JP2013016864A - Film for backside sealing of solar cell and solar cell using the same - Google Patents

Film for backside sealing of solar cell and solar cell using the same Download PDF

Info

Publication number
JP2013016864A
JP2013016864A JP2012223825A JP2012223825A JP2013016864A JP 2013016864 A JP2013016864 A JP 2013016864A JP 2012223825 A JP2012223825 A JP 2012223825A JP 2012223825 A JP2012223825 A JP 2012223825A JP 2013016864 A JP2013016864 A JP 2013016864A
Authority
JP
Japan
Prior art keywords
film
solar cell
pet
sealing
back surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012223825A
Other languages
Japanese (ja)
Inventor
Shinichiro Miyaji
新一郎 宮治
Koichi Tajima
宏一 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2012223825A priority Critical patent/JP2013016864A/en
Publication of JP2013016864A publication Critical patent/JP2013016864A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Abstract

PROBLEM TO BE SOLVED: To improve the environmental resistance, e.g., hydrolysis resistance or weather resistance, by using an inexpensive PET-BO having excellent mechanical characteristics and heat resistance, and to provide a film for backside sealing of a solar cell which ensures a high reflectance advantageous for conversion efficiency of sunlight, reduction of leakage current and lightweight, and a solar cell using the same.SOLUTION: The film for backside sealing of a solar cell has a gas barrier layer combining a polyethylene terephthalate film. The polyethylene terephthalate film is composed of a polymer having a number-average molecular weight in the range of 18500-40000, and has a thickness of 7% or more of the total film thickness. The solar cell uses the film for backside sealing of a solar cell in a solar cell system.

Description

本発明は、安価で耐環境性(耐加水分解、耐候性等)に優れ、かつ、裏面側の反射効率、軽量性が要求される分野に最適な太陽電池裏面封止フィルムおよびそれを用いた太陽電池に関するものである。   INDUSTRIAL APPLICABILITY The present invention is a solar cell back surface sealing film that is inexpensive and excellent in environmental resistance (hydrolysis resistance, weather resistance, etc.), and that is optimal for fields where reflection efficiency and light weight on the back side are required, and the same. It relates to solar cells.

近年、次世代のエネルギー源として太陽電池が注目を浴びており、建築分野を始め電気電子部品まで開発が進められている。該電地の構成部品の一部に用いられる太陽電池裏面封止フィルムも自然環境に対する耐久性(耐加水分解、耐候性)が強く要求される。さらに電池の太陽光の電換効率の向上も要求され、太陽電池の裏面封止フィルムの反射光まで電換される。また軽量性、強度および電池の加工性も要望されつつある。   In recent years, solar cells have attracted attention as the next-generation energy source, and development is progressing from the construction field to electrical and electronic parts. The solar cell back surface sealing film used for a part of the components of the electrical ground is also strongly required to have durability (hydrolysis resistance and weather resistance) against the natural environment. Furthermore, the improvement of the solar light conversion efficiency of a battery is also requested | required and it converts even the reflected light of the back surface sealing film of a solar cell. There is also a demand for lightness, strength, and battery processability.

太陽電池裏面封止フィルムとしては、ポリエチレン系の樹脂やポリエステル系樹脂シートを用いたり、フッ素系フィルムを用いたりすることが知られている(特許文献1,2)。   As a solar cell back surface sealing film, it is known to use a polyethylene-based resin or a polyester-based resin sheet, or to use a fluorine-based film (Patent Documents 1 and 2).

また、各メーカーで反射光を電換し電換効率を向上する目的で白色に着色した2軸延伸ポリエチレンテレフタレートフィルム(以下PET−BOという)や装飾目的に黒色に着色したPET−BOやフッ素系フィルムを裏面封止フィルムに用いた太陽電池が販売されている。   In addition, bi-axially stretched polyethylene terephthalate film (hereinafter referred to as PET-BO) colored in white for the purpose of converting reflected light by each manufacturer to improve the conversion efficiency, and PET-BO or fluorine-based in black for decoration purposes. Solar cells using the film as a backside sealing film are on the market.

また、耐熱ポリエステルフィルムは、電気絶縁用フィルムとして知られ、低オリゴマ化、耐熱性向上で知られている(特許文献3,4)。また、気泡を有するポリエステルフィルムが知られている(特許文献5)。しかし、これらのフィルムは太陽電池の裏面封止用フィルムとして利用されてはいない。   Moreover, a heat-resistant polyester film is known as an electrical insulation film, and is known for its low oligomerization and improved heat resistance (Patent Documents 3 and 4). Moreover, the polyester film which has a bubble is known (patent document 5). However, these films are not used as back surface sealing films for solar cells.

特開平11−261085号公報JP-A-11-261085 特開平11−186575号公報JP-A-11-186575 特開昭58−209530号公報JP 58-209530 A 特開昭58−36573号公報JP 58-36573 A 特公平7−37098号公報Japanese Patent Publication No. 7-37098

すなわち、これらの従来フィルム基材は下記の問題点を有していた。   That is, these conventional film base materials have the following problems.

従来、この分野に用いられていたPET−BOは、耐環境性でもっとも要求される耐加水分解性に乏しいために、この分野の使用が制限されていた。また、白色に着色されたPET−BOは、反射効率は向上するが、上記の耐加水分解性には乏しいものであった。   Conventionally, PET-BO used in this field has been limited in use in this field because it is poor in hydrolysis resistance, which is most required for environmental resistance. Also, white-colored PET-BO has improved reflection efficiency but has poor hydrolysis resistance.

また、フッ素系のフィルムは、耐加水分解性や耐候性に優れるが、ガスバリア性(特に水蒸気のバリア性)に乏しく、フィルムの腰が弱いという欠点があった。そのため、かかるフィルムは、バリア性の改良と裏面封止フィルム層の強度を持たすために、アルミニウム等の金属箔等を積層して使用されていた。   In addition, the fluorine-based film is excellent in hydrolysis resistance and weather resistance, but has a drawback that it has poor gas barrier properties (particularly water vapor barrier properties) and the film is weak. Therefore, such a film has been used by laminating a metal foil or the like such as aluminum in order to improve the barrier property and provide the strength of the back surface sealing film layer.

しかし、このことは軽量化が要求されているこの分野の目的に反するし、コスト的にも不利であった。   However, this is contrary to the purpose of this field where weight reduction is required, and it is disadvantageous in terms of cost.

また、ポリエチレンシートを用いたものは、比較的安価であるが高温(100〜120℃)にさらされた時の耐熱性に難があった。   Moreover, although the thing using a polyethylene sheet is comparatively cheap, there existed difficulty in the heat resistance when exposed to high temperature (100-120 degreeC).

本発明は、かかる従来技術の背景に鑑み、安価で優れた機械特性、耐熱性を有するPET−BOを用い耐加水分解性や耐候性等の耐環境性を改良することと、太陽光の電換効率に有利な高反射率、漏れ電流の低減と軽量性を付与する太陽電池裏面封止用フィルムおよびそれを用いた太陽電池を提供せんとするものである。   In view of the background of such prior art, the present invention improves the environmental resistance such as hydrolysis resistance and weather resistance using PET-BO having inexpensive and excellent mechanical properties and heat resistance, It is an object of the present invention to provide a solar cell back surface sealing film that imparts a high reflectivity advantageous in conversion efficiency, a reduction in leakage current, and lightweight, and a solar cell using the same.

本発明は、かかる課題を解決するために、次のような手段を採用するものである。すなわち、本発明の太陽電池裏面封止用フィルムは、ポリエチレンテレフタレートフィルムが複合されたガスバリア層を有するフィルムであって、該ポリエチレンテレフタレートフィルムが、数平均分子量18500〜40000の範囲内のポリマーで構成され、かつ、全フィルム厚みの7%以上の厚さを有することを特徴とするものである。また、本発明の太陽電池は、かかる太陽電池裏面封止用フィルムを太陽電池システムに使用したことを特徴とするものである。   The present invention employs the following means in order to solve such problems. That is, the solar cell back surface sealing film of the present invention is a film having a gas barrier layer combined with a polyethylene terephthalate film, and the polyethylene terephthalate film is composed of a polymer having a number average molecular weight of 18500 to 40,000. And having a thickness of 7% or more of the total film thickness. Moreover, the solar cell of the present invention is characterized by using such a solar cell back surface sealing film in a solar cell system.

本発明によれば、比較的安価なPETフィルムを用いるにも拘わらず、耐加水分解性、耐候性が改善され、かつ、高反射性および漏れ電流低減による太陽電池の電換効率をさらに向上させることができ、さらに軽量化も実現することができる。   According to the present invention, despite the use of a relatively inexpensive PET film, hydrolysis resistance and weather resistance are improved, and the conversion efficiency of the solar cell is further improved due to high reflectivity and reduced leakage current. In addition, the weight can be reduced.

この図は、本発明の太陽電池裏面封止フィルムを用いてなる太陽電池の断面図を示すものである。This figure shows sectional drawing of the solar cell which uses the solar cell backside sealing film of this invention. この図は、フィルムの片面にガスバリア層を有する太陽電池裏面封止フィルムの構造の一例を示す断面図である。This figure is sectional drawing which shows an example of the structure of the solar cell backside sealing film which has a gas barrier layer in the single side | surface of a film. この図は、2層のフィルムの間にガスバリア層を有する太陽電池裏面封止フィルムの構造を示す他の一例の断面図である。This figure is sectional drawing of another example which shows the structure of the solar cell backside sealing film which has a gas barrier layer between two layers of films.

本発明は、前記課題、つまり安価で優れた機械特性、耐熱性を有するPET−BOを用い耐加水分解性や耐候性等の耐環境性を改良することと、太陽光の電換効率に有利な高反射率、漏れ電流の低減と軽量性を付与する太陽電池裏面封止用フィルムについて、鋭意検討し、ガスバリア性フィルムを、特定なポリエチレンテレフタレートフィルムを複合させて構成してみたところ、意外にも、かかる課題を一挙に解決することを究明したものである。   The present invention is advantageous in improving the environmental resistance such as hydrolysis resistance and weather resistance using PET-BO having the above-mentioned problems, that is, inexpensive and excellent mechanical properties and heat resistance, and solar conversion efficiency. Surprisingly about the solar cell backside sealing film that gives high reflectivity, reduced leakage current and light weight, I tried to compose a gas barrier film with a specific polyethylene terephthalate film. It has also been clarified that such problems can be solved at once.

本発明でいう太陽電池とは、太陽光を電気に変換し該電気を蓄えるシステムをいい、好ましくは高光線透過材、太陽電池モジュール、充填樹脂層および裏面封止フィルムを基本構成とするものであり、例えば図1に示す構造で、ハウスの屋根に組み込まれるものや、電気、電子部品等に使用されるものであり、フレキシブルな性質を有するものもある。   The solar cell referred to in the present invention refers to a system that converts sunlight into electricity and stores the electricity, and preferably has a high light transmission material, a solar cell module, a filling resin layer, and a back surface sealing film as a basic configuration. There are, for example, the structure shown in FIG. 1, which is incorporated in the roof of a house, and is used for electricity, electronic parts, etc. and has a flexible property.

