JP2013016685A - Thermoelectric conversion material, thermoelectric conversion element, and method for manufacturing the same - Google Patents

Thermoelectric conversion material, thermoelectric conversion element, and method for manufacturing the same Download PDF

Info

Publication number
JP2013016685A
JP2013016685A JP2011149055A JP2011149055A JP2013016685A JP 2013016685 A JP2013016685 A JP 2013016685A JP 2011149055 A JP2011149055 A JP 2011149055A JP 2011149055 A JP2011149055 A JP 2011149055A JP 2013016685 A JP2013016685 A JP 2013016685A
Authority
JP
Japan
Prior art keywords
semiconductor layer
thermoelectric conversion
type semiconductor
cugate
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011149055A
Other languages
Japanese (ja)
Inventor
Ken Kurosaki
健 黒崎
Tirayut Phadepin
ティラユット プァーデビン
Adul Hanwangmong
アドゥル ハンワングモング
Yuji Oishi
佑治 大石
Hiroaki Muta
浩明 牟田
Shinsuke Yamanaka
伸介 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Priority to JP2011149055A priority Critical patent/JP2013016685A/en
Publication of JP2013016685A publication Critical patent/JP2013016685A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric conversion element constituted of a novel material.SOLUTION: A thermoelectric conversion element (10) according to the present invention includes an n-type semiconductor layer (20n) and a p-type semiconductor layer (20p). The p-type semiconductor layer (20p) contains at least one selected from a group consisting of CuGaTe, CuGaTe, CuGaTe, and CuGaTe. The thermoelectric conversion element (10) is suitably used at a temperature of 800 K or higher. For example, it is preferable that the p-type semiconductor layer (20p) contains CuGaTe.

Description

本発明は、熱電変換材料、熱電変換素子およびその作製方法に関する。   The present invention relates to a thermoelectric conversion material, a thermoelectric conversion element, and a manufacturing method thereof.

近年、熱と電気とを相互に変換可能な熱電変換モジュールが注目されている。一般に、動力発生源で動力を発生させる際に発生した熱の大部分は棄てられてしまう。例えば、自動車のエンジンで発生したエネルギーのうち動力として取り出せるのは約30%であり、残りの約70%は熱として廃棄されてしまう。このため、発生した熱の有効利用を図ることが検討されている。   In recent years, thermoelectric conversion modules that can convert heat and electricity to each other have attracted attention. Generally, most of the heat generated when power is generated by a power generation source is discarded. For example, about 30% of the energy generated in the engine of a car can be extracted as power, and the remaining about 70% is discarded as heat. For this reason, it has been studied to effectively use the generated heat.

一般に、熱電変換素子の効率は性能指数ZTで表され、性能指数の向上が図られている(例えば、特許文献1参照)。特許文献1には、超格子構造を有する熱電効果素子が記載されている。特許文献1に記載の熱電効果素子は、2種類以上のターゲットに照射するイオンビームを調整することにより、異なる層を交互に積層させている。   In general, the efficiency of a thermoelectric conversion element is represented by a figure of merit ZT, and the figure of merit is improved (see, for example, Patent Document 1). Patent Document 1 describes a thermoelectric effect element having a superlattice structure. In the thermoelectric effect element described in Patent Document 1, different layers are alternately stacked by adjusting an ion beam applied to two or more types of targets.

特開2007−012980号公報JP 2007-012980 A

しかしながら、特許文献1の熱電効果素子では、超格子構造を形成する必要があり、このような熱電効果素子を簡便に作製することは困難である。また、比較的簡便に作製可能な熱電変換素子は充分な変換効率を示さない。   However, in the thermoelectric effect element of Patent Document 1, it is necessary to form a superlattice structure, and it is difficult to easily manufacture such a thermoelectric effect element. In addition, thermoelectric conversion elements that can be manufactured relatively simply do not exhibit sufficient conversion efficiency.

本発明は上記課題を鑑みてなされたものであり、その目的は、新規な熱電変換材料、および、このような熱電変換材料を含む熱電変換素子およびその作製方法を提供することにある。   This invention is made | formed in view of the said subject, The objective is to provide the novel thermoelectric conversion material, the thermoelectric conversion element containing such a thermoelectric conversion material, and its manufacturing method.

本発明による熱電変換素子は、n型半導体層と、p型半導体層とを備える、熱電変換素子であって、前記p型半導体層は、CuGaTe、CuGaTe、CuGaTeおよびCuGaTeからなる群から選択された少なくとも1つを含む。 The thermoelectric conversion element according to the present invention is a thermoelectric conversion element including an n-type semiconductor layer and a p-type semiconductor layer, and the p-type semiconductor layer includes CuGaTe 2 , Cu 3 Ga 5 Te 9 , and CuGa 3 Te 5. And at least one selected from the group consisting of CuGa 5 Te 8 .

