JP2013018694A - Heat resistant product and method of manufacturing the same - Google Patents

Heat resistant product and method of manufacturing the same Download PDF

Info

Publication number
JP2013018694A
JP2013018694A JP2011218200A JP2011218200A JP2013018694A JP 2013018694 A JP2013018694 A JP 2013018694A JP 2011218200 A JP2011218200 A JP 2011218200A JP 2011218200 A JP2011218200 A JP 2011218200A JP 2013018694 A JP2013018694 A JP 2013018694A
Authority
JP
Japan
Prior art keywords
raw material
glaze
cordierite
thermal expansion
porcelain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011218200A
Other languages
Japanese (ja)
Other versions
JP5845500B2 (en
Inventor
Toshihiko Akizuki
俊彦 秋月
Shuji Kajiwara
秀志 梶原
Takayuki Kobayashi
孝幸 小林
Eiji Yamaguchi
英次 山口
Motoyuki Inoue
元之 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagasaki Prefectural Government
Original Assignee
Nagasaki Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagasaki Prefectural Government filed Critical Nagasaki Prefectural Government
Priority to JP2011218200A priority Critical patent/JP5845500B2/en
Publication of JP2013018694A publication Critical patent/JP2013018694A/en
Application granted granted Critical
Publication of JP5845500B2 publication Critical patent/JP5845500B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Table Devices Or Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low thermal expansion ceramic sintered body having thermal shock resistance and cordierite properties, in particular to provide ceramic tableware and a ceramic sintered body free from generation of cracks even when being subjected to glazing with Li-based low thermal expansion glaze.SOLUTION: For a raw material for a green layer, talc, kaolin, alumina, feldspar, and a lithium-containing raw material are weighed, mixed, and milled so as to contain lithium elements and 1.1 to 2.8 wt.% of NaO+KO. For a glaze layer, a glaze for forming low thermal expansion crystal containing lithium elements is employed. After the green body compact is biscuit fired, it is glazed and regularly fired at 1,200 to 1,300°C.

Description

本発明は、耐熱製品及びその製造方法に関するものであり、特に吸水性のない磁器質で白色の耐熱衝撃性が求められる耐熱製品及びその製造方法に関するものである。 The present invention relates to a heat-resistant product and a method for producing the same, and more particularly to a heat-resistant product that is white and has no water absorption and requires white thermal shock resistance and a method for producing the same.

従来からコーディエライト(2MgO・2Al23・5SiO2)を主成分とした素材は、熱膨張係数が小さいことから耐熱衝撃性に優れていることが知られている。そのため、その素材に関し、種々のものが報告されている。例えば、特許第599661号(特許文献1)には、タルク、アルミナ、カオリンなどに、Li含有材料をLi2Oとして0.12〜1.0%相当量をあらかじめ素地中に含有せしめた低熱膨張磁器が開示されている。また、特開2003−238238号(特許文献2)には、合成コーディエライトとタルク、カオリン、アルミナを混合し焼成した低熱膨張磁器が開示されている。さらに電子材料としては、特願2003−542108号(特許文献3)には、アルミナやコーディエライト等の無機物粉末とガラス粉末からなるガラスセラミックス組成物を用いた電子回路基板が開示されている。 Conventionally, a material mainly composed of cordierite (2MgO · 2Al 2 O 3 · 5SiO 2 ) has been known to have excellent thermal shock resistance due to its small thermal expansion coefficient. For this reason, various materials have been reported. For example, in Japanese Patent No. 599661 (Patent Document 1), talc, alumina, kaolin, low thermal expansion ceramics is disclosed that for the additional inclusion of Li-containing material in advance in the matrix of from 0.12 to 1.0% equivalent weight as Li 2 O ing. Japanese Unexamined Patent Publication No. 2003-238238 (Patent Document 2) discloses a low thermal expansion porcelain obtained by mixing and firing synthetic cordierite, talc, kaolin, and alumina. Further, as an electronic material, Japanese Patent Application No. 2003-542108 (Patent Document 3) discloses an electronic circuit board using a glass ceramic composition comprising an inorganic powder such as alumina or cordierite and a glass powder.

特許第599661号公報Japanese Patent No. 5996661 特開2003−238238号公報JP 2003-238238 A 特願2003−542108号公報Japanese Patent Application No. 2003-542108

しかし特許文献1に関しては、コーディエライト質の素地に対してLi系釉を施釉した場合に、素地の原料組成によっては、素地と接する釉薬面に低熱膨張の結晶が生成せず亀裂が発生するという問題が起こる。また、コーディエライトを主成分とした素材の磁器化に当たって、焼成する際に、素地の原料組成によっては低粘性のガラス相が大量に生成されてしまい、焼成時の変形が大きくなるという問題や、あるいは逆に、原料組成によっては低粘性のガラス相がほとんど生成されず、磁器化させるために1300℃を越える高温での焼成が必要となるか、それでも磁器化することなく、多孔質になるといった問題があった。 However, regarding Patent Document 1, when Li-based soot is applied to a cordierite base material, depending on the raw material composition of the base material, a low thermal expansion crystal is not generated on the glaze surface in contact with the base material and cracks are generated. The problem occurs. In addition, when calcining a material mainly composed of cordierite, depending on the raw material composition of the substrate, a large amount of low-viscosity glass phase is generated, and the deformation at the time of firing increases. Or, conversely, depending on the raw material composition, a low-viscosity glass phase is hardly generated, and it is necessary to calcinate at a high temperature exceeding 1300 ° C. to make it porcelain, or it becomes porous without becoming porcelain. There was a problem.