ここで高光線透過材とは、太陽光を効率よく入射させ、内部の太陽電池モジュールを保護するもので、好ましくはガラスや高光線透過プラスチックやフィルムなどが用いられる。また、太陽電池モジュールは、太陽光を電気に変換し蓄えるもので、太陽電池の心臓部分である。該モジュールは、シリコン、カドミウム−テルル、ゲルマニウム−ヒ素などの半導体が用いられる。現在、多用されているものに、単結晶、多結晶シリコン、アモルファスシリコン等がある。   Here, the high light-transmitting material is a material that efficiently allows sunlight to enter and protects the internal solar cell module, and glass, a high light-transmitting plastic, a film, or the like is preferably used. The solar cell module converts sunlight into electricity and stores it, and is the heart of the solar cell. The module is made of a semiconductor such as silicon, cadmium-tellurium, germanium-arsenic. Currently, there are single crystals, polycrystalline silicon, amorphous silicon, and the like that are widely used.

また、充填樹脂層とは、太陽電池内の太陽電池モジュールの固定および保護、電気絶縁の目的に用いられ、中でもエチレンビニルアセテート樹脂が性能と価格面で好ましく使用される。   The filled resin layer is used for the purpose of fixing and protecting the solar cell module in the solar cell and for electrical insulation, and among them, ethylene vinyl acetate resin is preferably used in terms of performance and price.

また、本発明でいう太陽電池裏面封止フィルムとは、太陽電池の裏側の太陽電池モジュールの保護が重要な役目であり、該フィルムは、太陽電池モジュールが最も嫌う、外部からの水蒸気の進入を遮断するために、図2、図3に示すように、水蒸気バリア層(水蒸気遮断層)が設けられているものが使用される。   In addition, the solar cell back surface sealing film referred to in the present invention is an important role in protecting the solar cell module on the back side of the solar cell, and the film is most disliked by the solar cell module. In order to cut off, a layer provided with a water vapor barrier layer (water vapor barrier layer) is used as shown in FIGS.

ここで本発明で言うガスバリア層とは、水蒸気のバリア性を有する、例えば金属、金属の酸化物を該フィルムの表層や2層のフィルムの間に層として設けられた層をいうものであって、JIS Z0208−73の規格に準じて測定した水蒸気の透過値が、好ましくは2.0g/m/24Hr/0.1mm以下を達成できる層をいう。かかる金属としては、アルミニウムが好ましく使用され、また、金属の酸化物としては、珪素の酸化物が好ましく使用されている。また、かかるガスバリア層は、該電地上部から漏れてくる太陽光を反射させる上に、該反射光も電換し、電換効率を向上させる機能も有するものである。 Here, the gas barrier layer referred to in the present invention means a layer having a water vapor barrier property, for example, a metal or a metal oxide provided as a layer between the surface layer or two layers of the film. , transmission values of water vapor measured according to the standard of JIS Z0208-73 is preferably refers to a layer that can achieve the following 2.0g / m 2 /24Hr/0.1mm. As such a metal, aluminum is preferably used, and as a metal oxide, a silicon oxide is preferably used. Further, such a gas barrier layer has a function of reflecting the sunlight leaking from the electric ground portion and also converting the reflected light to improve the conversion efficiency.

本発明の太陽電池裏面封止フィルムは、ポリエチレンテレフタレートの2軸延伸フィルム(PET−BO)に上記の水蒸気のバリア層を設けたものが好ましく使用される。   As the solar cell back surface sealing film of the present invention, a polyethylene terephthalate biaxially stretched film (PET-BO) provided with the above water vapor barrier layer is preferably used.

ここでポリエチレンテレフタレートとは、ジカルボン酸成分として、テレフタル酸およびその誘導体を、また、グリコール成分としてはエチレングリコールを用い、これらをエステル化反応によって高分子化してなる結晶性の熱可塑性樹脂である。かかるポリエチレンテレフタレートの融点は、250℃以上のものが耐熱性の上で好ましく、300℃以下のものが生産性の上で好ましい。この範囲内であれば、他の成分が共重合されていたり、ブレンドされていてもよい。また、機械特性と生産性の上から問題ない範囲内であれば、滑り剤、着色剤、帯電防止、低密度化剤等の添加剤が、たとえば50重量%以下の範囲で添加されていてもよい。   Here, polyethylene terephthalate is a crystalline thermoplastic resin obtained by using terephthalic acid and its derivative as a dicarboxylic acid component and ethylene glycol as a glycol component, and polymerizing them by an esterification reaction. The melting point of such polyethylene terephthalate is preferably 250 ° C. or higher in view of heat resistance, and preferably 300 ° C. or lower in view of productivity. Within this range, other components may be copolymerized or blended. Further, if there is no problem in terms of mechanical properties and productivity, additives such as a slip agent, a colorant, an antistatic agent, a low density agent and the like may be added in a range of, for example, 50% by weight or less. Good.

また、2軸延伸フィルムとは、上記のポリマーを溶融成形して得られた未延伸、無配向シートを、2軸に延伸して、熱処理してなるフィルムをいう。該フィルムの厚さは、太陽電池裏面封止フィルムとしての適正な腰の強さ、加工性、太陽電池の軽量性の上から、20〜200μmの範囲が好ましい。   The biaxially stretched film refers to a film obtained by subjecting an unstretched and non-oriented sheet obtained by melt molding the above polymer to biaxial stretching and heat treatment. The thickness of the film is preferably in the range of 20 to 200 μm from the viewpoint of appropriate waist strength, processability, and light weight of the solar cell as a solar cell back surface sealing film.

ここで本発明の太陽電池裏面封止用フィルムのPET−BO層は、該封止用フィルムの全層の厚みの7%以上、より好ましくは10%以上の厚さの層として存在させ、かつ、かかるPET−BO層は数平均分子量18500〜40000、好ましくは1900〜35000の範囲の高分子量ポリエチレンテレフタレートで構成するのが、耐加水分解性を持たせるために重要である。   Here, the PET-BO layer of the solar cell backside sealing film of the present invention is present as a layer having a thickness of 7% or more, more preferably 10% or more of the total thickness of the sealing film, and Such a PET-BO layer is composed of a high molecular weight polyethylene terephthalate having a number average molecular weight of 18500 to 40000, preferably in the range of 1900 to 35000, in order to impart hydrolysis resistance.

ここで数平均分子量とは、後述するゾル浸透クロマトグラフ法(GPC法)で測定したもので、該高分子量層の厚みが、7%未満では、通常のPET−BOの耐加水分解性を向上させることができず、太陽電池裏面封止用フィルムの劣化が早い。また、該分子量40000を越えては、実質上重合ができず、溶融成形性、2軸延伸性から考えて、35000以下の分子量であるものが好ましい。   Here, the number average molecular weight is measured by a sol permeation chromatography method (GPC method) described later. When the thickness of the high molecular weight layer is less than 7%, the hydrolysis resistance of ordinary PET-BO is improved. The film for sealing the back surface of the solar cell is rapidly deteriorated. In addition, when the molecular weight exceeds 40,000, it is substantially impossible to polymerize, and those having a molecular weight of 35,000 or less are preferable in view of melt moldability and biaxial stretchability.

また、かかるPET−BO層は、該封止用フィルムの表裏面または片面のいずれの形で積層されていてもよく、いずれの形であつても、該封止用フィルムの全厚さに対して、7%以上の厚みで積層されていればよいことを意味する。   Moreover, this PET-BO layer may be laminated | stacked in any form of the front-back surface or this single side | surface of this sealing film, and even if it is any form, with respect to the total thickness of this sealing film In other words, it is sufficient that the layers are laminated with a thickness of 7% or more.

本発明の太陽電池裏面封止用フィルムの加水分解劣化防止を効果的に達成するには両面に積層されている方が好ましい。また、本発明のPET−BO層にブレンドまたは表層塗布等の方法で紫外線吸収剤が含まれていることは好ましいことである。また、染料や着色剤、蛍光増白剤等がブレンド、塗布、染色等で各色に着色されていてもよい。中でも、表面反射率の向上および耐候性の面から、白色に着色されていることが特に好ましい。その場合の白色度は、色差計ハンター法で測定した値で75%以上が好ましい。該白色度が75%未満では反射率が低く、太陽電池の電換効率の向上には効果がなくなる傾向である。また、太陽電池内部の隠蔽性から光学濃度計で測定した厚さ100μm換算光学濃度(F)が0.8以上(特に好ましくは1.0以上)が好ましい。   In order to effectively prevent hydrolysis degradation of the solar cell back surface sealing film of the present invention, it is preferable that the film is laminated on both surfaces. Moreover, it is preferable that the PET-BO layer of the present invention contains an ultraviolet absorber by a method such as blending or surface coating. In addition, dyes, colorants, fluorescent brighteners, and the like may be colored in each color by blending, coating, dyeing, and the like. Especially, it is especially preferable that it is colored white from the surface of the improvement of a surface reflectance, and a weather resistance. The whiteness in that case is preferably 75% or more as measured by a color difference hunter method. When the whiteness is less than 75%, the reflectance is low, and the effect of improving the conversion efficiency of the solar cell tends to be lost. In addition, the 100 μm-thickness optical density (F) measured by an optical densitometer is preferably 0.8 or more (particularly preferably 1.0 or more) from the concealability inside the solar cell.

本発明のPET−BOとしては、フィルム内に気泡を設け、見かけ密度は1.37〜0.85g/cm、好ましくは1.35〜0.9のフィルムが太陽電池の電換効率向上のひとつである漏れ電流低減(基材の誘電率低下効果)と軽量化の点で特に好ましく使用される。ここで、見かけ密度とは、電磁式はかりで測定した値であり、かかる低見かけ密度層の該密度が1.37g/cmを越えると、誘電率を低下させる効果がなく、軽量効果もなくなる傾向となり、また、該密度が0.85g/m未満では、機械強度、電気絶縁性やガスバリア性が低下し、本発明の太陽電池裏面封止用フィルムとして使用が難しくなる傾向がある。 As PET-BO of the present invention, bubbles are provided in the film, and an apparent density of 1.37 to 0.85 g / cm 3 , preferably 1.35 to 0.9, improves the conversion efficiency of the solar cell. It is particularly preferably used in terms of reducing leakage current (an effect of lowering the dielectric constant of the base material) and reducing the weight. Here, the apparent density is a value measured with an electromagnetic scale. When the density of the low apparent density layer exceeds 1.37 g / cm 3 , there is no effect of reducing the dielectric constant, and the light weight effect is lost. If the density is less than 0.85 g / m 3 , the mechanical strength, electrical insulation and gas barrier properties are lowered, and the use as the solar cell back surface sealing film of the present invention tends to be difficult.

また、見かけ密度が比較的低いフィルムは、機械強度やフィルムの表層保護(キズ等の防止)から考えれば、上記見かけ密度を有するフィルムの少なくとも片面に気泡を有しないフィルム層を複合したものが特に好ましく使用される。この場合は、該フィルムの表層が、本発明で言う厚み方向の7%以上が数平均分子量が18500〜40000のPET−BOを用いたものが特に好ましい。もちろん、該高分子量PET層単体で上記の見かけ密度のものを用いてもよい。本発明の太陽電池裏面封止フィルムは、かかるフィルムが2層以上重ねて使用されていてもよい。   In addition, the film having a relatively low apparent density is particularly a composite of a film layer having no air bubbles on at least one side of the film having the above apparent density, considering the mechanical strength and protecting the surface layer of the film (preventing scratches, etc.). Preferably used. In this case, the surface layer of the film is particularly preferably one using PET-BO having a number average molecular weight of 18500 to 40,000 in a thickness direction of 7% or more in the present invention. Of course, the high molecular weight PET layer alone having the above apparent density may be used. In the solar cell back surface sealing film of the present invention, two or more such films may be stacked and used.

