JP2013016555A - Measuring device - Google Patents

Measuring device Download PDF

Info

Publication number
JP2013016555A
JP2013016555A JP2011146557A JP2011146557A JP2013016555A JP 2013016555 A JP2013016555 A JP 2013016555A JP 2011146557 A JP2011146557 A JP 2011146557A JP 2011146557 A JP2011146557 A JP 2011146557A JP 2013016555 A JP2013016555 A JP 2013016555A
Authority
JP
Japan
Prior art keywords
light
signal
level
reference level
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011146557A
Other languages
Japanese (ja)
Inventor
Yoji Nakahara
陽司 中原
Yasushi Sakakibara
靖志 榊原
Masao Shimazaki
政男 嶋崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Industrial Devices SUNX Co Ltd
Original Assignee
Panasonic Industrial Devices SUNX Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Industrial Devices SUNX Co Ltd filed Critical Panasonic Industrial Devices SUNX Co Ltd
Priority to JP2011146557A priority Critical patent/JP2013016555A/en
Publication of JP2013016555A publication Critical patent/JP2013016555A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve measuring accuracy of an incident light position.SOLUTION: The measuring device comprises: a light projection element 62 radiating detection light; an image sensor 85 opposed to the light projection element 62; a signal reading circuit 90 reading light receiving signals from the image sensor 85; and a measuring circuit 120 comparing a level of the light receiving signals with a predetermined reference level, and measuring and outputting an incident light position, at which the level of the light receiving signals varies from the reference level or more to the reference level or less, or from the reference level or less to the reference level or more, when a detected object passes through the detection region. A first filter circuit 100 removing a signal component of a predetermined frequency from a light receiving signal waveform read by the signal reading circuit 90 is provided between the signal reading circuit 90 and the measuring circuit 120.

Description

本発明は、撮像面上における入遮光位置を測定する測定装置に関するものである。   The present invention relates to a measuring apparatus that measures an incident / light-shielding position on an imaging surface.

従来から、撮像面上における入遮光位置を測定する測定装置が知られている。例えば、下記特許文献1の測定装置は、検出光を出射する投光ユニットと、出射された検出光を受ける二次元の撮像部を有する受光ユニットとから構成されていて、両ユニットを向い合わせた状態で一定距離離れて配置している。そして、両ユニットの間を吸着ヘッドや部品などの遮光体が横切ると、検出光の一部が遮光体に遮られることから、受光ユニットの受光面には、図8に示すように遮られた部分(同図においてハッチングで示す)だけ信号レベルが低い、部分欠けの受光像ができる。   2. Description of the Related Art Conventionally, a measuring apparatus that measures an incident light shielding position on an imaging surface is known. For example, the measuring apparatus disclosed in Patent Document 1 below includes a light projecting unit that emits detection light and a light receiving unit that has a two-dimensional imaging unit that receives the emitted detection light, and faces both units. It is placed at a certain distance in the state. Then, when a light shielding body such as a suction head or a part crosses between the two units, a part of the detection light is blocked by the light shielding body, so that the light receiving surface of the light receiving unit is blocked as shown in FIG. Only a portion (indicated by hatching in the figure) has a low signal level and a light-receiving image with a portion missing can be formed.

部分欠け受光像のエッジでは、受光信号のレベルが入光/遮光に切り換るので、受光ユニットにて受光信号の読み出しを行って、受光信号のレベルが入光レベルから遮光レベル、或いは遮光レベルから入光レベルに切り替わる入遮光位置を測定することで、部分欠けの受光画像のエッジ位置を求めることが可能であり、こうした受光画像に基づいて遮光体たる部品の姿勢等を認識していた。   At the edge of the partially missing received light image, the level of the received light signal is switched to light incident / light shielding. Therefore, the light receiving signal is read by the light receiving unit, and the light received signal level is changed from the light incident level to the light shielding level or the light shielding level. It is possible to determine the edge position of the partially missing light-receiving image by measuring the light-incoming light-shielding position that switches from the light-entering light level to the light-receiving level, and recognizes the orientation of the component that is the light-shielding body based on the light-receiving image.

特開2008−311336号公報JP 2008-31336 A

ところで、受光画像のエッジ位置(入遮光位置)の検出は、受光信号のレベルが入光レベルから遮光レベルに切り替わる位置を測定することにより行われるので、エッジ位置での輝度差(受光信号のレベル差)が大きくシャープな画像ほど、エッジ位置を高精度に検出可能である。しかしながら、近年では、投光ユニットと受光ユニットの相対距離L0(図2参照)が長く設定される場合があり、遮光体が両ユニット間のどの位置を通過するかによって受光画像がなまった画像(すなわちエッジ位置での輝度差が小さい画像)となり、エッジ位置の検出精度が下がることが問題視されていた。また特に、撮像部に形成される受光像中には、投光レンズによる光の屈折による検出光の干渉や、遮光体による検出光の回折により受光縞が出来ることから、この受光縞が受光画像にノイズ成分として重畳し、エッジ位置の検出精度を更に低下させる要因となっていた。   By the way, the detection of the edge position (incident light shielding position) of the received light image is performed by measuring the position at which the level of the received light signal switches from the incident light level to the light shielding level. The sharper the difference is, the more accurately the edge position can be detected. However, in recent years, the relative distance L0 (see FIG. 2) between the light projecting unit and the light receiving unit may be set to be long, and the received light image is distorted depending on which position between the light shielding bodies passes between the units ( That is, the image has a small luminance difference at the edge position), and it has been regarded as a problem that the detection accuracy of the edge position is lowered. In particular, in the light-receiving image formed in the imaging unit, a light-receiving fringe is formed by interference of detection light due to light refraction by the light projecting lens and diffraction of detection light by the light shielding body. As a noise component, the edge position detection accuracy is further reduced.

本発明は上記のような事情に基づいて完成されたものであって、その目的は、入遮光位置(エッジ位置)の測定精度を高めるところにある。   The present invention has been completed based on the above-described circumstances, and an object of the present invention is to improve the measurement accuracy of the incident light shielding position (edge position).

