JP2013018391A - Power transmission control apparatus for vehicle - Google Patents

Power transmission control apparatus for vehicle Download PDF

Info

Publication number
JP2013018391A
JP2013018391A JP2011153975A JP2011153975A JP2013018391A JP 2013018391 A JP2013018391 A JP 2013018391A JP 2011153975 A JP2011153975 A JP 2011153975A JP 2011153975 A JP2011153975 A JP 2011153975A JP 2013018391 A JP2013018391 A JP 2013018391A
Authority
JP
Japan
Prior art keywords
output shaft
vehicle
internal combustion
combustion engine
electric motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011153975A
Other languages
Japanese (ja)
Inventor
Takeshi Yano
赳 矢野
Kazuki Kobayashi
和貴 小林
Yoshiyuki Aoyama
義幸 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AI Co Ltd
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin AI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin AI Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2011153975A priority Critical patent/JP2013018391A/en
Priority to PCT/JP2012/067734 priority patent/WO2013008858A1/en
Priority to CN201280034238.5A priority patent/CN103764468A/en
Publication of JP2013018391A publication Critical patent/JP2013018391A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/682Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings with interruption of drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4808Electric machine connected or connectable to gearbox output shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2306/00Other features of vehicle sub-units
    • B60Y2306/09Reducing noise
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Transmission Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress occurrence of a problem that an occupant being annoyed by rattling noise that occurs in the transmission in an AMT-equipped hybrid vehicle during EV travel mode.SOLUTION: This power transmission control apparatus selectively implements an EV travel mode in which only electric motor drive torque is utilized for travel with clutch torque maintained at zero, or an EG travel mode (or HV travel mode) in which internal combustion engine drive torque is utilized for travel with clutch torque adjusted to a value greater than zero, depending on travel state. In the EG travel mode, an "implemented transmission stage" is changed depending on the vehicle travel state (transmission map). When the "implemented transmission stage" is set for any of a plurality of travel transmission stages, the implemented transmission stage is changed to and fixed at neutral stage when a change from the EG travel mode to the EV travel mode is effected.

Description

本発明は、車両の動力伝達制御装置に関し、特に、動力源として内燃機関と電動機とを備え、且つクラッチを備えた車両に適用されるものに係わる。   The present invention relates to a power transmission control device for a vehicle, and more particularly to a device that is applied to a vehicle that includes an internal combustion engine and an electric motor as power sources and includes a clutch.

近年、複数の変速段を有し且つトルクコンバータを備えていない有段変速機と、内燃機関の出力軸と有段変速機の入力軸との間に介装されてクラッチトルク(クラッチが伝達し得るトルクの最大値)を調整可能なクラッチと、車両の走行状態に応じてアクチュエータを用いてクラッチトルク及び有段変速機の変速段を制御する制御手段と、を備えた動力伝達制御装置が開発されてきている(例えば、特許文献1を参照)。係る動力伝達制御装置は、オートメイティッド・マニュアル・トランスミッション(AMT)とも呼ばれる。   In recent years, a stepped transmission having a plurality of shift stages and not including a torque converter and a clutch torque (clutch transmitted) is interposed between an output shaft of an internal combustion engine and an input shaft of a stepped transmission. Developed a power transmission control device that includes a clutch that can adjust the maximum torque that can be obtained) and a control means that controls the clutch torque and the speed of the stepped transmission using an actuator according to the running state of the vehicle. (For example, see Patent Document 1). Such a power transmission control device is also called an automated manual transmission (AMT).

AMTを搭載した車両では、通常、「アクセル開度及び車速」と「実現すべき変速段」との関係を規定する事前に作製されたマップと、アクセル開度及び車速の現在値とに基づいて、実現される変速段が決定・変更される。   In vehicles equipped with AMT, it is usually based on a map prepared in advance that defines the relationship between "accelerator opening and vehicle speed" and "speed stage to be realized", and the current values of accelerator opening and vehicle speed. The gear stage to be realized is determined / changed.

また、近年、動力源としてエンジンと電動機(電動モータ、電動発電機)とを備えた所謂ハイブリッド車両が開発されてきている(例えば、特許文献2を参照)。ハイブリット車両では、電動機の出力軸が、内燃機関の出力軸、変速機の入力軸、及び変速機の出力軸の何れかに接続される構成が採用され得る。以下、内燃機関の出力軸の駆動トルクを「内燃機関駆動トルク」と呼び、電動機の出力軸の駆動トルクを「電動機駆動トルク」と呼ぶ。   In recent years, so-called hybrid vehicles including an engine and an electric motor (electric motor, motor generator) as power sources have been developed (see, for example, Patent Document 2). In the hybrid vehicle, a configuration in which the output shaft of the electric motor is connected to any of the output shaft of the internal combustion engine, the input shaft of the transmission, and the output shaft of the transmission can be employed. Hereinafter, the driving torque of the output shaft of the internal combustion engine is referred to as “internal combustion engine driving torque”, and the driving torque of the output shaft of the electric motor is referred to as “motor driving torque”.

特開2006−97740号公報JP 2006-97740 A 特開2000−224710号公報JP 2000-224710 A

以下、AMTを搭載し、且つ、電動機の出力軸が変速機の出力軸に接続される構成を備えたハイブリッド車両(以下、「AMT付ハイブリッド車両」と呼ぶ。)を想定する。AMT付ハイブリッド車両では、クラッチトルクがゼロに維持された状態で電動機駆動トルクのみを利用して走行する「電動機走行モード」と、クラッチトルクがゼロより大きい値に調整された状態で内燃機関駆動トルクのみ又は「内燃機関駆動トルク及び電動機駆動トルクの両方」を利用して走行する「内燃機関走行モード」と、が選択的に実現され得る。   Hereinafter, a hybrid vehicle (hereinafter referred to as “hybrid vehicle with AMT”) equipped with an AMT and having a configuration in which the output shaft of the electric motor is connected to the output shaft of the transmission is assumed. In the hybrid vehicle with AMT, the “motor running mode” in which only the motor driving torque is used while the clutch torque is maintained at zero, and the internal combustion engine driving torque with the clutch torque adjusted to a value greater than zero. Or “internal combustion engine traveling mode” in which traveling is performed using both “internal combustion engine driving torque and electric motor driving torque” can be selectively realized.

電動機走行モードでは、クラッチが分断された状態で、電動機駆動トルクが、変速機を介することなく電動機の出力軸から変速機の出力軸(従って、駆動輪)に伝達される。この結果、電動機走行モードで車両が走行中において、変速機の入力軸と出力軸との間で動力伝達系統が形成されている状態(具体的には、例えば、有段変速機内で走行用の変速段が実現されている状態)では、変速機の入力軸は、変速機の出力軸の回転に起因する駆動トルクを受けて「空回り」させられる(より正確には、他の部材に動力を伝達する目的なしで回転する)。   In the electric motor travel mode, electric motor drive torque is transmitted from the output shaft of the electric motor to the output shaft of the transmission (accordingly, drive wheels) without going through the transmission with the clutch disconnected. As a result, a state in which a power transmission system is formed between the input shaft and the output shaft of the transmission while the vehicle is traveling in the electric motor traveling mode (specifically, In a state where the gear stage is realized), the input shaft of the transmission is “idled” in response to the driving torque resulting from the rotation of the output shaft of the transmission (more precisely, power is supplied to other members). Rotate without the purpose of transmitting).