また、特許文献2に関しては、原料の一部に、前もってタルク、カオリン、アルミナを混合・焼成した、合成コーディエライトを用いる。その合成のための工程が必要となること、さらに従来から、合成コーディエライト粉末は、焼結時に緻密化する焼成温度幅が小さいことが知られている。そのため、合成コーディエライト粉末を原料として用いた場合、焼成温度がわずかに低いと緻密化せず、逆にわずかに高温になると一気に多量のガラス相が生成され、焼成時の変形や、該接合面の部分が高膨張化してしまうという問題が発生する。さらに、特許文献3に関しては、ガラスと無機物粉末との組成物であり、本発明の素地層と釉薬層とを有する磁器焼結体とは異なるものである。 Regarding Patent Document 2, synthetic cordierite in which talc, kaolin, and alumina are mixed and fired in advance is used as a part of the raw material. It has been known that a process for the synthesis is required, and that the synthetic cordierite powder has a small firing temperature range for densification during sintering. Therefore, when synthetic cordierite powder is used as a raw material, it will not be densified if the firing temperature is slightly low, and conversely, if it becomes slightly high, a large amount of glass phase will be generated at once, deformation during firing, There arises a problem that the surface portion is highly expanded. Further, Patent Document 3 is a composition of glass and inorganic powder, which is different from the ceramic sintered body having the base layer and the glaze layer of the present invention.

よって、従来のコーディエライトを用いた磁器食器、さらには、コーディエライトを用い、Li系の釉薬が施釉された磁器食器では、焼成時の変形が小さく、緻密で、しかも亀裂のない焼結体を歩留まり良く安定して製造することは非常に困難であった。そのため、コーディエライト素地だけであれば工業部品などとして使用されているが、コーディエライト素地に釉薬を施した磁器質の耐熱製品は、現在製造・販売されておらず、耐熱製品といえば製造の容易なペタライト質のものに限られている。 Therefore, in porcelain tableware using conventional cordierite, and further in porcelain tableware using cordierite and glazed with Li, glaze is small, dense, and crack-free. It was very difficult to produce a body with a high yield and stability. Therefore, if it is only cordierite substrate, it is used as industrial parts, etc., but no porcelain heat-resistant products with glaze applied to cordierite substrate are currently manufactured and sold. Limited to those of easy petalite quality.

そこで、本発明は、素地層と釉薬層からなる低熱膨張で耐熱衝撃性に優れた吸水性のないコーディエライト質の耐熱製品、特に白色で耐熱衝撃性のある磁器食器を提供するとともに、特にLi系の釉薬が施釉されていても、亀裂がなく耐熱衝撃性に優れた低熱膨張磁器を、安定して製造する方法を提供することを目的とするものである。 Accordingly, the present invention provides a cordierite-type heat-resistant product having low thermal expansion and excellent thermal shock resistance and having no thermal absorption, which is composed of a base layer and a glaze layer, in particular, white, thermal shock-resistant porcelain tableware. It is an object of the present invention to provide a method for stably producing a low thermal expansion porcelain having no cracks and excellent thermal shock resistance even when a Li-based glaze is applied.