ある実施形態において、前記熱電変換素子は、700K以上、好ましくは800K以上、より好ましくは900K以上の温度下で用いられる。   In one embodiment, the thermoelectric conversion element is used at a temperature of 700K or higher, preferably 800K or higher, more preferably 900K or higher.

ある実施形態において、前記p型半導体層は、CuGaTeを含む。 In one embodiment, the p-type semiconductor layer includes CuGaTe 2 .

ある実施形態において、前記熱電変換素子は、前記p型半導体層と前記n型半導体層のそれぞれと接触する電極をさらに備える。   In one embodiment, the thermoelectric conversion element further includes an electrode in contact with each of the p-type semiconductor layer and the n-type semiconductor layer.

本発明による熱電変換材料は、CuGaTe、CuGaTe、CuGaTeおよびCuGaTeからなる群から選択された少なくとも1つを含む。 The thermoelectric conversion material according to the present invention includes at least one selected from the group consisting of CuGaTe 2 , Cu 3 Ga 5 Te 9 , CuGa 3 Te 5 and CuGa 5 Te 8 .

本発明による熱電変換素子の作製方法は、n型半導体層を用意する工程と、p型半導体層を用意する工程と、前記n型半導体層および前記p型半導体層を電気的に接続する工程とを包含し、前記p型半導体層を用意する工程において、前記p型半導体層はCuGaTe、CuGaTe、CuGaTeおよびCuGaTeからなる群から選択された少なくとも1つを含む。 The method for producing a thermoelectric conversion element according to the present invention includes a step of preparing an n-type semiconductor layer, a step of preparing a p-type semiconductor layer, and a step of electrically connecting the n-type semiconductor layer and the p-type semiconductor layer. In the step of preparing the p-type semiconductor layer, the p-type semiconductor layer is at least one selected from the group consisting of CuGaTe 2 , Cu 3 Ga 5 Te 9 , CuGa 3 Te 5 and CuGa 5 Te 8. including.

ある実施形態において、前記p型半導体層を用意する工程は、化学量論的に所定の割合でCu、GaおよびTeの存在する原料を用意し、上記原料の溶融を行う工程を含む。   In one embodiment, the step of preparing the p-type semiconductor layer includes a step of preparing a raw material containing Cu, Ga and Te in a stoichiometric predetermined ratio and melting the raw material.

ある実施形態では、前記p型半導体層を用意する工程において、前記p型半導体層はCuGaTeを含む。 In one embodiment, in the step of preparing the p-type semiconductor layer, the p-type semiconductor layer includes CuGaTe 2 .

本発明によれば、新規な熱電変換材料、ならびに、このような熱電変換材料を含む熱電変換素子およびその作製方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the novel thermoelectric conversion material, the thermoelectric conversion element containing such a thermoelectric conversion material, and its manufacturing method can be provided.

本発明による熱電変換素子の実施形態の模式図である。It is a schematic diagram of embodiment of the thermoelectric conversion element by this invention. CuGaTe化合物のXRDの結果を示すグラフである。It is a graph which shows the result of XRD of a CuGaTe compound. CuGaTe化合物の電気抵抗率の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the electrical resistivity of a CuGaTe compound. CuGaTe化合物のゼーベック係数の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the Seebeck coefficient of a CuGaTe compound. CuGaTe化合物の熱伝導率の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the thermal conductivity of a CuGaTe compound. CuGaTe化合物の性能指数の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the figure of merit of a CuGaTe compound.

以下、図面を参照して本発明による熱電変換材料、熱電変換素子およびその作製方法の実施形態を説明する。だだし、本発明は以下の実施形態に限定されない。   Hereinafter, embodiments of a thermoelectric conversion material, a thermoelectric conversion element, and a manufacturing method thereof according to the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiments.

図1に、本発明による熱電変換素子の実施形態の模式図を示す。本実施形態の熱電変換素子10は、n型半導体層20nと、p型半導体層20pとを備えている。本明細書の以下の説明においてn型半導体層20nおよびp型半導体層20pをそれぞれ半導体層20nおよび半導体層20pと呼ぶことがある。図1に示した熱電変換素子10では、半導体層20nおよび半導体層20pは電極22を介して電気的に接続されている。ここでは、電極22は、半導体層20pおよび半導体層20nの両方の端部と接触している。また、図1に示したように、熱電変換素子10は、半導体層20pの他方の端部と電気的に接続された電極24aと、n型半導体層20nの他方の端部と電気的に接続された電極24bとをさら備えていてもよい。   In FIG. 1, the schematic diagram of embodiment of the thermoelectric conversion element by this invention is shown. The thermoelectric conversion element 10 of this embodiment includes an n-type semiconductor layer 20n and a p-type semiconductor layer 20p. In the following description of this specification, the n-type semiconductor layer 20n and the p-type semiconductor layer 20p may be referred to as a semiconductor layer 20n and a semiconductor layer 20p, respectively. In the thermoelectric conversion element 10 shown in FIG. 1, the semiconductor layer 20 n and the semiconductor layer 20 p are electrically connected via an electrode 22. Here, the electrode 22 is in contact with both ends of the semiconductor layer 20p and the semiconductor layer 20n. As shown in FIG. 1, the thermoelectric conversion element 10 is electrically connected to the electrode 24a electrically connected to the other end of the semiconductor layer 20p and the other end of the n-type semiconductor layer 20n. The electrode 24b may be further provided.