変速機の入力軸が「空回り」している状態では、変速機の出力軸の回転変動が生じたとき、変速機内のギヤ間の噛み合いにおけるバックラッシュの存在等に起因して、歯打ち音(噛み合うギヤの歯面同士が衝突する際に発生する音)が発生し得る。具体的には、例えば、有段変速機の場合、或る変速段が実現された状態(即ち、その変速段に対応する遊転ギヤがスリーブによって出力軸に対して相対回転不能に固定された状態)において、「他の変速段に対応する遊転ギヤ(従って、出力軸に対して相対回転不能に固定されていない状態にある遊転ギヤ)」と「その遊転ギヤと噛み合う固定ギヤ」との間のバックラッシュの存在に起因して、歯打ち音が発生し得る。この歯打ち音によって、乗員は不快感を受ける可能性がある。   In a state where the transmission input shaft is “idle”, when the rotational fluctuation of the output shaft of the transmission occurs, the rattling noise ( Sound generated when the tooth surfaces of meshing gears collide with each other. Specifically, for example, in the case of a stepped transmission, a state in which a certain gear stage is realized (that is, the idle gear corresponding to the gear stage is fixed by the sleeve so as not to be rotatable relative to the output shaft). State), "the idle gear corresponding to another gear (and thus the idle gear not fixed so as not to be rotatable relative to the output shaft)" and "the fixed gear meshing with the idle gear" Due to the presence of backlash between them, rattling noise can occur. This rattling noise may cause the passenger to feel uncomfortable.

本発明の目的は、ハイブリッド車両に適用される車両の動力伝達制御装置であって、電動機走行モードにおいて、変速機内で発生する歯打ち音によって乗員が不快感を受ける事態の発生を抑制できるものを提供することにある。   An object of the present invention is a vehicle power transmission control device applied to a hybrid vehicle, which can suppress the occurrence of a situation in which an occupant feels uncomfortable due to rattling noise generated in a transmission in an electric motor travel mode. It is to provide.

本発明によるハイブリッド車両に適用される車両の動力伝達制御装置に使用される変速機としては、上述したトルクコンバータを備えていない手動変速機のみならず、トルクコンバータを備えた自動変速機も使用され得る。   As a transmission used in a vehicle power transmission control device applied to a hybrid vehicle according to the present invention, not only the above-described manual transmission that does not include a torque converter but also an automatic transmission that includes a torque converter is used. obtain.

本発明による動力伝達制御装置の特徴は、変速機が「入力軸・出力軸間で動力伝達系統が形成された状態」にある場合において、選択される走行モードが内燃機関走行モードから電動機走行モードへと変更されたことに基づいて、変速機の状態をニュートラル段が実現された状態に変更・固定するように構成されたことにある。特に、複数の走行用変速段を備えた手動変速機が使用される場合、この装置の特徴は、「実現される変速段」が複数の走行用変速段の何れかに設定されている場合において、選択される走行モードが内燃機関走行モードから電動機走行モードへと変更されたことに基づいて、「実現される変速段」をニュートラル段に変更・固定するように構成されたことにある。   The power transmission control device according to the present invention is characterized in that when the transmission is in a “state in which a power transmission system is formed between the input shaft and the output shaft”, the selected travel mode is changed from the internal combustion engine travel mode to the motor travel mode. On the basis of this change, the transmission state is changed and fixed to the state where the neutral stage is realized. In particular, when a manual transmission having a plurality of travel speeds is used, the feature of this device is that the “speed stage to be realized” is set to one of the plurality of travel speeds. The selected travel mode is changed from the internal combustion engine travel mode to the motor travel mode, so that the “speed stage to be realized” is changed and fixed to the neutral stage.

これによれば、電動機走行モードが選択された場合、変速機の入力軸・出力軸間で動力伝達系統が形成されない。従って、電動機走行モードで車両が走行中において、上述した「変速機の入力軸の空回り」が発生しない(変速機の入力軸は回転しない)。この結果、変速機の出力軸の回転変動が生じても、上述した歯打ち音が発生せず、従って、係る歯打ち音によって乗員が不快感を受ける事態が発生しない。   According to this, when the electric motor traveling mode is selected, a power transmission system is not formed between the input shaft and the output shaft of the transmission. Therefore, when the vehicle is traveling in the electric motor travel mode, the above-described “idle rotation of the input shaft of the transmission” does not occur (the input shaft of the transmission does not rotate). As a result, even if the rotation of the output shaft of the transmission occurs, the above-described rattling noise does not occur, and therefore, the passenger does not experience discomfort due to such rattling noise.

上記本発明に係る動力伝達制御装置においては、電動機走行モードが選択され、且つ「実現される変速段」がニュートラル段に固定された状態において、車速が所定速度以下になったことに基づいて、前記実現される変速段を前記車両の走行状態に応じて変更するように構成されることが好適である。   In the power transmission control device according to the present invention, in a state where the motor travel mode is selected and the “speed stage to be realized” is fixed to the neutral stage, the vehicle speed is equal to or lower than a predetermined speed. It is preferable that the shift stage to be realized is configured to be changed according to the traveling state of the vehicle.

これによれば、電動機走行モードが選択された状態において、走行していた車両が停止することに基づいて、「実現される変速段」が「減速比が最も大きい変速段」(典型的には「1速」)に設定され得る。即ち、車両の停止時、或いは、停止直前において、減速比が最も大きい変速段が既に実現された状態が得られる。従って、例えば、車両の停止後、内燃機関走行モードで直ちに車両が発進するような場合、減速比が最も大きい変速段を用いて速やかに車両を発進させることができる。   According to this, based on the fact that the traveling vehicle stops in the state where the electric motor travel mode is selected, the “speed stage to be realized” is the “speed stage with the largest reduction ratio” (typically "1st speed"). That is, it is possible to obtain a state in which the gear stage having the largest reduction ratio is already realized when the vehicle is stopped or immediately before the vehicle is stopped. Therefore, for example, when the vehicle starts immediately in the internal combustion engine travel mode after the vehicle stops, the vehicle can be started quickly using the gear position having the largest reduction ratio.

本発明の実施形態に係る車両の動力伝達制御装置を搭載した車両の概略構成図である。1 is a schematic configuration diagram of a vehicle equipped with a vehicle power transmission control device according to an embodiment of the present invention. 図1に示した変速機の概略構成図である。It is a schematic block diagram of the transmission shown in FIG. 図1に示したクラッチについての「ストローク−トルク特性」を規定するマップを示したグラフである。3 is a graph showing a map defining “stroke-torque characteristics” for the clutch shown in FIG. 1. 車速及びアクセル開度と、シフト位置との関係を規定したマップを示したグラフである。It is the graph which showed the map which prescribed | regulated the relationship between a vehicle speed and an accelerator opening degree, and a shift position. 本発明の実施形態によって、EG走行からEV走行への変更に伴って、実現される変速段がニュートラルに設定される場合の一例を示したタイムチャートである。It is the time chart which showed an example in case the gear stage implement | achieved according to embodiment of this invention is set to neutral with the change from EG driving | running | working to EV driving | running | working.

以下、本発明による車両の動力伝達制御装置の実施形態について図面を参照しつつ説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, an embodiment of a vehicle power transmission control device according to the present invention will be described with reference to the drawings.

(構成)
図1は、本発明の実施形態に係る動力伝達制御装置(以下、「本装置」と称呼する。)を搭載した車両の概略構成を示している。この車両は、動力源として内燃機関とモータジェネレータとを備え、且つ、トルクコンバータを備えない有段変速機とクラッチとを使用した所謂オートメイティッド・マニュアル・トランスミッション(AMT)を備えたハイブリッド車両である。
(Constitution)
FIG. 1 shows a schematic configuration of a vehicle equipped with a power transmission control device (hereinafter referred to as “the present device”) according to an embodiment of the present invention. This vehicle is a hybrid vehicle that includes an internal combustion engine and a motor generator as power sources, and a so-called automated manual transmission (AMT) that uses a stepped transmission and a clutch that do not include a torque converter. is there.

この車両は、エンジンE/Gと、変速機T/Mと、クラッチC/Dと、モータジェネレータM/Gと、を備えている。E/Gは、周知の内燃機関の1つであり、例えば、ガソリンを燃料として使用するガソリンエンジン、軽油を燃料として使用するディーゼルエンジンである。E/Gの出力軸A1は、フライホイールF/W、及び、クラッチC/Dを介して、変速機T/Mの入力軸A2と接続されている。   This vehicle includes an engine E / G, a transmission T / M, a clutch C / D, and a motor generator M / G. E / G is one of well-known internal combustion engines, for example, a gasoline engine that uses gasoline as fuel and a diesel engine that uses light oil as fuel. The output shaft A1 of E / G is connected to the input shaft A2 of the transmission T / M via a flywheel F / W and a clutch C / D.

