純変位特性算出部8cは、複合変位特性算出部8bで求めた複合変位特性から支持部材変位特性算出部8aで求めた支持部材変位特性を差し引いて、試料1単独の荷重−変位特性を示す純変位特性を求める。   The pure displacement characteristic calculation unit 8c subtracts the support member displacement characteristic obtained by the support member displacement characteristic calculation unit 8a from the composite displacement characteristic obtained by the composite displacement characteristic calculation unit 8b, and shows the load-displacement characteristic of the sample 1 alone. Obtain the displacement characteristics.

図2は、本発明による補正方法を用いた場合の荷重−変位線図の例である。
図2(A)は、補正前の荷重−変位線図であり、図2(B)は、支持部材2の物性についての荷重−変位線図である。また、図2(C)は、支持部材2の物性について補正後の荷重−変位線図である。
FIG. 2 is an example of a load-displacement diagram when the correction method according to the present invention is used.
FIG. 2A is a load-displacement diagram before correction, and FIG. 2B is a load-displacement diagram for the physical properties of the support member 2. FIG. 2C is a load-displacement diagram after correction for the physical properties of the support member 2.

図2(A)は圧子3によって、試料1に次第に荷重を加えていき、10秒〜30秒程度、最大荷重の状態を維持した後に、荷重を減少させていく過程についての荷重−変位線図である。   FIG. 2A shows a load-displacement diagram of a process in which a load is gradually applied to the sample 1 by the indenter 3 and the load is decreased after maintaining the maximum load state for about 10 to 30 seconds. It is.

図2(B)に記載の支持部材2についての荷重−変位線図は、実際に試験で使用する支持部材2と同じ大きさのものを別個用意して試験を行う。しかし、支持部材2の物性について既にデータが存在するものについては、そのデータを元に線図を作成してもよい。
なお、荷重を与えない場合には当然ながら変位は0であり、荷重を与えるに従って変位が増加する形の線図になる。
よって、図2(C)に実線として記載しているように補正後の荷重−変位線図は荷重が0のときは補正前の荷重−変位線図と同じ線図を描き、荷重が増加するに従って補正後の変位が補正前の変位と比較して小さくなる形状の線図を描くことになる。
The load-displacement diagram for the support member 2 shown in FIG. 2B is prepared by separately preparing the same size as the support member 2 actually used in the test. However, if there is already data on the physical properties of the support member 2, a diagram may be created based on the data.
In the case where no load is applied, the displacement is naturally zero, and the displacement increases as the load is applied.
Therefore, as described as a solid line in FIG. 2C, the corrected load-displacement diagram draws the same diagram as the uncorrected load-displacement diagram when the load is zero, and the load increases. Accordingly, a line diagram having a shape in which the displacement after correction becomes smaller than the displacement before correction is drawn.

上記方法によって、予め所定の各荷重での支持部材2の変形特性を取得しておき、試験結果の荷重−変位線図から支持部材2の変形特性による変形量を差し引いた補正後の荷重−変位線図を求めることによって、試料1本来の物性を求めることが可能になる。   According to the above method, the deformation characteristics of the support member 2 at each predetermined load are acquired in advance, and the corrected load-displacement obtained by subtracting the deformation amount due to the deformation characteristics of the support member 2 from the load-displacement diagram of the test result. By obtaining the diagram, it is possible to obtain the original physical properties of the sample 1.

ここで、試料1の硬さ及びヤング率を評価するための計算方法について記載する。
図3は、試料1の硬さ及びヤング率の計算に必要な値を表記した荷重−変位線図の例である。
この図において、Pmaxは荷重−変位線図における荷重の最大値、hmaxは荷重−変位線図における変位の最大値(最大押込み深さ)、Sは荷重−変位線図における接線の傾き、hはSとX軸との交点である。
かかる場合、硬さHは数1の式(1)(2)(3)により求められる。
Here, a calculation method for evaluating the hardness and Young's modulus of the sample 1 will be described.
FIG. 3 is an example of a load-displacement diagram in which values necessary for calculating the hardness and Young's modulus of the sample 1 are shown.
In this figure, P max is the maximum value of the load in the load-displacement diagram, h max is the maximum value of displacement (the maximum indentation depth) in the load-displacement diagram, S is the slope of the tangent in the load-displacement diagram, h c is the intersection of S and the X axis.
In such a case, the hardness H is obtained by the equations (1), (2), and (3) of Equation 1.