次に本発明の太陽電池裏面封止フィルムの製造方法について、その一例について説明する。   Next, an example of the method for producing the solar cell back surface sealing film of the present invention will be described.

本発明のポリエチレンテレフタレート(PET)の製造方法はテレフタル酸またはその誘導体とエチレングリコールとを周知の方法でエステル交換反応させることによって得ることができる。従来公知の反応触媒、着色防止剤を使用することができ、反応触媒としてはアルカリ金属化合物、アルカリ土類金属化合物、亜鉛化合物、鉛化合物、マンガン化合物、コバルト化合物、アルミニウム化合物、アンチモン化合物、コバルト化合物、チタン化合物等、着色防止剤としてはリン化合物等を挙げることができる。好ましくは、通常PETの製造が完結する以前の任意の段階に置いて、重合触媒としてアンチモン化合物またはゲルマニウム化合物、チタン化合物を添加することが好ましい。このような方法としては例えば、ゲルマニウム化合物を例に取ると、ゲルマニウム化合物粉体をそのまま添加する方法や特公昭54−22234号公報に記載されているようにPETの出発原料であるグリコール成分中にゲルマニウム化合物を溶解させ添加させる方法等を挙げることができる。   The method for producing polyethylene terephthalate (PET) of the present invention can be obtained by transesterification of terephthalic acid or a derivative thereof and ethylene glycol by a known method. Conventionally known reaction catalysts and anti-coloring agents can be used. Examples of reaction catalysts include alkali metal compounds, alkaline earth metal compounds, zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony compounds, cobalt compounds. Examples of coloring inhibitors such as titanium compounds include phosphorus compounds. Preferably, an antimony compound, a germanium compound, or a titanium compound is preferably added as a polymerization catalyst at an arbitrary stage before the production of PET is completed. As such a method, for example, when a germanium compound is taken as an example, a germanium compound powder is added as it is or in a glycol component which is a starting material of PET as described in Japanese Patent Publication No. 54-22234. Examples thereof include a method of dissolving and adding a germanium compound.

本発明の数平均分子量を18500〜40000(好ましくは19000〜35000)にコントロールする方法は、上記の方法で一端数平均分子量が18000レベルの通常のPETポリマーを重合した後、190℃〜PETの融点未満の温度で、減圧または窒素ガスのような不活性気体の流通下で加熱する、いわゆる固相重合する方法が好ましい。該方法はPETの未端カルボキシル基量を増加させることなく数平均分子量を高めることができる。   The method for controlling the number average molecular weight of the present invention to 18500 to 40,000 (preferably 19000 to 35000) is the following method. After polymerizing a normal PET polymer having a number average molecular weight of 18000 at one end, the melting point of 190 ° C. to PET A so-called solid-phase polymerization method in which heating is performed at a temperature lower than that under reduced pressure or a flow of an inert gas such as nitrogen gas is preferable. The method can increase the number average molecular weight without increasing the amount of unterminated carboxyl groups in PET.

次に、該ポリマーから2軸延伸フィルムにするには、該ポリマーを必要に応じて乾燥し、公知の溶融押出機に供給し、スリット状のダイからシートを押出し、金属ドラムに密着させ該ポリマーのガラス転移点以下の温度まで冷却して未延伸フィルムを得る。該フィルムを同時2軸延伸法や逐次2軸延伸法などの周知の方法で2軸延伸フィルムを得ることができる。この場合の条件としては、延伸温度は該ポリマーのガラス転移点(以下Tgと略称する場合がある)以上Tg+100℃の任意の条件を選ぶことができ、通常は80〜170℃の温度範囲が最終的に得られるフィルムの物性と生産性から好ましい。また延伸倍率はフィルムの長手方向、幅方向とも1.6〜5.0(好ましくは1.7〜4.5)の範囲が選べる。また、延伸速度は1000〜200000%/分であることが好ましい。更に延伸後にフィルムの熱処理を行うが、幅方向に延伸するテンターに後続する熱処理室で連続的に熱処理するか、別のオーブンで加熱したり、加熱ロールでも熱処理できる。熱処理条件は、温度が120〜245℃、時間が1〜60秒の範囲が通常用いられる。熱処理時に幅方向、長手方向に熱寸法安定性をよくする目的でリラックス処理が行われてもよい。   Next, in order to convert the polymer into a biaxially stretched film, the polymer is dried as necessary, supplied to a known melt extruder, the sheet is extruded from a slit-shaped die, and the polymer is adhered to a metal drum. The film is cooled to a temperature below the glass transition point of to obtain an unstretched film. A biaxially stretched film can be obtained by a known method such as a simultaneous biaxial stretching method or a sequential biaxial stretching method. As the conditions in this case, the stretching temperature can be selected from the glass transition point of the polymer (hereinafter sometimes abbreviated as Tg) to Tg + 100 ° C., and the final temperature range is usually from 80 to 170 ° C. It is preferable from the physical properties and productivity of the film obtained. The stretching ratio can be in the range of 1.6 to 5.0 (preferably 1.7 to 4.5) in both the longitudinal direction and the width direction of the film. The stretching speed is preferably 1000 to 200000% / min. Further, the film is heat-treated after stretching. However, the film can be heat-treated continuously in a heat-treating chamber following the tenter that extends in the width direction, heated in another oven, or heat-treated with a heating roll. As heat treatment conditions, a temperature range of 120 to 245 ° C. and a time range of 1 to 60 seconds is usually used. Relaxing treatment may be performed for the purpose of improving thermal dimensional stability in the width direction and the longitudinal direction during heat treatment.

本発明の太陽電池裏面封止用PET−BOは、フィルムの厚さ方向の7%以上の厚みが数平均分子量が18500〜40000の高分子量PETが存在する。通常分子量PET−BO層と該高分子量PET−BO層を複合する方法は、上記溶融押出時に各ポリマーを別々の押出機に供給し、溶融流路内に設けられた複合設備で両ポリマーを溶融状態で複合し、該複合化した未延伸シートを作製して上記の条件で延伸、熱処理して得る方法が一般的である。この方法は、通常PET−BOと高分子量PET−BOの2層積層体も、例えば高分子量PET/通常PET−BO/高分子量PET−BOのような3層積層体もできる。   The PET-BO for solar cell back surface sealing of the present invention has a high molecular weight PET having a thickness of 7% or more in the thickness direction of the film and a number average molecular weight of 18500 to 40,000. The method of combining the normal molecular weight PET-BO layer and the high molecular weight PET-BO layer is to supply each polymer to a separate extruder during the melt extrusion, and melt both the polymers in a composite facility provided in the melt flow path. A method is generally used in which the composite unstretched sheet is prepared and the composite unstretched sheet is prepared and stretched and heat-treated under the above conditions. This method can be a two-layer laminate of normal PET-BO and a high molecular weight PET-BO, or a three-layer laminate of, for example, high molecular weight PET / normal PET-BO / high molecular weight PET-BO.

本発明のPET−BOは、ポリマーの重合時または溶融押出機内で着色剤、染料等を添加してフィルムを種々着色させることができる。特に本発明のPET−BOは白色に着色する方が好ましい。白色に着色する場合は、酸化チタン、シリカ、アルミナ、炭酸カルシウム、硫酸バリウム等の白色添加物を添加する。さらに白色度を高めるためにはチオフェンジイル等の蛍光増白剤を用いると効果的である。   The PET-BO of the present invention can color the film in various ways by adding a colorant, a dye or the like during polymerization of the polymer or in a melt extruder. In particular, the PET-BO of the present invention is preferably colored white. When coloring white, a white additive such as titanium oxide, silica, alumina, calcium carbonate, barium sulfate is added. In order to further increase the whiteness, it is effective to use a fluorescent whitening agent such as thiophenediyl.

次に、PET−BO内に気泡を与えて、フィルムの見かけ密度が、1.37〜0.85g/cm、好ましくは1.35〜0.90g/cmのフィルムを得る方法は、PETに非相溶なポリマーや微粒子(有機粒子、無機粒子)を添加し、PET−BOを製造する(延伸)ことによって得ることができる。 Then, giving bubbles in the PET-BO, methods apparent density of the film, 1.37~0.85g / cm 3, preferably to obtain a film of 1.35~0.90g / cm 3 is, PET Incompatible polymers and fine particles (organic particles, inorganic particles) can be added to the PET to produce (stretch) PET-BO.

該非相溶なポリマーや微粒子とは、本発明の見かけ密度が得られるものであればよく、かかる非相溶なポリマーの具体例としては、ポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテンなどが用いられる。また、該ポリマーはホモポリマーでも共重合ポリマーでもよい。中でも、臨界表面張力の小さいポリオレフィンがよく、ポリプロピレンやポリメチルペンテンなどが密度の低減、耐熱性、誘電率低減の上で好ましい。   The incompatible polymer and fine particles are not particularly limited as long as the apparent density of the present invention can be obtained. Specific examples of such incompatible polymers include polyethylene, polypropylene, polybutene, polymethylpentene and the like. The polymer may be a homopolymer or a copolymer. Among them, polyolefin having a small critical surface tension is preferable, and polypropylene, polymethylpentene, and the like are preferable in terms of density reduction, heat resistance, and dielectric constant reduction.

これらは、PET中において粒状の形で存在し、この粒径をコントロールするために相溶化剤を添加してもよい。かかる相溶化剤としては、例えばポリアルキレングリコールまたはその共重合体などを使用することができ、具体的にはポリエチレングリコールやポリピロピレングリコールなどが好ましく使用される。また、かかる非相溶なポリマーに、界面活性剤等を加えて、微細化することができるが、電気特性や耐熱性、耐加水分解性等に影響を与えない範囲で添加することができる。   These exist in a granular form in PET, and a compatibilizing agent may be added to control the particle size. As such a compatibilizing agent, for example, polyalkylene glycol or a copolymer thereof can be used, and specifically, polyethylene glycol, polypropylene glycol or the like is preferably used. Further, a surfactant or the like can be added to such an incompatible polymer to make it finer, but it can be added within a range that does not affect electrical characteristics, heat resistance, hydrolysis resistance, and the like.

また、かかる微粒子の具体例としては、有機粒子や無機粒子が用いられ、有機粒子の例としては、シリコン粒子、ポリイミド粒子、架橋スチレン−ジビニルベンゼン共重合体粒子、架橋ポリエステル粒子、フッ素系粒子などが使用される。また、無機粒子としては、炭酸カルシウム、二酸化珪素、硫酸バリウムなどが使用される。   Further, specific examples of such fine particles include organic particles and inorganic particles. Examples of organic particles include silicon particles, polyimide particles, crosslinked styrene-divinylbenzene copolymer particles, crosslinked polyester particles, fluorine-based particles, and the like. Is used. As the inorganic particles, calcium carbonate, silicon dioxide, barium sulfate or the like is used.