電極22の温度が電極24a、24bよりも高い場合、ゼーベック効果によって半導体層20nおよび半導体層20p内をそれぞれ電子および正孔が移動し、これにより、電流を発生させることができる。このような電流を負荷Lに流すことにより、負荷Lに仕事をさせることができる。また、電極22の温度が電極24a、24bよりも低い場合、電流は反対方向に流れる。   When the temperature of the electrode 22 is higher than that of the electrodes 24a and 24b, electrons and holes move in the semiconductor layer 20n and the semiconductor layer 20p, respectively, due to the Seebeck effect, whereby a current can be generated. By flowing such a current through the load L, the load L can be made to work. When the temperature of the electrode 22 is lower than that of the electrodes 24a and 24b, the current flows in the opposite direction.

あるいは、電極24bから半導体層20n、電極22、半導体層20pおよび電極24aを通るように電流を流すことにより、電極22で吸熱を行い、電極24a、24bで放熱を行うことができる。また、電極24aから半導体層20p、電極22、半導体層20nおよび電極24bを通るように電流を流すことにより、電極22で放熱を行い、電極24a、24bで吸熱を行うことができる。   Alternatively, by passing a current from the electrode 24b through the semiconductor layer 20n, the electrode 22, the semiconductor layer 20p, and the electrode 24a, the electrode 22 can absorb heat and the electrodes 24a and 24b can dissipate heat. Further, by passing a current from the electrode 24a through the semiconductor layer 20p, the electrode 22, the semiconductor layer 20n, and the electrode 24b, heat can be radiated from the electrode 22 and heat can be absorbed from the electrodes 24a and 24b.

例えば、電極22、24a、24bは銀から形成され、電極22、24a、24bは、絶縁基板(ここでは図示せず)によって支持されてもよい。絶縁基板として例えばセラミック基板(一例としてアルミナ基板)を用いてもよい。また、電極24a、24bは分離されているが、電極24a、24bを支持する絶縁基板は一体的に設けられてもよい。   For example, the electrodes 22, 24a, 24b may be made of silver, and the electrodes 22, 24a, 24b may be supported by an insulating substrate (not shown here). For example, a ceramic substrate (an alumina substrate as an example) may be used as the insulating substrate. In addition, although the electrodes 24a and 24b are separated, an insulating substrate that supports the electrodes 24a and 24b may be provided integrally.

本実施形態の熱電変換素子10において、p型半導体層20pは本発明による熱電変換材料の実施形態から形成される。本実施形態の熱電変換材料は、CuGaTe、CuGaTe、CuGaTeおよびCuGaTeからなる群から選択された少なくとも1つを含む。本明細書の以下の説明において、CuGaTe、CuGaTe、CuGaTeおよびCuGaTeを総称してCuGaTe化合物と呼ぶことがある。性能指数の比較的高い半導体層20pはバルク状のCuGaTe化合物から作製される。CuGaTe化合物はカルコパイライト型結晶構造または閃亜鉛鉱型構造を有している。 In the thermoelectric conversion element 10 of the present embodiment, the p-type semiconductor layer 20p is formed from the embodiment of the thermoelectric conversion material according to the present invention. The thermoelectric conversion material of the present embodiment includes at least one selected from the group consisting of CuGaTe 2 , Cu 3 Ga 5 Te 9 , CuGa 3 Te 5 and CuGa 5 Te 8 . In the following description of the present specification, CuGaTe 2 , Cu 3 Ga 5 Te 9 , CuGa 3 Te 5 and CuGa 5 Te 8 may be collectively referred to as a CuGaTe compound. The semiconductor layer 20p having a relatively high figure of merit is manufactured from a bulk CuGaTe compound. The CuGaTe compound has a chalcopyrite type crystal structure or a zinc blende type structure.

なお、詳細は後述するが、半導体層20pは、CuGaTeから形成されることが好ましい。これにより、性能指数の高いバルク状の半導体層20pを形成することができる。性能指数は温度にも依存するが、温度が900Kを超える場合、性能指数ZTを1.5よりも大きくすることができる。 Although the details will be described later, the semiconductor layer 20p is preferably formed from CuGaTe 2. Thereby, a bulk semiconductor layer 20p having a high figure of merit can be formed. The figure of merit also depends on the temperature, but if the temperature exceeds 900K, the figure of merit ZT can be greater than 1.5.