変速機T/Mは、前進用の複数(例えば、5つ)の変速段(シフト位置)、後進用の1つの変速段(シフト位置)、及びニュートラルを有するトルクコンバータを備えない周知の有段変速機の1つである。T/Mの出力軸A3は、ディファレンシャルD/Fを介して車両の駆動輪と接続されている。   The transmission T / M is a known stepped gear that does not include a torque converter having a plurality of (for example, five) forward gears (shift positions), one reverse gear (shift position), and a neutral gear. One of the transmissions. The T / M output shaft A3 is connected to the drive wheels of the vehicle via a differential D / F.

図2に示すように、T/Mは、
それぞれが入力軸A2に相対回転不能に設けられるとともに、それぞれが前進用の複数の変速段のそれぞれに対応する複数の固定ギヤG1i、G2i、G3i、G4i、G5iと、
それぞれが出力軸A3に相対回転可能に設けられるとともに、それぞれが前進用の複数の変速段のそれぞれに対応するとともに、対応する変速段の固定ギヤと常時歯合する複数の遊転ギヤG1o、G2o、G3o、G4o、G5oと、
それぞれが出力軸A3に相対回転不能且つ軸方向に相対移動可能に設けられるとともに、それぞれが複数の遊転ギヤのうち対応する遊転ギヤを出力軸A3に対して相対回転不能に固定するために対応する遊転ギヤと係合可能な複数のスリーブS1、S2、S3と、
を備える。
As shown in FIG. 2, T / M is
A plurality of fixed gears G1i, G2i, G3i, G4i, G5i, each of which is provided on the input shaft A2 so as not to rotate relative to the input shaft A2;
A plurality of idler gears G1o, G2o that are provided on the output shaft A3 so as to be relatively rotatable, respectively, and that respectively correspond to a plurality of forward gears and always mesh with fixed gears of the corresponding gears. , G3o, G4o, G5o,
Each of them is provided on the output shaft A3 so as not to be relatively rotatable and relatively movable in the axial direction, and each of the plurality of idler gears is fixed to the output shaft A3 so as not to be relatively rotatable. A plurality of sleeves S1, S2, S3 engageable with corresponding idle gears;
Is provided.

T/Mの変速段の変更・設定は、変速機アクチュエータACT2(図1を参照)によってスリーブS1、S2、S3を駆動し、スリーブS1、S2、S3の軸方向位置を制御することで実行される。変速段を変更することで、減速比(出力軸A3の回転速度Noに対する入力軸A2の回転速度Niの割合)が調整される。具体的には、「N」速の「減速比」は、「GNoの歯数/GNiの歯数)(N:1,2,3,4,5)で表される。「1速」から「5速」に向けて、減速比は次第に小さくなっていく。   The change / setting of the T / M gear stage is executed by driving the sleeves S1, S2, S3 by the transmission actuator ACT2 (see FIG. 1) and controlling the axial positions of the sleeves S1, S2, S3. The The speed reduction ratio (ratio of the rotational speed Ni of the input shaft A2 to the rotational speed No of the output shaft A3) is adjusted by changing the gear position. Specifically, the “reduction ratio” of the “N” speed is represented by “number of teeth of GNo / number of teeth of GNi” (N: 1, 2, 3, 4, 5). The reduction ratio gradually decreases toward “5th gear”.

クラッチC/Dは、変速機T/Mの入力軸A2に一体回転するように設けられた周知の構成の1つを有する摩擦クラッチディスクである。より具体的には、エンジンE/Gの出力軸A1に一体回転するように設けられたフライホイールF/Wに対して、クラッチC/D(より正確には、クラッチディスク)が互いに向き合うように同軸的に配置されている。フライホイールF/Wに対するクラッチC/D(より正確には、クラッチディスク)の軸方向の位置が調整可能となっている。クラッチC/Dの軸方向位置は、クラッチアクチュエータACT1(図1を参照)により調整される。なお、このクラッチC/Dは、運転者によって操作されるクラッチペダルを備えていない。   The clutch C / D is a friction clutch disk having one of well-known configurations provided to rotate integrally with the input shaft A2 of the transmission T / M. More specifically, the clutch C / D (more precisely, the clutch disc) faces each other with respect to the flywheel F / W provided to rotate integrally with the output shaft A1 of the engine E / G. It is arranged coaxially. The axial position of the clutch C / D (more precisely, the clutch disc) with respect to the flywheel F / W can be adjusted. The axial position of the clutch C / D is adjusted by a clutch actuator ACT1 (see FIG. 1). The clutch C / D does not include a clutch pedal operated by the driver.

以下、クラッチC/Dの原位置(クラッチディスクがフライホイールから最も離れた位置)からの接合方向(圧着方向)への軸方向の移動量をクラッチストロークCStと呼ぶ。クラッチC/Dが「原位置」にあるとき、クラッチストロークCStが「0」となる。図3に示すように、クラッチストロークCStを調整することにより、クラッチC/Dが伝達可能な最大トルク(クラッチトルクTc)が調整される。「Tc=0」の状態では、エンジンE/Gの出力軸A1と変速機T/Mの入力軸A2との間で動力が伝達されない。この状態を「分断状態」と呼ぶ。また、「Tc>0」の状態では、出力軸A1と入力軸A2との間で動力が伝達される。この状態を「接合状態」と呼ぶ。   Hereinafter, the movement amount in the axial direction from the original position of the clutch C / D (the position where the clutch disk is farthest from the flywheel) in the joining direction (crimping direction) is referred to as a clutch stroke CSt. When the clutch C / D is in the “original position”, the clutch stroke CSt is “0”. As shown in FIG. 3, the maximum torque (clutch torque Tc) that can be transmitted by the clutch C / D is adjusted by adjusting the clutch stroke CSt. In the state of “Tc = 0”, no power is transmitted between the output shaft A1 of the engine E / G and the input shaft A2 of the transmission T / M. This state is referred to as “divided state”. Further, in the state of “Tc> 0”, power is transmitted between the output shaft A1 and the input shaft A2. This state is called a “joined state”.

モータジェネレータM/Gは、周知の構成(例えば、交流同期モータ)の1つを有していて、例えば、ロータ(図示せず)がM/Gの出力軸と一体回転するようになっている。図2に示す例では、M/Gの出力軸は、T/Mの出力軸A3と一体且つ同軸的に接続されているが、所定の歯車列を介してT/Mの出力軸A3と接続されていてもよい。M/Gの出力軸の駆動トルクは、T/M(T/M内の動力伝達系統)を介することなくT/Mの出力軸A3(従って、駆動輪)に伝達される。   The motor generator M / G has one of known configurations (for example, an AC synchronous motor), and, for example, a rotor (not shown) rotates integrally with an output shaft of the M / G. . In the example shown in FIG. 2, the output shaft of M / G is integrally and coaxially connected to the output shaft A3 of T / M, but is connected to the output shaft A3 of T / M through a predetermined gear train. May be. The drive torque of the M / G output shaft is transmitted to the T / M output shaft A3 (accordingly, drive wheels) without passing through the T / M (power transmission system in the T / M).

本装置は、アクセルペダルAPの操作量(アクセル開度)を検出するアクセル開度センサS1と、シフトレバーSFの位置を検出するシフト位置センサS2と、ブレーキペダルBPの操作の有無を検出するブレーキセンサS3と、を備えている。   This device includes an accelerator opening sensor S1 that detects an operation amount (accelerator opening) of the accelerator pedal AP, a shift position sensor S2 that detects the position of the shift lever SF, and a brake that detects whether or not the brake pedal BP is operated. Sensor S3.