上記の目的を達成するための手段として、検出光を検出領域に向けて出射する投光手段と、前記投光手段と検出領域をはさんで対向配置され、少なくとも一次元状に配置される複数の受光素子からなる受光手段と、前記受光手段から受光信号を順次読み出す信号読出手段と、前記信号読出手段で読み出された受光信号のレベルと所定の基準レベルとを比較し、被検出物が前記検出領域を通過した際に、前記受光信号のレベルが基準レベル以上から前記基準レベル以下に、あるいは前記基準レベル以下から前記基準レベル以上に変化する入遮光位置を測定して出力する測定手段とを備える測定装置において、前記信号読出手段と前記測定手段の間に配置され、前記信号読出手段で順次読み出される受光信号波形から、所定周波数の信号成分を除去する第一フィルタ回路を備える。   As means for achieving the above object, a plurality of light projecting means for emitting detection light toward the detection area, a plurality of light projecting means and the detection area that are arranged to face each other and at least one-dimensionally disposed. A light receiving means comprising a plurality of light receiving elements, a signal reading means for sequentially reading a light reception signal from the light receiving means, a level of the light receiving signal read by the signal reading means and a predetermined reference level, and a detected object Measuring means for measuring and outputting an incident light shielding position where the level of the received light signal changes from the reference level to the reference level or from the reference level to the reference level when passing through the detection region; A signal component having a predetermined frequency is removed from the received light signal waveform which is disposed between the signal reading means and the measuring means and sequentially read by the signal reading means. It comprises a first filter circuit for.

この発明の実施態様として、以下の構成とすることが好ましい。
・前記所定周波数は、前記受光手段が前記検出光を受光して出来る受光像中に出来る受光縞の空間周波数である。尚、ここでいう受光縞には、検出光の干渉による干渉縞や、回折による回折縞が含まれる。
As an embodiment of the present invention, the following configuration is preferable.
The predetermined frequency is a spatial frequency of light reception fringes formed in a light reception image formed by the light receiving means receiving the detection light. The light receiving fringes mentioned here include interference fringes due to interference of detection light and diffraction fringes due to diffraction.

・前記第一フィルタ回路と前記測定手段の間に、前記受光信号波形を二次微分して前記受光信号波形との差分を求めて出力する第二フィルタ回路を設ける。 A second filter circuit is provided between the first filter circuit and the measuring means to secondarily differentiate the received light signal waveform to obtain a difference from the received light signal waveform and output the difference.

本発明によれば、フィルタ回路により受光縞のノイズ成分を除去するので、受光信号のレベルが基準レベル以上から前記基準レベル以下に、あるいは前記基準レベル以下から前記基準レベル以上に変化する入遮光位置を正確に検出できる。   According to the present invention, since the noise component of the light reception fringes is removed by the filter circuit, the incident light shielding position where the level of the light reception signal changes from the reference level or more to the reference level or less, or from the reference level or less to the reference level or more. Can be detected accurately.

本実施形態に適用された部品実装機の平面図Plan view of a component mounter applied to this embodiment 吸着ヘッドに保持された部品が検出光軸を横切る状態を示す斜視図The perspective view which shows the state in which the components hold | maintained at the suction head cross a detection optical axis 測定装置の電気的構成を示すブロック図Block diagram showing the electrical configuration of the measuring device CMOSイメージセンサの受光面を示す図The figure which shows the light-receiving surface of the CMOS image sensor デジタルフィルタ回路のブロック図Digital filter circuit block diagram 部品の姿勢と入射光位置の関係を示す図Diagram showing the relationship between component posture and incident light position イメージセンサと遮光物体の位置関係を示す図Diagram showing the positional relationship between the image sensor and the light-shielding object 部品の姿勢と入射光位置の関係を示す図Diagram showing the relationship between component posture and incident light position 受光信号波形を示す図(デジタルフィルタ回路通過前)Diagram showing received light signal waveform (before passing through digital filter circuit) 受光信号波形を示す図(デジタルフィルタ回路通過後)Diagram showing received light signal waveform (after passing through digital filter circuit) 受光信号波形を示す図(デジタルフィルタ回路通過前)Diagram showing received light signal waveform (before passing through digital filter circuit) 受光信号波形を示す図(デジタルフィルタ回路通過後)Diagram showing received light signal waveform (after passing through digital filter circuit) 実施形態2における測定装置の電気的構成を示すブロック図The block diagram which shows the electrical constitution of the measuring device in Embodiment 2. 受光信号波形を示す図(ラプラシアンフィルタ処理前)Diagram showing received light signal waveform (before Laplacian filter processing) 受光信号波形を示す図(ラプラシアンフィルタ処理後)Diagram showing received light signal waveform (after Laplacian filter processing)

<実施形態1>
本発明の実施形態1を図1ないし図12によって説明する。
本実施形態は、本発明に係る測定装置50を部品実装機10に搭載したものである。部品実装機10は基台11の中央に基板搬送用のコンベア15を設けており、実装対像の基板Fを基台11上に搬入させた後、基台中央寄りの作業位置にて停止させるようになっている。
<Embodiment 1>
A first embodiment of the present invention will be described with reference to FIGS.
In the present embodiment, the measuring apparatus 50 according to the present invention is mounted on a component mounter 10. The component mounting machine 10 is provided with a substrate transporting conveyor 15 at the center of the base 11, and after mounting the image F to be mounted on the base 11, it is stopped at a work position near the center of the base. It is like that.

そして、作業位置の側方にあたる図1の下部側には部品供給部16が設けられている。係る部品供給部16にはフィーダ40が多数個横並び状に設置されている。フィーダ40は基板Fに実装される部品Wを供給する機能を担うものである。   A component supply unit 16 is provided on the lower side of FIG. A large number of feeders 40 are installed side by side in the component supply unit 16. The feeder 40 has a function of supplying a component W mounted on the board F.

また、基台11の左右両側には作業位置を間に挟んで、一対のガイドレール21が設置されるとともに、同ガイドレール21を左右に架設してヘッド支持体22が設置されている。係るヘッド支持体22は左右のガイドレール21に沿って図1の上下方向に移動自在な構成となっている。   In addition, a pair of guide rails 21 are installed on both the left and right sides of the base 11 with a work position interposed therebetween, and a head support 22 is installed with the guide rails 21 extending from side to side. The head support 22 is configured to be movable in the vertical direction in FIG. 1 along the left and right guide rails 21.