半導体層20nは任意の材料から形成されてもよい。ただし、半導体層20nの材料は、同一基板に、p型半導体層20pとともにn型半導体層20nを作製可能なように選択されることが好ましい。例えば、添加する不純物を変更することにより、p型半導体層20pおよびn型半導体層20nを別々に形成可能であることが好ましい。   The semiconductor layer 20n may be formed from any material. However, the material of the semiconductor layer 20n is preferably selected so that the n-type semiconductor layer 20n can be formed together with the p-type semiconductor layer 20p on the same substrate. For example, it is preferable that the p-type semiconductor layer 20p and the n-type semiconductor layer 20n can be formed separately by changing the impurity to be added.

本実施形態の熱電変換素子10では熱電変換が効率的に行われる。上述したように、熱電変換素子10の特性は性能指数で示される。性能指数ZTは、ZT=SσT/κと表される。ここで、Sはゼーベック係数(VK−1)であり、σは電気伝導率(Ω−1−1)であり、Tは絶対温度(K)であり、κは熱伝導率(Wm−1−1)である。なお、電気伝導率σは電気抵抗率ρの逆数であり、性能指数ZTはZT=ST/ρκとも表される。例えば、熱電変換素子10は800K以上の温度下で用いられることが好ましく、900K以上の温度下で用いられることがさらに好ましい。また、熱電変換素子10は温度700K以上の温度下で用いられてもよい。 In the thermoelectric conversion element 10 of this embodiment, thermoelectric conversion is efficiently performed. As described above, the characteristics of the thermoelectric conversion element 10 are indicated by a figure of merit. The figure of merit ZT is expressed as ZT = S 2 σT / κ. Here, S is the Seebeck coefficient (VK −1 ), σ is the electrical conductivity (Ω −1 m −1 ), T is the absolute temperature (K), and κ is the thermal conductivity (Wm −1). K −1 ). The electrical conductivity σ is the reciprocal of the electrical resistivity ρ, and the figure of merit ZT is also expressed as ZT = S 2 T / ρκ. For example, the thermoelectric conversion element 10 is preferably used at a temperature of 800K or higher, and more preferably at a temperature of 900K or higher. Moreover, the thermoelectric conversion element 10 may be used under the temperature of 700K or more.

CuGaTe化合物は、例えば、以下のように作製される。まず、作製されるべきCuGaTe化合物に応じて、化学量論的に所定の割合でCu、GaおよびTeの存在する原料を用意する。例えば、この原料は、CuTeおよびGaTeを所定の割合で含んでもよい。CuTeおよびGaTeからCuGaTeを形成する場合、CuTeおよびGaTeの割合は1:1である。なお、ここでは、原料は、CuTeおよびGaTeを所定の割合で含んでいるが、原料は、Cu、GaおよびTeを個別に所定の割合で含んでもよく、または、Cu、GaTeおよびTeを所定の割合で含んでもよい。 A CuGaTe compound is produced as follows, for example. First, in accordance with the CuGaTe compound to be produced, a raw material containing Cu, Ga and Te in a stoichiometrically predetermined ratio is prepared. For example, this raw material may contain Cu 2 Te and Ga 2 Te 3 in a predetermined ratio. When forming the CuGaTe 2 from Cu 2 Te and Ga 2 Te, the ratio of Cu 2 Te and Ga 2 Te 3 is 1: 1. Here, the raw material includes Cu 2 Te and Ga 2 Te 3 in a predetermined ratio, but the raw material may individually include Cu, Ga, and Te in a predetermined ratio, or Cu, Ga 2 Te 3 and Te may be included in a predetermined ratio.

その後、上述した原料の溶融を行い、CuGaTe化合物を形成する。例えば、CuTeおよびGaTeを石英管に真空封入して900℃で1日溶融させた後、500℃で3日間アニーリングする。アニーリングにより、石英管には溶融インゴット試料が形成される。 Thereafter, the raw materials described above are melted to form a CuGaTe compound. For example, Cu 2 Te and Ga 2 Te 3 are vacuum-sealed in a quartz tube, melted at 900 ° C. for 1 day, and then annealed at 500 ° C. for 3 days. By annealing, a molten ingot sample is formed in the quartz tube.

この溶融インゴット試料を石英管から取り出し、溶融インゴット試料を粉砕する。その後、アルゴン気流下において3時間、600℃でホットプレスによって焼結する。これにより、バルク体の試料が得られる。その後、バルク体を切断、整形、研磨することにより、物性測定用の試料が得られる。   The molten ingot sample is taken out from the quartz tube, and the molten ingot sample is pulverized. Thereafter, sintering is performed by hot pressing at 600 ° C. for 3 hours under an argon stream. Thereby, the sample of a bulk body is obtained. Thereafter, the bulk body is cut, shaped, and polished to obtain a sample for measuring physical properties.

得られた試料の同定は、例えば、X線回折(X−Ray Diffraction:XRD)を用いて行われる。例えば、1:1の割合でCuTeおよびGaTeを溶融させた場合、XRDから、得られたバルク体がCuGaTeであること、および、その構造がカルコパイライト型構造であることが確認できる。 The obtained sample is identified using, for example, X-ray diffraction (XRD). For example, when Cu 2 Te and Ga 2 Te 3 are melted at a ratio of 1: 1, it is confirmed from XRD that the obtained bulk body is CuGaTe 2 and the structure thereof is a chalcopyrite structure. I can confirm.