本発明は上記問題点を解決するために創作されたものであって、第1には、素地層と釉薬層とを有する磁器焼結体であって、該素地層はコーディエライト素地からなり、該釉薬層は低膨張の結晶が形成されていることを特徴とする。このようにコーディエライト素地に低熱膨張の結晶が安定して形成された釉薬層を施すことで、耐熱衝撃性の高い磁器焼結体を得ることができる。また第2には、素地層にリチウム元素と、1.1重量%〜2.8重量%のNa2O+K2Oが含まれていることによって、1200〜1300℃の焼成において磁器化することを特徴とする。このように、素地中に含まれるリチウム元素と、Na2O+K2Oのアルカリ成分は共に、素地の磁器化に大きく作用する。特に含有量の多いNa2O+K2Oが、1.1重量%未満では磁器化しない。一方、Na2O+K2Oが2.8重量%を越えると磁器化はするが、Na2OとK2Oが釉中の低熱膨張結晶の析出を阻害するため、釉薬が低膨張化されず亀裂が発生する。さらに、低粘性のガラス相が大量に生成されることで、焼成時変形が大きくなる。このように、安定的に亀裂の発生がなく磁器化するには、素地中のリチウム元素と共に、Na2O+K2O量が適切な範囲であることが重要であることを見出したことが本願発明の新規性である。また第3には、コーディエライト素地は、原料として配合されていた、タルクとカオリンとアルミナが主に反応して生成されたものであることを特徴とする。これは、合成コーディエライトとは異なり、焼成時にタルクとカオリンとアルミナが反応しながらにコーディエライトが生成することで、広い焼成温度幅で安定した磁器焼結体が得られる。第4には、釉薬層には、リチウムアルミノシリケート系と考えられる低膨張の結晶体を含むことを特徴とする。釉薬層がリチウムアルミノシリケート系と考えられる低膨張の結晶体を含むことで、素地であるコーディエライトの熱膨張に適合する低熱膨張の釉薬が得られる。第5には、リチウム元素を有する原料であるリチウム元素含有材料が素地層の原料及び、釉薬層の原料として配合されており、且つ素地層にはNa2O+K2Oが1.1重量%〜2.8重量%含まれていることで、1200℃〜1300℃の焼成において、該リチウム元素含有材料におけるリチウム元素の働きと、Na2OとK2Oにより、釉薬層に低膨張の結晶体が安定して生成されることを特徴とする。素地層の原料及び、釉薬層の原料として配合されているリチウム元素含有材料の働きにより、釉薬層に低膨張の結晶体が生成され、この時Na2O+K2O量が2.8重量%を越えると素地は磁器化するが、Na2OとK2Oが釉中の低熱膨張結晶の析出を阻害すると考えられ、釉薬が低膨張化されず亀裂が発生する。逆に、Na2O+K2O量が1.1重量%未満では充分に素地が磁器化されず、吸水性のある焼結体しか得られない。それらに対し、Na2O+K2O量が1.1重量%〜2.8重量%であれば、吸水性のない素地が得られると共に、釉薬層にも低膨張の結晶体が充分に生成され、亀裂のない焼結体となる。第6に、素地層の熱膨張係数は、3.8×10-6以下であることを特徴とする。原料のタルクとカオリンとアルミナが、焼成時に反応してコーディエライトが生成することで、熱膨張係数が3.8×10-6以下の素地が得られる。しかし、K2O+Na2Oが重量%で2.8を越えると、熱膨張が大きくなると共に、釉中の低熱膨張結晶の析出を阻害するため亀裂の発生を引き起こす。 The present invention was created to solve the above problems. First, a ceramic sintered body having a base layer and a glaze layer, the base layer comprising a cordierite base. The glaze layer is characterized in that crystals with low expansion are formed. Thus, a ceramic sintered body having high thermal shock resistance can be obtained by applying a glaze layer in which crystals having low thermal expansion are stably formed on a cordierite substrate. The Second, the lithium element to the substrate layer, by that it contains 1.1 wt% to 2.8 wt% of Na 2 O + K 2 O, and characterized in that porcelain of the firing 1200 to 1300 ° C. To do. Thus, both the lithium element contained in the substrate and the alkali component of Na 2 O + K 2 O greatly affect the porcelainization of the substrate. Especially when Na 2 O + K 2 O having a large content is less than 1.1% by weight, it does not become porcelain. On the other hand, when Na 2 O + K 2 O exceeds 2.8% by weight, it becomes porcelain, but Na 2 O and K 2 O inhibit the precipitation of low thermal expansion crystals in the soot, so that the glaze is not reduced and cracking occurs. Occur. Furthermore, a large amount of low-viscosity glass phase is produced, so that deformation during firing increases. Thus, the novelty of the present invention is that it has been found that it is important that the amount of Na2O + K2O is within an appropriate range together with the lithium element in the substrate in order to stably produce porcelain without cracking. is there. Thirdly, the cordierite substrate is produced by mainly reacting talc, kaolin and alumina, which are blended as raw materials. Unlike synthetic cordierite, cordierite is produced while talc, kaolin and alumina react during firing, so that a stable ceramic sintered body can be obtained with a wide firing temperature range. Fourth, the glaze layer is characterized by containing a low expansion crystal which is considered to be a lithium aluminosilicate. When the glaze layer contains a low-expansion crystal that is considered to be a lithium aluminosilicate, a low-thermal-expansion glaze that matches the thermal expansion of cordierite, which is the base material, can be obtained. Fifth, a lithium element-containing material, which is a raw material containing lithium element, is blended as a raw material for the base layer and a raw material for the glaze layer, and Na 2 O + K 2 O is contained in the base layer in an amount of 1.1 wt% to The inclusion of 2.8% by weight stabilizes the low expansion crystal in the glaze layer due to the action of lithium element in the lithium element-containing material and Na 2 O and K 2 O during firing at 1200 ° C to 1300 ° C. It is characterized by being generated. Due to the action of the raw material of the base layer and the lithium element-containing material blended as the raw material of the glaze layer, a low expansion crystal is generated in the glaze layer. At this time, if the amount of Na 2 O + K 2 O exceeds 2.8% by weight Although the substrate becomes porcelain, Na 2 O and K 2 O are thought to inhibit the precipitation of low thermal expansion crystals in the soot, and the glaze is not reduced and cracks occur. On the contrary, if the amount of Na 2 O + K 2 O is less than 1.1% by weight, the substrate is not sufficiently porcelain, and only a sintered body having water absorption can be obtained. On the other hand, if the amount of Na 2 O + K 2 O is 1.1% to 2.8% by weight, a substrate having no water absorption is obtained, and a low-expansion crystal is sufficiently formed in the glaze layer, and there is no crack. It becomes a sintered body. Sixth, the thermal expansion coefficient of the base layer is 3.8 × 10 −6 or less. Raw materials such as talc, kaolin, and alumina react during firing to produce cordierite, thereby obtaining a substrate having a thermal expansion coefficient of 3.8 × 10 −6 or less. However, when K 2 O + Na 2 O exceeds 2.8 in terms of weight%, thermal expansion increases, and cracking occurs due to inhibition of precipitation of low thermal expansion crystals in the soot.