次に、かかる非相溶なポリマーや微粒子をPETに添加する方法としては、特に制限されるものではないが、非相溶ポリマーを用いた場合、押出機にそれぞれ供給し、該押出機のせん断力を利用して分散させる方法がコスト面で有利である。また、微粒子を用いる場合は、重合段階で添加する方法が好ましい。具体的にはエチレングリコールに添加しておく方法などが好ましい。また、炭酸カルシウム粒子は添加時にリン化合物を添加し、黄化や発泡を防ぐのが好ましい。   Next, the method of adding such an incompatible polymer or fine particles to PET is not particularly limited, but when an incompatible polymer is used, it is supplied to an extruder, and the extruder is sheared. A method of dispersing using force is advantageous in terms of cost. Moreover, when using microparticles | fine-particles, the method of adding in a superposition | polymerization stage is preferable. Specifically, a method of adding to ethylene glycol is preferable. In addition, it is preferable to add a phosphorus compound to the calcium carbonate particles to prevent yellowing and foaming.

また、低密度のPET−BOと通常PET−BO(低密度でないフィルム)を積層する方法は、上記で説明した溶融状態で両ポリマーを積層(複合)し、該積層シートの未延伸シートを2軸に延伸熱処理する方法が各積層層の厚みをコントロールし易い点で好ましく使用される。   In addition, the method of laminating low-density PET-BO and normal PET-BO (non-low-density film) is to laminate (composite) both polymers in the molten state as described above, and to add 2 unstretched sheets of the laminated sheet. A method of stretching heat treatment on the shaft is preferably used because the thickness of each laminated layer can be easily controlled.

次に、本発明のフィルムにガスバリア性を持たせる方法について述べる。   Next, a method for imparting gas barrier properties to the film of the present invention will be described.

ガスバリア性を付与させるには、酸化珪素、酸化アルミニウム等の金属の酸化物やアルミニウム等の金属を真空蒸着やスパッタリング等の周知の方法でフィルムの表面に設ける。その厚みは通常100〜2000オングストロームの範囲である。この場合、フィルムに直接ガスバリア層を設ける場合と別のフィルムにガスバリア層を設け、このフィルムを本発明のフィルム表面に積層する方法もある。また、金属箔(例えば一般的なものはアルミニウム箔)をフィルム表面に積層する方法も用いることができる。この場合の金属箔の厚さは10〜50μmの範囲が、加工性とガスバリア性から好ましい。また、該ガスバリア層は必ずしもフィルムの表面にある必要がなく、例えば2層のフィルムの間に挟まれていてもよい。   In order to impart gas barrier properties, a metal oxide such as silicon oxide or aluminum oxide or a metal such as aluminum is provided on the surface of the film by a known method such as vacuum deposition or sputtering. Its thickness is usually in the range of 100 to 2000 angstroms. In this case, there is a method in which a gas barrier layer is provided on a film different from the case where a gas barrier layer is provided directly on the film, and this film is laminated on the film surface of the present invention. Moreover, the method of laminating | stacking metal foil (for example, a common thing is aluminum foil) on the film surface can also be used. In this case, the thickness of the metal foil is preferably in the range of 10 to 50 μm from the viewpoint of workability and gas barrier properties. Further, the gas barrier layer does not necessarily have to be on the surface of the film, and may be sandwiched between, for example, two layers of films.

本発明の太陽電池は、例えば表1に示す構成でシステム化される。すなわち、高光線透過性を有する基材(ガラス、フィルム等)を表層に置き、シリコン系等の太陽電池モジュールを、電気を取り出せるリード線を付与して、エチレンビニルアセテート樹脂等の充填樹脂で固定し、その後ろ側(裏面)に、本発明の裏面封止用フィルムを設けて、外装材で固定して得られる。   The solar cell of the present invention is systemized with the configuration shown in Table 1, for example. That is, a base material (glass, film, etc.) having high light transmittance is placed on the surface layer, and a silicon-based solar cell module is provided with a lead wire that can take out electricity and fixed with a filling resin such as ethylene vinyl acetate resin. And it is obtained by providing the back side sealing film of the present invention on the back side (back side) and fixing with an exterior material.

以下に実施例を示し、本発明を更に詳しく説明する。   The following examples illustrate the present invention in more detail.

<物性および評価方法、評価基準>
(1)数平均分子量(Mn)
ゲル浸透クロマトグラフ法(GPC)で、複合また単体のフィルムをサンプリングして測定した。なお、複合フィルムは顕微鏡観察しながら該当フィルムを研磨してサンプリングした。
(1)装置:ゲル浸透クロマトグラフGCP−244(WATERS社製)
(2)データ処理:(株)東レリサーチセンター製GPCデータ処理システム(3)カラム :ShodexHFIP 80M 2本(昭和電工(株)製)
(4)溶媒 :ヘキサフルオロプロパノール(0.005N−トリフルオロ酢酸ソーダ)
(5)流速 :0.5ml/min
(6)温度 :23℃
(7)試料
濃度 : 0.06%
溶解度 : 完全溶解
ろ過 : マイショリディスク W−13−5
(8)注入量 : 0.300ml
(9)検出器 : R−401型示差屈折率器(WATERS)
(10)分子量公正 : PET−DMT(標準品)。
<Physical properties and evaluation methods, evaluation criteria>
(1) Number average molecular weight (Mn)
A composite or single film was sampled and measured by gel permeation chromatography (GPC). The composite film was sampled by polishing the film while observing under a microscope.
(1) Apparatus: Gel permeation chromatograph GCP-244 (manufactured by WATERS)
(2) Data processing: GPC data processing system manufactured by Toray Research Center, Inc. (3) Column: Two Shodex HFIP 80M (manufactured by Showa Denko KK)
(4) Solvent: Hexafluoropropanol (0.005N-sodium trifluoroacetate)
(5) Flow rate: 0.5ml / min
(6) Temperature: 23 ° C
(7) Sample concentration: 0.06%
Solubility: Complete dissolution Filtration: Maisho Disc W-13-5
(8) Injection volume: 0.300ml
(9) Detector: R-401 type differential refractometer (WATERS)
(10) Molecular weight fair: PET-DMT (standard product).

(2)白色度(ハンター法)
色差計(日本電色製:ND−300A)で下記数値を測定、下記白色度の計算式から求めた。
・白色度(W)=100−[(100−L)+a+b1/2
L:明度、a:彩度、b:色相。
(2) Whiteness (Hunter method)
The following numerical values were measured with a color difference meter (Nippon Denshoku Co., Ltd .: ND-300A) and obtained from the following formula for calculating the whiteness.
Whiteness (W) = 100 − [(100−L) 2 + a 2 + b 2 ] 1/2
L: Lightness, a: Saturation, b: Hue.

(3)光学濃度(100μm厚み換算値:F)
光学濃度計(マクベス製:TR−524)で透過光束を測定し、下記式で算出した。
光源:可視光線
分光組成;色温度 3006°K(放射の第2定数C=14380μ度)のタングステン電球
測定環境: 温度23±3℃、湿度65±10%RH
計算式 : 光学濃度=log10(F /F)100/d
F :試料の透過光束
:試料なしの透過光束
d :フィルムの厚み。
(3) Optical density (100 μm thickness conversion value: F)
The transmitted light flux was measured with an optical densitometer (Macbeth: TR-524) and calculated according to the following formula.
Light source: visible light spectral composition; tungsten temperature measurement environment: color temperature 3006 ° K (second constant of radiation C 2 = 14380 μ °): temperature 23 ± 3 ° C., humidity 65 ± 10% RH
Calculation formula: Optical density = log 10 (F 0 / F) 100 / d
F: Sample transmitted light beam F 0 : Sample-free transmitted beam d: Film thickness.

(4)見かけ密度
電磁式はかり(研精工業(株)製SD−120L)で測定した。
(4) Apparent density Measured with an electromagnetic balance (SD-120L manufactured by Kensei Kogyo Co., Ltd.).

(5)耐加水分解性
85℃−93%RHの雰囲気にフィルムをエージングし、ASTM−D61Tによりフィルムの破断伸度を測定し、エージングなしの破断伸度を100%にしたときの比(保持率)で比較し下記の基準で判定した。
○ : 保持率が50%以上
△ : 保持率が30%〜50%
× : 保持率が30%未満。
(5) Hydrolysis resistance A ratio when the film was aged in an atmosphere of 85 ° C. to 93% RH, the breaking elongation of the film was measured by ASTM-D61T, and the breaking elongation without aging was 100% (retained) Rate) and judged according to the following criteria.
○: Retention rate is 50% or more Δ: Retention rate is 30% to 50%
X: Retention rate is less than 30%.

(6)耐候性
促進試験機アイスパーUWテスターを用い、下記サイクルを5サイクル行い、上記(5)の引張試験の方法で保持率を求め下記基準で評価した。
1サイクル:温度60℃、湿度50%RHの雰囲気で8時間紫外線照射した後、結露状態(温度35℃、湿度100%RH)に4時間エージング。
紫外線照射強度:100mW/cm
○ : 保持率が50%以上
△ : 保持率が30〜50%
× : 保持率が30%未満。
(6) Weather resistance Using an accelerated tester ice par UW tester, the following cycle was repeated 5 times, and the retention rate was determined by the tensile test method of (5) and evaluated according to the following criteria.
1 cycle: UV irradiation for 8 hours in an atmosphere at a temperature of 60 ° C. and a humidity of 50% RH, followed by aging for 4 hours in a dew condensation state (temperature 35 ° C., humidity 100% RH).
UV irradiation intensity: 100 mW / cm 2
○: Retention rate is 50% or more Δ: Retention rate is 30-50%
X: Retention rate is less than 30%.

(7)反射効率
厚さ0.5mmのガラス板に金蒸着(1000オングストローム)した金表面に可視光(550nm)の光を当て、その反射光を分光計に通し該反射光を電流に変化した数値を検出する。この値(T)を100とする。次に、黒の紙の上にフィルムを置き、Tと同様に反射光を電流に変えた値(T)を測定し下記の式で反射効率を計算した。
・反射効率=T/T×100。
(7) Reflection efficiency Visible light (550 nm) was applied to the gold surface (1000 angstroms) on which gold was vapor-deposited on a glass plate having a thickness of 0.5 mm, and the reflected light was passed through a spectrometer to change the reflected light into an electric current. Detect numerical values. This value (T 0 ) is set to 100. Next, a film was placed on black paper, and the value (T) in which reflected light was changed to current was measured in the same manner as T 0, and the reflection efficiency was calculated by the following equation.
Reflection efficiency = T / T 0 × 100.

(8)反射性
上記(7)の値から反射光の電換率の効果を想定して下記基準で判定した。
○ : 反射効率が50%以上
△ : 反射効率が30〜50%
× : 反射効率が30%未満。
(8) Reflectivity Judging from the value of (7) above, the effect of the conversion rate of reflected light was assumed and the determination was made according to the following criteria.
○: Reflection efficiency is 50% or more Δ: Reflection efficiency is 30-50%
X: Reflection efficiency is less than 30%.

(9)ガスバリア性
JIS Z0208−73に準じて水蒸気透過率を測定した。測定条件は温度40℃、90%RHとした。
(9) Gas barrier properties The water vapor transmission rate was measured according to JIS Z0208-73. The measurement conditions were a temperature of 40 ° C. and 90% RH.