また、本装置は、電子制御ユニットECUを備えている。ECUは、上述のセンサS1〜S3、並びにその他のセンサ等からの情報等に基づいて、上述のアクチュエータACT1、ACT2を制御することで、C/DのクラッチストロークCSt(従って、クラッチトルクTc)、及び、T/Mの変速段を制御する。また、ECUは、E/Gの燃料噴射量(スロットル弁の開度)を制御することでE/Gの出力軸A1の駆動トルクを制御するとともに、インバータ(図示せず)を制御することでM/Gの出力軸の駆動トルクを制御する。   The apparatus also includes an electronic control unit ECU. The ECU controls the actuators ACT1 and ACT2 based on the information from the above-described sensors S1 to S3 and other sensors, etc., so that the C / D clutch stroke CSt (accordingly, the clutch torque Tc), And the T / M gear stage is controlled. Further, the ECU controls the drive torque of the output shaft A1 of the E / G by controlling the fuel injection amount (throttle valve opening) of the E / G and also controls the inverter (not shown). The drive torque of the output shaft of M / G is controlled.

以上、この車両は、AMTを搭載し、且つ、M/Gの出力軸がT/Mの出力軸A3に接続される構成を備えた「AMT付ハイブリッド車両」である。以下、説明の便宜上、E/Gの燃焼により出力軸A1に発生する駆動トルクを「EGトルクTe」と呼び、M/Gの出力軸の駆動トルクを「MGトルクTm」と呼ぶ。Te,Tmは、車両の加速方向について正の値を採り、減速方向について負の値を採るものとする。   As described above, this vehicle is an “AMT-equipped hybrid vehicle” equipped with an AMT and a configuration in which the output shaft of M / G is connected to the output shaft A3 of T / M. Hereinafter, for convenience of explanation, the driving torque generated on the output shaft A1 by the combustion of E / G is referred to as “EG torque Te”, and the driving torque of the output shaft of M / G is referred to as “MG torque Tm”. Te and Tm take positive values in the acceleration direction of the vehicle and take negative values in the deceleration direction.

本装置では、EV走行モードと、EG走行モードと、HV走行モードとが選択的に実現される。EV走行モード、EG走行モード、及びHV走行モードのうち何れが実現されるかは、例えば、車速、アクセル開度等の車両の走行状態に基づいて決定される。   In this device, the EV traveling mode, the EG traveling mode, and the HV traveling mode are selectively realized. Which of the EV traveling mode, the EG traveling mode, and the HV traveling mode is realized is determined based on the traveling state of the vehicle such as the vehicle speed and the accelerator opening, for example.

EV走行モードでは、E/Gが停止し、クラッチC/Dが分断状態(Tc=0)に維持された状態で、MGトルクTm(>0)のみを利用して車両が走行する。EG走行モードでは、MGトルクTmがゼロに維持され、且つ、クラッチC/Dが接合状態(Tc>0)に調整されてEGトルクTe(>0)のみを利用して車両が走行する。HV走行モードでは、クラッチC/Dが接合状態(Tc>0)に調整されてEGトルクTe(>0)及びMGトルクTm(>0)の両方を利用して車両が走行する。EV走行モード及びHV走行モードでは、Tmはアクセル開度等の車両の走行状態に基づいて調整される。EG走行モード及びHV走行モードでは、Teはアクセル開度等の車両の走行状態に基づいて調整される。   In the EV travel mode, the vehicle travels using only the MG torque Tm (> 0) while the E / G is stopped and the clutch C / D is maintained in the disconnected state (Tc = 0). In the EG travel mode, the MG torque Tm is maintained at zero, the clutch C / D is adjusted to the engaged state (Tc> 0), and the vehicle travels using only the EG torque Te (> 0). In the HV travel mode, the clutch C / D is adjusted to the engaged state (Tc> 0), and the vehicle travels using both the EG torque Te (> 0) and the MG torque Tm (> 0). In the EV travel mode and the HV travel mode, Tm is adjusted based on the travel state of the vehicle such as the accelerator opening. In the EG traveling mode and the HV traveling mode, Te is adjusted based on the traveling state of the vehicle such as the accelerator opening.

本装置では、シフトレバーSLが「自動モード」に対応する位置(例えば、Dレンジ)にある場合、ECU内のROMに記憶された変速マップ(図4を参照)と、車速及びアクセル開度等の車両の走行状態とに基づいてシフト位置(選択・実現すべき変速段)が選択される。例えば、現在の車速がαで現在のアクセル開度がβの場合、シフト位置として「3速」が選択される。一方、シフトレバーSLが「手動モード」に対応する位置(例えば、M(マニュアル)レンジ)にある場合、シフトレバーSLの位置に基づいてシフト位置が選択される。   In this device, when the shift lever SL is at a position corresponding to the “automatic mode” (for example, D range), a shift map (see FIG. 4) stored in the ROM in the ECU, the vehicle speed, the accelerator opening, etc. The shift position (the speed to be selected / realized) is selected based on the traveling state of the vehicle. For example, when the current vehicle speed is α and the current accelerator opening is β, “3rd speed” is selected as the shift position. On the other hand, when the shift lever SL is in a position (for example, M (manual) range) corresponding to the “manual mode”, the shift position is selected based on the position of the shift lever SL.

変速機T/Mでは、通常、選択されたシフト位置に対応する変速段が実現される。シフト位置が変化したとき、T/Mの変速作動(変速段が変更される際の作動)が行われる。変速作動の開始前にクラッチC/Dが接合状態(クラッチトルク>0)から分断状態(クラッチトルク=0)へと変更され、クラッチが分断状態に維持された状態で変速作動が行われ、変速作動の終了後にクラッチが分断状態から接合状態へと戻される。なお、変速作動の開始とは、変速段の変更に関連して移動する部材(具体的には、スリーブ)の移動の開始に対応し、変速作動の終了とは、その部材の移動の終了に対応する。   In the transmission T / M, a gear position corresponding to the selected shift position is usually realized. When the shift position changes, a T / M shift operation (operation when the gear position is changed) is performed. Before the shift operation is started, the clutch C / D is changed from the engaged state (clutch torque> 0) to the disconnected state (clutch torque = 0), and the shift operation is performed while the clutch is maintained in the disconnected state. After the operation is completed, the clutch is returned from the disconnected state to the engaged state. The start of the shift operation corresponds to the start of the movement of the member (specifically, the sleeve) that moves in relation to the change of the shift stage, and the end of the shift operation refers to the end of the movement of the member. Correspond.

(EV走行モードにおけるニュートラルへの切り替え)
本装置では、SLによって「自動モード」が選択されている場合において、EG走行モード又はHV走行モードが実現されているとき、シフト位置(従って、実現される変速段)が、上述した変速マップ(図4を参照)及び車両の走行状態(アクセル開度及び車速等)に基づいて選択・変更されていく。
(Switching to neutral in EV mode)
In the present apparatus, when the “automatic mode” is selected by the SL and the EG traveling mode or the HV traveling mode is realized, the shift position (accordingly, the shift speed to be realized) is changed to the above-described shift map ( 4) and the vehicle running state (accelerator opening, vehicle speed, etc.).

他方、EV走行モードでは、クラッチC/Dが分断状態に維持されつつ、MGトルクTmが、T/Mの内部を介することなくM/Gの出力軸からT/Mの出力軸A3(従って、駆動輪)に伝達される。従って、EV走行モードで車両が走行中において、T/M内で(ニュートラル以外の)走行用の変速段が実現されている状態(即ち、入力軸A2と出力軸A3との間で動力伝達系統が形成されている状態)では、入力軸A2は、出力軸A3の回転に起因する駆動トルクを受けて「空回り」させられる(より正確には、他の部材に動力を伝達する目的なしで回転する)。   On the other hand, in the EV travel mode, the clutch C / D is maintained in the disconnected state, and the MG torque Tm is changed from the output shaft of the M / G to the output shaft A3 of the T / M (accordingly, without passing through the inside of the T / M). Drive wheel). Therefore, when the vehicle is traveling in the EV traveling mode, a state in which a gear stage for traveling (other than neutral) is realized within the T / M (that is, the power transmission system between the input shaft A2 and the output shaft A3). ), The input shaft A2 receives the driving torque resulting from the rotation of the output shaft A3 and is “idled” (more precisely, it rotates without the purpose of transmitting power to other members). To do).