図2に、CuGaTe化合物のX線回折の結果を示す。図2では、CuTeおよびGaTeを1:1の割合で溶解させたものをCGT−112と示しており、CuTeおよびGaTeを3:5の割合で溶解させたものをCGT−359と示している。同様に、CuTeおよびGaTeを1:3の割合で溶解させたものをCGT−135と示しており、CuTeおよびGaTeを1:5の割合で溶解させたものをCGT−158と示している。図2に示したX線回折の結果は、CGT−112、CGT−359、CGT−135、CGT−158は、それぞれ、CuGaTe、CuGaTe、CuGaTeおよびCuGaTeの結晶と同様の結果を示しており、これにより、所定の割合で溶解したCuGaTe化合物が得られたことがわかる。 FIG. 2 shows the results of X-ray diffraction of the CuGaTe compound. In FIG. 2, the Cu 2 Te and Ga 2 Te 3 1: those dissolved at a ratio of 1 shows the CGT-112, a Cu 2 Te and Ga 2 Te 3 3: dissolved at a rate of 5 This is shown as CGT-359. Similarly, a solution in which Cu 2 Te and Ga 2 Te 3 are dissolved in a ratio of 1: 3 is shown as CGT-135, and Cu 2 Te and Ga 2 Te 3 are dissolved in a ratio of 1: 5. Is shown as CGT-158. Results of X-ray diffraction shown in FIG. 2, CGT-112, CGT- 359, CGT-135, CGT-158 , respectively, CuGaTe 2, Cu 3 Ga 5 Te 9, CuGa 3 Te 5 and CuGa 5 Te 8 This shows the same result as that of the crystal, and it can be seen that a CuGaTe compound dissolved at a predetermined ratio was obtained.

ここで、CuGaTe、CuGaTe、CuGaTeおよびCuGaTeの結晶構造を検討する。CuGaTe化合物では、カチオンサイトおよびアニオンサイトの割合は1:1であり、カチオンサイトにCuおよびGaが占有し、アニオンサイトにTeが占有する。これらのCuGaTe化合物のうちのいくつかではCuおよびGaの原子数の和とTeの原子数とが一致しておらず、カチオンサイトに空孔が存在している。CuGaTe、CuGaTe、CuGaTeおよびCuGaTeの空孔の割合は、それぞれ0、1/18、1/10、1/8である。 Here, the crystal structures of CuGaTe 2 , Cu 3 Ga 5 Te 9 , CuGa 3 Te 5 and CuGa 5 Te 8 will be examined. In the CuGaTe compound, the ratio of the cation site and the anion site is 1: 1, Cu and Ga occupy the cation site, and Te occupy the anion site. In some of these CuGaTe compounds, the sum of the number of Cu and Ga atoms does not match the number of Te atoms, and vacancies exist in the cation site. The ratios of the holes of CuGaTe 2 , Cu 3 Ga 5 Te 9 , CuGa 3 Te 5 and CuGa 5 Te 8 are 0, 1/18, 1/10 and 1/8, respectively.

以下、図3〜図6を参照して、CuGaTe化合物の空孔の割合と、特性の温度依存性を説明する。図3に、CuGaTe化合物の電気抵抗率の温度依存性を示す。図3から理解されるように、CuGaTe化合物のいずれにおいても電気抵抗率は温度の増加とともに減少する。一般に、温度が増加すると、キャリアの移動度が減少するが、キャリアの数が増大する影響が大きいため、抵抗率が減少する。また、特に600K以上の所定の温度に着目すると、電気抵抗率は、空孔の割合が高いほど高い傾向がある。これは、空孔が、キャリアの散乱に寄与しているためと考えられる。   Hereinafter, with reference to FIG. 3 to FIG. 6, the ratio of vacancies in the CuGaTe compound and the temperature dependence of the characteristics will be described. FIG. 3 shows the temperature dependence of the electrical resistivity of the CuGaTe compound. As can be seen from FIG. 3, the electrical resistivity decreases with increasing temperature in any of the CuGaTe compounds. In general, as the temperature increases, the mobility of carriers decreases, but the resistivity decreases because the effect of increasing the number of carriers is large. In particular, when attention is paid to a predetermined temperature of 600 K or higher, the electrical resistivity tends to be higher as the ratio of holes is higher. This is presumably because the vacancies contribute to carrier scattering.