上記構成としたことにより、コーディエライト素地に低熱膨張の結晶が形成された釉薬層を施すことで、これまでにない耐熱衝撃性の高い磁器質の耐熱製品を安定して製造することが可能となる。本発明の耐熱製品は、熱膨張係数が3.8×10-6以下の製品であるため、280℃の温度差にも耐えうる高い耐熱衝撃をもつ。そのため、電子レンジはもちろん、オーブンレンジにも充分使用可能である。また、原料価格の高いペタライトではなく、比較的価格の安いタルクを主原料とすることで、原料費を抑えた低熱膨張磁器が得られるだけでなく、素地の原料組成を調整したことで、1200℃の低温から、1300℃までの幅広い焼成温度において、吸水性のない磁器質の耐熱製品が得られる。さらに従来、ペタライト質の耐熱衝撃性の食器は吸水性があるため、使用するたびに食品を含む水分を吸収・蓄積し、シミとなって残存する。そのため、シミが目立たぬよう、黒や茶色の釉薬を施した食器しか製品化できない。それに対し、本発明品は低熱膨張で、耐熱衝撃性に優れることはもちろん、現在の耐熱製品にはない、吸水性のない磁器製品であることを最も大きな特徴とする。そのため、これまでの耐熱製品では作りたくても作れなかった、外観は一般食器同様の白磁の食器や、白磁に下絵を施したものも耐熱製品として商品化が可能である。つまり、調理後の料理を盛りつけた状態でそのままフリーザー、オーブン、スチームオーブン、電子レンジのいずれにも使用することが可能である上、例えば、調理後に該焼結体に盛りつけた料理をそのままフリーザーで保管し、食事の前にスチームオーブンや電子レンジで加熱して、食卓にそのまま供することができる。 By adopting the above configuration, it is possible to stably produce unprecedented high-temperature-resistant porcelain heat-resistant products by applying a glaze layer with low thermal expansion crystals formed on the cordierite substrate. It becomes. Since the heat-resistant product of the present invention is a product having a thermal expansion coefficient of 3.8 × 10 −6 or less, it has a high thermal shock that can withstand a temperature difference of 280 ° C. Therefore, it can be used for microwave ovens as well as microwave ovens. Moreover, by using talc, which is relatively inexpensive, as the main raw material instead of petalite, which has a high raw material price, not only a low thermal expansion porcelain with reduced raw material costs can be obtained, but also by adjusting the raw material composition of the base 1200 In a wide range of firing temperatures from as low as 1 ° C. to 1300 ° C., a porcelain heat-resistant product having no water absorption can be obtained. Furthermore, since the petalite-type thermal shock resistant tableware has water absorbency, water including food is absorbed and accumulated every time it is used, and remains as a stain. For this reason, only tableware with black or brown glaze can be produced so that the stains are not noticeable. In contrast, the product of the present invention is characterized by low thermal expansion and excellent thermal shock resistance, as well as a porcelain product having no water absorption, which is not present in current heat-resistant products. For this reason, white porcelain dishes that are similar to general tableware, or white porcelain with a background, which could not be made with conventional heat resistant products, can be commercialized as heat resistant products. In other words, it can be used in any of a freezer, an oven, a steam oven, and a microwave oven in a state where the cooked food is served. It can be stored and heated in a steam oven or microwave oven before meals and served directly on the table.

本発明に係る実施例の素地焼結体におけるX線回折結果を示す図である。It is a figure which shows the X-ray-diffraction result in the base sintered compact of the Example which concerns on this invention.

以下、本発明の実施の形態を表1〜表3、及び図1に基づいて説明する Hereinafter, embodiments of the present invention will be described with reference to Tables 1 to 3 and FIG.

先ず、素地層に用いる原料、カオリン(Al23・2SiO2・2H2O)と、タルク(3MgO・4SiO2・H2O)と、アルミナ(Al23)と、長石と、ペタライト(Li2O・Al23・8SiO2)粉末をそれぞれ化学分析し、SiO2、Al2O3、MgO、CaO、K2O、Na2O、Li2O量の測定を行う。それぞれの測定結果から、所定の割合に原料を秤量し混合する。この時、焼結後の組成として、リチウム元素を含み、且つNa2O+K2Oが1.1重量%〜2.8重量%含まれるようになるよう配合を行う。この時、リチウム元素が素地に含まれる場合、焼成時において釉薬層に低膨張結晶が析出する。このリチウム量はLi2Oとして0.12重量%〜1.0重量%相当量であればよいが、より好ましくは0.3重量%〜0.8重量%である。しかし、このようにリチウム元素を含む場合でも、Na2O+K2Oが
1.1重量%〜2.8重量%含まれることが磁器質で、亀裂のない焼結体を得るためには必要条件となる。Na2O+K2Oが1.1重量%未満の場合、素地が充分溶融できず、吸水性のある多孔質な焼結体しか得られない。一方、Na2O+K2Oが2.8重量%を越えると、素地は吸水性の無いものが得られるが、釉薬層においては低膨張結晶の生成を阻害すると考えられ、焼成後に亀裂が発生してしまう。より好ましいNa2O+K2O量は1.5重量%〜2.5重量%である。
First, raw materials used for the base layer, kaolin (Al 2 O 3 .2SiO 2 .2H 2 O), talc (3MgO.4SiO 2 .H 2 O), alumina (Al 2 O 3 ), feldspar, and petalite The (Li 2 O.Al 2 O 3 .8SiO 2 ) powder is chemically analyzed, and the amounts of SiO 2 , Al 2 O 3 , MgO, CaO, K 2 O, Na 2 O, and Li 2 O are measured. From each measurement result, the raw materials are weighed and mixed in a predetermined ratio. At this time, the composition after the sintering is such that lithium element is contained and Na 2 O + K 2 O is contained in an amount of 1.1 wt% to 2.8 wt%. At this time, when lithium element is contained in the substrate, low expansion crystals are precipitated in the glaze layer during firing. The amount of lithium may be 0.12% by weight to 1.0% by weight as Li 2 O, but is more preferably 0.3% by weight to 0.8% by weight. However, even when lithium element is included in this way, Na 2 O + K 2 O
The inclusion of 1.1 wt% to 2.8 wt% is porcelain and is a necessary condition for obtaining a sintered body without cracks. When Na 2 O + K 2 O is less than 1.1% by weight, the substrate cannot be sufficiently melted, and only a porous sintered body having water absorption can be obtained. On the other hand, when Na 2 O + K 2 O exceeds 2.8% by weight, the substrate is obtained with no water absorption, but in the glaze layer, it is thought to inhibit the formation of low expansion crystals, and cracks occur after firing. End up. A more preferable amount of Na 2 O + K 2 O is 1.5% by weight to 2.5% by weight.