そして、上記ヘッド支持体22には、ヘッドユニット30が装着されている。ヘッドユニット30は、ヘッド支持体22の長手方向に移動自在な構成とされる。これにより、ヘッド支持体22をガイドレール21に沿って上下方向に移動させつつ、ヘッド支持体22に沿ってヘッドユニット30を左右方向に移動させることで、基台11上の任意の位置にヘッドユニット30を水平移動させることができる構成となっている。   A head unit 30 is attached to the head support 22. The head unit 30 is configured to be movable in the longitudinal direction of the head support 22. Accordingly, the head unit 22 is moved in the left-right direction along the head support 22 while moving the head support 22 in the up-down direction along the guide rail 21, so that the head can be placed at an arbitrary position on the base 11. The unit 30 can be moved horizontally.

そして、ヘッドユニット30の下面部には、下方に突出するようにして吸着ヘッド31が取り付けられている(図1中は省略、図2参照)。係る吸着ヘッド31はヘッドユニット30に対して昇降可能な構成とされ、先端には吸着ノズル35を設けている。そして、吸着ノズル35には図外の負圧手段から負圧が供給され、ヘッド先端に吸引力を生じさせる構成となっている。   A suction head 31 is attached to the lower surface of the head unit 30 so as to protrude downward (omitted in FIG. 1, see FIG. 2). The suction head 31 is configured to be movable up and down with respect to the head unit 30, and a suction nozzle 35 is provided at the tip. A negative pressure is supplied to the suction nozzle 35 from a negative pressure means (not shown) to generate a suction force at the tip of the head.

上記の如く構成することで、フィーダ40上の部品Wを以下の要領で取り出すことができる。まず、ヘッドユニット30をフィーダ40上に移動させ、フィーダ40の上方にて停止させる(図1に示す(A)の位置)。   By configuring as described above, the part W on the feeder 40 can be taken out in the following manner. First, the head unit 30 is moved onto the feeder 40 and stopped above the feeder 40 (position (A) shown in FIG. 1).

その後、吸着ヘッド31を下降させつつ、下降タイミングに合わせて吸着ヘッド31に負圧を供給する。これにより、フィーダ40を通じて供給される部品Wを吸着ヘッド31にて吸着保持できる。   Thereafter, the suction head 31 is lowered, and negative pressure is supplied to the suction head 31 in accordance with the lowering timing. Thereby, the component W supplied through the feeder 40 can be sucked and held by the suction head 31.

あとは、下降状態にある吸着ヘッド31を上昇させてやれば、吸着保持された部品Wは吸着ヘッド31とともに上昇する。これにて、フィーダ40より部品Wが取り出される。   Thereafter, if the suction head 31 in the lowered state is raised, the component W held by suction rises together with the suction head 31. Thus, the part W is taken out from the feeder 40.

そして、部品Wの取り出し作業が完了したら、次に、基板F上に部品を実装するべく、フィーダ上方に位置するヘッドユニット30を作業位置に停止する基板Fの上方に向けて移動させる処理が行われる。   When the work for taking out the component W is completed, a process of moving the head unit 30 located above the feeder toward the upper side of the substrate F stopped at the work position is then performed in order to mount the component on the substrate F. Is called.

これにより、図1の例では、部品Wを保持したヘッドユニット30は基台奥側にあたる図1の紙面上方に移動することとなるが、本実施形態のものは、係る移動過程で後に説明する測定装置50の検出光軸Lを吸着ヘッド31の先端に吸着保持された部品Wが横切ることで(図2参照)、吸着ヘッド31に吸着保持された部品Wの姿勢が検査(以下、検出ともいう)される構成となっている。   Accordingly, in the example of FIG. 1, the head unit 30 holding the component W moves to the upper side of the paper of FIG. 1 on the back side of the base, but this embodiment will be described later in the movement process. When the component W sucked and held at the tip of the suction head 31 crosses the detection optical axis L of the measuring device 50 (see FIG. 2), the posture of the component W sucked and held by the suction head 31 is inspected (hereinafter, both detected) It is configured to say.

そして、検査の結果、部品姿勢に異常がなければ、ヘッドユニット30による部品の実装処理が進められ、作業位置に停止する基板F上に部品Wが実装される。   If there is no abnormality in the component posture as a result of the inspection, the component mounting process by the head unit 30 is advanced, and the component W is mounted on the substrate F that stops at the work position.

次に、測定装置50について説明する。
測定装置50は検出光を、被検出物たる部品Wが通過する検出領域Kに向けて出射する投光ユニット60と、投光ユニット60と検出領域Kを間に挟んで対向配置され、出射された検出光を受ける受光ユニット70とから構成されている。両ユニット60、70は共にケーシング61、71内に各種装置を内蔵させたものである。
Next, the measuring apparatus 50 will be described.
The measuring device 50 emits detection light toward a detection region K through which a component W that is a detection object passes, and is disposed oppositely with the light projection unit 60 and the detection region K interposed therebetween and emitted. And a light receiving unit 70 that receives the detected light. Both units 60 and 70 are ones in which various devices are built in casings 61 and 71.

図3に示すように、投光ユニット60は、レーザダイオードからなる投光素子(すなわち、レーザ光源)62を備えている。係る投光ユニット60は、受光ユニット70と電気的に連なっており、受光ユニット70側の制御回路130より発せられる投光指令に従って、投光素子62をドライブして検出光としてレーザ光を出射する構成となっている。   As shown in FIG. 3, the light projecting unit 60 includes a light projecting element (that is, a laser light source) 62 composed of a laser diode. The light projecting unit 60 is electrically connected to the light receiving unit 70 and drives the light projecting element 62 to emit laser light as detection light in accordance with a light projecting command issued from the control circuit 130 on the light receiving unit 70 side. It has a configuration.

受光ユニット70は、投光ユニット60から出射された検出光を受ける受光部80を備えている。受光部80は集光レンズ81とイメージセンサ85とから構成されている。集光レンズ81は検出光を集光させつつイメージセンサ85上に入光させる機能を担うものであり、イメージセンサ85の前方に設置されている。   The light receiving unit 70 includes a light receiving unit 80 that receives the detection light emitted from the light projecting unit 60. The light receiving unit 80 includes a condenser lens 81 and an image sensor 85. The condenser lens 81 has a function of causing the detection light to be incident on the image sensor 85 while condensing the detection light, and is disposed in front of the image sensor 85.