入力軸A2が「空回り」している状態では、入力軸A2と一体で回転する固定ギヤG1i、G2i、G3i、G4i、G5iも「空回り」する。以下、一例として、「4速」が実現された状態(即ち、遊転ギヤG4oがスリーブS2によって出力軸A3に対して相対回転不能に固定された状態)について説明する。この場合、出力軸A3の回転変動が生じたとき、「空回り」している固定ギヤG1i、G2i、G3i、G4i、G5iにも回転変動が生じる。このことに起因して、「4速」以外の変速段に対応する遊転ギヤG1o、G2o、G3o、G5o(即ち、出力軸A3に対して相対回転不能に固定されていない状態にある遊転ギヤ)と、それらの遊転ギヤとそれぞれ噛み合う固定ギヤG1i、G2i、G3i、G5iとの間のそれぞれのバックラッシュの存在に起因して、歯打ち音が発生し得る。この歯打ち音によって、乗員は不快感を受ける可能性がある。なお、この歯打ち音は、「4速」以外の変速段が実現された状態でも同様のメカニズムによって発生する。   In a state where the input shaft A2 is “idling”, the fixed gears G1i, G2i, G3i, G4i, and G5i that rotate integrally with the input shaft A2 also “idle”. Hereinafter, as an example, a state in which “fourth speed” is realized (that is, a state in which the idle gear G4o is fixed to the output shaft A3 so as not to rotate relative to the output shaft A3) by the sleeve S2 will be described. In this case, when the rotation fluctuation of the output shaft A3 occurs, the rotation fluctuation also occurs in the stationary gears G1i, G2i, G3i, G4i, and G5i that are “idling”. Due to this, the idle gears G1o, G2o, G3o, G5o (that is, idle gears that are not fixed so as not to be rotatable relative to the output shaft A3) corresponding to gears other than “fourth speed”. And the fixed gears G1i, G2i, G3i, and G5i that mesh with the idle gears, respectively, can generate rattling noise. This rattling noise may cause the passenger to feel uncomfortable. The rattling noise is generated by the same mechanism even when a gear stage other than “fourth speed” is realized.

そこで、本装置では、「自動モード」が選択され、且つ、(ニュートラル以外の)走行用の変速段が実現されている状態において、EVモード以外の走行モードからEV走行モードに移行したことに基づいて、実現される変速段がニュートラルに変更・固定される。   Therefore, in the present apparatus, based on the fact that the “automatic mode” is selected and the shift speed for driving (other than neutral) is realized, the mode is changed from the driving mode other than the EV mode to the EV driving mode. As a result, the shift stage to be realized is changed and fixed to neutral.

以下、このことについて、図5を参照しながら説明する。図5では、SLによって「自動モード」(Dレンジ)が選択・維持され、且つ、時刻t1以前にてEV走行モード以外の走行モード(具体的には、EG走行モード)が選択され、時刻t1以降にてEV走行モードが選択される場合の一例が示されている。図5の「変速段」の欄において、破線は、上述の「ニュートラルへの変更」がされない場合を示し、実線は、本装置によって「ニュートラルへの変更」がなされる場合を示す。   Hereinafter, this will be described with reference to FIG. In FIG. 5, “automatic mode” (D range) is selected and maintained by SL, and a travel mode other than the EV travel mode (specifically, EG travel mode) is selected before time t1, and time t1 Hereinafter, an example in which the EV traveling mode is selected is shown. In the “shift stage” column of FIG. 5, a broken line indicates a case where the above-described “change to neutral” is not performed, and a solid line indicates a case where the “change to neutral” is performed by the apparatus.

図5に示す例では、時刻t1におけるEG走行モードからEV走行モードへの切り替えに伴い、時刻t1以降、EGトルクTe及びクラッチトルクTcがゼロに向けて減少し、MGトルクTmがゼロから増大する。時刻t2にてTeがゼロに達し、時刻t2以降、エンジン回転速度NEはゼロに向けて減少し、時刻t4にてゼロになる。時刻t4以降、E/Gは停止状態(NE=0)に維持される。   In the example shown in FIG. 5, the EG torque Te and the clutch torque Tc decrease toward zero and the MG torque Tm increases from zero after the time t1 in accordance with the switching from the EG traveling mode to the EV traveling mode at the time t1. . Te reaches zero at time t2, and after time t2, the engine rotational speed NE decreases toward zero and becomes zero at time t4. After time t4, E / G is maintained in a stopped state (NE = 0).

時刻t2以降、クラッチトルクTcがゼロに維持される(即ち、クラッチC/Dが分断状態に維持される)。換言すれば、時刻t2以降、MGトルクのみを利用して車両が走行する。   After time t2, clutch torque Tc is maintained at zero (that is, clutch C / D is maintained in a disconnected state). In other words, after time t2, the vehicle travels using only MG torque.

アクセル開度が時刻t1以前から一定に維持されている。これに伴い、時刻t2以降、MGトルクTmが一定に維持される。この結果、車速も、時刻t1以前から一定に維持されている。   The accelerator opening is kept constant from before time t1. Accordingly, MG torque Tm is maintained constant after time t2. As a result, the vehicle speed is also kept constant from before time t1.

「実現される変速段」は、上述の変速マップ(図4を参照)に従って、クラッチトルクTcがゼロに達する時刻t2までは「4速」に維持されている。ここで、上述の「ニュートラルへの変更」がなされない場合(破線を参照)、時刻t2以降も、車速及びアクセル開度に応じて、上述の変速マップ(図4を参照)に従って、「4速」に維持される。この段階では、クラッチC/Dが分断状態となっているので、上述のように、入力軸A2、ひいては、固定ギヤG1i、G2i、G3i、G4i、G5iも「空回り」している。従って、出力軸A3の回転変動が生じたとき、上述と同じメカニズムによって、遊転ギヤG1o、G2o、G3o、G5oと固定ギヤG1i、G2i、G3i、G5iとの間のそれぞれのバックラッシュの存在に起因して、歯打ち音が発生し得る。   The “speed stage to be realized” is maintained at “fourth speed” until time t2 when the clutch torque Tc reaches zero, according to the above-described shift map (see FIG. 4). Here, when the above-mentioned “change to neutral” is not made (see the broken line), after the time t2, the “fourth speed” is set according to the shift map (see FIG. 4) according to the vehicle speed and the accelerator opening. Is maintained. At this stage, since the clutch C / D is in the disconnected state, as described above, the input shaft A2, and thus the fixed gears G1i, G2i, G3i, G4i, and G5i are also “idle”. Therefore, when the rotational fluctuation of the output shaft A3 occurs, the same mechanism as described above causes each backlash between the idle gears G1o, G2o, G3o, G5o and the fixed gears G1i, G2i, G3i, G5i. As a result, rattling noise can occur.

これに対し、本装置では、クラッチトルクTcがゼロに達する時刻t2にて、「実現される変速段」を現在の変速段(この例では、「4速」)からニュートラルへ変更する変速作動が開始される。この結果、時刻t2の直後以降、実現される変速段がニュートラルに固定されている。即ち、時刻t2の直後以降、入力軸A2・出力軸A3間で動力伝達系統が形成されない。従って、上述した「入力軸A2の空回り」が発生しない。換言すれば、出力軸A3が回転しても、入力軸A2、ひいては、固定ギヤG1i、G2i、G3i、G4i、G5iが回転しない。この結果、出力軸A3の回転変動が生じても、上述した歯打ち音が発生しない。   On the other hand, in this device, at time t2 when the clutch torque Tc reaches zero, a shift operation for changing the “realized gear stage” from the current gear stage (“4th speed” in this example) to neutral is performed. Be started. As a result, the gear stage to be realized is fixed to neutral immediately after time t2. That is, immediately after time t2, a power transmission system is not formed between the input shaft A2 and the output shaft A3. Therefore, the above-mentioned “idle rotation of the input shaft A2” does not occur. In other words, even if the output shaft A3 rotates, the input shaft A2, and thus the fixed gears G1i, G2i, G3i, G4i, and G5i do not rotate. As a result, even if the rotation fluctuation of the output shaft A3 occurs, the above-described rattling noise does not occur.