図4に、CuGaTe化合物のゼーベック係数の温度依存性を示す。特に700K未満の比較的低い温度において、CuGaTe、CuGaTe、CuGaTeのゼーベック係数は比較的高いのに対して、CuGaTeのゼーベック係数は比較的低い。一方、温度が比較的高くなると、異なるCuGaTe化合物におけるゼーベック係数の差が小さくなる。 FIG. 4 shows the temperature dependence of the Seebeck coefficient of the CuGaTe compound. Particularly at a relatively low temperature of less than 700 K, the Seebeck coefficient of CuGaTe 2 , CuGa 3 Te 5 , and CuGa 5 Te 8 is relatively high, whereas the Seebeck coefficient of Cu 3 Ga 5 Te 8 is relatively low. On the other hand, when the temperature is relatively high, the difference in Seebeck coefficient between different CuGaTe compounds becomes small.

図5に、CuGaTe化合物の熱伝導率の温度依存性を示す。CuGaTe化合物のいずれにおいても熱伝導率は温度の増加とともに減少する。これは、温度の増加により、フォノンによる熱伝達の散乱が激しくなるからと考えられる。また、同一温度で比較した場合、空孔の割合が高いほど熱電導率は低い。これは、空孔が、フォノンによる熱伝達を散乱しているためと考えられる。このように、空孔はキャリアだけでなくフォノンによる熱伝達も散乱する。なお、空孔が少ないほど、温度変化に応じた熱伝導率の変化率が大きく、CuGaTeの熱伝導率は低温時に比較的高いが、温度の増加とともに大きく減少する。 FIG. 5 shows the temperature dependence of the thermal conductivity of the CuGaTe compound. In any CuGaTe compound, the thermal conductivity decreases with increasing temperature. This is presumably because the scattering of heat transfer due to phonons increases with an increase in temperature. Further, when compared at the same temperature, the higher the percentage of holes, the lower the thermal conductivity. This is presumably because the vacancies scatter heat transfer by phonons. In this way, the holes scatter not only carriers but also heat transfer by phonons. Note that the smaller the number of holes, the greater the rate of change of thermal conductivity in accordance with the temperature change, and the thermal conductivity of CuGaTe 2 is relatively high at low temperatures, but greatly decreases with increasing temperature.

図6に、CuGaTe化合物の性能指数の温度依存性を示す。温度が同じ場合、空孔の割合が低いほど性能指数は高い。特に、CuGaTeの性能指数は温度の増加とともに大きく増加する。これは、温度の増加とともにCuGaTeの熱伝導率が大きく減少していることが寄与していると考えられる。例えば、温度が950℃の場合、CuGaTeの指数ZTは1.66である。 FIG. 6 shows the temperature dependence of the figure of merit of the CuGaTe compound. If the temperature is the same, the lower the percentage of holes, the higher the figure of merit. In particular, the figure of merit of CuGaTe 2 increases greatly with increasing temperature. This is thought to be due to the fact that the thermal conductivity of CuGaTe 2 greatly decreases with increasing temperature. For example, when the temperature is 950 ° C., the index ZT of CuGaTe 2 is 1.66.

本発明によれば、新規な材料で比較的簡便に作製可能な熱電変換素子が提供される。特に、熱電変換材料がCuGaTeである場合、高い性能指数を実現することができる。このような熱電変換素子は、例えば、発電所におけるコジェネレーションシステムや自動車の発電システムに好適に用いられる。または、熱電変換素子はプロジェクタに取り付けられ、プロジェクタから発生した熱を利用して発電を行ってもよい。あるいは、熱電変換素子は地熱を利用して発電を行ってもよい。 ADVANTAGE OF THE INVENTION According to this invention, the thermoelectric conversion element which can be produced comparatively simply with a novel material is provided. In particular, when the thermoelectric conversion material is CuGaTe 2 , a high figure of merit can be realized. Such a thermoelectric conversion element is suitably used for, for example, a cogeneration system in a power plant or a power generation system of an automobile. Alternatively, the thermoelectric conversion element may be attached to the projector and generate power using heat generated from the projector. Alternatively, the thermoelectric conversion element may generate power using geothermal heat.

10 熱電変換素子
20p p型半導体層
20n n型半導体層
22 電極
24a 電極
24b 電極
10 thermoelectric conversion element 20p p-type semiconductor layer 20n n-type semiconductor layer 22 electrode 24a electrode 24b electrode

Claims (8)