イメージセンサ85は図4に示すように、受光素子(以下、画素とも言う)Pを行列状に配置して受光面86を形成した二次元のものであり、本実施形態のものは、各受光素子Pに増幅素子を組み込んだCMOS(シーモス)ディバイス構造のCOMSイメージセンサを使用している。   As shown in FIG. 4, the image sensor 85 is a two-dimensional sensor in which light receiving elements (hereinafter also referred to as pixels) P are arranged in a matrix to form a light receiving surface 86. A CMOS image sensor having a CMOS (Seamos) device structure in which an amplifying element is incorporated in the element P is used.

尚、CMOSイメージセンサは受光面を構成する複数の受光素子Pの中から、ある受光素子Pを選択して受光信号(信号電荷を内部で増幅して信号電圧にしたもの)を読み出すことが可能なランダムアクセスタイプのディバイスとして知られている。そして、本実施形態に適用のCMOSイメージセンサ85は受光信号の読み出しが垂直ラインVごとに行われる形式となっており、また、読み出し対像となる垂直ラインV1〜V16を任意選択できる。   The CMOS image sensor can read a light reception signal (a signal charge is amplified internally to be a signal voltage) by selecting a light reception element P from a plurality of light reception elements P constituting the light reception surface. It is known as a random access type device. The CMOS image sensor 85 applied to the present embodiment has a format in which a light reception signal is read out for each vertical line V, and the vertical lines V1 to V16 that are read-out images can be arbitrarily selected.

また、CMOSイメージセンサ85が本発明の受光手段に相当している。   The CMOS image sensor 85 corresponds to the light receiving means of the present invention.

図3に戻って、説明を続けると、受光ユニット70には、ユニット全体を制御統括する制御回路130、信号読出回路90、デジタルフィルタ回路(本発明の「第一フィルタ回路」に相当)100、測定回路120、記憶部135が設けられている。   Returning to FIG. 3, the description will be continued. The light receiving unit 70 includes a control circuit 130 that controls and controls the entire unit, a signal readout circuit 90, a digital filter circuit (corresponding to the “first filter circuit” of the present invention) 100, A measurement circuit 120 and a storage unit 135 are provided.

信号読出回路90は制御回路130より与えられる読出指令に従って、CMOSイメージセンサ85から受光信号の読み出しを行うものである。   The signal readout circuit 90 reads out the received light signal from the CMOS image sensor 85 in accordance with a readout command given from the control circuit 130.

デジタルフィルタ回路100は、信号読出回路90と測定回路120の間に配置されている。このデジタルフィルタ回路100は、図5に示すようにM次(具体的には6次)のFIR(Finite Impulse Responce)フィルタであり遅延素子T、増幅素子A、加算器Uを6段備えた構成となっている。尚、図5中の「x」は入力信号を示し、「y」は出力信号を示す。このデジタルフィルタ回路100は、信号読出回路90から読み出した受光信号波形(読み出しラインV上の位置を横軸とし、受光信号のレベルを縦軸として受光信号波形)から所定周波数、すなわち受光縞Yの空間周波数帯域の信号成分を除去する回路であり、受光像Zに含まれる受光縞Yの空間周波数を阻止域に含むように、各増幅素子A1〜A7のフィルタ係数a1〜a7を設定している。   The digital filter circuit 100 is disposed between the signal readout circuit 90 and the measurement circuit 120. As shown in FIG. 5, the digital filter circuit 100 is an M-order (specifically sixth-order) FIR (Finite Impulse Response) filter, and includes six stages of delay elements T, amplifier elements A, and adders U. It has become. In FIG. 5, “x” indicates an input signal, and “y” indicates an output signal. This digital filter circuit 100 has a predetermined frequency, that is, a light-receiving fringe Y, from a light-receiving signal waveform read from the signal reading circuit 90 (light-receiving signal waveform with the position on the read line V as the horizontal axis and the light-receiving signal level as the vertical axis). This is a circuit for removing a signal component in the spatial frequency band, and the filter coefficients a1 to a7 of the respective amplification elements A1 to A7 are set so that the spatial frequency of the light receiving fringes Y included in the received light image Z is included in the stop band. .

具体的に説明すると、イメージセンサ85が検出光を受光して出来る受光像Zには受光縞(干渉縞と回折縞の総称)Yが含まれている。これは、投光レンズ(図略)で屈折した検出光が干渉することにより干渉縞が出来、また検出光軸Lを横切る部品W等の遮光物体にて検出光が回折を起こすことにより回折縞が出来るためである。こうした回折縞は、イメージセンサ85から遮光物体までの距離Laに応じて縞の繰り返し周期、すなわち空間周波数が異なる。尚、図6には受光縞Yの一例を模式的に示してある。   More specifically, the light reception image Z formed by the image sensor 85 receiving the detection light includes a light reception fringe (a general term for interference fringes and diffraction fringes) Y. This is because interference fringes are generated by interference of detection light refracted by a projection lens (not shown), and diffraction fringes are caused by detection light being diffracted by a light-shielding object such as a component W that crosses the detection optical axis L. This is because it is possible. Such diffraction fringes have different fringe repetition periods, that is, spatial frequencies, according to the distance La from the image sensor 85 to the light shielding object. FIG. 6 schematically shows an example of the light receiving stripe Y.

そのため、本実施形態では、図7に示すように遮光物体である部品Wを、受光ユニット70寄りの近点、中間点、遠点の3箇所に置いて受光像Zの撮影を行い、その結果から、受光縞の一例として回折縞の空間周波数を特定する。   Therefore, in the present embodiment, as shown in FIG. 7, the light receiving image Z is photographed by placing the part W, which is a light shielding object, at three points near the light receiving unit 70, that is, the middle point and the far point. Thus, the spatial frequency of the diffraction fringe is specified as an example of the light receiving fringe.

詳しく説明すると、まず、各3点について受光像Zの画像データを対象に、フーリエ変換を行い、空間周波数とパワースペクトルの相関を示すパワースペクトルの分布を算出する。   More specifically, first, Fourier transform is performed on the image data of the received light image Z for each of the three points, and a power spectrum distribution indicating the correlation between the spatial frequency and the power spectrum is calculated.