なお、この例では、EG走行モード(又はHV走行モード)からEV走行モードへの切り替えの後において、クラッチトルクTcがゼロに達した時点でニュートラルへの変速作動が開始されている。これに対し、ニュートラルへの変速作動によるショックが発生しない範囲内で、ニュートラルへの変速作動の応答遅れを考慮して、クラッチトルクTcがゼロに達する前の時点でニュートラルへの変速作動が開始されてもよいし、或いは、アクチュエータACT1、ACT2が同時に作動することによる電子制御ユニットECUの負荷の増大を考慮して、クラッチトルクTcがゼロに達する後の時点でニュートラルへの変速作動が開始されてもよい。   In this example, after switching from the EG travel mode (or HV travel mode) to the EV travel mode, the shifting operation to neutral is started when the clutch torque Tc reaches zero. On the other hand, the neutral shift operation is started before the clutch torque Tc reaches zero in consideration of the response delay of the neutral shift operation within a range where no shock is generated by the neutral shift operation. Alternatively, in consideration of an increase in the load on the electronic control unit ECU due to the simultaneous actuation of the actuators ACT1 and ACT2, the shift operation to the neutral is started after the clutch torque Tc reaches zero. Also good.

また、図5には示していないが、EV走行モードにおいて「実現される変速段」がニュートラルに固定されている場合において、車速が所定速度以下になったことに基づいて、ニュートラルへの固定を解除し、「実現される変速段」が上述した変速マップ(図4を参照)及び車両の走行状態(アクセル開度及び車速等)に基づいて選択・変更されていってもよい。   Although not shown in FIG. 5, when the “speed stage to be realized” is fixed to neutral in the EV traveling mode, the neutral speed is fixed based on the fact that the vehicle speed is equal to or lower than the predetermined speed. The “speed stage to be realized” may be selected and changed based on the above-described shift map (see FIG. 4) and the running state of the vehicle (accelerator opening, vehicle speed, etc.).

これによれば、その後車両が停止することに基づいて、「実現される変速段」が「減速比が最も大きい変速段」(本例では、「1速」)に設定される。即ち、車両の停止時、或いは、停止直前において、減速比が最も大きい変速段(即ち、発進用の変速段)が既に実現された状態が得られる。従って、例えば、車両の停止後、EG走行モード又はHV走行モードで直ちに車両が発進するような場合、「減速比が最も大きい変速段」を用いて速やかに車両を発進させることができる。   According to this, based on the subsequent stop of the vehicle, the “speed stage to be realized” is set to the “speed stage with the largest reduction ratio” (“1st speed” in this example). That is, it is possible to obtain a state in which the gear stage having the largest reduction ratio (that is, the starting gear stage) is already realized when the vehicle is stopped or immediately before the vehicle is stopped. Therefore, for example, when the vehicle immediately starts in the EG traveling mode or the HV traveling mode after the vehicle is stopped, the vehicle can be promptly started using the “speed stage with the largest reduction ratio”.

以上、本装置によれば、ニュートラル以外の走行用の変速段が実現されている状態において、EVモード以外の走行モードからEV走行モードに走行モードが移行したことに基づいて、「実現される変速段」がニュートラルに変更・固定される。これによれば、EV走行モードが選択された場合、変速機T/Mの入力軸A2・出力軸A3間で動力伝達系統が形成されない。従って、EV走行モードで車両が走行中において、上述した「変速機の入力軸A2の空回り」が発生しない(変速機の入力軸A2は回転しない)。この結果、変速機の出力軸A3の回転変動が生じても、上述した歯打ち音が発生せず、従って、係る歯打ち音によって乗員が不快感を受ける事態が発生しない。   As described above, according to the present device, in the state where the driving gear stage other than neutral is realized, the “achieved speed change” is based on the transition of the driving mode from the driving mode other than the EV mode to the EV driving mode. "Stage" is changed to neutral and fixed. According to this, when the EV traveling mode is selected, a power transmission system is not formed between the input shaft A2 and the output shaft A3 of the transmission T / M. Therefore, when the vehicle is traveling in the EV traveling mode, the above-mentioned “idle rotation of the transmission input shaft A2” does not occur (the transmission input shaft A2 does not rotate). As a result, even if the rotational fluctuation of the output shaft A3 of the transmission occurs, the above-mentioned rattling noise does not occur, and therefore, the passenger does not feel uncomfortable due to such rattling noise.

本発明は上記実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、上記実施形態では、変速機として、トルクコンバータを備えていない手動変速機T/Mが使用されているが、トルクコンバータを備えた自動変速機が使用されてもよい。この場合、クラッチC/Dが不要となる。   The present invention is not limited to the above embodiment, and various modifications can be employed within the scope of the present invention. For example, in the above embodiment, a manual transmission T / M that does not include a torque converter is used as a transmission, but an automatic transmission that includes a torque converter may be used. In this case, the clutch C / D becomes unnecessary.

また、上記実施形態では、EV走行モードと、EG走行モードと、HV走行モードとの3種類の走行モードが選択的に実現されるように構成されているが、EV走行モードと、EG走行モードとの2種類の走行モードが選択的に実現されるように(即ち、HV走行モードが実現できないように)構成されていてもよい。   Moreover, in the said embodiment, although it is comprised so that three types of driving modes, EV driving mode, EG driving mode, and HV driving mode, may be selectively implement | achieved, EV driving mode and EG driving mode are comprised. The two types of travel modes may be selectively realized (that is, the HV travel mode cannot be realized).

T/M…変速機、E/G…エンジン、C/D…クラッチ、M/G…モータジェネレータ、A1…エンジンの出力軸、A2…変速機の入力軸、A3…変速機の出力軸、ACT1…クラッチアクチュエータ、ACT2…変速機アクチュエータ、ECU…電子制御ユニット   T / M ... transmission, E / G ... engine, C / D ... clutch, M / G ... motor generator, A1 ... engine output shaft, A2 ... transmission input shaft, A3 ... transmission output shaft, ACT1 ... Clutch actuator, ACT2 ... Transmission actuator, ECU ... Electronic control unit

Claims (6)