(10)加工性
1m角の太陽電池裏面封止フィルムを作製し、太陽電池システムへの組み込み性を考慮した腰の強さを下記基準で判定した。
○:腰の強さが適正で、簡単に組み込み加工ができるレベル。
△:腰が弱いか、強すぎて組み込み加工に少し難点があるレベル。
×:腰が弱すぎまたは強すぎて明らかに加工性に難点があるレベル。
(10) Workability A 1 m square solar cell back surface sealing film was prepared, and the waist strength in consideration of the ease of incorporation into the solar cell system was determined according to the following criteria.
○: Level of waist strength is appropriate and can be easily assembled.
Δ: A level where the waist is weak or too strong, and there are some difficulties in assembly processing.
X: A level in which the waist is too weak or too strong and clearly has difficulty in workability.

(11)電気絶縁性
JIS C2151に準じて絶縁破壊強度(フィルム厚み1mm当たりの絶縁破壊電圧)を測定し、この分野で要求される数値20kV/mmを基準に電気絶縁性を下記判定した。
○ : 25kV/mm以上
△ : 20〜25kV/mm
× : 20kV/mm未満。
(11) Electrical insulation The dielectric breakdown strength (dielectric breakdown voltage per 1 mm of film thickness) was measured according to JIS C2151, and the electrical insulation was judged as follows based on the numerical value of 20 kV / mm required in this field.
○: 25 kV / mm or more Δ: 20-25 kV / mm
X: Less than 20 kV / mm.

(12)誘電率JIS C2151に準じて誘電率を測定した。   (12) Dielectric constant The dielectric constant was measured according to JIS C2151.

(13)複合フイルムの複合比〔PET−2/(PET−1+PET−2)〕
複合フィルムの断面を電子顕微鏡で観察し断面写真から求めた。
(13) Composite ratio of composite film [PET-2 / (PET-1 + PET-2)]
The cross section of the composite film was observed with an electron microscope and determined from a cross-sectional photograph.

〔実施例1〜3、比較例1〕
ジメチルテレフタレート100部(以下重量部)にエチレングリコール64部を混合し、さらに触媒として酢酸亜鉛を0.1部および三酸化アンチモン0.03部を添加し、エチレングリコールの環流温度でエステル交換を行った。
[Examples 1 to 3, Comparative Example 1]
Mixing 100 parts of dimethyl terephthalate (hereinafter, parts by weight) with 64 parts of ethylene glycol, adding 0.1 part of zinc acetate and 0.03 part of antimony trioxide as a catalyst, and performing transesterification at the reflux temperature of ethylene glycol It was.

これにトリメチルホスフェート0.08部を添加して徐々に昇温、減圧にして271℃の温度で5時間重合を行った。得られたポリエチレンテレフラレート(PET)の固有粘度は0.55であった。該ポリマーを長さ4mmのチップ状に切断した。該ポリマーをPET−1とする。   To this was added 0.08 part of trimethyl phosphate, and the temperature was gradually raised and reduced, and polymerization was carried out at a temperature of 271 ° C. for 5 hours. The intrinsic viscosity of the obtained polyethylene terephthalate (PET) was 0.55. The polymer was cut into chips having a length of 4 mm. This polymer is designated as PET-1.

このPET−1を温度220℃、真空度0.5mmHgの条件の回転式の真空装置(ロータリーバキュームドライヤー)に入れ、20時間攪拌しながら加熱した。得られたPETの固有粘度は0.73であった。このポリマーをPET−2とする。   This PET-1 was placed in a rotary vacuum device (rotary vacuum dryer) having a temperature of 220 ° C. and a degree of vacuum of 0.5 mmHg, and heated with stirring for 20 hours. The intrinsic viscosity of the obtained PET was 0.73. This polymer is designated as PET-2.

上記で得られたPET−1、2を各々温度180℃、真空度0.5mmHg、時間2時間の真空乾燥を行い、耐候剤(紫外線吸収剤:チヌビン(登録商標) P:チバ・スペシャルティ・ケミカルズ(株)製)を5重量%ブレンドし、別々の押出機に投入して溶融流路内で該2種のポリマーを複合できる装置(ピノール)を通し、PET−2/PET−1/PET−2の複合構成になる溶融シートをTダイから押出し、25℃に保った冷却ドラムに静電印加密着してキャストした。得られたシートの厚さは0.7mmであった。また押出温度は両ポリマーとも270〜290℃であった。また、PET−1の押出機の口径は90mm、PET−2の押出機の口径は40mmであった。両押出機の押出量をコントロールし、上記複合比〔PET−2/(PET−1+PET−2)〕が6%、7.2%、11%、20%の4種類を得た。   Each of the PET-1 and PET-2 obtained above was vacuum-dried at a temperature of 180 ° C., a vacuum degree of 0.5 mmHg and a time of 2 hours, and a weathering agent (ultraviolet absorber: Tinuvin (registered trademark) P: Ciba Specialty Chemicals) (Made by Co., Ltd.) is blended in 5% by weight, put into separate extruders, and passed through an apparatus (Pinol) capable of combining the two kinds of polymers in the melt flow path. PET-2 / PET-1 / PET- A molten sheet having a composite structure of 2 was extruded from a T die, and was cast by applying electrostatic force to a cooling drum maintained at 25 ° C. The thickness of the obtained sheet was 0.7 mm. The extrusion temperature for both polymers was 270-290 ° C. The diameter of the PET-1 extruder was 90 mm, and the diameter of the PET-2 extruder was 40 mm. The extrusion amount of both extruders was controlled, and the above composite ratio [PET-2 / (PET-1 + PET-2)] was obtained in 4 types of 6%, 7.2%, 11% and 20%.

このシートを逐次2軸延伸法で温度90℃でフィルムの長手方向に3.0倍延伸し、引き続き後続するテンターに該フィルムを供給し、温度95℃で幅方向に3.0倍延伸した。さらにその後220℃で熱処理し4種類の厚さ50μmのフィルムを得た。   This sheet was stretched 3.0 times in the longitudinal direction of the film at a temperature of 90 ° C. by successive biaxial stretching methods, and then the film was supplied to the subsequent tenter and stretched 3.0 times in the width direction at a temperature of 95 ° C. Furthermore, it heat-processed at 220 degreeC after that, and obtained the film of 4 types of thickness 50 micrometers.

上記の複合比が6%のものをフィルム−1、7.2%のものをフィルム−2、11%のものをフィルム−3、20%のものをフィルム−4とした。該フィルムの片面にアルミニウムを600オングストロームの厚さに真空蒸着した。該蒸着は太陽電池使用時の反射性を目的としたものである。   The composite ratio of 6% was film-1, the 7.2% film was film-2, the 11% film was film-3, and the 20% film was film-4. Aluminum was vacuum deposited on one side of the film to a thickness of 600 angstroms. The vapor deposition is intended for reflectivity when using solar cells.

一方、12μmのPET−BO(東レ製 ルミラー(登録商標) P11)に酸化珪素(SiO)をスパッタリングし800オングストロームの厚さの酸化珪素膜形成フィルムを得た。該スパッタリングフィルムを下記の接着剤を介してフィルム−1〜4のフィルムの片面(アルミニウム蒸着面の反対面)に積層した。
接着剤 ; ウレタン系の接着剤(アドコート(登録商標) 76P1:東洋モートン社製)
上記接着剤は、主剤10重量部に対し硬化剤1重量部の割合で混合し、酢酸エチルで30重量%に調整し、スパッタリングフィルムの非スパッタリング面にグラビアロール法で溶剤乾燥後の塗布厚みが5μm厚みになるよう塗布した。乾燥温度は100℃とした。また、積層の条件はロールラミネーターで60℃の温度で1kg/cmの圧力で行い、硬化条件は60℃で3日間とした。得られた4種類のフィルムを封止フィルム−1〜4とした。
On the other hand, silicon oxide (SiO 2 ) was sputtered onto 12 μm PET-BO (Toray Lumirror (registered trademark) P11) to obtain a silicon oxide film-forming film having a thickness of 800 Å. The sputtering film was laminated on one side of the films 1 to 4 (opposite side of the aluminum vapor deposition side) through the following adhesive.
Adhesive; Urethane adhesive (Adcoat (registered trademark) 76P1: manufactured by Toyo Morton Co., Ltd.)
The above adhesive is mixed at a ratio of 1 part by weight of the curing agent with respect to 10 parts by weight of the main agent, adjusted to 30% by weight with ethyl acetate, and the coating thickness after drying the solvent by the gravure roll method is applied to the non-sputtering surface of the sputtering film. It apply | coated so that it might become thickness of 5 micrometers. The drying temperature was 100 ° C. In addition, the lamination was performed using a roll laminator at a temperature of 60 ° C. and a pressure of 1 kg / cm, and the curing condition was 60 ° C. for 3 days. The obtained four types of films were designated as sealing films-1 to 4.

〔比較例2〕
実施例1の方法で得られたPET−1を実施例1の方法でPET−1単体からなる厚さ50フィルムμmのフィルム−5を得た。該フィルムを実施例1の方法で太陽電池裏面封止用フィルムを作製した(封止フィルム−5とする)。
[Comparative Example 2]
PET-5 obtained by the method of Example 1 was obtained by the method of Example 1 to obtain a film-5 having a thickness of 50 μm and consisting of PET-1 alone. A film for sealing the back surface of a solar cell was produced from the film by the method of Example 1 (referred to as sealing film-5).

実施例1〜3、比較例1、2の5種類の太陽電池裏面封止用フィルムの評価結果を表1
に示す。
Table 1 shows the evaluation results of the five types of solar cell back surface sealing films of Examples 1 to 3 and Comparative Examples 1 and 2.
Shown in

Figure 2013016864
Figure 2013016864

実施例1〜3の太陽電池裏面封止用フィルムは、耐加水分解性が、比較例のものに比べて格段に優れており、さらに、ガスバリア性、電気絶縁性、反射性等の諸特性も満足している。   The solar cell back surface sealing films of Examples 1 to 3 are much more resistant to hydrolysis than those of Comparative Examples, and also have various properties such as gas barrier properties, electrical insulation properties, and reflectivity. Is pleased.

一方、比較例1のものは、耐加水分解性が充分でない。また、耐加水分解性は、数平均分子量の高い高分子量フィルム層が増加して行くほど向上し、該積層比が7%以上(好ましくは10%)必要であることが判る。   On the other hand, the thing of the comparative example 1 is not enough hydrolysis resistance. In addition, it is understood that the hydrolysis resistance is improved as the number of high molecular weight film layers having a high number average molecular weight is increased, and the lamination ratio is required to be 7% or more (preferably 10%).

〔実施例4〜6、比較例3〕
実施例1の方法で得たPET−2の重合において、高重合化する温度を190〜230℃、時間10〜23時間変化させ、ポリマーの固有粘度が0.60、0.66、0.70、0.81の4種のPETポリマーを得た。この4種類のポリマーとPET−1のポリマーに平均粒径が0.5μmの酸化チタン微粒子を17重量%と蛍光増白剤(UVITEX OB:チオフェンジイル系 チバ・スペシャリティ・ケミカルズ(株)社製)を0.2重量%添加して実施例1の方法および複合構成で表層PET層の重合度が異なり、かつ白色に着色した4種類の厚さ50μmの複合2軸延伸PETフィルム(複合比は実施例3と同じ)を得た。ただし、実施例1の場合と異なり耐候剤は添加しなかった。
[Examples 4 to 6, Comparative Example 3]
In the polymerization of PET-2 obtained by the method of Example 1, the temperature for high polymerization was changed from 190 to 230 ° C. for 10 to 23 hours, and the intrinsic viscosity of the polymer was 0.60, 0.66, 0.70. , 0.81 of four types of PET polymers were obtained. 17% by weight of titanium oxide fine particles with an average particle diameter of 0.5μm and UV brightening agent (UVITEX OB: manufactured by Ciba Specialty Chemicals Co., Ltd.) 0.2 wt%, and the polymerization degree of the surface PET layer is different in the method and composite structure of Example 1, and four types of composite biaxially stretched PET films with a thickness of 50 μm colored in white (composite ratio is As in Example 3). However, unlike the case of Example 1, no weathering agent was added.