このような配合計算により、表1に示すA−1〜A−3の配合を行った。
つまり、A−1はカオリンを8.5重量%、タルクを39.6重量%、アルミナを17.1重量%、長石を25.7重量%、ペタライトを9.1重量%配合したものを、ボールミルに投入し、同重量の水を入れ、平均粒子径が5μm以下になるまで充分に微粉砕する。同様にA−2はカオリンを16.5重量%、タルクを39.6重量%、アルミナを17.1重量%、長石を17.7重量%、ペタライトを9.1重量%配合したものを、ボールミルに投入し、同重量の水を入れ、平均粒子径が5μm以下になるまで充分に微粉砕する。同様にA−3はカオリンを28.5重量%、タルクを39.6重量%、アルミナを17.1重量%、長石を5.7重量%、ペタライトを9.1重量%配合したものを、ボールミルに投入し、同重量の水を入れ、平均粒子径が5μm以下になるまで充分に微粉砕する。この時、原料が充分に粉砕されず、平均粒子径が5μmを越える場合、焼結が進まず、吸水性のある焼結体しか得られない。一方、平均粒子径が5μm以下になるまで微粉砕した場合、焼成時にタルクとカオリンとアルミナが充分に反応するため、コーディエライトの生成と緻密な磁器焼結体が得られる。
By such blending calculation, blending of A-1 to A-3 shown in Table 1 was performed.
In other words, A-1 contains 8.5% by weight of kaolin, 39.6% by weight of talc, 17.1% by weight of alumina, 25.7% by weight of feldspar, and 9.1% by weight of petalite. And finely pulverize until the average particle size is 5 μm or less. Similarly, A-2 contains 16.5% by weight of kaolin, 39.6% by weight of talc, 17.1% by weight of alumina, 17.7% by weight of feldspar, and 9.1% by weight of petalite. And finely pulverize until the average particle size is 5 μm or less. Similarly, A-3 contains 28.5 wt% kaolin, 39.6 wt% talc, 17.1 wt% alumina, 5.7 wt% feldspar, and 9.1 wt% petalite. And finely pulverize until the average particle size is 5 μm or less. At this time, if the raw material is not sufficiently pulverized and the average particle diameter exceeds 5 μm, sintering does not proceed and only a sintered body having water absorption can be obtained. On the other hand, when pulverized until the average particle size becomes 5 μm or less, talc, kaolin, and alumina sufficiently react during firing, so that cordierite is generated and a dense ceramic sintered body is obtained.

このA−1〜A−3の配合素地焼結体の組成はいずれも、重量%でSiO2:50〜55、Al2O3:25〜35、MgO:10〜15、CaO:0〜2、K2O+Na2O:1.1〜2.8、Li2O:0.12〜1.0の範囲となる。ボールミルによる粉砕後は、通常の陶磁器製品の製造方法と同様、フィルタープレスにより脱水処理を行い、真空土練機により円柱状の原料に加工を行う。この原料を用いて、鋳込み成形により寸法10mm×70mm×4mmの試験体を成形し、電気炉により900℃で素焼きを行う。素焼き後の試料を、60°の傾きの溝をつけた耐火煉瓦に立て掛け、焼成により湾曲した角度(湾曲度)を測定することで比較を行った。また吸水率は、焼結体を切り出し、アルキメデス法により測定を行った。さらに、熱膨張測定は、焼結体から直径5mmで長さ20mmの丸棒を切り出し、室温から950℃まで測定を行い、700℃での熱膨張係数を算出した。なお比較のため、天草陶土を用いた普通磁器についても同様の試料を作製し、上記測定を行った。それらの測定結果を表2に示す。
The composition of the green body sintered bodies of A-1 to A-3 are all SiO 2 : 50 to 55, Al 2 O 3 : 25 to 35, MgO: 10 to 15, CaO: 0 to 2 by weight%. , K 2 O + Na 2 O: 1.1 to 2.8, Li 2 O: 0.12 to 1.0. After pulverization by the ball mill, the dehydration process is performed by a filter press in the same manner as a normal method for producing ceramic products, and the columnar raw material is processed by a vacuum kneader. Using this raw material, a test body having a size of 10 mm × 70 mm × 4 mm is formed by casting, and unbaked at 900 ° C. in an electric furnace. A comparison was made by placing the unbaked sample on a refractory brick with a groove having an inclination of 60 ° and measuring the angle (curvature) curved by firing. The water absorption was measured by the Archimedes method after cutting out the sintered body. Further, for thermal expansion measurement, a round bar having a diameter of 5 mm and a length of 20 mm was cut out from the sintered body, measured from room temperature to 950 ° C., and a thermal expansion coefficient at 700 ° C. was calculated. For comparison, a similar sample was prepared for ordinary porcelain using Amakusa porcelain clay, and the above measurement was performed. The measurement results are shown in Table 2.