n型半導体層と、
p型半導体層と
を備える、熱電変換素子であって、
前記p型半導体層は、CuGaTe、CuGaTe、CuGaTeおよびCuGaTeからなる群から選択された少なくとも1つを含む、熱電変換素子。
an n-type semiconductor layer;
a thermoelectric conversion element comprising a p-type semiconductor layer,
The p-type semiconductor layer is a thermoelectric conversion element including at least one selected from the group consisting of CuGaTe 2 , Cu 3 Ga 5 Te 9 , CuGa 3 Te 5 and CuGa 5 Te 8 .
800K以上の温度下で用いられる、請求項1に記載の熱電変換素子。   The thermoelectric conversion element according to claim 1, which is used at a temperature of 800K or higher. 前記p型半導体層は、CuGaTeを含む、請求項1または2に記載の熱電変換素子。 The thermoelectric conversion element according to claim 1, wherein the p-type semiconductor layer includes CuGaTe 2 . 前記p型半導体層と前記n型半導体層のそれぞれと接触する電極をさらに備える、請求項1から3のいずれかに記載の熱電変換素子。   The thermoelectric conversion element according to any one of claims 1 to 3, further comprising an electrode in contact with each of the p-type semiconductor layer and the n-type semiconductor layer. CuGaTe、CuGaTe、CuGaTeおよびCuGaTeからなる群から選択された少なくとも1つを含む熱電変換材料。 A thermoelectric conversion material containing at least one selected from the group consisting of CuGaTe 2 , Cu 3 Ga 5 Te 9 , CuGa 3 Te 5 and CuGa 5 Te 8 . n型半導体層を用意する工程と、
p型半導体層を用意する工程と、
前記n型半導体層および前記p型半導体層を電気的に接続する工程と
を包含し、
前記p型半導体層を用意する工程において、前記p型半導体層はCuGaTe、CuGaTe、CuGaTeおよびCuGaTeからなる群から選択された少なくとも1つを含む、熱電変換素子の作製方法。
preparing an n-type semiconductor layer;
preparing a p-type semiconductor layer;
Electrically connecting the n-type semiconductor layer and the p-type semiconductor layer,
In the step of preparing the p-type semiconductor layer, the p-type semiconductor layer includes at least one selected from the group consisting of CuGaTe 2 , Cu 3 Ga 5 Te 9 , CuGa 3 Te 5 and CuGa 5 Te 8. A method for manufacturing a conversion element.
前記p型半導体層を用意する工程は、化学量論的に所定の割合でCu、GaおよびTeの存在する原料を用意し、上記原料の溶融を行う工程を含む、請求項6に記載の熱電変換素子の作製方法。   The step of preparing the p-type semiconductor layer includes a step of preparing a raw material containing Cu, Ga and Te in a stoichiometric predetermined ratio and melting the raw material. A method for manufacturing a conversion element. 前記p型半導体層を用意する工程において、前記p型半導体層はCuGaTeを含む、請求項6または7に記載の熱電変換素子の作製方法。 The method for producing a thermoelectric conversion element according to claim 6, wherein in the step of preparing the p-type semiconductor layer, the p-type semiconductor layer contains CuGaTe 2 .
JP2011149055A 2011-07-05 2011-07-05 Thermoelectric conversion material, thermoelectric conversion element, and method for manufacturing the same Withdrawn JP2013016685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011149055A JP2013016685A (en) 2011-07-05 2011-07-05 Thermoelectric conversion material, thermoelectric conversion element, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011149055A JP2013016685A (en) 2011-07-05 2011-07-05 Thermoelectric conversion material, thermoelectric conversion element, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2013016685A true JP2013016685A (en) 2013-01-24