得られたフィルムに実施例の方法で酸化珪素スパッタリングフィルムを積層し、4種類の封止フィルム(ポリマーの固有粘度が0.60〜0.81のもを順に封止フィルム−6〜9とする)を得た。なお、実施例1のように酸化珪素スパッタリングフィルム積層面の反対面へのアルミニウム蒸着は施さなかった。   A silicon oxide sputtering film is laminated on the obtained film by the method of Example, and four types of sealing films (in which the intrinsic viscosity of the polymer is 0.60 to 0.81 are sequentially set as sealing films-6 to 9). ) In addition, aluminum vapor deposition was not performed to the opposite surface of the silicon oxide sputtering film lamination surface like Example 1.

〔比較例4〕
PET−1に酸化チタン、蛍光増白剤を添加した(実施例4で用いたPET−1)PETポリマー単体からなる2軸延伸PETフィルムを比較例2の方法で作製し、実施例4の方法で太陽電池裏面封止フィルムを作製した(封止フィルム−10とする)。
[Comparative Example 4]
A biaxially stretched PET film composed of a PET polymer alone with titanium oxide and fluorescent whitening agent added to PET-1 (PET-1 used in Example 4) was prepared by the method of Comparative Example 2, and the method of Example 4 Thus, a solar cell back surface sealing film was produced (referred to as sealing film-10).

実施例4〜6および比較例3、4の太陽電池裏面封止フィルムの評価結果を表2に示す。   Table 2 shows the evaluation results of the solar cell back surface sealing films of Examples 4 to 6 and Comparative Examples 3 and 4.

Figure 2013016864
Figure 2013016864

実施例4〜6の本発明の太陽電池裏面封止フィルムは、白色化させたもので、第1表の実施例1〜3と比較すると紫外線吸収剤を用いていないにもかかわらず耐候性が向上し、光の反射率が大きくなり反射性が更に改善されることが判る。一方、比較例3の封止フィルムは、比較例1の場合と同様で高分子量PET(PET−2)の厚み比率が本発明でいう7%未満であるため、白色化しても本発明の目的である耐加水分解性は改善されない。比較例4も同様で、高分子量PET(PET−2)の層を有しないので白色化しても耐加水分解性は改善されない。   The solar cell back surface sealing films of the present invention of Examples 4 to 6 are whitened, and have a weather resistance despite using no ultraviolet absorber as compared with Examples 1 to 3 in Table 1. It can be seen that the reflectivity of light is increased and the reflectivity is further improved. On the other hand, the sealing film of Comparative Example 3 is the same as in Comparative Example 1, and the thickness ratio of high molecular weight PET (PET-2) is less than 7% in the present invention. The hydrolysis resistance is not improved. The same is true for Comparative Example 4, and the hydrolysis resistance is not improved even when whitened because it does not have a layer of high molecular weight PET (PET-2).

〔実施例7〜9〕
実施例5の方法および複合構成で、酸化チタンの添加量を5重量%、8重量%、15重量%添加した3種類の複合フィルムを作製し、各フィルムの片面に実施例5と同様にして酸化珪素スパッタリングフィルムを積層した。酸化チタンの添加量が5重量%のものから順に封止フィルム−11〜13とする。
[Examples 7 to 9]
Three types of composite films were prepared by adding the titanium oxide addition amounts of 5% by weight, 8% by weight, and 15% by weight using the method and composite structure of Example 5, and the same manner as in Example 5 was made on one side of each film. A silicon oxide sputtering film was laminated. It is set as the sealing films 11-13 in order from the thing with the addition amount of a titanium oxide of 5 weight%.

実施例7〜9の本発明の太陽電池裏面封止フィルムは、酸化チタンの添加量を変更して白色度を変化させたものである。酸化チタンの添加量の少ない実施例7の封止フィルムは白色度が低く、反射率が低下する傾向がある。また、表1の実施例1〜3の封止フィルムの反射率と比較すると、白色度が75以上、光学濃度(100μm換算;F)が0.8以上が好ましいことも判る。   The solar cell backside sealing films of the present invention of Examples 7 to 9 are obtained by changing the whiteness by changing the addition amount of titanium oxide. The sealing film of Example 7 with a small amount of titanium oxide added has low whiteness and tends to have a low reflectance. Moreover, when compared with the reflectance of the sealing films of Examples 1 to 3 in Table 1, it is also found that the whiteness is preferably 75 or more and the optical density (100 μm conversion; F) is preferably 0.8 or more.

〔実施例10〕
ジメチレンテレフタレート100重量部、エチレングリコール64重量部と酢酸カルシウム0.09重量部を触媒として定法に従いエステル交換せしめ、トリメチルホスフェート含有量0.20重量%含有したエチレングリコール溶液を添加し、さらに平均粒径1.1μmの炭酸カルシウムを7重量%含有するエチレングリコールスラリーを添加して、三酸化アンチモン0.03重量%し、固有粘度が0.58のPETポリマーを得た。該ポリマーと実施例5で使用した高重合PETを実施例5の方法、複合構成で複合2軸延伸フィルムとした。延伸条件は、延伸温度は両軸とも95℃、延伸倍率は両軸とも3.2倍とした。該フィルムを実施例5と同様に酸化珪素スパッタリングフィルムを積層して封止フィルム−14を得た。
Example 10
Transesterification was conducted according to a conventional method using 100 parts by weight of dimethylene terephthalate, 64 parts by weight of ethylene glycol and 0.09 part by weight of calcium acetate as a catalyst, and an ethylene glycol solution containing 0.20% by weight of trimethyl phosphate was added. An ethylene glycol slurry containing 7% by weight of calcium carbonate having a diameter of 1.1 μm was added to obtain 0.03% by weight of antimony trioxide to obtain a PET polymer having an intrinsic viscosity of 0.58. The polymer and highly polymerized PET used in Example 5 were made into a composite biaxially stretched film by the method and composite structure of Example 5. The stretching conditions were such that the stretching temperature was 95 ° C. for both axes, and the stretching ratio was 3.2 times for both axes. The film was laminated with a silicon oxide sputtering film in the same manner as in Example 5 to obtain a sealing film-14.

〔実施例11〕
実施例10の方法で、炭酸カルシウムの添加量を12重量%とし、フィルムの延伸温度は両軸とも92℃で延伸倍率は縦に2.9倍、横に3.0倍とした。他の条件は実施例10と同様にした。このようにして得られた太陽電池裏面封止フィルムを封止フィルム−15とする。
Example 11
In the method of Example 10, the amount of calcium carbonate added was 12% by weight, the stretching temperature of the film was 92 ° C. on both axes, and the stretching ratio was 2.9 times vertically and 3.0 times horizontally. Other conditions were the same as in Example 10. The solar cell back surface sealing film thus obtained is referred to as sealing film-15.

〔実施例12〕
実施例10の方法で、炭酸カルシウムの添加量を30重量%とし、フィルムの延伸温度は両軸とも85℃で延伸倍率は縦に3.2倍、横に3.1倍とした。他の条件は実施例10と同様にした。このようにして得られた太陽電池裏面封止フィルムを封止フィルム−16とする。
Example 12
In the method of Example 10, the amount of calcium carbonate added was 30% by weight, the stretching temperature of the film was 85 ° C. on both axes, and the stretching ratio was 3.2 times vertically and 3.1 times horizontally. Other conditions were the same as in Example 10. The solar cell back surface sealing film thus obtained is referred to as sealing film-16.

〔実施例13〕
実施例10の方法で、炭酸カルシウムの添加量を12重量%とし、フィルムの延伸温度は両軸とも95℃で延伸倍率は縦に4.2倍、横に4.3倍とした。他の条件は実施例10と同様にした。このようにして得られた太陽電池裏面封止フィルムを封止フィルム−17とする。
Example 13
In the method of Example 10, the amount of calcium carbonate added was 12 wt%, the stretching temperature of the film was 95 ° C. on both axes, and the stretching ratio was 4.2 times vertically and 4.3 times horizontally. Other conditions were the same as in Example 10. The solar cell back surface sealing film thus obtained is referred to as sealing film-17.

〔比較例5〕
フィルムとしては、デュポン社製フッ素系フィルム テドラー(登録商標) TWH20BS3(50μmを用い、実施例1の方法で酸化珪素スパッタリングフィルムを積層した。このようにして作製した太陽電池裏面封止用フィルムを封止フィルム−18とする。
[Comparative Example 5]
As a film, a fluorine-based film Tedlar (registered trademark) TWH20BS3 (50 μm) manufactured by DuPont was used, and a silicon oxide sputtering film was laminated by the method of Example 1. The thus produced solar cell back surface sealing film was sealed. It is set as a stop film-18.

実施例10〜13および比較例5の太陽電池裏面封止用フィルムの評価結果を表3および表4に示す。   The evaluation results of the solar cell back surface sealing films of Examples 10 to 13 and Comparative Example 5 are shown in Tables 3 and 4.

Figure 2013016864
Figure 2013016864

Figure 2013016864
Figure 2013016864

実施例10〜13の本発明の太陽電池裏面封止フィルムは、PET−1(通常分子量PETポリマー層)に気泡を形成し、その両表層に高重合PET層(PET−2)を複合したものである。実施例10の封止フィルムから順に見かけ密度を低下させた。該密度が1.37(好ましくは1.35以下)以下から漏れ電流を防止するために必要な誘電率の低減効果が発現する。該密度が小さくなると、誘電率の低減、軽量化の効果が大きくなるが、電気絶縁性、太陽電池への加工性が低下するし、ガスバリア性も低下する傾向にある。この点から、該密度は0.8以上(好ましくは0.9以上)が好ましい。   The solar cell backside sealing films of the present invention of Examples 10 to 13 are those in which bubbles are formed in PET-1 (normal molecular weight PET polymer layer), and a highly polymerized PET layer (PET-2) is combined on both surface layers. It is. The apparent density was lowered in order from the sealing film of Example 10. When the density is 1.37 (preferably 1.35 or less) or less, the effect of reducing the dielectric constant necessary for preventing leakage current is exhibited. When the density is reduced, the effects of reducing the dielectric constant and reducing the weight are increased, but the electrical insulation properties, the processability to solar cells are lowered, and the gas barrier properties tend to be lowered. In this respect, the density is preferably 0.8 or more (preferably 0.9 or more).

比較例5の太陽電池裏面封止フィルムは、フッ素系フィルムでこの分野に使用されているポリフッ化ビニルフィルムを使用したもので、その評価結果を第4表に示す。   The solar cell back surface sealing film of Comparative Example 5 is a fluorine-based film using a polyvinyl fluoride film used in this field, and the evaluation results are shown in Table 4.