動力源として内燃機関と電動機とを備えた車両に適用され、
前記内燃機関の出力軸から動力が入力される入力軸と、前記車両の駆動輪へ動力を出力する出力軸とを備え、前記入力軸と前記出力軸との間で動力伝達系統が形成された状態における前記出力軸の回転速度に対する前記入力軸の回転速度の割合である減速比を変更可能であり且つ前記入力軸と前記出力軸との間で動力伝達系統が形成されないニュートラル段を備えた変速機であって、前記入力軸と前記出力軸との間の動力伝達系統を介することなく前記電動機の出力軸から動力が変速機の出力軸に入力される変速機と、
前記車両の走行状態に基づいて、前記内燃機関の出力軸の駆動トルクである内燃機関駆動トルク、前記電動機の出力軸の駆動トルクである電動機駆動トルク、及び前記変速機を制御する制御手段と、
を備え、
前記制御手段は、
前記車両の走行状態に基づいて、前記電動機駆動トルクのみを利用して走行する電動機走行モードと、前記内燃機関駆動トルクのみを利用して又は前記内燃機関駆動トルク及び前記電動機駆動トルクの両方を利用して走行する内燃機関走行モードと、を選択的に実現するように構成された車両の動力伝達制御装置において、
前記制御手段は、
前記変速機が前記入力軸と前記出力軸との間で動力伝達系統が形成された状態にある場合において、選択される走行モードが前記内燃機関走行モードから前記電動機走行モードへと変更されたことに基づいて、前記変速機の状態を前記ニュートラル段が実現された状態に変更・固定するように構成された車両の動力伝達制御装置。
Applied to vehicles equipped with internal combustion engine and electric motor as power source,
An input shaft for inputting power from the output shaft of the internal combustion engine and an output shaft for outputting power to the drive wheels of the vehicle, and a power transmission system is formed between the input shaft and the output shaft Shifting with a neutral stage that can change a reduction ratio that is a ratio of the rotational speed of the input shaft to the rotational speed of the output shaft in a state and that does not form a power transmission system between the input shaft and the output shaft A transmission in which power is input from the output shaft of the electric motor to the output shaft of the transmission without going through a power transmission system between the input shaft and the output shaft;
Control means for controlling the internal combustion engine drive torque that is the drive torque of the output shaft of the internal combustion engine, the motor drive torque that is the drive torque of the output shaft of the electric motor, and the transmission based on the running state of the vehicle;
With
The control means includes
Based on the running state of the vehicle, an electric motor driving mode that uses only the electric motor driving torque, and uses only the internal combustion engine driving torque or uses both the internal combustion engine driving torque and the electric motor driving torque. In the vehicle power transmission control device configured to selectively realize the internal combustion engine travel mode that travels as
The control means includes
When the transmission is in a state where a power transmission system is formed between the input shaft and the output shaft, the selected travel mode is changed from the internal combustion engine travel mode to the electric motor travel mode. The power transmission control device for a vehicle configured to change / fix the state of the transmission to a state where the neutral stage is realized based on the above.
動力源として内燃機関と電動機とを備えた車両に適用され、
前記内燃機関の出力軸から動力が入力される入力軸と、前記車両の駆動輪へ動力を出力する出力軸とを備え、前記入力軸と前記出力軸との間で動力伝達系統が形成され且つ前記出力軸の回転速度に対する前記入力軸の回転速度の割合である減速比が異なる予め定められた複数の走行用変速段と、前記入力軸と前記出力軸との間で動力伝達系統が形成されないニュートラル段とを有する、トルクコンバータを備えていない有段変速機であって、前記入力軸と前記出力軸との間の動力伝達系統を介することなく前記電動機の出力軸から動力が有段変速機の出力軸に入力される有段変速機と、
前記内燃機関の出力軸と前記有段変速機の入力軸との間に介装されたクラッチであってクラッチが伝達し得るトルクの最大値であるクラッチトルクを調整可能なクラッチと、
前記クラッチを制御して前記クラッチトルクを調整する第1アクチュエータと、
前記有段変速機を制御して前記複数の走行用変速段及び前記ニュートラル段のうちから実現される変速段を変更する第2アクチュエータと、
前記車両の走行状態に基づいて、前記内燃機関の出力軸の駆動トルクである内燃機関駆動トルク、前記電動機の出力軸の駆動トルクである電動機駆動トルク、前記第1アクチュエータ、及び前記第2アクチュエータを制御する制御手段と、
を備え、
前記制御手段は、
前記車両の走行状態に基づいて、前記クラッチトルクがゼロに維持された状態で前記電動機駆動トルクのみを利用して走行する電動機走行モードと、前記クラッチトルクがゼロより大きい値に調整された状態で前記内燃機関駆動トルクのみを利用して又は前記内燃機関駆動トルク及び前記電動機駆動トルクの両方を利用して走行する内燃機関走行モードと、を選択的に実現するように構成された車両の動力伝達制御装置において、
前記制御手段は、
前記内燃機関走行モードが選択された状態において、前記実現される変速段を前記車両の走行状態に応じて変更するように構成され、
前記制御手段は、
前記実現される変速段が前記複数の走行用変速段の何れかに設定されている場合において、選択される走行モードが前記内燃機関走行モードから前記電動機走行モードへと変更されたことに基づいて、前記実現される変速段を前記ニュートラル段に変更・固定するように構成された車両の動力伝達制御装置。
Applied to vehicles equipped with internal combustion engine and electric motor as power source,
An input shaft for inputting power from the output shaft of the internal combustion engine; and an output shaft for outputting power to the drive wheels of the vehicle; a power transmission system is formed between the input shaft and the output shaft; A power transmission system is not formed between a plurality of predetermined driving speed stages having different reduction ratios, which are ratios of the rotational speed of the input shaft to the rotational speed of the output shaft, and the input shaft and the output shaft. A stepped transmission having a neutral stage and not including a torque converter, wherein power is output from the output shaft of the electric motor without passing through a power transmission system between the input shaft and the output shaft. A stepped transmission that is input to the output shaft of
A clutch interposed between an output shaft of the internal combustion engine and an input shaft of the stepped transmission and capable of adjusting a clutch torque that is a maximum value of torque that can be transmitted by the clutch;
A first actuator for controlling the clutch and adjusting the clutch torque;
A second actuator that controls the stepped transmission to change a shift speed realized from among the plurality of travel shift speeds and the neutral speed;
Based on the running state of the vehicle, an internal combustion engine drive torque that is a drive torque of the output shaft of the internal combustion engine, an electric motor drive torque that is a drive torque of the output shaft of the electric motor, the first actuator, and the second actuator Control means for controlling;
With
The control means includes
Based on the traveling state of the vehicle, in an electric motor traveling mode in which only the electric motor driving torque is used while the clutch torque is maintained at zero, and the clutch torque is adjusted to a value greater than zero. Power transmission of a vehicle configured to selectively realize an internal combustion engine travel mode that travels using only the internal combustion engine drive torque or using both the internal combustion engine drive torque and the electric motor drive torque In the control device,
The control means includes
In the state in which the internal combustion engine travel mode is selected, the shift stage to be realized is configured to be changed according to the travel state of the vehicle,
The control means includes
When the realized gear is set to any one of the plurality of driving gears, the selected driving mode is changed from the internal combustion engine driving mode to the electric motor driving mode. A vehicle power transmission control device configured to change and fix the realized gear to the neutral gear.
請求項2に記載の車両の動力伝達制御装置において、
前記有段変速機は、
それぞれが前記有段変速機の入力軸に相対回転不能に設けられるとともに、それぞれが前記複数の走行用変速段のそれぞれに対応する複数の固定ギヤと、
それぞれが前記有段変速機の出力軸に相対回転可能に設けられるとともに、それぞれが前記複数の走行用変速段のそれぞれに対応するとともに、対応する変速段の固定ギヤと常時歯合する複数の遊転ギヤと、
それぞれが前記有段変速機の出力軸に相対回転不能且つ軸方向に相対移動可能に設けられるとともに、それぞれが複数の遊転ギヤのうち対応する遊転ギヤを前記出力軸に対して相対回転不能に固定するために対応する遊転ギヤと係合可能な複数のスリーブと、
を備え、
前記第2アクチュエータが前記複数のスリーブの軸方向の位置を制御することによって、前記実現される変速段が変更されるように構成された車両の動力伝達制御装置。
The power transmission control device for a vehicle according to claim 2,
The stepped transmission is
A plurality of fixed gears, each of which is provided on the input shaft of the stepped transmission so as not to rotate relative to each other, and each of which corresponds to each of the plurality of travel gears;
A plurality of idle gears are provided on the output shaft of the stepped transmission so as to be rotatable relative to each other. With rolling gear,
Each is provided so that it cannot rotate relative to the output shaft of the stepped transmission and can move in the axial direction, and each of the corresponding idler gears among the plurality of idler gears cannot rotate relative to the output shaft. A plurality of sleeves engageable with corresponding idler gears for fixing to
With
A vehicle power transmission control device configured to change the realized gear position by controlling the axial positions of the plurality of sleeves with the second actuator.
請求項2又は請求項3に記載の車両の動力伝達制御装置において、
前記制御手段は、
前記電動機走行モードが選択され、且つ前記実現される変速段が前記ニュートラル段に固定された状態において、前記車両の速度が所定速度以下になったことに基づいて、前記実現される変速段を前記車両の走行状態に応じて変更するように構成された車両の動力伝達制御装置。
In the vehicle power transmission control device according to claim 2 or 3,
The control means includes
In the state where the electric motor traveling mode is selected and the realized shift speed is fixed to the neutral speed, the realized shift speed is determined based on the fact that the speed of the vehicle is equal to or lower than a predetermined speed. A power transmission control device for a vehicle configured to be changed according to a traveling state of the vehicle.
請求項4に記載の車両の動力伝達制御装置において、
前記制御手段は、
前記電動機走行モードが選択された状態において、走行していた前記車両が停止することに基づいて、前記実現される変速段を前記複数の走行用変速段のうち前記減速比が最も大きい変速段に設定するように構成された車両の動力伝達制御装置。
The vehicle power transmission control device according to claim 4,
The control means includes
In a state where the electric motor travel mode is selected, based on the fact that the traveling vehicle is stopped, the realized shift speed is changed to the shift speed with the largest reduction ratio among the plurality of travel speeds. A vehicle power transmission control device configured to be set.
請求項2乃至請求項5の何れか一項に記載の車両の動力伝達制御装置において、
前記制御手段は、
選択される走行モードが前記内燃機関走行モードから前記電動機走行モードへと変更された後において前記クラッチトルクがゼロに達したことに基づいて、前記実現される変速段を前記ニュートラル段に変更するための作動を開始するように構成された車両の動力伝達制御装置。
In the vehicle power transmission control device according to any one of claims 2 to 5,
The control means includes
In order to change the realized shift speed to the neutral speed based on the fact that the clutch torque reaches zero after the selected travel mode is changed from the internal combustion engine travel mode to the electric motor travel mode. A vehicle power transmission control device configured to start the operation of the vehicle.
JP2011153975A 2011-07-12 2011-07-12 Power transmission control apparatus for vehicle Pending JP2013018391A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011153975A JP2013018391A (en) 2011-07-12 2011-07-12 Power transmission control apparatus for vehicle
PCT/JP2012/067734 WO2013008858A1 (en) 2011-07-12 2012-07-11 Motive force transmission control apparatus for vehicle
CN201280034238.5A CN103764468A (en) 2011-07-12 2012-07-11 Motive force transmission control apparatus for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011153975A JP2013018391A (en) 2011-07-12 2011-07-12 Power transmission control apparatus for vehicle