A−1〜A−3いずれも吸水率が0.1%以下で緻密な磁器焼結体である。これは、焼結を促進し緻密化に必要なNa2O+K2Oが充分な原料配合であることと、平均粒子径が5μm以下まで原料を微粉砕していることで、カオリンとタルクとアルミナが未反応のまま残存することなく、充分に反応しているためである。 また、焼成による変形しやすさを示す湾曲度の値も、比較用として用いた普通磁器よりも、その値が小さく、変形しにくいことがわかる。つまり、焼結を促進し緻密化に必要なNa2OとK2O量が適切であるため、必要以上に軟化しやすいガラス層が余分に生成されず、湾曲度が大きくなり過ぎることがない。さらに熱膨張係数もカオリンとタルクとアルミナが充分に反応しコーディエライトを生成することで、3.8×10-6以下で低い熱膨張係数の焼結体が得られる。ここで、A−2の焼結体を一部粉砕し、X線回折装置を用いて結晶相を同定した結果を図1に示す。図1より、素地はコーディエライト質であることが確認された。 All of A-1 to A-3 are dense porcelain sintered bodies having a water absorption rate of 0.1% or less. This is due to the fact that Na 2 O + K 2 O, which is necessary for densification by promoting sintering, is a sufficient raw material blend, and that the raw material is finely pulverized to an average particle size of 5 μm or less. Is sufficiently reacted without remaining unreacted. It can also be seen that the value of the degree of curvature, which indicates the ease of deformation by firing, is smaller than the ordinary porcelain used for comparison and is not easily deformed. In other words, the amount of Na 2 O and K 2 O necessary for densification is promoted, so that an excessive glass layer that tends to soften more than necessary is not generated, and the degree of curvature does not become too high. . Furthermore, a sintered body having a low thermal expansion coefficient of 3.8 × 10 −6 or less can be obtained by sufficiently reacting kaolin, talc and alumina to produce cordierite. Here, the result of having partially pulverized the sintered body of A-2 and identifying the crystal phase using an X-ray diffractometer is shown in FIG. From FIG. 1, it was confirmed that the substrate was cordierite.

次に、釉薬との適合性を確認するため、A−1〜A−3の素地原料と、比較例として同様の粉砕処理を行った、Na2O+K2O量が3.0重量%の素地原料を用いて、皿形状の試験体を機械ロクロにより成形した。乾燥後、900℃で素焼き焼成を行い、モル%でSiO2:75〜80、Al2O3:8〜11、MgO:0〜7、CaO:1〜5、K2O:0〜2、Na2O:0〜1、Li2O:0〜8からなる釉薬を施した後1250℃で焼成した。素地の配合が本発明の範囲であれば、焼成により釉中にリチウムアルミノシリケート系と考えられる低膨張の結晶体が安定的に生成する。焼成後の焼結体をS−1〜S−3とし、亀裂の有無を表3に示す。
Next, in order to confirm the compatibility with the glaze, the base material of A-1 to A-3 and the same pulverization treatment as a comparative example, the base having an Na 2 O + K 2 O amount of 3.0% by weight Using the raw material, a dish-shaped test specimen was molded by mechanical rocking. After drying, baking is performed at 900 ° C., and in mol%, SiO 2 : 75 to 80, Al 2 O 3 : 8 to 11, MgO: 0 to 7, CaO: 1 to 5, K 2 O: 0 to 2, After applying a glaze composed of Na 2 O: 0 to 1, Li 2 O: 0 to 8, it was fired at 1250 ° C. If the composition of the base is within the range of the present invention, a low-expansion crystal which is considered to be a lithium aluminosilicate system is stably formed in the soot by firing. The sintered body after firing is designated as S-1 to S-3, and the presence or absence of cracks is shown in Table 3.