耐候性、耐加水分解性、光の反射性等は優れるが、電気絶縁性、ガスバリア性やフィルムの腰が弱く太陽電池の加工性に劣る。この分野に適用させるには、フィルムを厚くしたり、ガスバリア層として比較的厚い金属層を設ける必要がある。また該フィルムは見かけ密度が高く、このことを併せて考えると最近要求されている軽量化には逆行する。また、さらに太陽電池の電換効率を向上させるための漏れ電流防止のための誘電率が高いのも問題である。   The weather resistance, hydrolysis resistance, light reflectivity, etc. are excellent, but the electrical insulation, gas barrier properties and film stiffness are weak and the processability of solar cells is poor. For application in this field, it is necessary to make the film thicker or provide a relatively thick metal layer as a gas barrier layer. In addition, the film has a high apparent density, and considering this fact, it goes against the recent demand for weight reduction. Further, there is a problem that the dielectric constant for preventing leakage current for improving the conversion efficiency of the solar cell is high.

本発明の太陽電池裏面封止用フィルムは、屋根材として用いられる太陽電池はもちろんのこと、可とう性(フレキシブル性)を有する太陽電池や電子部品(時計、電卓、コンピューター関係、携帯電話)等にも好適に使用することができる。   The solar cell back surface sealing film of the present invention is not only a solar cell used as a roofing material, but also a flexible solar cell or an electronic component (clock, calculator, computer related, mobile phone), etc. Also, it can be suitably used.

1:高光線透過材
2:太陽電池モジュール
3:裏面封止フィルム
4:リード線
5:充填樹脂層
6:外装シール
7:ガスバリア層
8:フィルム層
1: High light transmittance material 2: Solar cell module 3: Back surface sealing film 4: Lead wire 5: Filling resin layer 6: Exterior seal 7: Gas barrier layer 8: Film layer

本発明は、かかる課題を解決するために、次のような手段を採用するものである。すなわち、本発明の太陽電池裏面封止用フィルムは、以下である。
(1)
ポリエチレンテレフタレートフィルムが複合されたフィルムと、ガスバリア層とを有する太陽電池裏面封止用フィルムであって、
該複合されたフィルムは、溶融押出時に各ポリマーを別々の押出機に供給し、溶融流路内に設けられた複合設備で両ポリマーを溶融状態で複合したものであり、
該ポリエチレンテレフタレートフィルムが複合されたフィルムが、数平均分子量18500〜27000の範囲内のポリマーで構成されたポリエチレンテレフタレートフィルム層を前記ポリエチレンテレフタレートフィルムが複合されたフィルムの少なくとも片側の表面に有し、
該数平均分子量18500〜27000の範囲内のポリマーで構成されたポリエチレンテレフタレートフィルム層の厚みが、該ポリエチレンテレフタレートフィルムが複合されたフィルムの全厚みの7%以上の厚さであり、
前記太陽電池裏面封止用フィルムの白色度が75%以上であり、
かつ100μm換算光学濃度が0.8以上であることを特徴とする太陽電池裏面封止用フィルム。
(2)
前記ポリエチレンテレフタレートフィルムが複合されたフィルムが、見かけ密度が1.37〜0.85g/cm の範囲内にある2軸延伸ポリエチレンテレフタレートフィルムであることを特徴とする前記(1)に記載の太陽電池裏面封止用フィルム。
(3)
該太陽電池裏面封止用フィルムが、JIS Z0208−73の規格に準じて測定した水蒸気の透過値が、2.0g/m /24Hr/0.1mm以下であることを特徴とする前記(1)または(2)に記載の太陽電池裏面封止用フィルム。
(4)
前記(1)〜(3)のいずれかに記載の太陽電池裏面封止用フィルムを太陽電池システムに使用したことを特徴とする太陽電地。
The present invention employs the following means in order to solve such problems. That is, the solar cell back surface sealing film of the present invention is as follows.
(1)
A film for sealing a back surface of a solar cell having a film in which a polyethylene terephthalate film is combined and a gas barrier layer,
The composite film is obtained by supplying each polymer to a separate extruder at the time of melt extrusion, and combining both polymers in a molten state by a composite facility provided in the melt flow path.
The polyethylene terephthalate film composite film has a polyethylene terephthalate film layer composed of a polymer having a number average molecular weight of 18500 to 27000 on the surface of at least one side of the polyethylene terephthalate film composite,
The thickness of the polyethylene terephthalate film layer composed of a polymer having a number average molecular weight in the range of 18500 to 27000 is 7% or more of the total thickness of the film in which the polyethylene terephthalate film is combined,
The whiteness of the solar cell back surface sealing film is 75% or more,
And the film for solar cell backside sealing characterized by 100 micrometers conversion optical density being 0.8 or more.
(2)
The film according to (1), wherein the polyethylene terephthalate film is a biaxially stretched polyethylene terephthalate film having an apparent density in the range of 1.37 to 0.85 g / cm 3. Battery backside sealing film.
(3)
Wherein said rear surface of a solar cell sealing film, transmittance value of water vapor measured according to the standard of JIS Z0208-73, characterized in that not more than 2.0g / m 2 /24Hr/0.1mm (1 ) Or (2) a solar cell back surface sealing film.
(4)
The solar cell ground characterized by using the film for solar cell backside sealing in any one of said (1)-(3) for the solar cell system.

参考例1〜3、比較例1〕
ジメチルテレフタレート100部(以下重量部)にエチレングリコール64部を混合し、さらに触媒として酢酸亜鉛を0.1部および三酸化アンチモン0.03部を添加し、エチレングリコールの環流温度でエステル交換を行った。
[ Reference Examples 1 to 3, Comparative Example 1]
Mixing 100 parts of dimethyl terephthalate (hereinafter, parts by weight) with 64 parts of ethylene glycol, adding 0.1 part of zinc acetate and 0.03 part of antimony trioxide as a catalyst, and performing transesterification at the reflux temperature of ethylene glycol It was.

〔比較例2〕
参考例1の方法で得られたPET−1を参考例1の方法でPET−1単体からなる厚さ50フィルムμmのフィルム−5を得た。該フィルムを参考例1の方法で太陽電池裏面封止用フィルムを作製した(封止フィルム−5とする)。
[Comparative Example 2]
PET-5 obtained by the method of Reference Example 1 was used to obtain Film-5 having a thickness of 50 μm and comprising PET-1 alone by the method of Reference Example 1. A film for sealing the back surface of a solar cell was produced from the film by the method of Reference Example 1 (referred to as sealing film-5).

参考例1〜3、比較例1、2の5種類の太陽電池裏面封止用フィルムの評価結果を表1
に示す。
Table 1 shows the evaluation results of five types of solar cell back surface sealing films of Reference Examples 1 to 3 and Comparative Examples 1 and 2.
Shown in

Figure 2013016864
Figure 2013016864

参考例1〜3の太陽電池裏面封止用フィルムは、耐加水分解性が、比較例のものに比べて格段に優れており、さらに、ガスバリア性、電気絶縁性、反射性等の諸特性も満足している。 The solar cell backside sealing films of Reference Examples 1 to 3 are much more resistant to hydrolysis than those of Comparative Examples, and also have various characteristics such as gas barrier properties, electrical insulation properties, and reflectivity. Is pleased.

〔実施例4〜6、比較例3〕
参考例1の方法で得たPET−2の重合において、高重合化する温度を190〜230℃、時間10〜23時間変化させ、ポリマーの固有粘度が0.60、0.66、0.70、0.81の4種のPETポリマーを得た。この4種類のポリマーとPET−1のポリマーに平均粒径が0.5μmの酸化チタン微粒子を17重量%と蛍光増白剤(UVITEX OB:チオフェンジイル系 チバ・スペシャリティ・ケミカルズ(株)社製)を0.2重量%添加して参考例1の方法および複合構成で表層PET層の重合度が異なり、かつ白色に着色した4種類の厚さ50μmの複合2軸延伸PETフィルム(複合比は参考例3と同じ)を得た。ただし、参考例1の場合と異なり耐候剤は添加しなかった。
[Examples 4 to 6, Comparative Example 3]
In the polymerization of PET-2 obtained by the method of Reference Example 1, the temperature for high polymerization was changed from 190 to 230 ° C. for 10 to 23 hours, and the intrinsic viscosity of the polymer was 0.60, 0.66, 0.70. , 0.81 of four types of PET polymers were obtained. 17% by weight of titanium oxide fine particles with an average particle diameter of 0.5μm and UV brightening agent (UVITEX OB: manufactured by Ciba Specialty Chemicals Co., Ltd.) 0.2% by weight, and the polymerization degree of the surface PET layer is different in the method and composite structure of Reference Example 1 and is colored four kinds of composite biaxially stretched PET films having a thickness of 50 μm (composite ratio is reference) As in Example 3). However, unlike the case of Reference Example 1, no weathering agent was added.

得られたフィルムに参考例の方法で酸化珪素スパッタリングフィルムを積層し、4種類の封止フィルム(ポリマーの固有粘度が0.60〜0.81のもを順に封止フィルム−6〜9とする)を得た。なお、参考例1のように酸化珪素スパッタリングフィルム積層面の反対面へのアルミニウム蒸着は施さなかった。 A silicon oxide sputtering film is laminated on the obtained film by the method of Reference Example , and four types of sealing films (in which the intrinsic viscosity of the polymer is 0.60 to 0.81 are sequentially set as sealing films-6 to 9). ) In addition, like Example 1, the aluminum vapor deposition was not performed to the opposite surface of the silicon oxide sputtering film lamination surface.

実施例4〜6の本発明の太陽電池裏面封止フィルムは、白色化させたもので、第1表の参考例1〜3と比較すると紫外線吸収剤を用いていないにもかかわらず耐候性が向上し、光の反射率が大きくなり反射性が更に改善されることが判る。一方、比較例3の封止フィルムは、比較例1の場合と同様で高分子量PET(PET−2)の厚み比率が本発明でいう7%未満であるため、白色化しても本発明の目的である耐加水分解性は改善されない。比較例4も同様で、高分子量PET(PET−2)の層を有しないので白色化しても耐加水分解性は改善されない。 The solar cell back surface sealing films of the present invention in Examples 4 to 6 are whitened, and have a weather resistance when no ultraviolet absorber is used as compared with Reference Examples 1 to 3 in Table 1. It can be seen that the reflectivity of light is increased and the reflectivity is further improved. On the other hand, the sealing film of Comparative Example 3 is the same as in Comparative Example 1, and the thickness ratio of high molecular weight PET (PET-2) is less than 7% in the present invention. The hydrolysis resistance is not improved. The same is true for Comparative Example 4, and the hydrolysis resistance is not improved even when whitened because it does not have a layer of high molecular weight PET (PET-2).

参考例7、実施例8、9
実施例5の方法および複合構成で、酸化チタンの添加量を5重量%、8重量%、15重量%添加した3種類の複合フィルムを作製し、各フィルムの片面に実施例5と同様にして酸化珪素スパッタリングフィルムを積層した。酸化チタンの添加量が5重量%のものから順に封止フィルム−11〜13とする。
[ Reference Example 7, Examples 8 and 9 ]
Three types of composite films were prepared by adding the titanium oxide addition amounts of 5% by weight, 8% by weight, and 15% by weight using the method and composite structure of Example 5, and the same manner as in Example 5 was made on one side of each film. A silicon oxide sputtering film was laminated. It is set as the sealing films 11-13 in order from the thing with the addition amount of a titanium oxide of 5 weight%.