Publications (1)

Publication Number Publication Date
JP2013018391A true JP2013018391A (en) 2013-01-31

Family

ID=47506138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011153975A Pending JP2013018391A (en) 2011-07-12 2011-07-12 Power transmission control apparatus for vehicle

Country Status (3)

Country Link
JP (1) JP2013018391A (en)
CN (1) CN103764468A (en)
WO (1) WO2013008858A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015074293A (en) * 2013-10-07 2015-04-20 日野自動車株式会社 Vehicle and control method
WO2018229894A1 (en) 2017-06-14 2018-12-20 ユーハ味覚糖株式会社 Confectionery having grape-like mouthfeel
JP2019199209A (en) * 2018-05-17 2019-11-21 本田技研工業株式会社 Vehicular power transmission device
JP2020024362A (en) * 2018-08-02 2020-02-13 キヤノン株式会社 toner

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013018391A (en) * 2011-07-12 2013-01-31 Aisin Ai Co Ltd Power transmission control apparatus for vehicle
FR3001936B1 (en) * 2013-02-11 2015-02-27 Peugeot Citroen Automobiles Sa METHOD AND APPARATUS FOR CONTROLLING THE REPORT ENGAGED IN A ROBOTICATED GEARBOX OF A HYBRID VEHICLE, BASED ON A TARGET REPORT
JP5943040B2 (en) * 2014-07-14 2016-06-29 トヨタ自動車株式会社 Vehicle control apparatus and vehicle control method
CN105270387B (en) * 2015-11-04 2017-08-04 东风商用车有限公司 A kind of shift control method of the motor vehicle driven by mixed power with AMT
JP6975277B2 (en) * 2020-02-28 2021-12-01 本田技研工業株式会社 Vehicle control device
JP7302547B2 (en) * 2020-08-07 2023-07-04 トヨタ自動車株式会社 Vehicle driving force control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002362197A (en) * 2001-03-30 2002-12-18 Luk Lamellen & Kupplungsbau Beteiligungs Kg Power train
JP2003165347A (en) * 2001-12-03 2003-06-10 Honda Motor Co Ltd Power transmission mechanism
JP2005054823A (en) * 2003-08-06 2005-03-03 Toyota Motor Corp Speed control method for hybrid vehicle
JP2010184613A (en) * 2009-02-12 2010-08-26 Toyota Motor Corp Hybrid vehicle
WO2013008858A1 (en) * 2011-07-12 2013-01-17 アイシン・エーアイ株式会社 Motive force transmission control apparatus for vehicle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4341610B2 (en) * 2005-11-09 2009-10-07 日産自動車株式会社 Engine restart control device for hybrid vehicle
JP4561663B2 (en) * 2006-03-23 2010-10-13 日産自動車株式会社 Hybrid vehicle mode switching control device
JP5080525B2 (en) * 2009-03-30 2012-11-21 ジヤトコ株式会社 Control device for hybrid vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002362197A (en) * 2001-03-30 2002-12-18 Luk Lamellen & Kupplungsbau Beteiligungs Kg Power train
JP2003165347A (en) * 2001-12-03 2003-06-10 Honda Motor Co Ltd Power transmission mechanism
JP2005054823A (en) * 2003-08-06 2005-03-03 Toyota Motor Corp Speed control method for hybrid vehicle
JP2010184613A (en) * 2009-02-12 2010-08-26 Toyota Motor Corp Hybrid vehicle
WO2013008858A1 (en) * 2011-07-12 2013-01-17 アイシン・エーアイ株式会社 Motive force transmission control apparatus for vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015074293A (en) * 2013-10-07 2015-04-20 日野自動車株式会社 Vehicle and control method
WO2018229894A1 (en) 2017-06-14 2018-12-20 ユーハ味覚糖株式会社 Confectionery having grape-like mouthfeel
JP2019199209A (en) * 2018-05-17 2019-11-21 本田技研工業株式会社 Vehicular power transmission device
JP2020024362A (en) * 2018-08-02 2020-02-13 キヤノン株式会社 toner
JP7233957B2 (en) 2018-08-02 2023-03-07 キヤノン株式会社 toner

Also Published As

Publication number Publication date
CN103764468A (en) 2014-04-30
WO2013008858A1 (en) 2013-01-17

Similar Documents

Publication Publication Date Title
JP5918953B2 (en) Vehicle power transmission control device
JP2013018391A (en) Power transmission control apparatus for vehicle
JP5649360B2 (en) Vehicle power transmission control device
WO2012008332A1 (en) Vehicle power transmission control device
JP5307604B2 (en) Vehicle power transmission control device
JP2010208523A (en) Vehicular power transmission control apparatus
JP5340790B2 (en) Vehicle power transmission control device
JP2013023000A (en) Manual transmission
JP5322751B2 (en) Vehicle power transmission control device
JP2013022999A (en) Power transmission control device for vehicle
JP5815988B2 (en) Manual transmission
JP5185994B2 (en) Vehicle power transmission control device
JP2010260373A (en) Power transmission controller for vehicle
JP6239451B2 (en) Vehicle power transmission control device
JP5379554B2 (en) Vehicle power transmission control device
JP5990023B2 (en) Vehicle power transmission control device
JP6109581B2 (en) Vehicle power transmission control device
JP5307614B2 (en) Vehicle power transmission control device
JP2014136495A (en) Vehicle power transmission control device
JP5322749B2 (en) Vehicle power transmission control device
JP5367445B2 (en) Vehicle power transmission control device
JP6017324B2 (en) Vehicle power transmission control device
WO2012081280A1 (en) Power transmission control device for vehicle
WO2012077382A1 (en) Vehicle power transmission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150929