素地層と釉薬層からなる皿形状の焼結体S−1〜S−3において亀裂のない焼結体が得られた。しかし、素地の組成においてNa2O+K2O量が2.8重量%を越え、3.0重量%のものはNa2O+K2Oが釉薬層における低膨張結晶の生成を阻害するため亀裂の発生が確認された。逆に、Na2O+K2O量を減少させ、その量が1.1重量%未満とすると、素地が充分に焼結せず、吸水性のある焼結体しか得られない。つまり、Na2O+K2O量が1.1重量%〜2.8重量%であれば、吸水性のない素地が得られると共に、釉薬層にも低膨張の結晶体が安定して生成され、亀裂のない焼結体が得られる。以上のように、本発明によれば、これまで吸水性のない磁器焼結体で、しかも亀裂の発生しない製品を歩留まり良く製造することが困難であった、低熱膨張のコーディエライト磁器製品を安定して製造することが可能となる。そのため、現在主流となっている原料価格は高いが、歩留まり良く、製造が容易なペタライト質の耐熱衝撃性の食器に代わり、原料価格の安いコーディエライト質の耐熱衝撃性の食器の製造が主流になるものと考えられる。また、ペタライト質の耐熱衝撃性の食器は吸水性があるため、使用するたびに食品を含む水分を吸収・蓄積し、シミとなって残存する。そのため、シミが目立たぬよう、黒や茶色の釉薬を施した食器しか製品化できない。それに対し、本発明品は低熱膨張で、耐熱衝撃性に優れ、しかも吸水性のない磁器製品であるので、白磁の食器や、白磁に下絵を施したものも製品化が可能である。 In the dish-shaped sintered bodies S-1 to S-3 composed of the base layer and the glaze layer, sintered bodies without cracks were obtained. However, in the composition of the substrate, the amount of Na 2 O + K 2 O exceeds 2.8% by weight, and in the case of 3.0% by weight, cracking occurs because Na 2 O + K 2 O inhibits the formation of low expansion crystals in the glaze layer Was confirmed. On the contrary, if the amount of Na 2 O + K 2 O is decreased and the amount is less than 1.1% by weight, the substrate is not sufficiently sintered, and only a sintered body having water absorption can be obtained. In other words, if the amount of Na 2 O + K 2 O is 1.1 wt% to 2.8 wt%, a substrate having no water absorption can be obtained, and a low expansion crystal can be stably formed in the glaze layer, and there is no cracking. A knot is obtained. As described above, according to the present invention, a cordierite porcelain product having a low thermal expansion, which has been difficult to produce a ceramic sintered body having no water absorption and having no cracks with a high yield, has been obtained. It becomes possible to manufacture stably. For this reason, the current mainstream price of raw materials is high, but instead of petalite-type thermal shock-resistant tableware that is easy to manufacture and has good yield, the production of cordierite-type thermal shock-resistant tableware with low raw material prices is the mainstream. It is thought to become. In addition, since the petalitic thermal shock resistant tableware absorbs water, it absorbs and accumulates water containing food every time it is used, and remains as a stain. For this reason, only tableware with black or brown glaze can be produced so that the stains are not noticeable. On the other hand, since the product of the present invention is a porcelain product with low thermal expansion, excellent thermal shock resistance and no water absorption, white porcelain tableware or white porcelain with a sketch can be commercialized.

そのため、従来ペタライト製品の場合、その上で食品を加熱した後、白色の一般食器に移し替えて食卓に供していたが、その移し替えの手間を省くことが可能となる。つまり、調理後の料理を盛りつけた状態でそのままフリーザー、オーブン、スチームオーブン、電子レンジのいずれにも使用することが可能である上、例えば、調理後に該焼結体に盛りつけた料理をそのままフリーザーで保管し、食事の前にスチームオーブンや電子レンジで加熱して、食卓にそのまま供することができる。さらに、食事後には、焼結体を自動洗浄機で洗浄し、熱風乾燥機で乾燥することも可能である。なお、上記焼結体は、皿状を呈する食器であるとして説明したが、皿状以外の形状を呈する食器でもよく、さらに、食器以外の加熱調理器などであってもよい。また、原料に関しても素地層の原料、及び、上記釉薬層の原料として、リチウム元素を有する原料としてペタライトを用いたものについて説明したが、ペタライト以外でもリチウム元素を有する、スポデュメンや炭酸リチウムなどでもよい。 Therefore, in the case of the conventional petalite product, after heating the food on it, it was transferred to white general tableware and used for the table, but it is possible to save the trouble of the transfer. In other words, it can be used in any of a freezer, an oven, a steam oven, and a microwave oven in a state where the cooked food is served. It can be stored and heated in a steam oven or microwave oven before meals and served directly on the table. Further, after the meal, the sintered body can be washed with an automatic washing machine and dried with a hot air drier. In addition, although the said sintered compact was demonstrated as being tableware which exhibits a dish shape, the tableware which exhibits shapes other than a dish shape may be sufficient, and also heating cookers other than tableware may be sufficient. In addition, regarding the raw material, the raw material of the base layer and the raw material of the glaze layer have been described using petalite as the raw material having lithium element, but other than petalite, spodumene or lithium carbonate having lithium element may be used. .

本発明で得られた低熱膨張磁器は、食器以外にもさまざまな用途に使用できる可能性を有するものである。例えば、現在、金属製のものが使用されているオーブンレンジやスチームオーブン、ガスオーブン用のトレイ、あるいはオーブントースター用のトレイなどとしても充分使用可能である。さらには、炊飯器用の内釜、あるいは炊いたご飯を保存するおひつなどにも利用できる可能性がある。 The low thermal expansion porcelain obtained by the present invention has a possibility of being used for various purposes other than tableware. For example, it can be sufficiently used as a microwave oven, a steam oven, a gas oven tray, an oven toaster tray, or the like that is currently made of metal. Furthermore, there is a possibility that it can be used for an inner pot for a rice cooker or a diaper for storing cooked rice.

C コーディエライト C Cordierite

Claims (2)

素地層と釉薬層を有する耐熱製品において、前記素地層はコーディエライト質の磁器から成り、該コーディエライト質の組成にLi2Oとして0.12重量%〜1.0重量%相当量のリチウム元素と、1.1重量%〜2.8重量%のNa2O+K2Oを含み、前記釉薬層は低膨張の結晶が形成されてなることを特徴とする耐熱製品。 In heat products having green layer and the glaze layer, the substrate layer consists of ceramic cordierite, lithium elements 0.12% to 1.0% by weight substantial amounts as Li 2 O in the composition of the cordierite, A heat-resistant product comprising 1.1 wt% to 2.8 wt% Na 2 O + K 2 O, wherein the glaze layer is formed with low expansion crystals. 上記素地層、及び、上記釉薬層の原料として、リチウム元素を有する原料であるリチウム元素含有材料を配合し、1200℃〜1300℃の焼成で磁器化させることを特徴とする請求項1に記載の耐熱製品の製造方法。 The raw material of the base layer and the glaze layer is blended with a lithium element-containing material, which is a raw material having lithium element, and is made porcelain by firing at 1200 ° C to 1300 ° C. Manufacturing method for heat-resistant products.
JP2011218200A 2011-07-12 2011-07-12 Heat resistant product and manufacturing method thereof Active JP5845500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011218200A JP5845500B2 (en) 2011-07-12 2011-07-12 Heat resistant product and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011218200A JP5845500B2 (en) 2011-07-12 2011-07-12 Heat resistant product and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013018694A true JP2013018694A (en) 2013-01-31
JP5845500B2 JP5845500B2 (en) 2016-01-20