実施例8、9の本発明の太陽電池裏面封止フィルムは、酸化チタンの添加量を変更して白色度を変化させたものである。酸化チタンの添加量の少ない参考例7の封止フィルムは白色度が低く、反射率が低下する傾向がある。また、表1の参考例1〜3の封止フィルムの反射率と比較すると、白色度が75以上、光学濃度(100μm換算;F)が0.8以上が好ましいことも判る。 The solar cell back surface sealing films of Examples 8 and 9 of the present invention are obtained by changing the whiteness by changing the addition amount of titanium oxide. The sealing film of Reference Example 7 with a small amount of titanium oxide added has low whiteness and tends to have a low reflectance. Moreover, when compared with the reflectance of the sealing films of Reference Examples 1 to 3 in Table 1, it is also found that the whiteness is preferably 75 or more and the optical density (100 μm conversion; F) is preferably 0.8 or more.

参考例12〕
実施例10の方法で、炭酸カルシウムの添加量を30重量%とし、フィルムの延伸温度は両軸とも85℃で延伸倍率は縦に3.2倍、横に3.1倍とした。他の条件は実施例10と同様にした。このようにして得られた太陽電池裏面封止フィルムを封止フィルム−16とする。
[ Reference Example 12]
In the method of Example 10, the amount of calcium carbonate added was 30% by weight, the stretching temperature of the film was 85 ° C. on both axes, and the stretching ratio was 3.2 times vertically and 3.1 times horizontally. Other conditions were the same as in Example 10. The solar cell back surface sealing film thus obtained is referred to as sealing film-16.

〔比較例5〕
フィルムとしては、デュポン社製フッ素系フィルム テドラー(登録商標) TWH20BS3(50μmを用い、参考例1の方法で酸化珪素スパッタリングフィルムを積層した。このようにして作製した太陽電池裏面封止用フィルムを封止フィルム−18とする。
[Comparative Example 5]
As a film, a fluorine-based film Tedlar (registered trademark) TWH20BS3 (50 μm) manufactured by DuPont was used, and a silicon oxide sputtering film was laminated by the method of Reference Example 1. The thus produced solar cell back surface sealing film was sealed. It is set as a stop film-18.

実施例10、11、13、参考例12および比較例5の太陽電池裏面封止用フィルムの評価結果を表3および表4に示す。 The evaluation results of the solar cell back surface sealing films of Examples 10, 11, 13, Reference Example 12 and Comparative Example 5 are shown in Tables 3 and 4.

Figure 2013016864
Figure 2013016864

Figure 2013016864
Figure 2013016864

実施例10、11、13の本発明の太陽電池裏面封止フィルムは、PET−1(通常分子量PETポリマー層)に気泡を形成し、その両表層に高重合PET層(PET−2)を複合したものである。実施例10の封止フィルムから順に見かけ密度を低下させた。該密度が1.37(好ましくは1.35以下)以下から漏れ電流を防止するために必要な誘電率の低減効果が発現する。該密度が小さくなると、誘電率の低減、軽量化の効果が大きくなるが、電気絶縁性、太陽電池への加工性が低下するし、ガスバリア性も低下する傾向にある。この点から、該密度は0.8以上(好ましくは0.9以上)が好ましい。
The solar cell back surface sealing films of the present invention of Examples 10 , 11 , and 13 form bubbles in PET-1 (normal molecular weight PET polymer layer), and composite a highly polymerized PET layer (PET-2) on both surface layers. It is a thing. The apparent density was lowered in order from the sealing film of Example 10. When the density is 1.37 (preferably 1.35 or less) or less, the effect of reducing the dielectric constant necessary for preventing leakage current is exhibited. When the density is reduced, the effects of reducing the dielectric constant and reducing the weight are increased, but the electrical insulation properties, the processability to solar cells are lowered, and the gas barrier properties tend to be lowered. In this respect, the density is preferably 0.8 or more (preferably 0.9 or more).

Claims (5)

ポリエチレンテレフタレートフィルムが複合されたガスバリア層を有するフィルムであって、該ポリエチレンテレフタレートフィルムが、数平均分子量18500〜40000の範囲内のポリマーで構成され、かつ、全フィルム厚みの7%以上の厚さを有することを特徴とする太陽電池裏面封止用フィルム。   A film having a gas barrier layer combined with a polyethylene terephthalate film, wherein the polyethylene terephthalate film is composed of a polymer having a number average molecular weight of 18500 to 40,000 and has a thickness of 7% or more of the total film thickness. A film for sealing a back surface of a solar cell, comprising: 該太陽電池裏面封止用フィルムの白色度が75%以上であることを特徴とする請求項1記載の太陽電池裏面封止用フィルム。   2. The solar cell back surface sealing film according to claim 1, wherein the solar cell back surface sealing film has a whiteness of 75% or more. 該ポリエチレンテレフタレートフィルムが、見かけ密度が1.37〜0.85g/cmの範囲内にある2軸延伸ポリエチレンテレフタレートフィルムであることを特徴とする請求項1または2記載の太陽電池裏面封止用フィルム。 3. The solar cell backside sealing according to claim 1, wherein the polyethylene terephthalate film is a biaxially stretched polyethylene terephthalate film having an apparent density in the range of 1.37 to 0.85 g / cm 3 . the film. 該太陽電池裏面封止用フィルムが、JIS Z0208−73の規格に準じて測定した水蒸気の透過値が、2.0g/m/24Hr/0.1mm以下であることを特徴とする請求項1〜3のいずれかに記載の太陽電池裏面封止用フィルム。 The rear surface of a solar cell sealing film according to claim 1 transmission value of water vapor measured according to the standard of JIS Z0208-73, characterized in that not more than 2.0g / m 2 /24Hr/0.1mm The film for solar cell backside sealing in any one of -3. 請求項1〜4のいずれかに記載の太陽電池裏面封止用フィルムを太陽電池システムに使用したことを特徴とする太陽電地。   The solar cell ground using the film for solar cell backside sealing in any one of Claims 1-4 for the solar cell system.
JP2012223825A 2012-10-09 2012-10-09 Film for backside sealing of solar cell and solar cell using the same Pending JP2013016864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012223825A JP2013016864A (en) 2012-10-09 2012-10-09 Film for backside sealing of solar cell and solar cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012223825A JP2013016864A (en) 2012-10-09 2012-10-09 Film for backside sealing of solar cell and solar cell using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008226809A Division JP2008311680A (en) 2008-09-04 2008-09-04 Film for sealing solar cell backside, and solar cell utilizing the same

Publications (1)

Publication Number Publication Date
JP2013016864A true JP2013016864A (en) 2013-01-24

Family

ID=47689144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012223825A Pending JP2013016864A (en) 2012-10-09 2012-10-09 Film for backside sealing of solar cell and solar cell using the same

Country Status (1)

Country Link
JP (1) JP2013016864A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04149268A (en) * 1990-10-11 1992-05-22 Toray Ind Inc Polyester resin composition having excellent resistance to hydrolysis
JPH04272920A (en) * 1991-02-27 1992-09-29 Teijin Ltd Production of polyester
JPH07207128A (en) * 1994-01-19 1995-08-08 Toray Ind Inc Polyester composition and film prepared therefrom
JPH097423A (en) * 1995-04-19 1997-01-10 E I Du Pont De Nemours & Co Polyethylene terephthalate film for electric insulating material and its manufacture
JPH09286867A (en) * 1996-02-23 1997-11-04 Toray Ind Inc Polyester film for electrical insulation, laminated film for electrical insulation, insulated system and sealed compressor
JP2000103023A (en) * 1998-09-29 2000-04-11 Mitsubishi Polyester Film Copp Laminated polyester film for transparent deposition
JP2000114565A (en) * 1998-09-30 2000-04-21 Dainippon Printing Co Ltd Solar battery module and manufacture thereof
JP2000174299A (en) * 1998-12-07 2000-06-23 Bridgestone Corp Solar cell, and cover material and seal film therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04149268A (en) * 1990-10-11 1992-05-22 Toray Ind Inc Polyester resin composition having excellent resistance to hydrolysis
JPH04272920A (en) * 1991-02-27 1992-09-29 Teijin Ltd Production of polyester
JPH07207128A (en) * 1994-01-19 1995-08-08 Toray Ind Inc Polyester composition and film prepared therefrom
JPH097423A (en) * 1995-04-19 1997-01-10 E I Du Pont De Nemours & Co Polyethylene terephthalate film for electric insulating material and its manufacture
JPH09286867A (en) * 1996-02-23 1997-11-04 Toray Ind Inc Polyester film for electrical insulation, laminated film for electrical insulation, insulated system and sealed compressor
JP2000103023A (en) * 1998-09-29 2000-04-11 Mitsubishi Polyester Film Copp Laminated polyester film for transparent deposition
JP2000114565A (en) * 1998-09-30 2000-04-21 Dainippon Printing Co Ltd Solar battery module and manufacture thereof
JP2000174299A (en) * 1998-12-07 2000-06-23 Bridgestone Corp Solar cell, and cover material and seal film therefor

Similar Documents

Publication Publication Date Title
JP2002026354A (en) Film for sealing rear surface of solar cell and solar cell using the same
JP5145479B2 (en) Laminated polyester film for solar cell back surface protective film
KR101056464B1 (en) Polyester resin sheet for solar cell, Laminated product using it, Solar cell back protection sheet, and module
JP2006270025A (en) Solar battery and thermoplastic resin sheet therefor
EP1898470B1 (en) Use of a back sheet for photovoltaic modules and resulting photovoltaic module
JP5565020B2 (en) Polyester film and solar cell using the same
JP6051868B2 (en) Laminated sheet and method for producing the same
KR20080053469A (en) Encapsulation film for photovoltaic module and photovoltaic module
JP2008004839A (en) Back protection sheet film of solar cell, and back protection sheet of solar cell module using it
US9315653B2 (en) Method of producing a polyester resin composition
JP2007118267A (en) Thermoplastic polyester sheet for solar cell
JP2008311680A (en) Film for sealing solar cell backside, and solar cell utilizing the same
JP2014075508A (en) Sheet for solar cell back protection
TWI480310B (en) A polyester film for protective film on the back of solar cell
WO2016052133A1 (en) Layered product
JP2011207986A (en) Polyester film and method for producing the same, back sheet for solar cell, and solar cell module
JP5729828B2 (en) POLYESTER RESIN SHEET FOR SOLAR CELL, LAMINATED PRODUCT USING SAME, SOLAR CELL BACK PROTECTIVE SHEET, AND MODULE
JP2013016864A (en) Film for backside sealing of solar cell and solar cell using the same
JP2015188015A (en) Laminate polyester film for solar battery backside protection, solar battery backside protective sheet, and solar battery module
JP2012151343A (en) Laminate polyester film for solar cell back sheet
JP5768862B2 (en) POLYESTER RESIN SHEET FOR SOLAR CELL, LAMINATED PRODUCT USING SAME, SOLAR CELL BACK PROTECTIVE SHEET, AND MODULE
JP2019171729A (en) Film for solar cell back sheet
JP2013028058A (en) Laminated polyester film for solar battery back sheet
JP2018083873A (en) Polyester film, and solar cell back sheet and solar cell comprising the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140909