ここで、Aは、接触投影面積であり、圧子3と試料1が接触している領域を押込み方向に投影した面積である。
なお、通常の硬さ試験では「錐の面と試料の接触面積」で硬さを定義するが、ナノインデンテーション(計装化硬さ試験)では接触部の投影面積で定義されている。
Here, A is a projected contact area, which is an area obtained by projecting a region where the indenter 3 and the sample 1 are in contact in the pushing direction.
In the normal hardness test, the hardness is defined by the “contact area between the cone surface and the sample”, but in the nanoindentation (instrumentation hardness test), the hardness is defined by the projected area of the contact portion.

また、Eは試料1のヤング率、νは試料1のポアソン率、Eは圧子のヤング率、νは圧子にポアソン比とすると、複合ヤング率Eは数2の式(4)(5)により求められる。 In addition, when E S is the Young's modulus of sample 1, ν S is the Poisson's modulus of sample 1, E i is the Young's modulus of the indenter, and ν i is the Poisson's ratio of the indenter, the composite Young's modulus E * is the formula (4) ) (5).

図4は、本発明について試験を行った際の試験結果である。
図4(A)は、試験結果の荷重−変位線図であり、図4(B)は、荷重が500〜600(mN)付近の拡大図である。
かかる各数値及び上記各式に従って、補正前及び補正後の数値を比較すると以下のようになる。[表1]が入力する各数値、[表2]が計算によって求められた各数値である。
FIG. 4 shows the test results when the test was performed on the present invention.
FIG. 4A is a load-displacement diagram of the test results, and FIG. 4B is an enlarged view around the load of 500 to 600 (mN).
When the numerical values before and after correction are compared according to each numerical value and the above equations, the following results are obtained. [Table 1] is each numerical value to be input, and [Table 2] is each numerical value obtained by calculation.

なお、本試験における支持部材2は高さが30mm、有効断面積が100mm、ヤング率が8GPaのものを採用している。また、ヤング率誤差の計算において、試料1の一般的な値として2.0×10(MPa)と比較した数値を算出している。 The support member 2 in this test has a height of 30 mm, an effective area of 100 mm 2 and a Young's modulus of 8 GPa. In the calculation of the Young's modulus error, a numerical value compared with 2.0 × 10 6 (MPa) is calculated as a general value of the sample 1.

ここで、試料1について硬さHは、補正なしの場合と比較して補正ありの場合の方が高くなっている。これは、樹脂等からなる支持部材2の柔らかさの影響で低めに算出されていた硬さについての値が高い値になり、試料1単独での硬さの値に近づいたものと考えられる。
さらに、ヤング率の誤差は、補正なしにおいて19.7%、補正後において9.2%となるため、ヤング率の誤差が減少していることが分かる。
よって、本発明によると試料1についての硬さ及びヤング率を補正することが可能になる。
Here, the hardness H of the sample 1 is higher in the case with the correction than in the case without the correction. This is considered that the value about the hardness calculated lower by the influence of the softness of the support member 2 made of resin or the like becomes a high value and approaches the hardness value of the sample 1 alone.
Furthermore, since the error of Young's modulus is 19.7% without correction and 9.2% after correction, it can be seen that the error of Young's modulus is reduced.
Therefore, according to the present invention, it is possible to correct the hardness and Young's modulus of the sample 1.

本発明は上述した実施の形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更を加え得ることは勿論である。   The present invention is not limited to the above-described embodiment, and various changes can be made without departing from the scope of the present invention.