Family

ID=47689056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011149055A Withdrawn JP2013016685A (en) 2011-07-05 2011-07-05 Thermoelectric conversion material, thermoelectric conversion element, and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2013016685A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9246075B2 (en) 2014-03-27 2016-01-26 Panasonic Intellectual Property Management Co., Ltd. Tubular thermoelectric generation device
US9306144B2 (en) 2013-03-28 2016-04-05 Panasonic Corporation Thermoelectric generator and production method for thermoelectric generator
US9368708B2 (en) 2013-03-12 2016-06-14 Panasonic Intellectual Property Management Co., Ltd. Thermoelectric generation unit and thermoelectric generation system
CN105957954A (en) * 2016-05-13 2016-09-21 宁波工程学院 Mn containing P-type Cu5Ga9Te16 medium-temperature thermoelectric material and preparation technology thereof
US9608189B2 (en) 2013-07-02 2017-03-28 Panasonic Intellectual Property Management Co., Ltd. Thermoelectric generator unit and method of testing the thermoelectric generator unit
US9755132B2 (en) 2013-03-12 2017-09-05 Panasonic Corporation Thermoelectric generation unit and thermoelectric generation system
US9899589B2 (en) 2014-02-05 2018-02-20 Panasonic Corporation Thermal power generation unit and thermoelectric power generation system
US9941457B2 (en) 2013-07-30 2018-04-10 Panasonic Intellectual Property Management Co., Ltd. Thermoelectric generator unit and thermoelectric generator system
JP2018067590A (en) * 2016-10-18 2018-04-26 国立研究開発法人物質・材料研究機構 Copper gallium tellurium-based p-type thermoelectric semiconductor and thermoelectric generation element using the same
WO2018180131A1 (en) 2017-03-28 2018-10-04 国立研究開発法人物質・材料研究機構 Thermoelectric power generation cell and thermoelectric power generation module
US10170677B2 (en) 2013-03-12 2019-01-01 Panasonic Corporation Thermoelectric generator system
CN115274997A (en) * 2022-08-04 2022-11-01 三峡大学 P-type and N-type semiconductor series-parallel thermoelectric device and parameter determination method thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10170677B2 (en) 2013-03-12 2019-01-01 Panasonic Corporation Thermoelectric generator system
US9368708B2 (en) 2013-03-12 2016-06-14 Panasonic Intellectual Property Management Co., Ltd. Thermoelectric generation unit and thermoelectric generation system
US9755132B2 (en) 2013-03-12 2017-09-05 Panasonic Corporation Thermoelectric generation unit and thermoelectric generation system
US10873018B2 (en) 2013-03-12 2020-12-22 Panasonic Corporation Thermoelectric generator system
US9306144B2 (en) 2013-03-28 2016-04-05 Panasonic Corporation Thermoelectric generator and production method for thermoelectric generator
US9608189B2 (en) 2013-07-02 2017-03-28 Panasonic Intellectual Property Management Co., Ltd. Thermoelectric generator unit and method of testing the thermoelectric generator unit
US9941457B2 (en) 2013-07-30 2018-04-10 Panasonic Intellectual Property Management Co., Ltd. Thermoelectric generator unit and thermoelectric generator system
US9899589B2 (en) 2014-02-05 2018-02-20 Panasonic Corporation Thermal power generation unit and thermoelectric power generation system
US9246075B2 (en) 2014-03-27 2016-01-26 Panasonic Intellectual Property Management Co., Ltd. Tubular thermoelectric generation device
CN105957954A (en) * 2016-05-13 2016-09-21 宁波工程学院 Mn containing P-type Cu5Ga9Te16 medium-temperature thermoelectric material and preparation technology thereof
JP2018067590A (en) * 2016-10-18 2018-04-26 国立研究開発法人物質・材料研究機構 Copper gallium tellurium-based p-type thermoelectric semiconductor and thermoelectric generation element using the same
WO2018180131A1 (en) 2017-03-28 2018-10-04 国立研究開発法人物質・材料研究機構 Thermoelectric power generation cell and thermoelectric power generation module
US11393969B2 (en) 2017-03-28 2022-07-19 National Institute For Materials Science Thermoelectric generation cell and thermoelectric generation module
CN115274997A (en) * 2022-08-04 2022-11-01 三峡大学 P-type and N-type semiconductor series-parallel thermoelectric device and parameter determination method thereof
CN115274997B (en) * 2022-08-04 2023-08-11 三峡大学 P-type and N-type semiconductor series-parallel thermoelectric device and parameter determination method thereof

Similar Documents

Publication Publication Date Title
JP2013016685A (en) Thermoelectric conversion material, thermoelectric conversion element, and method for manufacturing the same
Tan et al. Thermoelectric power generation: from new materials to devices
Roychowdhury et al. Ultrahigh thermoelectric figure of merit and enhanced mechanical stability of p-type AgSb1–x Zn x Te2
Li et al. Enhanced thermoelectric performance of Yb-single-filled skutterudite by ultralow thermal conductivity
Qiu et al. Cu-based thermoelectric materials
JP6164627B2 (en) New compound semiconductors and their utilization
JP6563031B2 (en) Thermoelectric material, thermoelectric element and thermoelectric module including the same
KR102122553B1 (en) Natural superlattice structured thermoelectric materials
KR102067647B1 (en) Manufacturing method of thermoelectric device and cooling thermoelectric moudule using the same
KR101663183B1 (en) Thermoelectric materials, and thermoelectric module and thermoelectric device comprising same
JP6256895B2 (en) New compound semiconductors and their utilization
Wu et al. Enhancement of thermoelectric performance of layered SnSe2 by synergistic modulation of carrier concentration and suppression of lattice thermal conductivity
WO2017170914A1 (en) Compound, thermoelectric conversion material, and method for producing compound
Aminorroaya Yamini et al. Room-temperature thermoelectric performance of n-type multiphase pseudobinary Bi2Te3–Bi2S3 compounds: synergic effects of phonon scattering and energy filtering
Yu et al. Balanced High Thermoelectric Performance in n-Type and p-Type CuAgSe Realized through Vacancy Manipulation
JP2017084986A (en) Thermoelectric conversion material and thermoelectric conversion element
JP6279639B2 (en) Thermoelectric conversion material and method for producing the same
Zhao et al. Enhanced thermoelectric performance of Bi–Se Co-doped Cu1. 8S via carrier concentration regulation and multiscale phonon scattering
KR101093566B1 (en) Manufacturing method of multi-component oxide thin film having superlattice structure
Xia et al. Chemical composition engineering leading to the significant improvement in the thermoelectric performance of AgBiSe2-based n-type solid solutions
Zhang et al. Achievement of excellent thermoelectric properties in Cu–Se–S compounds via In situ phase separation
JP4900819B2 (en) Thermoelectric material and manufacturing method thereof
JPWO2018135286A1 (en) p-type thermoelectric conversion material, thermoelectric conversion module and method for producing p-type thermoelectric conversion material
JP5563024B2 (en) Thermoelectric conversion material and thermoelectric conversion module using the same
WO2019181142A1 (en) Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and light sensor

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007