これら各3点(近点、中間点、遠点)に部品Wを置いた時の、受光画像は回折縞を除いて同じ画像となるので、3点の受光画像のパワースペクトルの分布を比較して変化の有無を調べることで、遮光物体の通過位置に対応して出来る回折縞の空間周波数を特定することが出来る。すなわち、近点の受光画像のパワースペクル分布について、それ以外の受光画像のパワースペクル分布に対して周波数帯域Faに変化が見られた場合には、部品が近点を通過した時に出来る回折縞の空間周波数は「周波数帯域Fa」とわかる。   When the component W is placed at each of these three points (near point, middle point, far point), the received light image is the same image except for diffraction fringes, so the power spectrum distributions of the three received light images are compared. By examining whether or not there is a change, it is possible to specify the spatial frequency of the diffraction fringes generated corresponding to the passage position of the light shielding object. That is, regarding the power spectrum distribution of the near-point received light image, if there is a change in the frequency band Fa with respect to the power spectrum distribution of other received light images, the diffraction fringes generated when the part passes the near point The spatial frequency is known as “frequency band Fa”.

また、同様に、中間点の受光画像のパワースペクル分布について、それ以外の受光画像のパワースペクル分布に対して周波数帯域Fbに変化が見られた場合には、部品が中間点を通過した時に出来る回折縞の空間周波数は「周波数帯域Fb」とわかる。また、遠点の受光画像のパワースペクル分布について、それ以外の受光画像のパワースペクル分布に対して周波数帯域Fcに変化が見られた場合には、部品が遠点を通過した時に出来る回折縞の空間周波数は「周波数帯域Fc」とわかる。   Similarly, with respect to the power spectrum distribution of the received light image at the intermediate point, when a change is observed in the frequency band Fb with respect to the power spectrum distribution of the other received light images, the change can be made when the component passes the intermediate point. The spatial frequency of the diffraction fringes is known as “frequency band Fb”. In addition, regarding the power spectrum distribution of the received light image at the far point, when there is a change in the frequency band Fc with respect to the power spectrum distribution of the other received light images, the diffraction fringes generated when the part passes the far point The spatial frequency is known as “frequency band Fc”.

そして、本実施形態では、近点から遠点までのどのポイントを遮光物体が通過しても、それによって出来る受光縞(回折縞)を受光信号波形から除去(フィルタリング)できるように周波数帯域Fa〜Fcを全て阻止域に含むようにフィルタ係数a1〜a7を設定している。尚、この実施形態では、周波数帯域Fa〜Fcが8MHz以上に存在していることから、8MHz以上を阻止域とし、8MHz以下を通過域とするローパスフィルタとなるようにフィルタ係数a1〜a7を設定している。   In the present embodiment, the frequency band Fa˜ so that the light receiving fringes (diffraction fringes) generated by the light shielding object can be removed (filtered) from the received light signal waveform no matter which point from the near point to the far point passes through the light shielding object. The filter coefficients a1 to a7 are set so as to include all Fc in the stop band. In this embodiment, since the frequency bands Fa to Fc exist at 8 MHz or more, the filter coefficients a1 to a7 are set so as to be a low-pass filter having a stop band of 8 MHz or more and a pass band of 8 MHz or less. doing.

測定回路120は、デジタルフィルタ回路100を通過した受光信号の受光レベル(以下、単にレベルとも言う)を、予め設定された基準レベルRと比較することで、読み出した受光信号のレベルが基準レベルR以上の入光レベルにあるか、基準レベルR以下の遮光レベルにあるかを判別するものである。そして、測定回路120では、検出ラインV上において受光信号のレベルが入光レベルから遮光レベル、或いは遮光レベルから入光レベルに切り替わる入遮光位置が測定される。尚、上記により、本発明の「受光信号のレベルと所定の基準レベルとを比較し、被検出物が前記検出領域を通過した際に、前記受光信号のレベルが基準レベル以上から前記基準レベル以下に、あるいは前記基準レベル以下から前記基準レベル以上に変化する入遮光位置を測定する」が実現されている。   The measurement circuit 120 compares the received light level (hereinafter also simply referred to as level) of the received light signal that has passed through the digital filter circuit 100 with a preset reference level R so that the level of the read received light signal is the reference level R. It is determined whether the light incident level is above or the light shielding level is below the reference level R. Then, the measurement circuit 120 measures an incident light blocking position on the detection line V where the level of the received light signal is switched from the incident light level to the blocked light level or from the blocked light level to the incident light level. In addition, according to the above, “the level of the light reception signal is compared with a predetermined reference level, and when the detected object passes through the detection region, the level of the light reception signal is higher than the reference level and lower than the reference level. Alternatively, the measurement of an incident light shielding position that changes from the reference level or less to the reference level or more is realized.

そして、測定回路120により測定された結果は、受光ユニット70とは別に設けられた姿勢検出装置140に信号線を介して出力される構成となっている。   The result measured by the measurement circuit 120 is output to a posture detection device 140 provided separately from the light receiving unit 70 via a signal line.

次に、測定装置50の動作説明を行う。部品実装機10側の制御回路(不図示)から、吸着ヘッド31の移動タイミングを知らせるタイミング信号Srが入力されると、以下の要領で測定が自動的に開始される。   Next, the operation of the measuring apparatus 50 will be described. When a timing signal Sr for notifying the movement timing of the suction head 31 is input from a control circuit (not shown) on the component mounter 10 side, measurement is automatically started in the following manner.

順に説明してゆくと、制御回路130は上記タイミング信号Srを受けると、吸着ヘッド31に吸着保持された部品Wが検出光軸Lを横切るタイミングに合わせて投光ユニット60に投光指令を与えて投光素子62をパルス点灯させる。   To explain in sequence, upon receiving the timing signal Sr, the control circuit 130 gives a projection command to the projection unit 60 in accordance with the timing at which the component W sucked and held by the suction head 31 crosses the detection optical axis L. Then, the light projecting element 62 is turned on in pulses.

すると、投光素子62より出射された検出光は、集光レンズ81により集光されつつ、CMOSイメージセンサ85の受光面86上に入光する。このとき、検出光の一部が吸着ヘッド31及び、それに吸着保持された部品Wに遮られる。従って、CMOSイメージセンサ85の受光面86には、図8に示すように遮られた部分(同図においてハッチングで示す)だけ受光レベルが低い、部分欠けの受光像Zができる。   Then, the detection light emitted from the light projecting element 62 enters the light receiving surface 86 of the CMOS image sensor 85 while being collected by the condenser lens 81. At this time, a part of the detection light is blocked by the suction head 31 and the part W held by suction. Therefore, the light receiving surface 86 of the CMOS image sensor 85 has a partially missing light receiving image Z having a low light receiving level only in the blocked portion (shown by hatching in FIG. 8).