1 試料、2 支持部材、3 圧子、4 駆動部、5 検知部、
6 フレーム、7 ステージ、8 処理部、
8a 支持部材変位特性算出部、8b 複合変位特性算出部、
8c 純変位特性算出部
1 sample, 2 support member, 3 indenter, 4 drive unit, 5 detection unit,
6 frames, 7 stages, 8 processing units,
8a Support member displacement characteristic calculator, 8b Compound displacement characteristic calculator,
8c Pure displacement characteristics calculator

Claims (2)

弾性体である支持部材内に試料を埋め込み、試料の表面と支持部材の裏面とを平行に研磨し、支持部材の表面と裏面間に圧縮荷重を負荷して、支持部材単独の荷重−変位特性を示す支持部材変位特性を求め、
次いで、試料の表面に圧子を押込んで、支持部材及び試料の荷重−変位特性を示す複合変位特性を求め、
複合変位特性から支持部材変位特性を差し引いて、試料単独の荷重−変位特性を示す純変位特性を求め、
純変位特性から試料の物性を求める、ことを特徴とするナノインデンテーション試験のデータ補正方法。
A sample is embedded in an elastic support member, the surface of the sample and the back surface of the support member are polished in parallel, and a compressive load is applied between the front and back surfaces of the support member. The support member displacement characteristic indicating
Next, an indenter is pushed into the surface of the sample to obtain a composite displacement characteristic indicating the load-displacement characteristic of the support member and the sample,
Subtract the support member displacement characteristics from the composite displacement characteristics to obtain the pure displacement characteristics indicating the load-displacement characteristics of the sample alone,
A data correction method for a nanoindentation test, characterized in that a physical property of a sample is obtained from a pure displacement characteristic.
ナノインデンテーション試験の対象である試料を固定するとともに試料の表面と平行になるように研磨された裏面を有する支持部材と、試料又は支持部材の表面に押し込まれる圧子と、圧子に作用する圧縮荷重と圧子の変位を検知する検知部と、圧子を試料又は支持部材に向けて駆動する駆動部と、検知部の出力を処理する処理部と、を備え、
処理部は、試料がない状態で支持部材の表面に圧子を押込んで検知部から出力された圧縮荷重及び変位から、支持部材単独の荷重−変位特性を示す支持部材変位特性を求める支持部材変位特性算出部と、
支持部材に固定された試料の表面に圧子を押込んで検知部から出力された圧縮荷重及び変位から、支持部材及び試料の荷重−変位特性を示す複合変位特性を求める複合変位特性算出部と、
複合変位特性から支持部材変位特性を差し引いて、試料単独の荷重−変位特性を示す純変位特性を求める純変位特性算出部と、を有することを特徴とするナノインデンテーション試験装置。
A support member having a back surface that is fixed to the sample to be nanoindented and polished in parallel with the surface of the sample, an indenter that is pushed into the surface of the sample or the support member, and a compressive load that acts on the indenter And a detection unit that detects displacement of the indenter, a drive unit that drives the indenter toward the sample or the support member, and a processing unit that processes the output of the detection unit,
The processing unit obtains the support member displacement characteristic indicating the load-displacement characteristic of the support member alone from the compressive load and displacement output from the detection unit by pushing the indenter into the surface of the support member in the absence of the sample. A calculation unit;
A composite displacement characteristic calculation unit for obtaining a composite displacement characteristic indicating a load-displacement characteristic of the support member and the sample from a compression load and a displacement output from the detection unit by pushing an indenter into the surface of the sample fixed to the support member;
A nano-indentation test apparatus comprising: a pure displacement characteristic calculation unit that subtracts a support member displacement characteristic from a composite displacement characteristic to obtain a pure displacement characteristic indicating a load-displacement characteristic of a single sample.
JP2011153697A 2011-07-12 2011-07-12 Nano indentation tester and method of correcting data of the same Withdrawn JP2013019782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011153697A JP2013019782A (en) 2011-07-12 2011-07-12 Nano indentation tester and method of correcting data of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011153697A JP2013019782A (en) 2011-07-12 2011-07-12 Nano indentation tester and method of correcting data of the same

Publications (1)

Publication Number Publication Date
JP2013019782A true JP2013019782A (en) 2013-01-31

Family

ID=47691360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011153697A Withdrawn JP2013019782A (en) 2011-07-12 2011-07-12 Nano indentation tester and method of correcting data of the same

Country Status (1)