Family

ID=47690514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011218200A Active JP5845500B2 (en) 2011-07-12 2011-07-12 Heat resistant product and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5845500B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015178429A (en) * 2014-03-19 2015-10-08 品野セラミックタイル工業株式会社 Method for producing ceramic product, and ceramic product
JP2015214484A (en) * 2014-03-25 2015-12-03 大塚オーミ陶業株式会社 Original material for decorative ceramic and decorative ceramic
CN108675761A (en) * 2018-07-04 2018-10-19 福建省德化县荣华陶瓷有限公司 A kind of preparation method that the enviroment protective ceramic of thermally equivalent stews
CN109180203A (en) * 2018-09-28 2019-01-11 湖南益嘉瓷业有限公司 Mud of resistance to chafing dish and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0226865A (en) * 1988-07-16 1990-01-29 Kitase Yougiyoushiyo:Kk Production of heat-resistant stoneware
JP2003238238A (en) * 2002-02-12 2003-08-27 Kamiya Gakuen Ceramics sintered compact, glaze, and manufacturing method for ceramics sintered compact
JP2007039276A (en) * 2005-08-03 2007-02-15 Saga Prefecture Reinforced porcelain and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0226865A (en) * 1988-07-16 1990-01-29 Kitase Yougiyoushiyo:Kk Production of heat-resistant stoneware
JP2003238238A (en) * 2002-02-12 2003-08-27 Kamiya Gakuen Ceramics sintered compact, glaze, and manufacturing method for ceramics sintered compact
JP2007039276A (en) * 2005-08-03 2007-02-15 Saga Prefecture Reinforced porcelain and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015178429A (en) * 2014-03-19 2015-10-08 品野セラミックタイル工業株式会社 Method for producing ceramic product, and ceramic product
JP2015214484A (en) * 2014-03-25 2015-12-03 大塚オーミ陶業株式会社 Original material for decorative ceramic and decorative ceramic
CN108675761A (en) * 2018-07-04 2018-10-19 福建省德化县荣华陶瓷有限公司 A kind of preparation method that the enviroment protective ceramic of thermally equivalent stews
CN109180203A (en) * 2018-09-28 2019-01-11 湖南益嘉瓷业有限公司 Mud of resistance to chafing dish and preparation method thereof

Also Published As

Publication number Publication date
JP5845500B2 (en) 2016-01-20

Similar Documents

Publication Publication Date Title
JP7276812B2 (en) Heat-resistant clay raw materials and heat-resistant ceramics
CN102548920B (en) Exothermic enamel glaze, and exothermic container coated with same
JP3031865B2 (en) Manufacturing method of thermal shock resistant ceramics
CN113336534B (en) Low-thermal expansion domestic ceramic without lithium mineral and preparation method thereof
JPH10139469A (en) Production of dense sintered glass ceramic compact and glass ceramic compact produced by the same method and its use
CN101475396A (en) Low expansion heat resisting porous ceramic and preparation thereof
CN104310976B (en) A kind of High-abrasion-resisthigh-temperature-resceramic high-temperature-resceramic ceramic
JP5845500B2 (en) Heat resistant product and manufacturing method thereof
CN107188530A (en) A kind of preparation method of low-cost and high-performance low expansion ceramic blank and its ceramic product
CN113321487B (en) Lithium-free heat-resistant domestic ceramic and preparation method thereof
US4300953A (en) Dense cordierite containing manganese
KR101196032B1 (en) Heat-resistant ceramic composition and method for manufacturing porcelain using the composition
JP6330994B2 (en) Low thermal expansion ceramic products
JP3031872B2 (en) Thermal shock resistant ceramics and manufacturing method thereof
JP5716910B2 (en) Ceramics and manufacturing method thereof
JP3034808B2 (en) Thermal shock resistant ceramics and manufacturing method thereof
KR20150061130A (en) Composition used for manufacturing thermal-resistant ceramic ware with high density and high thermal resistance and method for manufacturing thermal-resistant ceramic ware using the same
JP2893689B2 (en) Ceramic heating container for electromagnetic cooker and method of manufacturing the same
JP2007112670A (en) Firing vessel
JP5483026B2 (en) Microwave absorption / self-heating heat-resistant ceramics and method for manufacturing the same
CN113651606B (en) Health-care functional self-release glaze ceramic suitable for low-expansion ceramic cooker and preparation method thereof
CN107117947A (en) A kind of High-abrasion-resisthigh-temperature-resceramic high-temperature-resceramic ceramic and preparation method thereof
KR102514858B1 (en) Ceramic ware for Non-stick and heat-resistant frying pan and preparation method thereof
KR101508721B1 (en) Heat resistant ceramic composition and method for manufacturing the same
Ahmad et al. The Development of a Low CTE Whiteware Ceramics Body Using a Prefired Material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140708

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151027

R150 Certificate of patent or registration of utility model

Ref document number: 5845500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250