そして、受光像Zの形成に合わせて、信号読出回路90は検出ラインV上の受光素子Pから受光信号を順に読み出してゆく。その後、読み出された受光信号はデジタルフィルタ回路100に入力される。   Then, in accordance with the formation of the received light image Z, the signal readout circuit 90 sequentially reads the received light signal from the light receiving element P on the detection line V. Thereafter, the read light reception signal is input to the digital filter circuit 100.

デジタルフィルタ回路100では8MHz以上の高周波の信号が全て抑圧される。受光像Zに含まれる受光縞(ここでは、回折縞)は、この帯域に含まれているので、受光信号をデジタルフィルタ回路100に通すことで、受光信号波形から受光縞Yによるノイズ成分を除去できる。図9は、デジタルフィルタ回路100を通過する前の受光信号波形であり、図10はデジタルフィルタ回路100を通過後の受光信号波形である。図10の受光信号波形では、図9のそれに対してノイズ成分が除去できていることが理解できる。   The digital filter circuit 100 suppresses all high frequency signals of 8 MHz or higher. Since the light reception fringes (here, diffraction fringes) included in the light reception image Z are included in this band, the noise component due to the light reception fringes Y is removed from the light reception signal waveform by passing the light reception signal through the digital filter circuit 100. it can. FIG. 9 shows a light reception signal waveform before passing through the digital filter circuit 100, and FIG. 10 shows a light reception signal waveform after passing through the digital filter circuit 100. In the received light signal waveform of FIG. 10, it can be understood that the noise component can be removed from that of FIG.

デジタルフィルタ回路100を通過した受光信号は、その後測定回路120に入力される。測定回路120では、読み出された各受光信号のレベルが入光レベルにあるか、遮光レベルにあるかを検出する処理が行なわれ、検出ラインV上において受光信号のレベルが入光レベルから遮光レベル、或いは遮光レベルから入光レベルに切り替わる入遮光位置が測定される。   The received light signal that has passed through the digital filter circuit 100 is then input to the measurement circuit 120. In the measurement circuit 120, processing is performed to detect whether the read light reception signal level is the incident light level or the light shielding level, and the light reception signal level is shielded from the incident light level on the detection line V. The level or the incident / light-shielding position at which the light-shielding level is switched to the incident light level is measured.

本例であれば、部品下面より上側は遮光状態となるのに対して、部品下面より下側は入光状態となる。従って、吸着ヘッド31に部品Wが正しく保持された図8の(1)の場合には、入遮光位置は(c)の位置となる。尚、図9、図10の受光信号波形は、部品が正しく保持された図8の(1)のものであり、(c)の位置にて、受光レベルが入光レベルから遮光レベルに切り換っている。一方、吸着ヘッド31に部品Wが立った姿勢で保持された図8の(2)の場合には、(d)の位置が入遮光位置となる。   In this example, the upper side from the lower surface of the component is in a light shielding state, whereas the lower side from the lower surface of the component is in a light incident state. Therefore, in the case of (1) in FIG. 8 in which the component W is correctly held by the suction head 31, the incident / light shielding position is the position (c). The light reception signal waveforms in FIGS. 9 and 10 are those of (1) in FIG. 8 in which the components are correctly held, and at the position (c), the light reception level is switched from the light incident level to the light shielding level. ing. On the other hand, in the case of (2) in FIG. 8 in which the component W is held on the suction head 31 in a standing posture, the position (d) is the incident light shielding position.

そして、入遮光位置のデータは測定回路120から姿勢検出装置140に出力され、姿勢検出装置140にて入遮光位置のデータに応じた処理が行われる。   Then, the light incident / shielding position data is output from the measurement circuit 120 to the posture detection device 140, and the posture detection device 140 performs processing according to the light incident / light shielding position data.

すなわち、姿勢検出装置140は入遮光位置は(c)の位置であるとするデータを受け取った場合、「正常保持」と判定し、部品実装処理を進める旨の制御信号を部品実装機10に送る。これにより、部品実装機10の主導の下、作業位置に停止する基板Fに部品Wを実装する実装処理が進められることとなる。   That is, when the posture detection device 140 receives data indicating that the incident / light-shielding position is the position (c), the posture detection device 140 determines “maintain normally” and sends a control signal to the component mounter 10 to advance the component mounting process. . As a result, under the initiative of the component mounter 10, the mounting process of mounting the component W on the board F stopped at the work position is advanced.

一方、姿勢検出装置140は入遮光位置は(d)の位置であるとするデータを受け取った場合、「保持エラー」と判定し、エラー信号を部品実装機10に送る。これにより、部品実装機10においてエラー処理が行われることとなる。   On the other hand, when the posture detection device 140 receives data indicating that the incident / light-shielding position is the position (d), it determines that it is a “holding error” and sends an error signal to the component mounter 10. As a result, error processing is performed in the component mounter 10.

そして、上記要領で部品Wの姿勢検出、部品Wの実装処理が繰り返し行われることで、基板Fに対する部品Wの実装処理が進められることとなる。   Then, the mounting process of the component W on the board F is advanced by repeatedly performing the posture detection of the component W and the mounting process of the component W in the above manner.

次に、本実施形態の効果について説明する。
部品Wが、両ユニット60、70間のどこを通過するかによって受光画像は、シャープな画像(すなわち入遮光位置での輝度差が大きい画像)になったり、なまった画像(すなわち入遮光位置での輝度差が小さい画像)となる。これは、被写体たる部品Wと受光レンズ81との位置関係によりピントがあったり、合わなかったりするからである。
Next, the effect of this embodiment will be described.
Depending on where the component W passes between the two units 60 and 70, the received light image becomes a sharp image (that is, an image having a large luminance difference at the incident / shielded position) or a distorted image (that is, at the incident / shielded position). Image with a small luminance difference). This is because the subject W and the light receiving lens 81 are in focus or not in focus.

ピントが合わず受光画像がなまった波形となる場合、受光信号をデジタルフィルタ回路100に通さないとすると、図11に示すように、なまった受光信号波形に対して、更に受光縞のノイズ成分が重畳するので、入遮光位置を誤検出し易くなる。具体的には、入遮光位置として、正しくは(D)位置と(E)位置の中間位置を検出するべきところ、誤って(D)位置や(E)位置を検出してしまう。   If the received light image does not pass the focus and the received light image has a distorted waveform, if the received light signal is not passed through the digital filter circuit 100, as shown in FIG. Since they are superposed, it is easy to erroneously detect the incident light shielding position. More specifically, the position (D) and the position (E) are erroneously detected where the intermediate position between the position (D) and the position (E) should be correctly detected as the incident / light shielding position.