Country Link
JP (1) JP2013019782A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016038941A1 (en) * 2014-09-11 2016-03-17 三菱電機株式会社 Inspection method and inspection device for resin shock absorber
CN106501111A (en) * 2016-10-20 2017-03-15 吉林大学 The calibration steps of MEMS microbridge indentation load depth curve
CN109001064A (en) * 2018-08-23 2018-12-14 江苏亨通光导新材料有限公司 A kind of method of quantitative measurment and evaluation preform polishing effect
KR102031195B1 (en) * 2019-02-18 2019-10-11 (주)프론틱스 Method for Indentation Test Considering Load Cell Deflection
CN110940596A (en) * 2019-10-23 2020-03-31 中国科学院武汉岩土力学研究所 Rock high-stress high-temperature micro-nano indentation test system
CN112782014A (en) * 2020-12-11 2021-05-11 成都大学 Al (aluminum)2O3Finite element simulation method for nanoindentation of/316L stainless steel tritium resistance system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016038941A1 (en) * 2014-09-11 2016-03-17 三菱電機株式会社 Inspection method and inspection device for resin shock absorber
US9909950B2 (en) 2014-09-11 2018-03-06 Mitsubishi Electric Corporation Method and apparatus for inspecting resin shock absorber
DE112015004181B4 (en) * 2014-09-11 2018-12-13 Mitsubishi Electric Corporation Method and device for testing resin shock absorbers
CN106501111A (en) * 2016-10-20 2017-03-15 吉林大学 The calibration steps of MEMS microbridge indentation load depth curve
CN106501111B (en) * 2016-10-20 2019-01-18 吉林大学 MEMS microbridge indentation load-depth curve calibration method
CN109001064A (en) * 2018-08-23 2018-12-14 江苏亨通光导新材料有限公司 A kind of method of quantitative measurment and evaluation preform polishing effect
KR102031195B1 (en) * 2019-02-18 2019-10-11 (주)프론틱스 Method for Indentation Test Considering Load Cell Deflection
CN110940596A (en) * 2019-10-23 2020-03-31 中国科学院武汉岩土力学研究所 Rock high-stress high-temperature micro-nano indentation test system
CN112782014A (en) * 2020-12-11 2021-05-11 成都大学 Al (aluminum)2O3Finite element simulation method for nanoindentation of/316L stainless steel tritium resistance system

Similar Documents

Publication Publication Date Title
JP2013019782A (en) Nano indentation tester and method of correcting data of the same
Vargas-Pinto et al. The effect of the endothelial cell cortex on atomic force microscopy measurements
Song et al. Damage evolution study of sandstone by cyclic uniaxial test and digital image correlation
EP3093646B1 (en) Method for automated parameter and selection testing based on known characteristics of the sample being tested
US8532941B2 (en) Fatigue life estimation method and system
Hotz et al. Time dependent FLC determination comparison of different algorithms to detect the onset of unstable necking before fracture
EP3076153A1 (en) Method for calculating an indenter area function and quantifying a deviation from the ideal shape of an indenter
US20100198530A1 (en) Estimation of non-equibiaxial stress using instrumented indentation technique
Charleux et al. A method for measuring the contact area in instrumented indentation testing by tip scanning probe microscopy imaging
JP2018512738A (en) Method and system for in-plane distortion inspection of substrates
JP2008139220A (en) Inspection method of nano-indentation test
He et al. On evaluation of stress intensity factor from in-plane and transverse surface displacements
KR102031195B1 (en) Method for Indentation Test Considering Load Cell Deflection
Saleh et al. Validated prediction of the strength size effect in polycrystalline silicon using the three‐parameter Weibull function
Hou et al. Defining the limits to long-term nano-indentation creep measurement of viscoelastic materials
CN108362591A (en) Hardness test meter and hardness measuring method
Guo et al. A modified method for hardness determination from nanoindentation experiments with imperfect indenters
JPH03267736A (en) Method and device for dynamic brakage fatigue test of brittle material
US8443681B2 (en) Method and apparatus for visualizing contraction stress from curable materials
Fu et al. Toughness assessment and fracture mechanism of brittle thin films under nano-indentation
JP2006266964A (en) Strain control type super-high cycle fatigue testing method and fatigue testing apparatus
JP2015163840A (en) Estimation method of corrosion, fatigue and operating life of steel material
Karimzadeh et al. Mechanical properties of biomaterials determined by nano-indentation and nano-scratch tests
Ovcharenko et al. Junction growth and energy dissipation at the very early stage of elastic-plastic spherical contact fretting
Holzer et al. Development of the bulge test equipment for measuring mechanical properties of thin films

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007