この点、本実施形態では、受光信号をデジタルフィルタ回路100に通して、図12に示すように、受光信号波形から受光縞Yの信号成分(すなわち、ノイズ成分)を除去する。そのため、受光信号の入遮光位置を正確に測定できる。具体的には、入遮光位置として、(D)位置と(E)位置のほぼ中間位置にあたる(F)位置を検出する。従って、部品Wの姿勢を正確に認識できる。   In this regard, in the present embodiment, the light reception signal is passed through the digital filter circuit 100, and the signal component (that is, noise component) of the light reception stripe Y is removed from the light reception signal waveform as shown in FIG. Therefore, the incident / shielded position of the received light signal can be accurately measured. Specifically, a position (F) corresponding to a substantially intermediate position between the position (D) and the position (E) is detected as the incident light shielding position. Therefore, the posture of the component W can be accurately recognized.

<実施形態2>
次に、本発明の実施形態2を図13ないし図15によって説明する。
実施形態2の受光ユニット170は、実施形態1の受光ユニット70に対してラプラシアンフィルタ回路(本発明の「第二フィルタ回路」に相当)110を追加したものである。このラプラシアンフィルタ回路110は、デジタルフィルタ回路100と測定回路120の間にあって、デジタルフィルタ回路100を通過した受光信号に対して、以下の処理を行って、後段の測定回路120へ出力する。
<Embodiment 2>
Next, a second embodiment of the present invention will be described with reference to FIGS.
The light receiving unit 170 of the second embodiment is obtained by adding a Laplacian filter circuit (corresponding to the “second filter circuit” of the present invention) 110 to the light receiving unit 70 of the first embodiment. The Laplacian filter circuit 110 is between the digital filter circuit 100 and the measurement circuit 120, performs the following processing on the received light signal that has passed through the digital filter circuit 100, and outputs it to the subsequent measurement circuit 120.

ラプラシアンフィルタ回路110では、受光信号(原受光信号)の波形データの二次微分を求め、その後、受光信号(原受光信号)に対して二次微分した信号を差し引く処理が行われる。   In the Laplacian filter circuit 110, a second derivative of the waveform data of the light reception signal (original light reception signal) is obtained, and then a process of subtracting the second derivative from the light reception signal (original light reception signal) is performed.

上記処理を行うことで、受光信号の入遮光位置における輝度差が強調される波形データを生成できる。例えば、図13、図14にて一点鎖線で示すように、受光信号は入遮光位置にて輝度差が大きな信号となる。尚、図13、図14では、原受光信号を実線で示し、ラプラシアンフィルタ処理後の受光信号を一点鎖線で示してある。   By performing the above processing, it is possible to generate waveform data in which the luminance difference at the incident / shielded position of the received light signal is emphasized. For example, as shown by the alternate long and short dash line in FIGS. 13 and 14, the received light signal is a signal having a large luminance difference at the incident / shielded position. In FIGS. 13 and 14, the original light reception signal is indicated by a solid line, and the light reception signal after the Laplacian filter processing is indicated by an alternate long and short dash line.

このように、デジタルフィルタ回路100と測定回路120の間に、ラプラシアンフィルタ回路110を設けておけば、デジタルフィルタ回路100の通過に伴って生ずる波形のなまりにより、入射光位置の輝度差が小さくなってしまっても、輝度差を戻すことが可能となるので、後段の測定回路120にて受光信号の入遮光位置を正確に測定できる。従って、部品Wの姿勢を正確に認識できる。   As described above, if the Laplacian filter circuit 110 is provided between the digital filter circuit 100 and the measurement circuit 120, the luminance difference at the incident light position is reduced due to the rounding of the waveform caused by the passage of the digital filter circuit 100. In this case, the luminance difference can be restored, so that the incident / light-shielding position of the received light signal can be accurately measured by the measurement circuit 120 at the subsequent stage. Therefore, the posture of the component W can be accurately recognized.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.

(1)上記実施形態では、2次元のCMOSイメージセンサ85を受光部80に用いたが、受光素子を二次元的に配置し、かつ任意ラインを選択して、受光信号を読み出すことができるものであれよく、例えば、一次元のラインセンサを複数個並べて受光面を構成するものであってもよい。また、単に一次元のラインセンサであってもよい。   (1) In the above embodiment, the two-dimensional CMOS image sensor 85 is used for the light receiving unit 80. However, the light receiving element can be two-dimensionally arranged and an arbitrary line can be selected to read a light reception signal. For example, a light receiving surface may be configured by arranging a plurality of one-dimensional line sensors. Further, it may be simply a one-dimensional line sensor.

(2)上記実施形態では、受光信号波形から回折縞によるノイズ成分を除去する例を説明したが、干渉縞によるノイズ成分も併せて除去することが好ましい。これには、受光信号波形を波形分析することにより、干渉縞の空間周波数を検出して、その帯域を阻止域に含むようにデジタルフィルタ回路(ローパスフィルタ回路)のフィルタ係数を設定すればよい。   (2) In the above-described embodiment, the example in which the noise component due to the diffraction fringes is removed from the light reception signal waveform has been described. For this purpose, the spatial frequency of the interference fringes is detected by analyzing the waveform of the received light signal waveform, and the filter coefficient of the digital filter circuit (low-pass filter circuit) is set so that the band is included in the stop band.

50…測定装置
60…投光ユニット
62…投光素子(本発明の「投光手段」に相当)
70…受光ユニット
80…受光部
81…集光レンズ
85…CMOSイメージセンサ(本発明の「受光手段」に相当)
90…信号読出回路(本発明の「信号読出手段」に相当)
100…デジタルフィルタ回路(本発明の「第一フィルタ回路」に相当)
110…ラプラシアンフィルタ回路(本発明の「第二フィルタ回路」に相当)
120…測定回路(本発明の「測定手段」に相当)
130…制御回路
180…姿勢検出装置
L…検出光軸
W…部品(本発明の「被検出物」に相当)
V…垂直ライン)
DESCRIPTION OF SYMBOLS 50 ... Measuring apparatus 60 ... Light projection unit 62 ... Light projection element (equivalent to the "light projection means" of this invention)
DESCRIPTION OF SYMBOLS 70 ... Light receiving unit 80 ... Light receiving part 81 ... Condensing lens 85 ... CMOS image sensor (equivalent to the "light receiving means" of this invention)
90... Signal readout circuit (corresponding to “signal readout means” of the present invention)
100: Digital filter circuit (corresponding to “first filter circuit” of the present invention)
110 ... Laplacian filter circuit (corresponding to "second filter circuit" of the present invention)
120... Measuring circuit (corresponding to “measuring means” of the present invention)
DESCRIPTION OF SYMBOLS 130 ... Control circuit 180 ... Attitude detection apparatus L ... Detection optical axis W ... Component (equivalent to "detected object" of this invention)
V ... Vertical line)

Claims (3)

検出光を検出領域に向けて出射する投光手段と、
前記投光手段と検出領域をはさんで対向配置され、少なくとも一次元状に配置される複数の受光素子からなる受光手段と、
前記受光手段から受光信号を順次読み出す信号読出手段と、
前記信号読出手段で読み出された受光信号のレベルと所定の基準レベルとを比較し、被検出物が前記検出領域を通過した際に、前記受光信号のレベルが基準レベル以上から前記基準レベル以下に、あるいは前記基準レベル以下から前記基準レベル以上に変化する入遮光位置を測定して出力する測定手段とを備える測定装置において、
前記信号読出手段と前記測定手段の間に配置され、前記信号読出手段で順次読み出される受光信号波形から、所定周波数の信号成分を除去する第一フィルタ回路を備えることを特徴とする測定装置。
A light projecting means for emitting detection light toward the detection region;
A light receiving means comprising a plurality of light receiving elements arranged opposite to each other across the light projecting means and the detection region, and arranged in a one-dimensional manner;
Signal readout means for sequentially reading out the received light signals from the light receiving means;
The level of the received light signal read by the signal reading means is compared with a predetermined reference level, and when the detected object passes through the detection area, the level of the received light signal is higher than the reference level and lower than the reference level. Or a measuring device comprising measuring means for measuring and outputting an incident light shielding position that changes from the reference level or lower to the reference level or higher,
A measuring apparatus comprising a first filter circuit disposed between the signal reading unit and the measuring unit and configured to remove a signal component having a predetermined frequency from a received light signal waveform sequentially read by the signal reading unit.
前記所定周波数は、前記受光手段が前記検出光を受光して出来る受光像中に出来る受光縞の空間周波数であることを特徴とする請求項1に記載の測定装置。   The measuring apparatus according to claim 1, wherein the predetermined frequency is a spatial frequency of a light-receiving fringe formed in a light-receiving image formed by the light-receiving unit receiving the detection light. 前記第一フィルタ回路と前記測定手段の間に、前記受光信号波形を二次微分して前記受光信号波形との差分を求めて出力する第二フィルタ回路を設けることを特徴とする請求項1又は請求項2に記載の測定装置。   2. A second filter circuit is provided between the first filter circuit and the measuring means, wherein a second filter circuit that secondarily differentiates the received light signal waveform to obtain a difference from the received light signal waveform and outputs the difference is provided. The measuring apparatus according to claim 2.
JP2011146557A 2011-06-30 2011-06-30 Measuring device Pending JP2013016555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011146557A JP2013016555A (en) 2011-06-30 2011-06-30 Measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011146557A JP2013016555A (en) 2011-06-30 2011-06-30 Measuring device

Publications (1)

Publication Number Publication Date
JP2013016555A true JP2013016555A (en) 2013-01-24

Family

ID=47688968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011146557A Pending JP2013016555A (en) 2011-06-30 2011-06-30 Measuring device

Country Status (1)

Country Link
JP (1) JP2013016555A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023053616A1 (en) * 2021-09-30 2023-04-06 パナソニックIpマネジメント株式会社 Mounting machine and suction state determination method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09318879A (en) * 1996-05-29 1997-12-12 Komatsu Ltd Confocal optical device
JP2008311336A (en) * 2007-06-13 2008-12-25 Sunx Ltd Measuring instrument, and measurement system
JP2010066155A (en) * 2008-09-11 2010-03-25 Nikon Corp Profile measuring apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09318879A (en) * 1996-05-29 1997-12-12 Komatsu Ltd Confocal optical device
JP2008311336A (en) * 2007-06-13 2008-12-25 Sunx Ltd Measuring instrument, and measurement system
JP2010066155A (en) * 2008-09-11 2010-03-25 Nikon Corp Profile measuring apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023053616A1 (en) * 2021-09-30 2023-04-06 パナソニックIpマネジメント株式会社 Mounting machine and suction state determination method

Similar Documents

Publication Publication Date Title
JP6211523B2 (en) High-speed autofocus system
KR101473091B1 (en) Apparatus for and method of inspecting substrate
CN109791201A (en) Projector with space light modulation
KR101782336B1 (en) Inspection apparatus and inspection method
KR100752758B1 (en) Apparatus and method for measuring image
US20110102577A1 (en) Optical detection device and method for detecting surfaces of components
EP2613121B1 (en) Image sensor, attitude detector, contact probe, and multi-sensing probe
CN104236463A (en) Machine Vision Inspection System and Method for Performing High-Speed Focus Height Measurement Operations
JP6412710B2 (en) Optical interference measurement device
JP2002535606A (en) Method and apparatus for inspecting an object
US9682458B2 (en) Method and device for controlling grinding of flexible substrate
US9927371B2 (en) Confocal line inspection optical system
KR20140143843A (en) Systems and methods for sample inspection and review
TWI263769B (en) A device and a method of optical testing
JP2012108130A (en) Board inspection method
JP2013016555A (en) Measuring device
JP6193875B2 (en) Method and system for optical evaluation and optical detector
JP2010014444A (en) Shape measurement method and measurement device by phase shift method
KR20180038964A (en) Method for confirming reference image, method for inspecting mask, and apparatus for inspecting mask
JPWO2014141380A1 (en) Component recognition system for component mounters
JP2010133712A (en) Shape measuring device
US11936985B2 (en) Appearance inspection device and defect inspection method
WO2018031560A1 (en) Automated 3-d measurement
KR100479904B1 (en) Apparatus for inspecting parts
KR101022302B1 (en) Multiple source alignment sensor with improved optics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150630